summaryrefslogtreecommitdiff
path: root/chromium/v8/src/objects/string.cc
blob: cf7b0afd927432263fed3b13be136f5e6fdcefa9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
// Copyright 2019 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/objects/string.h"

#include "src/common/assert-scope.h"
#include "src/common/globals.h"
#include "src/execution/isolate-utils.h"
#include "src/execution/thread-id.h"
#include "src/handles/handles-inl.h"
#include "src/heap/heap-inl.h"
#include "src/heap/local-factory-inl.h"
#include "src/heap/local-heap-inl.h"
#include "src/heap/memory-chunk.h"
#include "src/heap/read-only-heap.h"
#include "src/numbers/conversions.h"
#include "src/objects/instance-type.h"
#include "src/objects/map.h"
#include "src/objects/oddball.h"
#include "src/objects/string-comparator.h"
#include "src/objects/string-inl.h"
#include "src/strings/char-predicates.h"
#include "src/strings/string-builder-inl.h"
#include "src/strings/string-hasher.h"
#include "src/strings/string-search.h"
#include "src/strings/string-stream.h"
#include "src/strings/unicode-inl.h"
#include "src/utils/ostreams.h"

namespace v8 {
namespace internal {

Handle<String> String::SlowFlatten(Isolate* isolate, Handle<ConsString> cons,
                                   AllocationType allocation) {
  DCHECK_NE(cons->second().length(), 0);
  DCHECK(!cons->InSharedHeap());

  // TurboFan can create cons strings with empty first parts.
  while (cons->first().length() == 0) {
    // We do not want to call this function recursively. Therefore we call
    // String::Flatten only in those cases where String::SlowFlatten is not
    // called again.
    if (cons->second().IsConsString() && !cons->second().IsFlat()) {
      cons = handle(ConsString::cast(cons->second()), isolate);
    } else {
      return String::Flatten(isolate, handle(cons->second(), isolate),
                             allocation);
    }
  }

  DCHECK(AllowGarbageCollection::IsAllowed());
  int length = cons->length();
  if (allocation != AllocationType::kSharedOld) {
    allocation =
        ObjectInYoungGeneration(*cons) ? allocation : AllocationType::kOld;
  }
  Handle<SeqString> result;
  if (cons->IsOneByteRepresentation()) {
    Handle<SeqOneByteString> flat =
        isolate->factory()
            ->NewRawOneByteString(length, allocation)
            .ToHandleChecked();
    // When the ConsString had a forwarding index, it is possible that it was
    // transitioned to a ThinString (and eventually shortcutted to
    // InternalizedString) during GC.
    if (V8_UNLIKELY(v8_flags.always_use_string_forwarding_table &&
                    !cons->IsConsString())) {
      DCHECK(cons->IsInternalizedString() || cons->IsThinString());
      return String::Flatten(isolate, cons, allocation);
    }
    DisallowGarbageCollection no_gc;
    WriteToFlat(*cons, flat->GetChars(no_gc), 0, length);
    result = flat;
  } else {
    Handle<SeqTwoByteString> flat =
        isolate->factory()
            ->NewRawTwoByteString(length, allocation)
            .ToHandleChecked();
    // When the ConsString had a forwarding index, it is possible that it was
    // transitioned to a ThinString (and eventually shortcutted to
    // InternalizedString) during GC.
    if (V8_UNLIKELY(v8_flags.always_use_string_forwarding_table &&
                    !cons->IsConsString())) {
      DCHECK(cons->IsInternalizedString() || cons->IsThinString());
      return String::Flatten(isolate, cons, allocation);
    }
    DisallowGarbageCollection no_gc;
    WriteToFlat(*cons, flat->GetChars(no_gc), 0, length);
    result = flat;
  }
  {
    DisallowGarbageCollection no_gc;
    auto raw_cons = *cons;
    raw_cons.set_first(*result);
    raw_cons.set_second(ReadOnlyRoots(isolate).empty_string());
  }
  DCHECK(result->IsFlat());
  return result;
}

Handle<String> String::SlowShare(Isolate* isolate, Handle<String> source) {
  DCHECK(v8_flags.shared_string_table);
  Handle<String> flat = Flatten(isolate, source, AllocationType::kSharedOld);

  // Do not recursively call Share, so directly compute the sharing strategy for
  // the flat string, which could already be a copy or an existing string from
  // e.g. a shortcut ConsString.
  MaybeHandle<Map> new_map;
  switch (isolate->factory()->ComputeSharingStrategyForString(flat, &new_map)) {
    case StringTransitionStrategy::kCopy:
      break;
    case StringTransitionStrategy::kInPlace:
      // A relaxed write is sufficient here, because at this point the string
      // has not yet escaped the current thread.
      DCHECK(flat->InSharedHeap());
      flat->set_map_no_write_barrier(*new_map.ToHandleChecked());
      return flat;
    case StringTransitionStrategy::kAlreadyTransitioned:
      return flat;
  }

  int length = flat->length();
  if (flat->IsOneByteRepresentation()) {
    Handle<SeqOneByteString> copy =
        isolate->factory()->NewRawSharedOneByteString(length).ToHandleChecked();
    DisallowGarbageCollection no_gc;
    WriteToFlat(*flat, copy->GetChars(no_gc), 0, length);
    return copy;
  }
  Handle<SeqTwoByteString> copy =
      isolate->factory()->NewRawSharedTwoByteString(length).ToHandleChecked();
  DisallowGarbageCollection no_gc;
  WriteToFlat(*flat, copy->GetChars(no_gc), 0, length);
  return copy;
}

namespace {

template <class StringClass>
void MigrateExternalStringResource(Isolate* isolate, ExternalString from,
                                   StringClass to) {
  Address to_resource_address = to.resource_as_address();
  if (to_resource_address == kNullAddress) {
    StringClass cast_from = StringClass::cast(from);
    // |to| is a just-created internalized copy of |from|. Migrate the resource.
    to.SetResource(isolate, cast_from.resource());
    // Zap |from|'s resource pointer to reflect the fact that |from| has
    // relinquished ownership of its resource.
    isolate->heap()->UpdateExternalString(
        from, ExternalString::cast(from).ExternalPayloadSize(), 0);
    cast_from.SetResource(isolate, nullptr);
  } else if (to_resource_address != from.resource_as_address()) {
    // |to| already existed and has its own resource. Finalize |from|.
    isolate->heap()->FinalizeExternalString(from);
  }
}

void MigrateExternalString(Isolate* isolate, String string,
                           String internalized) {
  if (internalized.IsExternalOneByteString()) {
    MigrateExternalStringResource(isolate, ExternalString::cast(string),
                                  ExternalOneByteString::cast(internalized));
  } else if (internalized.IsExternalTwoByteString()) {
    MigrateExternalStringResource(isolate, ExternalString::cast(string),
                                  ExternalTwoByteString::cast(internalized));
  } else {
    // If the external string is duped into an existing non-external
    // internalized string, free its resource (it's about to be rewritten
    // into a ThinString below).
    isolate->heap()->FinalizeExternalString(string);
  }
}

template <typename IsolateT>
Map ComputeThinStringMap(IsolateT* isolate, StringShape from_string_shape,
                         bool one_byte) {
  ReadOnlyRoots roots(isolate);
  if (from_string_shape.IsShared()) {
    return one_byte ? roots.shared_thin_one_byte_string_map()
                    : roots.shared_thin_string_map();
  }
  return one_byte ? roots.thin_one_byte_string_map() : roots.thin_string_map();
}

void InitExternalPointerFieldsDuringExternalization(String string, Map new_map,
                                                    Isolate* isolate) {
  string.InitExternalPointerField<kExternalStringResourceTag>(
      ExternalString::kResourceOffset, isolate, kNullAddress);
  bool is_uncached = (new_map.instance_type() & kUncachedExternalStringMask) ==
                     kUncachedExternalStringTag;
  if (!is_uncached) {
    string.InitExternalPointerField<kExternalStringResourceDataTag>(
        ExternalString::kResourceDataOffset, isolate, kNullAddress);
  }
}

}  // namespace

template <typename IsolateT>
void String::MakeThin(
    IsolateT* isolate, String internalized,
    UpdateInvalidatedObjectSize update_invalidated_object_size) {
  DisallowGarbageCollection no_gc;
  DCHECK_NE(*this, internalized);
  DCHECK(internalized.IsInternalizedString());

  Map initial_map = map(kAcquireLoad);
  StringShape initial_shape(initial_map);

  DCHECK(!initial_shape.IsThin());

#ifdef DEBUG
  // Check that shared strings can only transition to ThinStrings on the main
  // thread when no other thread is active.
  // The exception is during serialization, as no strings have escaped the
  // thread yet.
  if (initial_shape.IsShared() && !isolate->has_active_deserializer()) {
    isolate->AsIsolate()->global_safepoint()->AssertActive();
  }
#endif

  bool may_contain_recorded_slots = initial_shape.IsIndirect();
  int old_size = SizeFromMap(initial_map);
  Map target_map = ComputeThinStringMap(isolate, initial_shape,
                                        internalized.IsOneByteRepresentation());
  if (initial_shape.IsExternal()) {
    // Notify GC about the layout change before the transition to avoid
    // concurrent marking from observing any in-between state (e.g.
    // ExternalString map where the resource external pointer is overwritten
    // with a tagged pointer).
    // ExternalString -> ThinString transitions can only happen on the
    // main-thread.
    isolate->AsIsolate()->heap()->NotifyObjectLayoutChange(
        *this, no_gc, InvalidateRecordedSlots::kYes, ThinString::kSize);
    MigrateExternalString(isolate->AsIsolate(), *this, internalized);

    // Conservatively assume ExternalStrings may have recorded slots, because
    // they could have been transitioned from ConsStrings without having had the
    // recorded slots cleared.
    // TODO(v8:13374): Fix this more uniformly.
    may_contain_recorded_slots = true;
  }

  // Update actual first and then do release store on the map word. This ensures
  // that the concurrent marker will read the pointer when visiting a
  // ThinString.
  ThinString thin = ThinString::unchecked_cast(*this);
  thin.set_actual(internalized);
  if (initial_shape.IsExternal()) {
    set_map(target_map, kReleaseStore);
  } else {
    set_map_safe_transition(target_map, kReleaseStore);
  }

  DCHECK_GE(old_size, ThinString::kSize);
  int size_delta = old_size - ThinString::kSize;
  if (size_delta != 0) {
    if (!Heap::IsLargeObject(thin)) {
      isolate->heap()->NotifyObjectSizeChange(thin, old_size, ThinString::kSize,
                                              may_contain_recorded_slots
                                                  ? ClearRecordedSlots::kYes
                                                  : ClearRecordedSlots::kNo,
                                              update_invalidated_object_size);
    } else {
      // We don't need special handling for the combination IsLargeObject &&
      // may_contain_recorded_slots, because indirect strings never get that
      // large.
      DCHECK(!may_contain_recorded_slots);
    }
  }
}

template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void String::MakeThin(
    Isolate* isolate, String internalized,
    UpdateInvalidatedObjectSize update_invalidated_object_size);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void String::MakeThin(
    LocalIsolate* isolate, String internalized,
    UpdateInvalidatedObjectSize update_invalidated_object_size);

template <typename T>
bool String::MarkForExternalizationDuringGC(Isolate* isolate, T* resource) {
  uint32_t raw_hash = raw_hash_field(kAcquireLoad);
  if (IsExternalForwardingIndex(raw_hash)) return false;
  if (IsInternalizedForwardingIndex(raw_hash)) {
    const int forwarding_index = ForwardingIndexValueBits::decode(raw_hash);
    if (!isolate->string_forwarding_table()->TryUpdateExternalResource(
            forwarding_index, resource)) {
      // The external resource was concurrently updated by another thread.
      return false;
    }
    raw_hash = Name::IsExternalForwardingIndexBit::update(raw_hash, true);
    set_raw_hash_field(raw_hash, kReleaseStore);
    return true;
  }
  // We need to store the hash in the forwarding table, as all non-external
  // shared strings are in-place internalizable. In case the string gets
  // internalized, we have to ensure that we can get the hash from the
  // forwarding table to satisfy the invariant that all internalized strings
  // have a computed hash value.
  if (!IsHashFieldComputed(raw_hash)) {
    raw_hash = EnsureRawHash();
  }
  DCHECK(IsHashFieldComputed(raw_hash));
  int forwarding_index =
      isolate->string_forwarding_table()->AddExternalResourceAndHash(
          *this, resource, raw_hash);
  set_raw_hash_field(String::CreateExternalForwardingIndex(forwarding_index),
                     kReleaseStore);

  return true;
}

namespace {

template <bool is_one_byte>
Map ComputeExternalStringMap(Isolate* isolate, String string, int size) {
  ReadOnlyRoots roots(isolate);
  StringShape shape(string, isolate);
  const bool is_internalized = shape.IsInternalized();
  const bool is_shared = shape.IsShared();
  if constexpr (is_one_byte) {
    if (size < ExternalString::kSizeOfAllExternalStrings) {
      if (is_internalized) {
        return roots.uncached_external_one_byte_internalized_string_map();
      } else {
        return is_shared ? roots.shared_uncached_external_one_byte_string_map()
                         : roots.uncached_external_one_byte_string_map();
      }
    } else {
      if (is_internalized) {
        return roots.external_one_byte_internalized_string_map();
      } else {
        return is_shared ? roots.shared_external_one_byte_string_map()
                         : roots.external_one_byte_string_map();
      }
    }
  } else {
    if (size < ExternalString::kSizeOfAllExternalStrings) {
      if (is_internalized) {
        return roots.uncached_external_internalized_string_map();
      } else {
        return is_shared ? roots.shared_uncached_external_string_map()
                         : roots.uncached_external_string_map();
      }
    } else {
      if (is_internalized) {
        return roots.external_internalized_string_map();
      } else {
        return is_shared ? roots.shared_external_string_map()
                         : roots.external_string_map();
      }
    }
  }
}

}  // namespace

template <typename T>
void String::MakeExternalDuringGC(Isolate* isolate, T* resource) {
  isolate->heap()->safepoint()->AssertActive();
  DCHECK_NE(isolate->heap()->gc_state(), Heap::NOT_IN_GC);

  constexpr bool is_one_byte =
      std::is_base_of_v<v8::String::ExternalOneByteStringResource, T>;
  int size = this->Size();  // Byte size of the original string.
  DCHECK_GE(size, ExternalString::kUncachedSize);

  // Morph the string to an external string by replacing the map and
  // reinitializing the fields.  This won't work if the space the existing
  // string occupies is too small for a regular external string.  Instead, we
  // resort to an uncached external string instead, omitting the field caching
  // the address of the backing store.  When we encounter uncached external
  // strings in generated code, we need to bailout to runtime.
  Map new_map = ComputeExternalStringMap<is_one_byte>(isolate, *this, size);

  // Byte size of the external String object.
  int new_size = this->SizeFromMap(new_map);

  // Shared strings are never indirect or large.
  DCHECK(!isolate->heap()->IsLargeObject(*this));
  DCHECK(!StringShape(*this).IsIndirect());

  isolate->heap()->NotifyObjectSizeChange(*this, size, new_size,
                                          ClearRecordedSlots::kNo);

  // The external pointer slots must be initialized before the new map is
  // installed. Otherwise, a GC marking thread may see the new map before the
  // slots are initialized and attempt to mark the (invalid) external pointers
  // table entries as alive.
  InitExternalPointerFieldsDuringExternalization(*this, new_map, isolate);

  // We are storing the new map using release store after creating a filler in
  // the NotifyObjectSizeChange call for the left-over space to avoid races with
  // the sweeper thread.
  this->set_map(new_map, kReleaseStore);

  if constexpr (is_one_byte) {
    ExternalOneByteString self = ExternalOneByteString::cast(*this);
    self.SetResource(isolate, resource);
  } else {
    ExternalTwoByteString self = ExternalTwoByteString::cast(*this);
    self.SetResource(isolate, resource);
  }
  isolate->heap()->RegisterExternalString(*this);
}

template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void String::
    MakeExternalDuringGC(Isolate* isolate,
                         v8::String::ExternalOneByteStringResource*);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void String::
    MakeExternalDuringGC(Isolate* isolate, v8::String::ExternalStringResource*);

bool String::MakeExternal(v8::String::ExternalStringResource* resource) {
  // Disallow garbage collection to avoid possible GC vs string access deadlock.
  DisallowGarbageCollection no_gc;

  // Externalizing twice leaks the external resource, so it's
  // prohibited by the API.
  DCHECK(this->SupportsExternalization());
  DCHECK(resource->IsCacheable());
#ifdef ENABLE_SLOW_DCHECKS
  if (v8_flags.enable_slow_asserts) {
    // Assert that the resource and the string are equivalent.
    DCHECK(static_cast<size_t>(this->length()) == resource->length());
    base::ScopedVector<base::uc16> smart_chars(this->length());
    String::WriteToFlat(*this, smart_chars.begin(), 0, this->length());
    DCHECK_EQ(0, memcmp(smart_chars.begin(), resource->data(),
                        resource->length() * sizeof(smart_chars[0])));
  }
#endif                      // DEBUG
  int size = this->Size();  // Byte size of the original string.
  // Abort if size does not allow in-place conversion.
  if (size < ExternalString::kUncachedSize) return false;
  // Read-only strings cannot be made external, since that would mutate the
  // string.
  if (IsReadOnlyHeapObject(*this)) return false;
  Isolate* isolate = GetIsolateFromWritableObject(*this);
  if (IsShared(isolate)) {
    return MarkForExternalizationDuringGC(isolate, resource);
  }
  bool is_internalized = this->IsInternalizedString();
  bool has_pointers = StringShape(*this).IsIndirect();

  base::SharedMutexGuard<base::kExclusive> shared_mutex_guard(
      isolate->internalized_string_access());
  // Morph the string to an external string by replacing the map and
  // reinitializing the fields.  This won't work if the space the existing
  // string occupies is too small for a regular external string.  Instead, we
  // resort to an uncached external string instead, omitting the field caching
  // the address of the backing store.  When we encounter uncached external
  // strings in generated code, we need to bailout to runtime.
  constexpr bool is_one_byte = false;
  Map new_map = ComputeExternalStringMap<is_one_byte>(isolate, *this, size);

  // Byte size of the external String object.
  int new_size = this->SizeFromMap(new_map);

  if (has_pointers) {
    isolate->heap()->NotifyObjectLayoutChange(
        *this, no_gc, InvalidateRecordedSlots::kYes, new_size);
  }

  if (!isolate->heap()->IsLargeObject(*this)) {
    isolate->heap()->NotifyObjectSizeChange(
        *this, size, new_size,
        has_pointers ? ClearRecordedSlots::kYes : ClearRecordedSlots::kNo);
  } else {
    // We don't need special handling for the combination IsLargeObject &&
    // has_pointers, because indirect strings never get that large.
    DCHECK(!has_pointers);
  }

  // The external pointer slots must be initialized before the new map is
  // installed. Otherwise, a GC marking thread may see the new map before the
  // slots are initialized and attempt to mark the (invalid) external pointers
  // table entries as alive.
  InitExternalPointerFieldsDuringExternalization(*this, new_map, isolate);

  // We are storing the new map using release store after creating a filler in
  // the NotifyObjectSizeChange call for the left-over space to avoid races with
  // the sweeper thread.
  this->set_map(new_map, kReleaseStore);

  ExternalTwoByteString self = ExternalTwoByteString::cast(*this);
  self.SetResource(isolate, resource);
  isolate->heap()->RegisterExternalString(*this);
  // Force regeneration of the hash value.
  if (is_internalized) self.EnsureHash();
  return true;
}

bool String::MakeExternal(v8::String::ExternalOneByteStringResource* resource) {
  // Disallow garbage collection to avoid possible GC vs string access deadlock.
  DisallowGarbageCollection no_gc;

  // Externalizing twice leaks the external resource, so it's
  // prohibited by the API.
  DCHECK(this->SupportsExternalization());
  DCHECK(resource->IsCacheable());
#ifdef ENABLE_SLOW_DCHECKS
  if (v8_flags.enable_slow_asserts) {
    // Assert that the resource and the string are equivalent.
    DCHECK(static_cast<size_t>(this->length()) == resource->length());
    if (this->IsTwoByteRepresentation()) {
      base::ScopedVector<uint16_t> smart_chars(this->length());
      String::WriteToFlat(*this, smart_chars.begin(), 0, this->length());
      DCHECK(String::IsOneByte(smart_chars.begin(), this->length()));
    }
    base::ScopedVector<char> smart_chars(this->length());
    String::WriteToFlat(*this, smart_chars.begin(), 0, this->length());
    DCHECK_EQ(0, memcmp(smart_chars.begin(), resource->data(),
                        resource->length() * sizeof(smart_chars[0])));
  }
#endif                      // DEBUG
  int size = this->Size();  // Byte size of the original string.
  // Abort if size does not allow in-place conversion.
  if (size < ExternalString::kUncachedSize) return false;
  // Read-only strings cannot be made external, since that would mutate the
  // string.
  if (IsReadOnlyHeapObject(*this)) return false;
  Isolate* isolate = GetIsolateFromWritableObject(*this);
  if (IsShared(isolate)) {
    return MarkForExternalizationDuringGC(isolate, resource);
  }
  bool is_internalized = this->IsInternalizedString();
  bool has_pointers = StringShape(*this).IsIndirect();

  base::SharedMutexGuard<base::kExclusive> shared_mutex_guard(
      isolate->internalized_string_access());
  // Morph the string to an external string by replacing the map and
  // reinitializing the fields.  This won't work if the space the existing
  // string occupies is too small for a regular external string.  Instead, we
  // resort to an uncached external string instead, omitting the field caching
  // the address of the backing store.  When we encounter uncached external
  // strings in generated code, we need to bailout to runtime.
  constexpr bool is_one_byte = true;
  Map new_map = ComputeExternalStringMap<is_one_byte>(isolate, *this, size);

  if (!isolate->heap()->IsLargeObject(*this)) {
    // Byte size of the external String object.
    int new_size = this->SizeFromMap(new_map);

    if (has_pointers) {
      isolate->heap()->NotifyObjectLayoutChange(
          *this, no_gc, InvalidateRecordedSlots::kYes, new_size);
    }

    isolate->heap()->NotifyObjectSizeChange(
        *this, size, new_size,
        has_pointers ? ClearRecordedSlots::kYes : ClearRecordedSlots::kNo);
  } else {
    // We don't need special handling for the combination IsLargeObject &&
    // has_pointers, because indirect strings never get that large.
    DCHECK(!has_pointers);
  }

  // The external pointer slots must be initialized before the new map is
  // installed. Otherwise, a GC marking thread may see the new map before the
  // slots are initialized and attempt to mark the (invalid) external pointers
  // table entries as alive.
  InitExternalPointerFieldsDuringExternalization(*this, new_map, isolate);

  // We are storing the new map using release store after creating a filler in
  // the NotifyObjectSizeChange call for the left-over space to avoid races with
  // the sweeper thread.
  this->set_map(new_map, kReleaseStore);

  ExternalOneByteString self = ExternalOneByteString::cast(*this);
  self.SetResource(isolate, resource);
  isolate->heap()->RegisterExternalString(*this);
  // Force regeneration of the hash value.
  if (is_internalized) self.EnsureHash();
  return true;
}

bool String::SupportsExternalization() {
  if (this->IsThinString()) {
    return i::ThinString::cast(*this).actual().SupportsExternalization();
  }

  // RO_SPACE strings cannot be externalized.
  if (IsReadOnlyHeapObject(*this)) {
    return false;
  }

  // Already an external string.
  if (StringShape(*this).IsExternal()) {
    return false;
  }

#ifdef V8_COMPRESS_POINTERS
  // Small strings may not be in-place externalizable.
  if (this->Size() < ExternalString::kUncachedSize) return false;
#else
  DCHECK_LE(ExternalString::kUncachedSize, this->Size());
#endif

  Isolate* isolate = GetIsolateFromWritableObject(*this);
  return !isolate->heap()->IsInGCPostProcessing();
}

const char* String::PrefixForDebugPrint() const {
  StringShape shape(*this);
  if (IsTwoByteRepresentation()) {
    if (shape.IsInternalized()) {
      return "u#";
    } else if (shape.IsCons()) {
      return "uc\"";
    } else if (shape.IsThin()) {
      return "u>\"";
    } else if (shape.IsExternal()) {
      return "ue\"";
    } else {
      return "u\"";
    }
  } else {
    if (shape.IsInternalized()) {
      return "#";
    } else if (shape.IsCons()) {
      return "c\"";
    } else if (shape.IsThin()) {
      return ">\"";
    } else if (shape.IsExternal()) {
      return "e\"";
    } else {
      return "\"";
    }
  }
  UNREACHABLE();
}

const char* String::SuffixForDebugPrint() const {
  StringShape shape(*this);
  if (shape.IsInternalized()) return "";
  return "\"";
}

void String::StringShortPrint(StringStream* accumulator) {
  if (!LooksValid()) {
    accumulator->Add("<Invalid String>");
    return;
  }

  const int len = length();
  accumulator->Add("<String[%u]: ", len);
  accumulator->Add(PrefixForDebugPrint());

  if (len > kMaxShortPrintLength) {
    accumulator->Add("...<truncated>>");
    accumulator->Add(SuffixForDebugPrint());
    accumulator->Put('>');
    return;
  }

  PrintUC16(accumulator, 0, len);
  accumulator->Add(SuffixForDebugPrint());
  accumulator->Put('>');
}

void String::PrintUC16(std::ostream& os, int start, int end) {
  if (end < 0) end = length();
  StringCharacterStream stream(*this, start);
  for (int i = start; i < end && stream.HasMore(); i++) {
    os << AsUC16(stream.GetNext());
  }
}

void String::PrintUC16(StringStream* accumulator, int start, int end) {
  if (end < 0) end = length();
  StringCharacterStream stream(*this, start);
  for (int i = start; i < end && stream.HasMore(); i++) {
    uint16_t c = stream.GetNext();
    if (c == '\n') {
      accumulator->Add("\\n");
    } else if (c == '\r') {
      accumulator->Add("\\r");
    } else if (c == '\\') {
      accumulator->Add("\\\\");
    } else if (!std::isprint(c)) {
      accumulator->Add("\\x%02x", c);
    } else {
      accumulator->Put(static_cast<char>(c));
    }
  }
}

int32_t String::ToArrayIndex(Address addr) {
  DisallowGarbageCollection no_gc;
  String key(addr);

  uint32_t index;
  if (!key.AsArrayIndex(&index)) return -1;
  if (index <= INT_MAX) return index;
  return -1;
}

bool String::LooksValid() {
  // TODO(leszeks): Maybe remove this check entirely, Heap::Contains uses
  // basically the same logic as the way we access the heap in the first place.
  // RO_SPACE objects should always be valid.
  if (V8_ENABLE_THIRD_PARTY_HEAP_BOOL) return true;
  if (ReadOnlyHeap::Contains(*this)) return true;
  BasicMemoryChunk* chunk = BasicMemoryChunk::FromHeapObject(*this);
  if (chunk->heap() == nullptr) return false;
  return chunk->heap()->Contains(*this);
}

namespace {

bool AreDigits(const uint8_t* s, int from, int to) {
  for (int i = from; i < to; i++) {
    if (s[i] < '0' || s[i] > '9') return false;
  }

  return true;
}

int ParseDecimalInteger(const uint8_t* s, int from, int to) {
  DCHECK_LT(to - from, 10);  // Overflow is not possible.
  DCHECK(from < to);
  int d = s[from] - '0';

  for (int i = from + 1; i < to; i++) {
    d = 10 * d + (s[i] - '0');
  }

  return d;
}

}  // namespace

// static
Handle<Object> String::ToNumber(Isolate* isolate, Handle<String> subject) {
  // Flatten {subject} string first.
  subject = String::Flatten(isolate, subject);

  // Fast array index case.
  uint32_t index;
  if (subject->AsArrayIndex(&index)) {
    return isolate->factory()->NewNumberFromUint(index);
  }

  // Fast case: short integer or some sorts of junk values.
  if (subject->IsSeqOneByteString()) {
    int len = subject->length();
    if (len == 0) return handle(Smi::zero(), isolate);

    DisallowGarbageCollection no_gc;
    uint8_t const* data =
        Handle<SeqOneByteString>::cast(subject)->GetChars(no_gc);
    bool minus = (data[0] == '-');
    int start_pos = (minus ? 1 : 0);

    if (start_pos == len) {
      return isolate->factory()->nan_value();
    } else if (data[start_pos] > '9') {
      // Fast check for a junk value. A valid string may start from a
      // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit
      // or the 'I' character ('Infinity'). All of that have codes not greater
      // than '9' except 'I' and &nbsp;.
      if (data[start_pos] != 'I' && data[start_pos] != 0xA0) {
        return isolate->factory()->nan_value();
      }
    } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) {
      // The maximal/minimal smi has 10 digits. If the string has less digits
      // we know it will fit into the smi-data type.
      int d = ParseDecimalInteger(data, start_pos, len);
      if (minus) {
        if (d == 0) return isolate->factory()->minus_zero_value();
        d = -d;
      } else if (!subject->HasHashCode() && len <= String::kMaxArrayIndexSize &&
                 (len == 1 || data[0] != '0')) {
        // String hash is not calculated yet but all the data are present.
        // Update the hash field to speed up sequential convertions.
        uint32_t raw_hash_field = StringHasher::MakeArrayIndexHash(d, len);
#ifdef DEBUG
        subject->EnsureHash();  // Force hash calculation.
        DCHECK_EQ(subject->raw_hash_field(), raw_hash_field);
#endif
        subject->set_raw_hash_field_if_empty(raw_hash_field);
      }
      return handle(Smi::FromInt(d), isolate);
    }
  }

  // Slower case.
  int flags = ALLOW_HEX | ALLOW_OCTAL | ALLOW_BINARY;
  return isolate->factory()->NewNumber(StringToDouble(isolate, subject, flags));
}

String::FlatContent String::SlowGetFlatContent(
    const DisallowGarbageCollection& no_gc,
    const SharedStringAccessGuardIfNeeded& access_guard) {
  USE(no_gc);
  PtrComprCageBase cage_base = GetPtrComprCageBase(*this);
  String string = *this;
  StringShape shape(string, cage_base);
  int offset = 0;

  // Extract cons- and sliced strings.
  if (shape.IsCons()) {
    ConsString cons = ConsString::cast(string);
    if (!cons.IsFlat(cage_base)) return FlatContent(no_gc);
    string = cons.first(cage_base);
    shape = StringShape(string, cage_base);
  } else if (shape.IsSliced()) {
    SlicedString slice = SlicedString::cast(string);
    offset = slice.offset();
    string = slice.parent(cage_base);
    shape = StringShape(string, cage_base);
  }

  DCHECK(!shape.IsCons());
  DCHECK(!shape.IsSliced());

  // Extract thin strings.
  if (shape.IsThin()) {
    ThinString thin = ThinString::cast(string);
    string = thin.actual(cage_base);
    shape = StringShape(string, cage_base);
  }

  DCHECK(shape.IsDirect());
  return TryGetFlatContentFromDirectString(cage_base, no_gc, string, offset,
                                           length(), access_guard)
      .value();
}

std::unique_ptr<char[]> String::ToCString(AllowNullsFlag allow_nulls,
                                          RobustnessFlag robust_flag,
                                          int offset, int length,
                                          int* length_return) {
  if (robust_flag == ROBUST_STRING_TRAVERSAL && !LooksValid()) {
    return std::unique_ptr<char[]>();
  }
  // Negative length means the to the end of the string.
  if (length < 0) length = kMaxInt - offset;

  // Compute the size of the UTF-8 string. Start at the specified offset.
  StringCharacterStream stream(*this, offset);
  int character_position = offset;
  int utf8_bytes = 0;
  int last = unibrow::Utf16::kNoPreviousCharacter;
  while (stream.HasMore() && character_position++ < offset + length) {
    uint16_t character = stream.GetNext();
    utf8_bytes += unibrow::Utf8::Length(character, last);
    last = character;
  }

  if (length_return) {
    *length_return = utf8_bytes;
  }

  char* result = NewArray<char>(utf8_bytes + 1);

  // Convert the UTF-16 string to a UTF-8 buffer. Start at the specified offset.
  stream.Reset(*this, offset);
  character_position = offset;
  int utf8_byte_position = 0;
  last = unibrow::Utf16::kNoPreviousCharacter;
  while (stream.HasMore() && character_position++ < offset + length) {
    uint16_t character = stream.GetNext();
    if (allow_nulls == DISALLOW_NULLS && character == 0) {
      character = ' ';
    }
    utf8_byte_position +=
        unibrow::Utf8::Encode(result + utf8_byte_position, character, last);
    last = character;
  }
  result[utf8_byte_position] = 0;
  return std::unique_ptr<char[]>(result);
}

std::unique_ptr<char[]> String::ToCString(AllowNullsFlag allow_nulls,
                                          RobustnessFlag robust_flag,
                                          int* length_return) {
  return ToCString(allow_nulls, robust_flag, 0, -1, length_return);
}

// static
template <typename sinkchar>
void String::WriteToFlat(String source, sinkchar* sink, int start, int length) {
  DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(source));
  return WriteToFlat(source, sink, start, length, GetPtrComprCageBase(source),
                     SharedStringAccessGuardIfNeeded::NotNeeded());
}

// static
template <typename sinkchar>
void String::WriteToFlat(String source, sinkchar* sink, int start, int length,
                         PtrComprCageBase cage_base,
                         const SharedStringAccessGuardIfNeeded& access_guard) {
  DisallowGarbageCollection no_gc;
  if (length == 0) return;
  while (true) {
    DCHECK_LT(0, length);
    DCHECK_LE(0, start);
    DCHECK_LE(length, source.length());
    switch (StringShape(source, cage_base).representation_and_encoding_tag()) {
      case kOneByteStringTag | kExternalStringTag:
        CopyChars(
            sink,
            ExternalOneByteString::cast(source).GetChars(cage_base) + start,
            length);
        return;
      case kTwoByteStringTag | kExternalStringTag:
        CopyChars(
            sink,
            ExternalTwoByteString::cast(source).GetChars(cage_base) + start,
            length);
        return;
      case kOneByteStringTag | kSeqStringTag:
        CopyChars(sink,
                  SeqOneByteString::cast(source).GetChars(no_gc, access_guard) +
                      start,
                  length);
        return;
      case kTwoByteStringTag | kSeqStringTag:
        CopyChars(sink,
                  SeqTwoByteString::cast(source).GetChars(no_gc, access_guard) +
                      start,
                  length);
        return;
      case kOneByteStringTag | kConsStringTag:
      case kTwoByteStringTag | kConsStringTag: {
        ConsString cons_string = ConsString::cast(source);
        String first = cons_string.first(cage_base);
        int boundary = first.length();
        int first_length = boundary - start;
        int second_length = start + length - boundary;
        if (second_length >= first_length) {
          // Right hand side is longer.  Recurse over left.
          if (first_length > 0) {
            WriteToFlat(first, sink, start, first_length, cage_base,
                        access_guard);
            if (start == 0 && cons_string.second(cage_base) == first) {
              CopyChars(sink + boundary, sink, boundary);
              return;
            }
            sink += boundary - start;
            start = 0;
            length -= first_length;
          } else {
            start -= boundary;
          }
          source = cons_string.second(cage_base);
        } else {
          // Left hand side is longer.  Recurse over right.
          if (second_length > 0) {
            String second = cons_string.second(cage_base);
            // When repeatedly appending to a string, we get a cons string that
            // is unbalanced to the left, a list, essentially.  We inline the
            // common case of sequential one-byte right child.
            if (second_length == 1) {
              sink[boundary - start] =
                  static_cast<sinkchar>(second.Get(0, cage_base, access_guard));
            } else if (second.IsSeqOneByteString(cage_base)) {
              CopyChars(
                  sink + boundary - start,
                  SeqOneByteString::cast(second).GetChars(no_gc, access_guard),
                  second_length);
            } else {
              WriteToFlat(second, sink + boundary - start, 0, second_length,
                          cage_base, access_guard);
            }
            length -= second_length;
          }
          source = first;
        }
        if (length == 0) return;
        continue;
      }
      case kOneByteStringTag | kSlicedStringTag:
      case kTwoByteStringTag | kSlicedStringTag: {
        SlicedString slice = SlicedString::cast(source);
        unsigned offset = slice.offset();
        source = slice.parent(cage_base);
        start += offset;
        continue;
      }
      case kOneByteStringTag | kThinStringTag:
      case kTwoByteStringTag | kThinStringTag:
        source = ThinString::cast(source).actual(cage_base);
        continue;
    }
    UNREACHABLE();
  }
  UNREACHABLE();
}

template <typename SourceChar>
static void CalculateLineEndsImpl(std::vector<int>* line_ends,
                                  base::Vector<const SourceChar> src,
                                  bool include_ending_line) {
  const int src_len = src.length();
  for (int i = 0; i < src_len - 1; i++) {
    SourceChar current = src[i];
    SourceChar next = src[i + 1];
    if (IsLineTerminatorSequence(current, next)) line_ends->push_back(i);
  }

  if (src_len > 0 && IsLineTerminatorSequence(src[src_len - 1], 0)) {
    line_ends->push_back(src_len - 1);
  }
  if (include_ending_line) {
    // Include one character beyond the end of script. The rewriter uses that
    // position for the implicit return statement.
    line_ends->push_back(src_len);
  }
}

template <typename IsolateT>
Handle<FixedArray> String::CalculateLineEnds(IsolateT* isolate,
                                             Handle<String> src,
                                             bool include_ending_line) {
  src = Flatten(isolate, src);
  // Rough estimate of line count based on a roughly estimated average
  // length of (unpacked) code.
  int line_count_estimate = src->length() >> 4;
  std::vector<int> line_ends;
  line_ends.reserve(line_count_estimate);
  {
    DisallowGarbageCollection no_gc;  // ensure vectors stay valid.
    // Dispatch on type of strings.
    String::FlatContent content = src->GetFlatContent(no_gc);
    DCHECK(content.IsFlat());
    if (content.IsOneByte()) {
      CalculateLineEndsImpl(&line_ends, content.ToOneByteVector(),
                            include_ending_line);
    } else {
      CalculateLineEndsImpl(&line_ends, content.ToUC16Vector(),
                            include_ending_line);
    }
  }
  int line_count = static_cast<int>(line_ends.size());
  Handle<FixedArray> array =
      isolate->factory()->NewFixedArray(line_count, AllocationType::kOld);
  for (int i = 0; i < line_count; i++) {
    array->set(i, Smi::FromInt(line_ends[i]));
  }
  return array;
}

template Handle<FixedArray> String::CalculateLineEnds(Isolate* isolate,
                                                      Handle<String> src,
                                                      bool include_ending_line);
template Handle<FixedArray> String::CalculateLineEnds(LocalIsolate* isolate,
                                                      Handle<String> src,
                                                      bool include_ending_line);

bool String::SlowEquals(String other) const {
  DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(*this));
  DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(other));
  return SlowEquals(other, SharedStringAccessGuardIfNeeded::NotNeeded());
}

bool String::SlowEquals(
    String other, const SharedStringAccessGuardIfNeeded& access_guard) const {
  DisallowGarbageCollection no_gc;
  // Fast check: negative check with lengths.
  int len = length();
  if (len != other.length()) return false;
  if (len == 0) return true;

  PtrComprCageBase cage_base = GetPtrComprCageBase(*this);

  // Fast check: if at least one ThinString is involved, dereference it/them
  // and restart.
  if (this->IsThinString(cage_base) || other.IsThinString(cage_base)) {
    if (other.IsThinString(cage_base))
      other = ThinString::cast(other).actual(cage_base);
    if (this->IsThinString(cage_base)) {
      return ThinString::cast(*this).actual(cage_base).Equals(other);
    } else {
      return this->Equals(other);
    }
  }

  // Fast check: if hash code is computed for both strings
  // a fast negative check can be performed.
  uint32_t this_hash;
  uint32_t other_hash;
  if (TryGetHash(&this_hash) && other.TryGetHash(&other_hash)) {
#ifdef ENABLE_SLOW_DCHECKS
    if (v8_flags.enable_slow_asserts) {
      if (this_hash != other_hash) {
        bool found_difference = false;
        for (int i = 0; i < len; i++) {
          if (Get(i) != other.Get(i)) {
            found_difference = true;
            break;
          }
        }
        DCHECK(found_difference);
      }
    }
#endif
    if (this_hash != other_hash) return false;
  }

  // We know the strings are both non-empty. Compare the first chars
  // before we try to flatten the strings.
  if (this->Get(0, cage_base, access_guard) !=
      other.Get(0, cage_base, access_guard))
    return false;

  if (IsSeqOneByteString() && other.IsSeqOneByteString()) {
    const uint8_t* str1 =
        SeqOneByteString::cast(*this).GetChars(no_gc, access_guard);
    const uint8_t* str2 =
        SeqOneByteString::cast(other).GetChars(no_gc, access_guard);
    return CompareCharsEqual(str1, str2, len);
  }

  StringComparator comparator;
  return comparator.Equals(*this, other, access_guard);
}

// static
bool String::SlowEquals(Isolate* isolate, Handle<String> one,
                        Handle<String> two) {
  // Fast check: negative check with lengths.
  const int one_length = one->length();
  if (one_length != two->length()) return false;
  if (one_length == 0) return true;

  // Fast check: if at least one ThinString is involved, dereference it/them
  // and restart.
  if (one->IsThinString() || two->IsThinString()) {
    if (one->IsThinString()) {
      one = handle(ThinString::cast(*one).actual(), isolate);
    }
    if (two->IsThinString()) {
      two = handle(ThinString::cast(*two).actual(), isolate);
    }
    return String::Equals(isolate, one, two);
  }

  // Fast check: if hash code is computed for both strings
  // a fast negative check can be performed.
  uint32_t one_hash;
  uint32_t two_hash;
  if (one->TryGetHash(&one_hash) && two->TryGetHash(&two_hash)) {
#ifdef ENABLE_SLOW_DCHECKS
    if (v8_flags.enable_slow_asserts) {
      if (one_hash != two_hash) {
        bool found_difference = false;
        for (int i = 0; i < one_length; i++) {
          if (one->Get(i) != two->Get(i)) {
            found_difference = true;
            break;
          }
        }
        DCHECK(found_difference);
      }
    }
#endif
    if (one_hash != two_hash) return false;
  }

  // We know the strings are both non-empty. Compare the first chars
  // before we try to flatten the strings.
  if (one->Get(0) != two->Get(0)) return false;

  one = String::Flatten(isolate, one);
  two = String::Flatten(isolate, two);

  DisallowGarbageCollection no_gc;
  String::FlatContent flat1 = one->GetFlatContent(no_gc);
  String::FlatContent flat2 = two->GetFlatContent(no_gc);

  if (flat1.IsOneByte() && flat2.IsOneByte()) {
    return CompareCharsEqual(flat1.ToOneByteVector().begin(),
                             flat2.ToOneByteVector().begin(), one_length);
  } else if (flat1.IsTwoByte() && flat2.IsTwoByte()) {
    return CompareCharsEqual(flat1.ToUC16Vector().begin(),
                             flat2.ToUC16Vector().begin(), one_length);
  } else if (flat1.IsOneByte() && flat2.IsTwoByte()) {
    return CompareCharsEqual(flat1.ToOneByteVector().begin(),
                             flat2.ToUC16Vector().begin(), one_length);
  } else if (flat1.IsTwoByte() && flat2.IsOneByte()) {
    return CompareCharsEqual(flat1.ToUC16Vector().begin(),
                             flat2.ToOneByteVector().begin(), one_length);
  }
  UNREACHABLE();
}

// static
ComparisonResult String::Compare(Isolate* isolate, Handle<String> x,
                                 Handle<String> y) {
  // A few fast case tests before we flatten.
  if (x.is_identical_to(y)) {
    return ComparisonResult::kEqual;
  } else if (y->length() == 0) {
    return x->length() == 0 ? ComparisonResult::kEqual
                            : ComparisonResult::kGreaterThan;
  } else if (x->length() == 0) {
    return ComparisonResult::kLessThan;
  }

  int const d = x->Get(0) - y->Get(0);
  if (d < 0) {
    return ComparisonResult::kLessThan;
  } else if (d > 0) {
    return ComparisonResult::kGreaterThan;
  }

  // Slow case.
  x = String::Flatten(isolate, x);
  y = String::Flatten(isolate, y);

  DisallowGarbageCollection no_gc;
  ComparisonResult result = ComparisonResult::kEqual;
  int prefix_length = x->length();
  if (y->length() < prefix_length) {
    prefix_length = y->length();
    result = ComparisonResult::kGreaterThan;
  } else if (y->length() > prefix_length) {
    result = ComparisonResult::kLessThan;
  }
  int r;
  String::FlatContent x_content = x->GetFlatContent(no_gc);
  String::FlatContent y_content = y->GetFlatContent(no_gc);
  if (x_content.IsOneByte()) {
    base::Vector<const uint8_t> x_chars = x_content.ToOneByteVector();
    if (y_content.IsOneByte()) {
      base::Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
      r = CompareChars(x_chars.begin(), y_chars.begin(), prefix_length);
    } else {
      base::Vector<const base::uc16> y_chars = y_content.ToUC16Vector();
      r = CompareChars(x_chars.begin(), y_chars.begin(), prefix_length);
    }
  } else {
    base::Vector<const base::uc16> x_chars = x_content.ToUC16Vector();
    if (y_content.IsOneByte()) {
      base::Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
      r = CompareChars(x_chars.begin(), y_chars.begin(), prefix_length);
    } else {
      base::Vector<const base::uc16> y_chars = y_content.ToUC16Vector();
      r = CompareChars(x_chars.begin(), y_chars.begin(), prefix_length);
    }
  }
  if (r < 0) {
    result = ComparisonResult::kLessThan;
  } else if (r > 0) {
    result = ComparisonResult::kGreaterThan;
  }
  return result;
}

namespace {

uint32_t ToValidIndex(String str, Object number) {
  uint32_t index = PositiveNumberToUint32(number);
  uint32_t length_value = static_cast<uint32_t>(str.length());
  if (index > length_value) return length_value;
  return index;
}

}  // namespace

Object String::IndexOf(Isolate* isolate, Handle<Object> receiver,
                       Handle<Object> search, Handle<Object> position) {
  if (receiver->IsNullOrUndefined(isolate)) {
    THROW_NEW_ERROR_RETURN_FAILURE(
        isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined,
                              isolate->factory()->NewStringFromAsciiChecked(
                                  "String.prototype.indexOf")));
  }
  Handle<String> receiver_string;
  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver_string,
                                     Object::ToString(isolate, receiver));

  Handle<String> search_string;
  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, search_string,
                                     Object::ToString(isolate, search));

  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, position,
                                     Object::ToInteger(isolate, position));

  uint32_t index = ToValidIndex(*receiver_string, *position);
  return Smi::FromInt(
      String::IndexOf(isolate, receiver_string, search_string, index));
}

namespace {

template <typename T>
int SearchString(Isolate* isolate, String::FlatContent receiver_content,
                 base::Vector<T> pat_vector, int start_index) {
  if (receiver_content.IsOneByte()) {
    return SearchString(isolate, receiver_content.ToOneByteVector(), pat_vector,
                        start_index);
  }
  return SearchString(isolate, receiver_content.ToUC16Vector(), pat_vector,
                      start_index);
}

}  // namespace

int String::IndexOf(Isolate* isolate, Handle<String> receiver,
                    Handle<String> search, int start_index) {
  DCHECK_LE(0, start_index);
  DCHECK(start_index <= receiver->length());

  uint32_t search_length = search->length();
  if (search_length == 0) return start_index;

  uint32_t receiver_length = receiver->length();
  if (start_index + search_length > receiver_length) return -1;

  receiver = String::Flatten(isolate, receiver);
  search = String::Flatten(isolate, search);

  DisallowGarbageCollection no_gc;  // ensure vectors stay valid
  // Extract flattened substrings of cons strings before getting encoding.
  String::FlatContent receiver_content = receiver->GetFlatContent(no_gc);
  String::FlatContent search_content = search->GetFlatContent(no_gc);

  // dispatch on type of strings
  if (search_content.IsOneByte()) {
    base::Vector<const uint8_t> pat_vector = search_content.ToOneByteVector();
    return SearchString<const uint8_t>(isolate, receiver_content, pat_vector,
                                       start_index);
  }
  base::Vector<const base::uc16> pat_vector = search_content.ToUC16Vector();
  return SearchString<const base::uc16>(isolate, receiver_content, pat_vector,
                                        start_index);
}

MaybeHandle<String> String::GetSubstitution(Isolate* isolate, Match* match,
                                            Handle<String> replacement,
                                            int start_index) {
  DCHECK_GE(start_index, 0);

  Factory* factory = isolate->factory();

  const int replacement_length = replacement->length();
  const int captures_length = match->CaptureCount();

  replacement = String::Flatten(isolate, replacement);

  Handle<String> dollar_string =
      factory->LookupSingleCharacterStringFromCode('$');
  int next_dollar_ix =
      String::IndexOf(isolate, replacement, dollar_string, start_index);
  if (next_dollar_ix < 0) {
    return replacement;
  }

  IncrementalStringBuilder builder(isolate);

  if (next_dollar_ix > 0) {
    builder.AppendString(factory->NewSubString(replacement, 0, next_dollar_ix));
  }

  while (true) {
    const int peek_ix = next_dollar_ix + 1;
    if (peek_ix >= replacement_length) {
      builder.AppendCharacter('$');
      return builder.Finish();
    }

    int continue_from_ix = -1;
    const uint16_t peek = replacement->Get(peek_ix);
    switch (peek) {
      case '$':  // $$
        builder.AppendCharacter('$');
        continue_from_ix = peek_ix + 1;
        break;
      case '&':  // $& - match
        builder.AppendString(match->GetMatch());
        continue_from_ix = peek_ix + 1;
        break;
      case '`':  // $` - prefix
        builder.AppendString(match->GetPrefix());
        continue_from_ix = peek_ix + 1;
        break;
      case '\'':  // $' - suffix
        builder.AppendString(match->GetSuffix());
        continue_from_ix = peek_ix + 1;
        break;
      case '0':
      case '1':
      case '2':
      case '3':
      case '4':
      case '5':
      case '6':
      case '7':
      case '8':
      case '9': {
        // Valid indices are $1 .. $9, $01 .. $09 and $10 .. $99
        int scaled_index = (peek - '0');
        int advance = 1;

        if (peek_ix + 1 < replacement_length) {
          const uint16_t next_peek = replacement->Get(peek_ix + 1);
          if (next_peek >= '0' && next_peek <= '9') {
            const int new_scaled_index = scaled_index * 10 + (next_peek - '0');
            if (new_scaled_index < captures_length) {
              scaled_index = new_scaled_index;
              advance = 2;
            }
          }
        }

        if (scaled_index == 0 || scaled_index >= captures_length) {
          builder.AppendCharacter('$');
          continue_from_ix = peek_ix;
          break;
        }

        bool capture_exists;
        Handle<String> capture;
        ASSIGN_RETURN_ON_EXCEPTION(
            isolate, capture, match->GetCapture(scaled_index, &capture_exists),
            String);
        if (capture_exists) builder.AppendString(capture);
        continue_from_ix = peek_ix + advance;
        break;
      }
      case '<': {  // $<name> - named capture
        using CaptureState = String::Match::CaptureState;

        if (!match->HasNamedCaptures()) {
          builder.AppendCharacter('$');
          continue_from_ix = peek_ix;
          break;
        }

        Handle<String> bracket_string =
            factory->LookupSingleCharacterStringFromCode('>');
        const int closing_bracket_ix =
            String::IndexOf(isolate, replacement, bracket_string, peek_ix + 1);

        if (closing_bracket_ix == -1) {
          // No closing bracket was found, treat '$<' as a string literal.
          builder.AppendCharacter('$');
          continue_from_ix = peek_ix;
          break;
        }

        Handle<String> capture_name =
            factory->NewSubString(replacement, peek_ix + 1, closing_bracket_ix);
        Handle<String> capture;
        CaptureState capture_state;
        ASSIGN_RETURN_ON_EXCEPTION(
            isolate, capture,
            match->GetNamedCapture(capture_name, &capture_state), String);

        if (capture_state == CaptureState::MATCHED) {
          builder.AppendString(capture);
        }

        continue_from_ix = closing_bracket_ix + 1;
        break;
      }
      default:
        builder.AppendCharacter('$');
        continue_from_ix = peek_ix;
        break;
    }

    // Go the the next $ in the replacement.
    // TODO(jgruber): Single-char lookups could be much more efficient.
    DCHECK_NE(continue_from_ix, -1);
    next_dollar_ix =
        String::IndexOf(isolate, replacement, dollar_string, continue_from_ix);

    // Return if there are no more $ characters in the replacement. If we
    // haven't reached the end, we need to append the suffix.
    if (next_dollar_ix < 0) {
      if (continue_from_ix < replacement_length) {
        builder.AppendString(factory->NewSubString(
            replacement, continue_from_ix, replacement_length));
      }
      return builder.Finish();
    }

    // Append substring between the previous and the next $ character.
    if (next_dollar_ix > continue_from_ix) {
      builder.AppendString(
          factory->NewSubString(replacement, continue_from_ix, next_dollar_ix));
    }
  }

  UNREACHABLE();
}

namespace {  // for String.Prototype.lastIndexOf

template <typename schar, typename pchar>
int StringMatchBackwards(base::Vector<const schar> subject,
                         base::Vector<const pchar> pattern, int idx) {
  int pattern_length = pattern.length();
  DCHECK_GE(pattern_length, 1);
  DCHECK(idx + pattern_length <= subject.length());

  if (sizeof(schar) == 1 && sizeof(pchar) > 1) {
    for (int i = 0; i < pattern_length; i++) {
      base::uc16 c = pattern[i];
      if (c > String::kMaxOneByteCharCode) {
        return -1;
      }
    }
  }

  pchar pattern_first_char = pattern[0];
  for (int i = idx; i >= 0; i--) {
    if (subject[i] != pattern_first_char) continue;
    int j = 1;
    while (j < pattern_length) {
      if (pattern[j] != subject[i + j]) {
        break;
      }
      j++;
    }
    if (j == pattern_length) {
      return i;
    }
  }
  return -1;
}

}  // namespace

Object String::LastIndexOf(Isolate* isolate, Handle<Object> receiver,
                           Handle<Object> search, Handle<Object> position) {
  if (receiver->IsNullOrUndefined(isolate)) {
    THROW_NEW_ERROR_RETURN_FAILURE(
        isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined,
                              isolate->factory()->NewStringFromAsciiChecked(
                                  "String.prototype.lastIndexOf")));
  }
  Handle<String> receiver_string;
  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, receiver_string,
                                     Object::ToString(isolate, receiver));

  Handle<String> search_string;
  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, search_string,
                                     Object::ToString(isolate, search));

  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, position,
                                     Object::ToNumber(isolate, position));

  uint32_t start_index;

  if (position->IsNaN()) {
    start_index = receiver_string->length();
  } else {
    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, position,
                                       Object::ToInteger(isolate, position));
    start_index = ToValidIndex(*receiver_string, *position);
  }

  uint32_t pattern_length = search_string->length();
  uint32_t receiver_length = receiver_string->length();

  if (start_index + pattern_length > receiver_length) {
    start_index = receiver_length - pattern_length;
  }

  if (pattern_length == 0) {
    return Smi::FromInt(start_index);
  }

  receiver_string = String::Flatten(isolate, receiver_string);
  search_string = String::Flatten(isolate, search_string);

  int last_index = -1;
  DisallowGarbageCollection no_gc;  // ensure vectors stay valid

  String::FlatContent receiver_content = receiver_string->GetFlatContent(no_gc);
  String::FlatContent search_content = search_string->GetFlatContent(no_gc);

  if (search_content.IsOneByte()) {
    base::Vector<const uint8_t> pat_vector = search_content.ToOneByteVector();
    if (receiver_content.IsOneByte()) {
      last_index = StringMatchBackwards(receiver_content.ToOneByteVector(),
                                        pat_vector, start_index);
    } else {
      last_index = StringMatchBackwards(receiver_content.ToUC16Vector(),
                                        pat_vector, start_index);
    }
  } else {
    base::Vector<const base::uc16> pat_vector = search_content.ToUC16Vector();
    if (receiver_content.IsOneByte()) {
      last_index = StringMatchBackwards(receiver_content.ToOneByteVector(),
                                        pat_vector, start_index);
    } else {
      last_index = StringMatchBackwards(receiver_content.ToUC16Vector(),
                                        pat_vector, start_index);
    }
  }
  return Smi::FromInt(last_index);
}

bool String::HasOneBytePrefix(base::Vector<const char> str) {
  DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(*this));
  return IsEqualToImpl<EqualityType::kPrefix>(
      str, GetPtrComprCageBase(*this),
      SharedStringAccessGuardIfNeeded::NotNeeded());
}

namespace {

template <typename Char>
bool IsIdentifierVector(const base::Vector<Char>& vec) {
  if (vec.empty()) {
    return false;
  }
  if (!IsIdentifierStart(vec[0])) {
    return false;
  }
  for (size_t i = 1; i < vec.size(); ++i) {
    if (!IsIdentifierPart(vec[i])) {
      return false;
    }
  }
  return true;
}

}  // namespace

// static
bool String::IsIdentifier(Isolate* isolate, Handle<String> str) {
  str = String::Flatten(isolate, str);
  DisallowGarbageCollection no_gc;
  String::FlatContent flat = str->GetFlatContent(no_gc);
  return flat.IsOneByte() ? IsIdentifierVector(flat.ToOneByteVector())
                          : IsIdentifierVector(flat.ToUC16Vector());
}

namespace {

template <typename Char>
uint32_t HashString(String string, size_t start, int length, uint64_t seed,
                    PtrComprCageBase cage_base,
                    const SharedStringAccessGuardIfNeeded& access_guard) {
  DisallowGarbageCollection no_gc;

  if (length > String::kMaxHashCalcLength) {
    return StringHasher::GetTrivialHash(length);
  }

  std::unique_ptr<Char[]> buffer;
  const Char* chars;

  if (string.IsConsString(cage_base)) {
    DCHECK_EQ(0, start);
    DCHECK(!string.IsFlat());
    buffer.reset(new Char[length]);
    String::WriteToFlat(string, buffer.get(), 0, length, cage_base,
                        access_guard);
    chars = buffer.get();
  } else {
    chars = string.GetChars<Char>(cage_base, no_gc, access_guard) + start;
  }

  return StringHasher::HashSequentialString<Char>(chars, length, seed);
}

}  // namespace

uint32_t String::ComputeAndSetRawHash() {
  DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(*this));
  return ComputeAndSetRawHash(SharedStringAccessGuardIfNeeded::NotNeeded());
}

uint32_t String::ComputeAndSetRawHash(
    const SharedStringAccessGuardIfNeeded& access_guard) {
  DisallowGarbageCollection no_gc;
  // Should only be called if hash code has not yet been computed.
  //
  // If in-place internalizable strings are shared, there may be calls to
  // ComputeAndSetRawHash in parallel. Since only flat strings are in-place
  // internalizable and their contents do not change, the result hash is the
  // same. The raw hash field is stored with relaxed ordering.
  DCHECK_IMPLIES(!v8_flags.shared_string_table, !HasHashCode());

  // Store the hash code in the object.
  uint64_t seed = HashSeed(GetReadOnlyRoots());
  size_t start = 0;
  String string = *this;
  PtrComprCageBase cage_base = GetPtrComprCageBase(string);
  StringShape shape(string, cage_base);
  if (shape.IsSliced()) {
    SlicedString sliced = SlicedString::cast(string);
    start = sliced.offset();
    string = sliced.parent(cage_base);
    shape = StringShape(string, cage_base);
  }
  if (shape.IsCons() && string.IsFlat(cage_base)) {
    string = ConsString::cast(string).first(cage_base);
    shape = StringShape(string, cage_base);
  }
  if (shape.IsThin()) {
    string = ThinString::cast(string).actual(cage_base);
    shape = StringShape(string, cage_base);
    if (length() == string.length()) {
      uint32_t raw_hash = string.RawHash();
      DCHECK(IsHashFieldComputed(raw_hash));
      set_raw_hash_field(raw_hash);
      return raw_hash;
    }
  }
  uint32_t raw_hash_field =
      shape.encoding_tag() == kOneByteStringTag
          ? HashString<uint8_t>(string, start, length(), seed, cage_base,
                                access_guard)
          : HashString<uint16_t>(string, start, length(), seed, cage_base,
                                 access_guard);
  set_raw_hash_field_if_empty(raw_hash_field);
  // Check the hash code is there (or a forwarding index if the string was
  // internalized/externalized in parallel).
  DCHECK(HasHashCode() || HasForwardingIndex(kAcquireLoad));
  // Ensure that the hash value of 0 is never computed.
  DCHECK_NE(HashBits::decode(raw_hash_field), 0);
  return raw_hash_field;
}

bool String::SlowAsArrayIndex(uint32_t* index) {
  DisallowGarbageCollection no_gc;
  int length = this->length();
  if (length <= kMaxCachedArrayIndexLength) {
    uint32_t field = EnsureRawHash();  // Force computation of hash code.
    if (!IsIntegerIndex(field)) return false;
    *index = ArrayIndexValueBits::decode(field);
    return true;
  }
  if (length == 0 || length > kMaxArrayIndexSize) return false;
  StringCharacterStream stream(*this);
  return StringToIndex(&stream, index);
}

bool String::SlowAsIntegerIndex(size_t* index) {
  DisallowGarbageCollection no_gc;
  int length = this->length();
  if (length <= kMaxCachedArrayIndexLength) {
    uint32_t field = EnsureRawHash();  // Force computation of hash code.
    if (!IsIntegerIndex(field)) return false;
    *index = ArrayIndexValueBits::decode(field);
    return true;
  }
  if (length == 0 || length > kMaxIntegerIndexSize) return false;
  StringCharacterStream stream(*this);
  return StringToIndex<StringCharacterStream, size_t, kToIntegerIndex>(&stream,
                                                                       index);
}

void String::PrintOn(FILE* file) {
  int length = this->length();
  for (int i = 0; i < length; i++) {
    PrintF(file, "%c", Get(i));
  }
}

void String::PrintOn(std::ostream& ostream) {
  int length = this->length();
  for (int i = 0; i < length; i++) {
    ostream.put(Get(i));
  }
}

Handle<String> SeqString::Truncate(Handle<SeqString> string, int new_length) {
  if (new_length == 0) return string->GetReadOnlyRoots().empty_string_handle();

  int new_size, old_size;
  int old_length = string->length();
  if (old_length <= new_length) return string;

  if (string->IsSeqOneByteString()) {
    old_size = SeqOneByteString::SizeFor(old_length);
    new_size = SeqOneByteString::SizeFor(new_length);
  } else {
    DCHECK(string->IsSeqTwoByteString());
    old_size = SeqTwoByteString::SizeFor(old_length);
    new_size = SeqTwoByteString::SizeFor(new_length);
  }

#if DEBUG
  Address start_of_string = string->address();
  DCHECK(IsAligned(start_of_string, kObjectAlignment));
  DCHECK(IsAligned(start_of_string + new_size, kObjectAlignment));
#endif

  Heap* heap = Heap::FromWritableHeapObject(*string);
  if (!heap->IsLargeObject(*string)) {
    // Sizes are pointer size aligned, so that we can use filler objects
    // that are a multiple of pointer size.
    heap->NotifyObjectSizeChange(*string, old_size, new_size,
                                 ClearRecordedSlots::kNo);
  }
  // We are storing the new length using release store after creating a filler
  // for the left-over space to avoid races with the sweeper thread.
  string->set_length(new_length, kReleaseStore);

  return string;
}

SeqString::DataAndPaddingSizes SeqString::GetDataAndPaddingSizes() const {
  if (IsSeqOneByteString()) {
    return SeqOneByteString::cast(*this).GetDataAndPaddingSizes();
  }
  return SeqTwoByteString::cast(*this).GetDataAndPaddingSizes();
}

SeqString::DataAndPaddingSizes SeqOneByteString::GetDataAndPaddingSizes()
    const {
  int data_size = SeqString::kHeaderSize + length() * kOneByteSize;
  int padding_size = SizeFor(length()) - data_size;
  return DataAndPaddingSizes{data_size, padding_size};
}

SeqString::DataAndPaddingSizes SeqTwoByteString::GetDataAndPaddingSizes()
    const {
  int data_size = SeqString::kHeaderSize + length() * base::kUC16Size;
  int padding_size = SizeFor(length()) - data_size;
  return DataAndPaddingSizes{data_size, padding_size};
}

uint16_t ConsString::Get(
    int index, PtrComprCageBase cage_base,
    const SharedStringAccessGuardIfNeeded& access_guard) const {
  DCHECK(index >= 0 && index < this->length());

  // Check for a flattened cons string
  if (second(cage_base).length() == 0) {
    String left = first(cage_base);
    return left.Get(index);
  }

  String string = String::cast(*this);

  while (true) {
    if (StringShape(string, cage_base).IsCons()) {
      ConsString cons_string = ConsString::cast(string);
      String left = cons_string.first();
      if (left.length() > index) {
        string = left;
      } else {
        index -= left.length();
        string = cons_string.second(cage_base);
      }
    } else {
      return string.Get(index, cage_base, access_guard);
    }
  }

  UNREACHABLE();
}

uint16_t ThinString::Get(
    int index, PtrComprCageBase cage_base,
    const SharedStringAccessGuardIfNeeded& access_guard) const {
  return actual(cage_base).Get(index, cage_base, access_guard);
}

uint16_t SlicedString::Get(
    int index, PtrComprCageBase cage_base,
    const SharedStringAccessGuardIfNeeded& access_guard) const {
  return parent(cage_base).Get(offset() + index, cage_base, access_guard);
}

int ExternalString::ExternalPayloadSize() const {
  int length_multiplier = IsTwoByteRepresentation() ? i::kShortSize : kCharSize;
  return length() * length_multiplier;
}

FlatStringReader::FlatStringReader(Isolate* isolate, Handle<String> str)
    : Relocatable(isolate), str_(str), length_(str->length()) {
#if DEBUG
  // Check that this constructor is called only from the main thread.
  DCHECK_EQ(ThreadId::Current(), isolate->thread_id());
#endif
  PostGarbageCollection();
}

void FlatStringReader::PostGarbageCollection() {
  DCHECK(str_->IsFlat());
  DisallowGarbageCollection no_gc;
  // This does not actually prevent the vector from being relocated later.
  String::FlatContent content = str_->GetFlatContent(no_gc);
  DCHECK(content.IsFlat());
  is_one_byte_ = content.IsOneByte();
  if (is_one_byte_) {
    start_ = content.ToOneByteVector().begin();
  } else {
    start_ = content.ToUC16Vector().begin();
  }
}

void ConsStringIterator::Initialize(ConsString cons_string, int offset) {
  DCHECK(!cons_string.is_null());
  root_ = cons_string;
  consumed_ = offset;
  // Force stack blown condition to trigger restart.
  depth_ = 1;
  maximum_depth_ = kStackSize + depth_;
  DCHECK(StackBlown());
}

String ConsStringIterator::Continue(int* offset_out) {
  DCHECK_NE(depth_, 0);
  DCHECK_EQ(0, *offset_out);
  bool blew_stack = StackBlown();
  String string;
  // Get the next leaf if there is one.
  if (!blew_stack) string = NextLeaf(&blew_stack);
  // Restart search from root.
  if (blew_stack) {
    DCHECK(string.is_null());
    string = Search(offset_out);
  }
  // Ensure future calls return null immediately.
  if (string.is_null()) Reset(ConsString());
  return string;
}

String ConsStringIterator::Search(int* offset_out) {
  ConsString cons_string = root_;
  // Reset the stack, pushing the root string.
  depth_ = 1;
  maximum_depth_ = 1;
  frames_[0] = cons_string;
  const int consumed = consumed_;
  int offset = 0;
  while (true) {
    // Loop until the string is found which contains the target offset.
    String string = cons_string.first();
    int length = string.length();
    int32_t type;
    if (consumed < offset + length) {
      // Target offset is in the left branch.
      // Keep going if we're still in a ConString.
      type = string.map().instance_type();
      if ((type & kStringRepresentationMask) == kConsStringTag) {
        cons_string = ConsString::cast(string);
        PushLeft(cons_string);
        continue;
      }
      // Tell the stack we're done descending.
      AdjustMaximumDepth();
    } else {
      // Descend right.
      // Update progress through the string.
      offset += length;
      // Keep going if we're still in a ConString.
      string = cons_string.second();
      type = string.map().instance_type();
      if ((type & kStringRepresentationMask) == kConsStringTag) {
        cons_string = ConsString::cast(string);
        PushRight(cons_string);
        continue;
      }
      // Need this to be updated for the current string.
      length = string.length();
      // Account for the possibility of an empty right leaf.
      // This happens only if we have asked for an offset outside the string.
      if (length == 0) {
        // Reset so future operations will return null immediately.
        Reset(ConsString());
        return String();
      }
      // Tell the stack we're done descending.
      AdjustMaximumDepth();
      // Pop stack so next iteration is in correct place.
      Pop();
    }
    DCHECK_NE(length, 0);
    // Adjust return values and exit.
    consumed_ = offset + length;
    *offset_out = consumed - offset;
    return string;
  }
  UNREACHABLE();
}

String ConsStringIterator::NextLeaf(bool* blew_stack) {
  while (true) {
    // Tree traversal complete.
    if (depth_ == 0) {
      *blew_stack = false;
      return String();
    }
    // We've lost track of higher nodes.
    if (StackBlown()) {
      *blew_stack = true;
      return String();
    }
    // Go right.
    ConsString cons_string = frames_[OffsetForDepth(depth_ - 1)];
    String string = cons_string.second();
    int32_t type = string.map().instance_type();
    if ((type & kStringRepresentationMask) != kConsStringTag) {
      // Pop stack so next iteration is in correct place.
      Pop();
      int length = string.length();
      // Could be a flattened ConsString.
      if (length == 0) continue;
      consumed_ += length;
      return string;
    }
    cons_string = ConsString::cast(string);
    PushRight(cons_string);
    // Need to traverse all the way left.
    while (true) {
      // Continue left.
      string = cons_string.first();
      type = string.map().instance_type();
      if ((type & kStringRepresentationMask) != kConsStringTag) {
        AdjustMaximumDepth();
        int length = string.length();
        if (length == 0) break;  // Skip empty left-hand sides of ConsStrings.
        consumed_ += length;
        return string;
      }
      cons_string = ConsString::cast(string);
      PushLeft(cons_string);
    }
  }
  UNREACHABLE();
}

const byte* String::AddressOfCharacterAt(
    int start_index, const DisallowGarbageCollection& no_gc) {
  DCHECK(IsFlat());
  String subject = *this;
  PtrComprCageBase cage_base = GetPtrComprCageBase(subject);
  StringShape shape(subject, cage_base);
  if (subject.IsConsString(cage_base)) {
    subject = ConsString::cast(subject).first(cage_base);
    shape = StringShape(subject, cage_base);
  } else if (subject.IsSlicedString(cage_base)) {
    start_index += SlicedString::cast(subject).offset();
    subject = SlicedString::cast(subject).parent(cage_base);
    shape = StringShape(subject, cage_base);
  }
  if (subject.IsThinString(cage_base)) {
    subject = ThinString::cast(subject).actual(cage_base);
    shape = StringShape(subject, cage_base);
  }
  CHECK_LE(0, start_index);
  CHECK_LE(start_index, subject.length());
  switch (shape.representation_and_encoding_tag()) {
    case kOneByteStringTag | kSeqStringTag:
      return reinterpret_cast<const byte*>(
          SeqOneByteString::cast(subject).GetChars(no_gc) + start_index);
    case kTwoByteStringTag | kSeqStringTag:
      return reinterpret_cast<const byte*>(
          SeqTwoByteString::cast(subject).GetChars(no_gc) + start_index);
    case kOneByteStringTag | kExternalStringTag:
      return reinterpret_cast<const byte*>(
          ExternalOneByteString::cast(subject).GetChars(cage_base) +
          start_index);
    case kTwoByteStringTag | kExternalStringTag:
      return reinterpret_cast<const byte*>(
          ExternalTwoByteString::cast(subject).GetChars(cage_base) +
          start_index);
    default:
      UNREACHABLE();
  }
}

template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void String::WriteToFlat(
    String source, uint16_t* sink, int from, int to);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void String::WriteToFlat(
    String source, uint8_t* sink, int from, int to);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void String::WriteToFlat(
    String source, uint16_t* sink, int from, int to, PtrComprCageBase cage_base,
    const SharedStringAccessGuardIfNeeded&);
template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void String::WriteToFlat(
    String source, uint8_t* sink, int from, int to, PtrComprCageBase cage_base,
    const SharedStringAccessGuardIfNeeded&);

namespace {
// Check that the constants defined in src/objects/instance-type.h coincides
// with the Torque-definition of string instance types in src/objects/string.tq.

DEFINE_TORQUE_GENERATED_STRING_INSTANCE_TYPE()

static_assert(kStringRepresentationMask == RepresentationBits::kMask);

static_assert(kStringEncodingMask == IsOneByteBit::kMask);
static_assert(kTwoByteStringTag == IsOneByteBit::encode(false));
static_assert(kOneByteStringTag == IsOneByteBit::encode(true));

static_assert(kUncachedExternalStringMask == IsUncachedBit::kMask);
static_assert(kUncachedExternalStringTag == IsUncachedBit::encode(true));

static_assert(kIsNotInternalizedMask == IsNotInternalizedBit::kMask);
static_assert(kNotInternalizedTag == IsNotInternalizedBit::encode(true));
static_assert(kInternalizedTag == IsNotInternalizedBit::encode(false));
}  // namespace

}  // namespace internal
}  // namespace v8