summaryrefslogtreecommitdiff
path: root/chromium/v8/src/objects/string-inl.h
blob: c7ddd9f69613a2e2a338595a7c91f192159881c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_OBJECTS_STRING_INL_H_
#define V8_OBJECTS_STRING_INL_H_

#include "src/common/assert-scope.h"
#include "src/common/globals.h"
#include "src/execution/isolate-utils.h"
#include "src/handles/handles-inl.h"
#include "src/heap/factory.h"
#include "src/numbers/hash-seed-inl.h"
#include "src/objects/name-inl.h"
#include "src/objects/smi-inl.h"
#include "src/objects/string-table-inl.h"
#include "src/objects/string.h"
#include "src/sandbox/external-pointer-inl.h"
#include "src/sandbox/external-pointer.h"
#include "src/strings/string-hasher-inl.h"
#include "src/utils/utils.h"

// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"

namespace v8 {
namespace internal {

#include "torque-generated/src/objects/string-tq-inl.inc"

class V8_NODISCARD SharedStringAccessGuardIfNeeded {
 public:
  // Creates no SharedMutexGuard<kShared> for the string access since it was
  // called from the main thread.
  explicit SharedStringAccessGuardIfNeeded(Isolate* isolate) {}

  // Creates a SharedMutexGuard<kShared> for the string access if it was called
  // from a background thread.
  explicit SharedStringAccessGuardIfNeeded(LocalIsolate* local_isolate) {
    if (IsNeeded(local_isolate)) {
      mutex_guard.emplace(local_isolate->internalized_string_access());
    }
  }

  // Slow version which gets the isolate from the String.
  explicit SharedStringAccessGuardIfNeeded(String str) {
    Isolate* isolate = GetIsolateIfNeeded(str);
    if (isolate != nullptr) {
      mutex_guard.emplace(isolate->internalized_string_access());
    }
  }

  static SharedStringAccessGuardIfNeeded NotNeeded() {
    return SharedStringAccessGuardIfNeeded();
  }

  static bool IsNeeded(String str, LocalIsolate* local_isolate) {
    return IsNeeded(local_isolate) && IsNeeded(str, false);
  }

  static bool IsNeeded(String str, bool check_local_heap = true) {
    if (check_local_heap) {
      LocalHeap* local_heap = LocalHeap::Current();
      if (!local_heap || local_heap->is_main_thread()) {
        // Don't acquire the lock for the main thread.
        return false;
      }
    }

    if (ReadOnlyHeap::Contains(str)) {
      // Don't acquire lock for strings in ReadOnlySpace.
      return false;
    }

    return true;
  }

  static bool IsNeeded(LocalIsolate* local_isolate) {
    // TODO(leszeks): Remove the nullptr check for local_isolate.
    return local_isolate && !local_isolate->heap()->is_main_thread();
  }

 private:
  // Default constructor and move constructor required for the NotNeeded()
  // static constructor.
  constexpr SharedStringAccessGuardIfNeeded() = default;
  constexpr SharedStringAccessGuardIfNeeded(SharedStringAccessGuardIfNeeded&&)
      V8_NOEXCEPT {
    DCHECK(!mutex_guard.has_value());
  }

  // Returns the Isolate from the String if we need it for the lock.
  static Isolate* GetIsolateIfNeeded(String str) {
    if (!IsNeeded(str)) return nullptr;

    Isolate* isolate;
    if (!GetIsolateFromHeapObject(str, &isolate)) {
      // If we can't get the isolate from the String, it must be read-only.
      DCHECK(ReadOnlyHeap::Contains(str));
      return nullptr;
    }
    return isolate;
  }

  base::Optional<base::SharedMutexGuard<base::kShared>> mutex_guard;
};

int String::length(AcquireLoadTag) const {
  return base::AsAtomic32::Acquire_Load(
      reinterpret_cast<const int32_t*>(field_address(kLengthOffset)));
}

void String::set_length(int value, ReleaseStoreTag) {
  base::AsAtomic32::Release_Store(
      reinterpret_cast<int32_t*>(field_address(kLengthOffset)), value);
}

TQ_OBJECT_CONSTRUCTORS_IMPL(String)
TQ_OBJECT_CONSTRUCTORS_IMPL(SeqString)
TQ_OBJECT_CONSTRUCTORS_IMPL(SeqOneByteString)
TQ_OBJECT_CONSTRUCTORS_IMPL(SeqTwoByteString)
TQ_OBJECT_CONSTRUCTORS_IMPL(InternalizedString)
TQ_OBJECT_CONSTRUCTORS_IMPL(ConsString)
TQ_OBJECT_CONSTRUCTORS_IMPL(ThinString)
TQ_OBJECT_CONSTRUCTORS_IMPL(SlicedString)
TQ_OBJECT_CONSTRUCTORS_IMPL(ExternalString)
TQ_OBJECT_CONSTRUCTORS_IMPL(ExternalOneByteString)
TQ_OBJECT_CONSTRUCTORS_IMPL(ExternalTwoByteString)

StringShape::StringShape(const String str)
    : type_(str.map(kAcquireLoad).instance_type()) {
  set_valid();
  DCHECK_EQ(type_ & kIsNotStringMask, kStringTag);
}

StringShape::StringShape(const String str, PtrComprCageBase cage_base)
    : type_(str.map(cage_base, kAcquireLoad).instance_type()) {
  set_valid();
  DCHECK_EQ(type_ & kIsNotStringMask, kStringTag);
}

StringShape::StringShape(Map map) : type_(map.instance_type()) {
  set_valid();
  DCHECK_EQ(type_ & kIsNotStringMask, kStringTag);
}

StringShape::StringShape(InstanceType t) : type_(static_cast<uint32_t>(t)) {
  set_valid();
  DCHECK_EQ(type_ & kIsNotStringMask, kStringTag);
}

bool StringShape::IsInternalized() const {
  DCHECK(valid());
  static_assert(kNotInternalizedTag != 0);
  return (type_ & (kIsNotStringMask | kIsNotInternalizedMask)) ==
         (kStringTag | kInternalizedTag);
}

bool StringShape::IsCons() const {
  return (type_ & kStringRepresentationMask) == kConsStringTag;
}

bool StringShape::IsThin() const {
  return (type_ & kStringRepresentationMask) == kThinStringTag;
}

bool StringShape::IsSliced() const {
  return (type_ & kStringRepresentationMask) == kSlicedStringTag;
}

bool StringShape::IsIndirect() const {
  return (type_ & kIsIndirectStringMask) == kIsIndirectStringTag;
}

bool StringShape::IsDirect() const { return !IsIndirect(); }

bool StringShape::IsExternal() const {
  return (type_ & kStringRepresentationMask) == kExternalStringTag;
}

bool StringShape::IsSequential() const {
  return (type_ & kStringRepresentationMask) == kSeqStringTag;
}

bool StringShape::IsUncachedExternal() const {
  return (type_ & kUncachedExternalStringMask) == kUncachedExternalStringTag;
}

bool StringShape::IsShared() const {
  // TODO(v8:12007): Set is_shared to true on internalized string when
  // v8_flags.shared_string_table is removed.
  return (type_ & kSharedStringMask) == kSharedStringTag ||
         (v8_flags.shared_string_table && IsInternalized());
}

StringRepresentationTag StringShape::representation_tag() const {
  uint32_t tag = (type_ & kStringRepresentationMask);
  return static_cast<StringRepresentationTag>(tag);
}

uint32_t StringShape::encoding_tag() const {
  return type_ & kStringEncodingMask;
}

uint32_t StringShape::representation_and_encoding_tag() const {
  return (type_ & (kStringRepresentationAndEncodingMask));
}

uint32_t StringShape::representation_encoding_and_shared_tag() const {
  return (type_ & (kStringRepresentationEncodingAndSharedMask));
}

static_assert((kStringRepresentationAndEncodingMask) ==
              Internals::kStringRepresentationAndEncodingMask);

static_assert(static_cast<uint32_t>(kStringEncodingMask) ==
              Internals::kStringEncodingMask);

bool StringShape::IsSequentialOneByte() const {
  return representation_and_encoding_tag() == kSeqOneByteStringTag;
}

bool StringShape::IsSequentialTwoByte() const {
  return representation_and_encoding_tag() == kSeqTwoByteStringTag;
}

bool StringShape::IsExternalOneByte() const {
  return representation_and_encoding_tag() == kExternalOneByteStringTag;
}

static_assert(kExternalOneByteStringTag ==
              Internals::kExternalOneByteRepresentationTag);

static_assert(v8::String::ONE_BYTE_ENCODING == kOneByteStringTag);

bool StringShape::IsExternalTwoByte() const {
  return representation_and_encoding_tag() == kExternalTwoByteStringTag;
}

static_assert(kExternalTwoByteStringTag ==
              Internals::kExternalTwoByteRepresentationTag);

static_assert(v8::String::TWO_BYTE_ENCODING == kTwoByteStringTag);

template <typename TDispatcher, typename TResult, typename... TArgs>
inline TResult StringShape::DispatchToSpecificTypeWithoutCast(TArgs&&... args) {
  switch (representation_and_encoding_tag()) {
    case kSeqStringTag | kOneByteStringTag:
      return TDispatcher::HandleSeqOneByteString(std::forward<TArgs>(args)...);
    case kSeqStringTag | kTwoByteStringTag:
      return TDispatcher::HandleSeqTwoByteString(std::forward<TArgs>(args)...);
    case kConsStringTag | kOneByteStringTag:
    case kConsStringTag | kTwoByteStringTag:
      return TDispatcher::HandleConsString(std::forward<TArgs>(args)...);
    case kExternalStringTag | kOneByteStringTag:
      return TDispatcher::HandleExternalOneByteString(
          std::forward<TArgs>(args)...);
    case kExternalStringTag | kTwoByteStringTag:
      return TDispatcher::HandleExternalTwoByteString(
          std::forward<TArgs>(args)...);
    case kSlicedStringTag | kOneByteStringTag:
    case kSlicedStringTag | kTwoByteStringTag:
      return TDispatcher::HandleSlicedString(std::forward<TArgs>(args)...);
    case kThinStringTag | kOneByteStringTag:
    case kThinStringTag | kTwoByteStringTag:
      return TDispatcher::HandleThinString(std::forward<TArgs>(args)...);
    default:
      return TDispatcher::HandleInvalidString(std::forward<TArgs>(args)...);
  }
}

// All concrete subclasses of String (leaves of the inheritance tree).
#define STRING_CLASS_TYPES(V) \
  V(SeqOneByteString)         \
  V(SeqTwoByteString)         \
  V(ConsString)               \
  V(ExternalOneByteString)    \
  V(ExternalTwoByteString)    \
  V(SlicedString)             \
  V(ThinString)

template <typename TDispatcher, typename TResult, typename... TArgs>
inline TResult StringShape::DispatchToSpecificType(String str,
                                                   TArgs&&... args) {
  class CastingDispatcher : public AllStatic {
   public:
#define DEFINE_METHOD(Type)                                         \
  static inline TResult Handle##Type(String str, TArgs&&... args) { \
    return TDispatcher::Handle##Type(Type::cast(str),               \
                                     std::forward<TArgs>(args)...); \
  }
    STRING_CLASS_TYPES(DEFINE_METHOD)
#undef DEFINE_METHOD
    static inline TResult HandleInvalidString(String str, TArgs&&... args) {
      return TDispatcher::HandleInvalidString(str,
                                              std::forward<TArgs>(args)...);
    }
  };

  return DispatchToSpecificTypeWithoutCast<CastingDispatcher, TResult>(
      str, std::forward<TArgs>(args)...);
}

DEF_GETTER(String, IsOneByteRepresentation, bool) {
  uint32_t type = map(cage_base).instance_type();
  return (type & kStringEncodingMask) == kOneByteStringTag;
}

DEF_GETTER(String, IsTwoByteRepresentation, bool) {
  uint32_t type = map(cage_base).instance_type();
  return (type & kStringEncodingMask) == kTwoByteStringTag;
}

// static
bool String::IsOneByteRepresentationUnderneath(String string) {
  while (true) {
    uint32_t type = string.map().instance_type();
    static_assert(kIsIndirectStringTag != 0);
    static_assert((kIsIndirectStringMask & kStringEncodingMask) == 0);
    DCHECK(string.IsFlat());
    switch (type & (kIsIndirectStringMask | kStringEncodingMask)) {
      case kOneByteStringTag:
        return true;
      case kTwoByteStringTag:
        return false;
      default:  // Cons, sliced, thin, strings need to go deeper.
        string = string.GetUnderlying();
    }
  }
}

base::uc32 FlatStringReader::Get(int index) const {
  if (is_one_byte_) {
    return Get<uint8_t>(index);
  } else {
    return Get<base::uc16>(index);
  }
}

template <typename Char>
Char FlatStringReader::Get(int index) const {
  DCHECK_EQ(is_one_byte_, sizeof(Char) == 1);
  DCHECK(0 <= index && index < length_);
  if (sizeof(Char) == 1) {
    return static_cast<Char>(static_cast<const uint8_t*>(start_)[index]);
  } else {
    return static_cast<Char>(static_cast<const base::uc16*>(start_)[index]);
  }
}

template <typename Char>
class SequentialStringKey final : public StringTableKey {
 public:
  SequentialStringKey(const base::Vector<const Char>& chars, uint64_t seed,
                      bool convert = false)
      : SequentialStringKey(StringHasher::HashSequentialString<Char>(
                                chars.begin(), chars.length(), seed),
                            chars, convert) {}

  SequentialStringKey(int raw_hash_field, const base::Vector<const Char>& chars,
                      bool convert = false)
      : StringTableKey(raw_hash_field, chars.length()),
        chars_(chars),
        convert_(convert) {}

  template <typename IsolateT>
  bool IsMatch(IsolateT* isolate, String s) {
    return s.IsEqualTo<String::EqualityType::kNoLengthCheck>(chars_, isolate);
  }

  template <typename IsolateT>
  void PrepareForInsertion(IsolateT* isolate) {
    if (sizeof(Char) == 1) {
      internalized_string_ = isolate->factory()->NewOneByteInternalizedString(
          base::Vector<const uint8_t>::cast(chars_), raw_hash_field());
    } else if (convert_) {
      internalized_string_ =
          isolate->factory()->NewOneByteInternalizedStringFromTwoByte(
              base::Vector<const uint16_t>::cast(chars_), raw_hash_field());
    } else {
      internalized_string_ = isolate->factory()->NewTwoByteInternalizedString(
          base::Vector<const uint16_t>::cast(chars_), raw_hash_field());
    }
  }

  Handle<String> GetHandleForInsertion() {
    DCHECK(!internalized_string_.is_null());
    return internalized_string_;
  }

 private:
  base::Vector<const Char> chars_;
  bool convert_;
  Handle<String> internalized_string_;
};

using OneByteStringKey = SequentialStringKey<uint8_t>;
using TwoByteStringKey = SequentialStringKey<uint16_t>;

template <typename SeqString>
class SeqSubStringKey final : public StringTableKey {
 public:
  using Char = typename SeqString::Char;
// VS 2017 on official builds gives this spurious warning:
// warning C4789: buffer 'key' of size 16 bytes will be overrun; 4 bytes will
// be written starting at offset 16
// https://bugs.chromium.org/p/v8/issues/detail?id=6068
#if defined(V8_CC_MSVC)
#pragma warning(push)
#pragma warning(disable : 4789)
#endif
  SeqSubStringKey(Isolate* isolate, Handle<SeqString> string, int from, int len,
                  bool convert = false)
      : StringTableKey(0, len),
        string_(string),
        from_(from),
        convert_(convert) {
    // We have to set the hash later.
    DisallowGarbageCollection no_gc;
    uint32_t raw_hash_field = StringHasher::HashSequentialString(
        string->GetChars(no_gc) + from, len, HashSeed(isolate));
    set_raw_hash_field(raw_hash_field);

    DCHECK_LE(0, length());
    DCHECK_LE(from_ + length(), string_->length());
    DCHECK_EQ(string_->IsSeqOneByteString(), sizeof(Char) == 1);
    DCHECK_EQ(string_->IsSeqTwoByteString(), sizeof(Char) == 2);
  }
#if defined(V8_CC_MSVC)
#pragma warning(pop)
#endif

  bool IsMatch(Isolate* isolate, String string) {
    DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(string));
    DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(*string_));
    DisallowGarbageCollection no_gc;
    return string.IsEqualTo<String::EqualityType::kNoLengthCheck>(
        base::Vector<const Char>(string_->GetChars(no_gc) + from_, length()),
        isolate);
  }

  void PrepareForInsertion(Isolate* isolate) {
    if (sizeof(Char) == 1 || (sizeof(Char) == 2 && convert_)) {
      Handle<SeqOneByteString> result =
          isolate->factory()->AllocateRawOneByteInternalizedString(
              length(), raw_hash_field());
      DisallowGarbageCollection no_gc;
      CopyChars(result->GetChars(no_gc), string_->GetChars(no_gc) + from_,
                length());
      internalized_string_ = result;
    }
    Handle<SeqTwoByteString> result =
        isolate->factory()->AllocateRawTwoByteInternalizedString(
            length(), raw_hash_field());
    DisallowGarbageCollection no_gc;
    CopyChars(result->GetChars(no_gc), string_->GetChars(no_gc) + from_,
              length());
    internalized_string_ = result;
  }

  Handle<String> GetHandleForInsertion() {
    DCHECK(!internalized_string_.is_null());
    return internalized_string_;
  }

 private:
  Handle<typename CharTraits<Char>::String> string_;
  int from_;
  bool convert_;
  Handle<String> internalized_string_;
};

using SeqOneByteSubStringKey = SeqSubStringKey<SeqOneByteString>;
using SeqTwoByteSubStringKey = SeqSubStringKey<SeqTwoByteString>;

bool String::Equals(String other) const {
  if (other == *this) return true;
  if (this->IsInternalizedString() && other.IsInternalizedString()) {
    return false;
  }
  return SlowEquals(other);
}

// static
bool String::Equals(Isolate* isolate, Handle<String> one, Handle<String> two) {
  if (one.is_identical_to(two)) return true;
  if (one->IsInternalizedString() && two->IsInternalizedString()) {
    return false;
  }
  return SlowEquals(isolate, one, two);
}

template <String::EqualityType kEqType, typename Char>
bool String::IsEqualTo(base::Vector<const Char> str, Isolate* isolate) const {
  DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(*this));
  return IsEqualToImpl<kEqType>(str, isolate,
                                SharedStringAccessGuardIfNeeded::NotNeeded());
}

template <String::EqualityType kEqType, typename Char>
bool String::IsEqualTo(base::Vector<const Char> str) const {
  DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(*this));
  return IsEqualToImpl<kEqType>(str, GetPtrComprCageBase(*this),
                                SharedStringAccessGuardIfNeeded::NotNeeded());
}

template <String::EqualityType kEqType, typename Char>
bool String::IsEqualTo(base::Vector<const Char> str,
                       LocalIsolate* isolate) const {
  SharedStringAccessGuardIfNeeded access_guard(isolate);
  return IsEqualToImpl<kEqType>(str, isolate, access_guard);
}

template <String::EqualityType kEqType, typename Char>
bool String::IsEqualToImpl(
    base::Vector<const Char> str, PtrComprCageBase cage_base,
    const SharedStringAccessGuardIfNeeded& access_guard) const {
  size_t len = str.size();
  switch (kEqType) {
    case EqualityType::kWholeString:
      if (static_cast<size_t>(length()) != len) return false;
      break;
    case EqualityType::kPrefix:
      if (static_cast<size_t>(length()) < len) return false;
      break;
    case EqualityType::kNoLengthCheck:
      DCHECK_EQ(length(), len);
      break;
  }

  DisallowGarbageCollection no_gc;

  int slice_offset = 0;
  String string = *this;
  const Char* data = str.data();
  while (true) {
    int32_t type = string.map(cage_base).instance_type();
    switch (type & kStringRepresentationAndEncodingMask) {
      case kSeqOneByteStringTag:
        return CompareCharsEqual(
            SeqOneByteString::cast(string).GetChars(no_gc, access_guard) +
                slice_offset,
            data, len);
      case kSeqTwoByteStringTag:
        return CompareCharsEqual(
            SeqTwoByteString::cast(string).GetChars(no_gc, access_guard) +
                slice_offset,
            data, len);
      case kExternalOneByteStringTag:
        return CompareCharsEqual(
            ExternalOneByteString::cast(string).GetChars(cage_base) +
                slice_offset,
            data, len);
      case kExternalTwoByteStringTag:
        return CompareCharsEqual(
            ExternalTwoByteString::cast(string).GetChars(cage_base) +
                slice_offset,
            data, len);

      case kSlicedStringTag | kOneByteStringTag:
      case kSlicedStringTag | kTwoByteStringTag: {
        SlicedString slicedString = SlicedString::cast(string);
        slice_offset += slicedString.offset();
        string = slicedString.parent(cage_base);
        continue;
      }

      case kConsStringTag | kOneByteStringTag:
      case kConsStringTag | kTwoByteStringTag: {
        // The ConsString path is more complex and rare, so call out to an
        // out-of-line handler.
        return IsConsStringEqualToImpl<Char>(ConsString::cast(string),
                                             slice_offset, str, cage_base,
                                             access_guard);
      }

      case kThinStringTag | kOneByteStringTag:
      case kThinStringTag | kTwoByteStringTag:
        string = ThinString::cast(string).actual(cage_base);
        continue;

      default:
        UNREACHABLE();
    }
  }
}

// static
template <typename Char>
bool String::IsConsStringEqualToImpl(
    ConsString string, int slice_offset, base::Vector<const Char> str,
    PtrComprCageBase cage_base,
    const SharedStringAccessGuardIfNeeded& access_guard) {
  // Already checked the len in IsEqualToImpl. Check GE rather than EQ in case
  // this is a prefix check.
  DCHECK_GE(string.length(), str.size());

  ConsStringIterator iter(ConsString::cast(string), slice_offset);
  base::Vector<const Char> remaining_str = str;
  for (String segment = iter.Next(&slice_offset); !segment.is_null();
       segment = iter.Next(&slice_offset)) {
    // Compare the individual segment against the appropriate subvector of the
    // remaining string.
    size_t len = std::min<size_t>(segment.length(), remaining_str.size());
    base::Vector<const Char> sub_str = remaining_str.SubVector(0, len);
    if (!segment.IsEqualToImpl<EqualityType::kNoLengthCheck>(sub_str, cage_base,
                                                             access_guard)) {
      return false;
    }
    remaining_str += len;
    if (remaining_str.empty()) break;
  }
  DCHECK_EQ(remaining_str.data(), str.end());
  DCHECK_EQ(remaining_str.size(), 0);
  return true;
}

bool String::IsOneByteEqualTo(base::Vector<const char> str) {
  return IsEqualTo(str);
}

template <typename Char>
const Char* String::GetChars(PtrComprCageBase cage_base,
                             const DisallowGarbageCollection& no_gc) const {
  DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(*this));
  return StringShape(*this, cage_base).IsExternal()
             ? CharTraits<Char>::ExternalString::cast(*this).GetChars(cage_base)
             : CharTraits<Char>::String::cast(*this).GetChars(no_gc);
}

template <typename Char>
const Char* String::GetChars(
    PtrComprCageBase cage_base, const DisallowGarbageCollection& no_gc,
    const SharedStringAccessGuardIfNeeded& access_guard) const {
  return StringShape(*this, cage_base).IsExternal()
             ? CharTraits<Char>::ExternalString::cast(*this).GetChars(cage_base)
             : CharTraits<Char>::String::cast(*this).GetChars(no_gc,
                                                              access_guard);
}

// static
Handle<String> String::Flatten(Isolate* isolate, Handle<String> string,
                               AllocationType allocation) {
  DisallowGarbageCollection no_gc;  // Unhandlified code.
  PtrComprCageBase cage_base(isolate);
  String s = *string;
  StringShape shape(s, cage_base);

  // Shortcut already-flat strings.
  if (V8_LIKELY(shape.IsDirect())) return string;

  if (shape.IsCons()) {
    DCHECK(!s.InSharedHeap());
    ConsString cons = ConsString::cast(s);
    if (!cons.IsFlat(isolate)) {
      AllowGarbageCollection yes_gc;
      return SlowFlatten(isolate, handle(cons, isolate), allocation);
    }
    s = cons.first(cage_base);
    shape = StringShape(s, cage_base);
  }

  if (shape.IsThin()) {
    s = ThinString::cast(s).actual(cage_base);
    DCHECK(!s.IsConsString());
  }

  return handle(s, isolate);
}

// static
Handle<String> String::Flatten(LocalIsolate* isolate, Handle<String> string,
                               AllocationType allocation) {
  // We should never pass non-flat strings to String::Flatten when off-thread.
  DCHECK(string->IsFlat());
  return string;
}

// static
base::Optional<String::FlatContent> String::TryGetFlatContentFromDirectString(
    PtrComprCageBase cage_base, const DisallowGarbageCollection& no_gc,
    String string, int offset, int length,
    const SharedStringAccessGuardIfNeeded& access_guard) {
  DCHECK_GE(offset, 0);
  DCHECK_GE(length, 0);
  DCHECK_LE(offset + length, string.length());
  switch (StringShape{string, cage_base}.representation_and_encoding_tag()) {
    case kSeqOneByteStringTag:
      return FlatContent(
          SeqOneByteString::cast(string).GetChars(no_gc, access_guard) + offset,
          length, no_gc);
    case kSeqTwoByteStringTag:
      return FlatContent(
          SeqTwoByteString::cast(string).GetChars(no_gc, access_guard) + offset,
          length, no_gc);
    case kExternalOneByteStringTag:
      return FlatContent(
          ExternalOneByteString::cast(string).GetChars(cage_base) + offset,
          length, no_gc);
    case kExternalTwoByteStringTag:
      return FlatContent(
          ExternalTwoByteString::cast(string).GetChars(cage_base) + offset,
          length, no_gc);
    default:
      return {};
  }
  UNREACHABLE();
}

String::FlatContent String::GetFlatContent(
    const DisallowGarbageCollection& no_gc) {
#if DEBUG
  // Check that this method is called only from the main thread.
  {
    Isolate* isolate;
    // We don't have to check read only strings as those won't move.
    //
    // TODO(v8:12007): Currently character data is never overwritten for
    // shared strings.
    DCHECK_IMPLIES(GetIsolateFromHeapObject(*this, &isolate) && !InSharedHeap(),
                   ThreadId::Current() == isolate->thread_id());
  }
#endif

  return GetFlatContent(no_gc, SharedStringAccessGuardIfNeeded::NotNeeded());
}

String::FlatContent::FlatContent(const uint8_t* start, int length,
                                 const DisallowGarbageCollection& no_gc)
    : onebyte_start(start), length_(length), state_(ONE_BYTE), no_gc_(no_gc) {
#ifdef ENABLE_SLOW_DCHECKS
  checksum_ = ComputeChecksum();
#endif
}

String::FlatContent::FlatContent(const base::uc16* start, int length,
                                 const DisallowGarbageCollection& no_gc)
    : twobyte_start(start), length_(length), state_(TWO_BYTE), no_gc_(no_gc) {
#ifdef ENABLE_SLOW_DCHECKS
  checksum_ = ComputeChecksum();
#endif
}

String::FlatContent::~FlatContent() {
  // When ENABLE_SLOW_DCHECKS, check the string contents did not change during
  // the lifetime of the FlatContent. To avoid extra memory use, only the hash
  // is checked instead of snapshotting the full character data.
  //
  // If you crashed here, it means something changed the character data of this
  // FlatContent during its lifetime (e.g. GC relocated the string). This is
  // almost always a bug. If you are certain it is not a bug, you can disable
  // the checksum verification in the caller by calling
  // UnsafeDisableChecksumVerification().
  SLOW_DCHECK(checksum_ == kChecksumVerificationDisabled ||
              checksum_ == ComputeChecksum());
}

#ifdef ENABLE_SLOW_DCHECKS
uint32_t String::FlatContent::ComputeChecksum() const {
  constexpr uint64_t hashseed = 1;
  uint32_t hash;
  if (state_ == ONE_BYTE) {
    hash = StringHasher::HashSequentialString(onebyte_start, length_, hashseed);
  } else {
    DCHECK_EQ(TWO_BYTE, state_);
    hash = StringHasher::HashSequentialString(twobyte_start, length_, hashseed);
  }
  DCHECK_NE(kChecksumVerificationDisabled, hash);
  return hash;
}
#endif

String::FlatContent String::GetFlatContent(
    const DisallowGarbageCollection& no_gc,
    const SharedStringAccessGuardIfNeeded& access_guard) {
  PtrComprCageBase cage_base = GetPtrComprCageBase(*this);
  base::Optional<FlatContent> flat_content = TryGetFlatContentFromDirectString(
      cage_base, no_gc, *this, 0, length(), access_guard);
  if (flat_content.has_value()) return flat_content.value();
  return SlowGetFlatContent(no_gc, access_guard);
}

Handle<String> String::Share(Isolate* isolate, Handle<String> string) {
  DCHECK(v8_flags.shared_string_table);
  MaybeHandle<Map> new_map;
  switch (
      isolate->factory()->ComputeSharingStrategyForString(string, &new_map)) {
    case StringTransitionStrategy::kCopy:
      return SlowShare(isolate, string);
    case StringTransitionStrategy::kInPlace:
      // A relaxed write is sufficient here, because at this point the string
      // has not yet escaped the current thread.
      DCHECK(string->InSharedHeap());
      string->set_map_no_write_barrier(*new_map.ToHandleChecked());
      return string;
    case StringTransitionStrategy::kAlreadyTransitioned:
      return string;
  }
}

uint16_t String::Get(int index) const {
  DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(*this));
  return GetImpl(index, GetPtrComprCageBase(*this),
                 SharedStringAccessGuardIfNeeded::NotNeeded());
}

uint16_t String::Get(int index, Isolate* isolate) const {
  SharedStringAccessGuardIfNeeded scope(isolate);
  return GetImpl(index, isolate, scope);
}

uint16_t String::Get(int index, LocalIsolate* local_isolate) const {
  SharedStringAccessGuardIfNeeded scope(local_isolate);
  return GetImpl(index, local_isolate, scope);
}

uint16_t String::Get(
    int index, PtrComprCageBase cage_base,
    const SharedStringAccessGuardIfNeeded& access_guard) const {
  return GetImpl(index, cage_base, access_guard);
}

uint16_t String::GetImpl(
    int index, PtrComprCageBase cage_base,
    const SharedStringAccessGuardIfNeeded& access_guard) const {
  DCHECK(index >= 0 && index < length());

  class StringGetDispatcher : public AllStatic {
   public:
#define DEFINE_METHOD(Type)                                  \
  static inline uint16_t Handle##Type(                       \
      Type str, int index, PtrComprCageBase cage_base,       \
      const SharedStringAccessGuardIfNeeded& access_guard) { \
    return str.Get(index, cage_base, access_guard);          \
  }
    STRING_CLASS_TYPES(DEFINE_METHOD)
#undef DEFINE_METHOD
    static inline uint16_t HandleInvalidString(
        String str, int index, PtrComprCageBase cage_base,
        const SharedStringAccessGuardIfNeeded& access_guard) {
      UNREACHABLE();
    }
  };

  return StringShape(*this)
      .DispatchToSpecificType<StringGetDispatcher, uint16_t>(
          *this, index, cage_base, access_guard);
}

void String::Set(int index, uint16_t value) {
  DCHECK(index >= 0 && index < length());
  DCHECK(StringShape(*this).IsSequential());

  return IsOneByteRepresentation()
             ? SeqOneByteString::cast(*this).SeqOneByteStringSet(index, value)
             : SeqTwoByteString::cast(*this).SeqTwoByteStringSet(index, value);
}

bool String::IsFlat() const { return IsFlat(GetPtrComprCageBase(*this)); }

bool String::IsFlat(PtrComprCageBase cage_base) const {
  if (!StringShape(*this, cage_base).IsCons()) return true;
  return ConsString::cast(*this).IsFlat(cage_base);
}

bool String::IsShared() const { return IsShared(GetPtrComprCageBase(*this)); }

bool String::IsShared(PtrComprCageBase cage_base) const {
  const bool result = StringShape(*this, cage_base).IsShared();
  DCHECK_IMPLIES(result, InSharedHeap());
  return result;
}

String String::GetUnderlying() const {
  // Giving direct access to underlying string only makes sense if the
  // wrapping string is already flattened.
  DCHECK(IsFlat());
  DCHECK(StringShape(*this).IsIndirect());
  static_assert(static_cast<int>(ConsString::kFirstOffset) ==
                static_cast<int>(SlicedString::kParentOffset));
  static_assert(static_cast<int>(ConsString::kFirstOffset) ==
                static_cast<int>(ThinString::kActualOffset));
  const int kUnderlyingOffset = SlicedString::kParentOffset;
  return TaggedField<String, kUnderlyingOffset>::load(*this);
}

template <class Visitor>
ConsString String::VisitFlat(Visitor* visitor, String string,
                             const int offset) {
  DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(string));
  return VisitFlat(visitor, string, offset,
                   SharedStringAccessGuardIfNeeded::NotNeeded());
}

template <class Visitor>
ConsString String::VisitFlat(
    Visitor* visitor, String string, const int offset,
    const SharedStringAccessGuardIfNeeded& access_guard) {
  DisallowGarbageCollection no_gc;
  int slice_offset = offset;
  const int length = string.length();
  DCHECK(offset <= length);
  PtrComprCageBase cage_base = GetPtrComprCageBase(string);
  while (true) {
    int32_t tag =
        StringShape(string, cage_base).representation_and_encoding_tag();
    switch (tag) {
      case kSeqOneByteStringTag:
        visitor->VisitOneByteString(
            SeqOneByteString::cast(string).GetChars(no_gc, access_guard) +
                slice_offset,
            length - offset);
        return ConsString();

      case kSeqTwoByteStringTag:
        visitor->VisitTwoByteString(
            SeqTwoByteString::cast(string).GetChars(no_gc, access_guard) +
                slice_offset,
            length - offset);
        return ConsString();

      case kExternalOneByteStringTag:
        visitor->VisitOneByteString(
            ExternalOneByteString::cast(string).GetChars(cage_base) +
                slice_offset,
            length - offset);
        return ConsString();

      case kExternalTwoByteStringTag:
        visitor->VisitTwoByteString(
            ExternalTwoByteString::cast(string).GetChars(cage_base) +
                slice_offset,
            length - offset);
        return ConsString();

      case kSlicedStringTag | kOneByteStringTag:
      case kSlicedStringTag | kTwoByteStringTag: {
        SlicedString slicedString = SlicedString::cast(string);
        slice_offset += slicedString.offset();
        string = slicedString.parent(cage_base);
        continue;
      }

      case kConsStringTag | kOneByteStringTag:
      case kConsStringTag | kTwoByteStringTag:
        return ConsString::cast(string);

      case kThinStringTag | kOneByteStringTag:
      case kThinStringTag | kTwoByteStringTag:
        string = ThinString::cast(string).actual(cage_base);
        continue;

      default:
        UNREACHABLE();
    }
  }
}

template <>
inline base::Vector<const uint8_t> String::GetCharVector(
    const DisallowGarbageCollection& no_gc) {
  String::FlatContent flat = GetFlatContent(no_gc);
  DCHECK(flat.IsOneByte());
  return flat.ToOneByteVector();
}

template <>
inline base::Vector<const base::uc16> String::GetCharVector(
    const DisallowGarbageCollection& no_gc) {
  String::FlatContent flat = GetFlatContent(no_gc);
  DCHECK(flat.IsTwoByte());
  return flat.ToUC16Vector();
}

uint8_t SeqOneByteString::Get(int index) const {
  DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(*this));
  return Get(index, GetPtrComprCageBase(*this),
             SharedStringAccessGuardIfNeeded::NotNeeded());
}

uint8_t SeqOneByteString::Get(
    int index, PtrComprCageBase cage_base,
    const SharedStringAccessGuardIfNeeded& access_guard) const {
  USE(access_guard);
  DCHECK(index >= 0 && index < length());
  return ReadField<byte>(kHeaderSize + index * kCharSize);
}

void SeqOneByteString::SeqOneByteStringSet(int index, uint16_t value) {
  DCHECK_GE(index, 0);
  DCHECK_LT(index, length());
  DCHECK_LE(value, kMaxOneByteCharCode);
  WriteField<byte>(kHeaderSize + index * kCharSize, static_cast<byte>(value));
}

void SeqOneByteString::SeqOneByteStringSetChars(int index,
                                                const uint8_t* string,
                                                int string_length) {
  DCHECK_LE(0, index);
  DCHECK_LT(index + string_length, length());
  void* address =
      reinterpret_cast<void*>(field_address(kHeaderSize + index * kCharSize));
  memcpy(address, string, string_length);
}

Address SeqOneByteString::GetCharsAddress() const {
  return field_address(kHeaderSize);
}

uint8_t* SeqOneByteString::GetChars(
    const DisallowGarbageCollection& no_gc) const {
  USE(no_gc);
  DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(*this));
  return reinterpret_cast<uint8_t*>(GetCharsAddress());
}

uint8_t* SeqOneByteString::GetChars(
    const DisallowGarbageCollection& no_gc,
    const SharedStringAccessGuardIfNeeded& access_guard) const {
  USE(no_gc);
  USE(access_guard);
  return reinterpret_cast<uint8_t*>(GetCharsAddress());
}

Address SeqTwoByteString::GetCharsAddress() const {
  return field_address(kHeaderSize);
}

base::uc16* SeqTwoByteString::GetChars(
    const DisallowGarbageCollection& no_gc) const {
  USE(no_gc);
  DCHECK(!SharedStringAccessGuardIfNeeded::IsNeeded(*this));
  return reinterpret_cast<base::uc16*>(GetCharsAddress());
}

base::uc16* SeqTwoByteString::GetChars(
    const DisallowGarbageCollection& no_gc,
    const SharedStringAccessGuardIfNeeded& access_guard) const {
  USE(no_gc);
  USE(access_guard);
  return reinterpret_cast<base::uc16*>(GetCharsAddress());
}

uint16_t SeqTwoByteString::Get(
    int index, PtrComprCageBase cage_base,
    const SharedStringAccessGuardIfNeeded& access_guard) const {
  USE(access_guard);
  DCHECK(index >= 0 && index < length());
  return ReadField<uint16_t>(kHeaderSize + index * kShortSize);
}

void SeqTwoByteString::SeqTwoByteStringSet(int index, uint16_t value) {
  DCHECK(index >= 0 && index < length());
  WriteField<uint16_t>(kHeaderSize + index * kShortSize, value);
}

// Due to ThinString rewriting, concurrent visitors need to read the length with
// acquire semantics.
inline int SeqOneByteString::AllocatedSize() {
  return SizeFor(length(kAcquireLoad));
}
inline int SeqTwoByteString::AllocatedSize() {
  return SizeFor(length(kAcquireLoad));
}

// static
bool SeqOneByteString::IsCompatibleMap(Map map, ReadOnlyRoots roots) {
  return map == roots.one_byte_string_map() ||
         map == roots.shared_one_byte_string_map();
}

// static
bool SeqTwoByteString::IsCompatibleMap(Map map, ReadOnlyRoots roots) {
  return map == roots.string_map() || map == roots.shared_string_map();
}

void SlicedString::set_parent(String parent, WriteBarrierMode mode) {
  DCHECK(parent.IsSeqString() || parent.IsExternalString());
  TorqueGeneratedSlicedString<SlicedString, Super>::set_parent(parent, mode);
}

Object ConsString::unchecked_first() const {
  return TaggedField<Object, kFirstOffset>::load(*this);
}

Object ConsString::unchecked_second() const {
  return RELAXED_READ_FIELD(*this, kSecondOffset);
}

bool ConsString::IsFlat(PtrComprCageBase cage_base) const {
  return second(cage_base).length() == 0;
}

DEF_GETTER(ThinString, unchecked_actual, HeapObject) {
  return TaggedField<HeapObject, kActualOffset>::load(cage_base, *this);
}

bool ExternalString::is_uncached() const {
  InstanceType type = map().instance_type();
  return (type & kUncachedExternalStringMask) == kUncachedExternalStringTag;
}

void ExternalString::InitExternalPointerFields(Isolate* isolate) {
  InitExternalPointerField<kExternalStringResourceTag>(kResourceOffset, isolate,
                                                       kNullAddress);
  if (is_uncached()) return;
  InitExternalPointerField<kExternalStringResourceDataTag>(
      kResourceDataOffset, isolate, kNullAddress);
}

void ExternalString::VisitExternalPointers(ObjectVisitor* visitor) const {
  visitor->VisitExternalPointer(*this, RawExternalPointerField(kResourceOffset),
                                kExternalStringResourceTag);
  if (is_uncached()) return;
  visitor->VisitExternalPointer(*this,
                                RawExternalPointerField(kResourceDataOffset),
                                kExternalStringResourceDataTag);
}

DEF_GETTER(ExternalString, resource_as_address, Address) {
  Isolate* isolate = GetIsolateForSandbox(*this);
  return ReadExternalPointerField<kExternalStringResourceTag>(kResourceOffset,
                                                              isolate);
}

void ExternalString::set_address_as_resource(Isolate* isolate, Address value) {
  WriteExternalPointerField<kExternalStringResourceTag>(kResourceOffset,
                                                        isolate, value);
  if (IsExternalOneByteString()) {
    ExternalOneByteString::cast(*this).update_data_cache(isolate);
  } else {
    ExternalTwoByteString::cast(*this).update_data_cache(isolate);
  }
}

uint32_t ExternalString::GetResourceRefForDeserialization() {
  ExternalPointer_t encoded_address =
      ReadField<ExternalPointer_t>(kResourceOffset);
  return static_cast<uint32_t>(encoded_address);
}

void ExternalString::SetResourceRefForSerialization(uint32_t ref) {
  WriteField<ExternalPointer_t>(kResourceOffset,
                                static_cast<ExternalPointer_t>(ref));
  if (is_uncached()) return;
  WriteField<ExternalPointer_t>(kResourceDataOffset, kNullExternalPointer);
}

void ExternalString::DisposeResource(Isolate* isolate) {
  Address value = ReadExternalPointerField<kExternalStringResourceTag>(
      kResourceOffset, isolate);
  v8::String::ExternalStringResourceBase* resource =
      reinterpret_cast<v8::String::ExternalStringResourceBase*>(value);

  // Dispose of the C++ object if it has not already been disposed.
  if (resource != nullptr) {
    resource->Dispose();
    WriteExternalPointerField<kExternalStringResourceTag>(
        kResourceOffset, isolate, kNullAddress);
  }
}

DEF_GETTER(ExternalOneByteString, resource,
           const ExternalOneByteString::Resource*) {
  return mutable_resource();
}

DEF_GETTER(ExternalOneByteString, mutable_resource,
           ExternalOneByteString::Resource*) {
  return reinterpret_cast<Resource*>(resource_as_address(cage_base));
}

void ExternalOneByteString::update_data_cache(Isolate* isolate) {
  DisallowGarbageCollection no_gc;
  if (is_uncached()) {
    if (resource(isolate)->IsCacheable())
      mutable_resource(isolate)->UpdateDataCache();
  } else {
    WriteExternalPointerField<kExternalStringResourceDataTag>(
        kResourceDataOffset, isolate,
        reinterpret_cast<Address>(resource(isolate)->data()));
  }
}

void ExternalOneByteString::SetResource(
    Isolate* isolate, const ExternalOneByteString::Resource* resource) {
  set_resource(isolate, resource);
  size_t new_payload = resource == nullptr ? 0 : resource->length();
  if (new_payload > 0) {
    isolate->heap()->UpdateExternalString(*this, 0, new_payload);
  }
}

void ExternalOneByteString::set_resource(
    Isolate* isolate, const ExternalOneByteString::Resource* resource) {
  WriteExternalPointerField<kExternalStringResourceTag>(
      kResourceOffset, isolate, reinterpret_cast<Address>(resource));
  if (resource != nullptr) update_data_cache(isolate);
}

const uint8_t* ExternalOneByteString::GetChars(
    PtrComprCageBase cage_base) const {
  DisallowGarbageCollection no_gc;
  auto res = resource(cage_base);
  if (is_uncached()) {
    if (res->IsCacheable()) {
      // TODO(solanes): Teach TurboFan/CSA to not bailout to the runtime to
      // avoid this call.
      return reinterpret_cast<const uint8_t*>(res->cached_data());
    }
#if DEBUG
    // Check that this method is called only from the main thread if we have an
    // uncached string with an uncacheable resource.
    {
      Isolate* isolate;
      DCHECK_IMPLIES(GetIsolateFromHeapObject(*this, &isolate),
                     ThreadId::Current() == isolate->thread_id());
    }
#endif
  }

  return reinterpret_cast<const uint8_t*>(res->data());
}

uint8_t ExternalOneByteString::Get(
    int index, PtrComprCageBase cage_base,
    const SharedStringAccessGuardIfNeeded& access_guard) const {
  USE(access_guard);
  DCHECK(index >= 0 && index < length());
  return GetChars(cage_base)[index];
}

DEF_GETTER(ExternalTwoByteString, resource,
           const ExternalTwoByteString::Resource*) {
  return mutable_resource();
}

DEF_GETTER(ExternalTwoByteString, mutable_resource,
           ExternalTwoByteString::Resource*) {
  return reinterpret_cast<Resource*>(resource_as_address(cage_base));
}

void ExternalTwoByteString::update_data_cache(Isolate* isolate) {
  DisallowGarbageCollection no_gc;
  if (is_uncached()) {
    if (resource(isolate)->IsCacheable())
      mutable_resource(isolate)->UpdateDataCache();
  } else {
    WriteExternalPointerField<kExternalStringResourceDataTag>(
        kResourceDataOffset, isolate,
        reinterpret_cast<Address>(resource(isolate)->data()));
  }
}

void ExternalTwoByteString::SetResource(
    Isolate* isolate, const ExternalTwoByteString::Resource* resource) {
  set_resource(isolate, resource);
  size_t new_payload = resource == nullptr ? 0 : resource->length() * 2;
  if (new_payload > 0) {
    isolate->heap()->UpdateExternalString(*this, 0, new_payload);
  }
}

void ExternalTwoByteString::set_resource(
    Isolate* isolate, const ExternalTwoByteString::Resource* resource) {
  WriteExternalPointerField<kExternalStringResourceTag>(
      kResourceOffset, isolate, reinterpret_cast<Address>(resource));
  if (resource != nullptr) update_data_cache(isolate);
}

const uint16_t* ExternalTwoByteString::GetChars(
    PtrComprCageBase cage_base) const {
  DisallowGarbageCollection no_gc;
  auto res = resource(cage_base);
  if (is_uncached()) {
    if (res->IsCacheable()) {
      // TODO(solanes): Teach TurboFan/CSA to not bailout to the runtime to
      // avoid this call.
      return res->cached_data();
    }
#if DEBUG
    // Check that this method is called only from the main thread if we have an
    // uncached string with an uncacheable resource.
    {
      Isolate* isolate;
      DCHECK_IMPLIES(GetIsolateFromHeapObject(*this, &isolate),
                     ThreadId::Current() == isolate->thread_id());
    }
#endif
  }

  return res->data();
}

uint16_t ExternalTwoByteString::Get(
    int index, PtrComprCageBase cage_base,
    const SharedStringAccessGuardIfNeeded& access_guard) const {
  USE(access_guard);
  DCHECK(index >= 0 && index < length());
  return GetChars(cage_base)[index];
}

const uint16_t* ExternalTwoByteString::ExternalTwoByteStringGetData(
    unsigned start) {
  return GetChars(GetPtrComprCageBase(*this)) + start;
}

int ConsStringIterator::OffsetForDepth(int depth) { return depth & kDepthMask; }

void ConsStringIterator::PushLeft(ConsString string) {
  frames_[depth_++ & kDepthMask] = string;
}

void ConsStringIterator::PushRight(ConsString string) {
  // Inplace update.
  frames_[(depth_ - 1) & kDepthMask] = string;
}

void ConsStringIterator::AdjustMaximumDepth() {
  if (depth_ > maximum_depth_) maximum_depth_ = depth_;
}

void ConsStringIterator::Pop() {
  DCHECK_GT(depth_, 0);
  DCHECK(depth_ <= maximum_depth_);
  depth_--;
}

class StringCharacterStream {
 public:
  inline explicit StringCharacterStream(String string, int offset = 0);
  StringCharacterStream(const StringCharacterStream&) = delete;
  StringCharacterStream& operator=(const StringCharacterStream&) = delete;
  inline uint16_t GetNext();
  inline bool HasMore();
  inline void Reset(String string, int offset = 0);
  inline void VisitOneByteString(const uint8_t* chars, int length);
  inline void VisitTwoByteString(const uint16_t* chars, int length);

 private:
  ConsStringIterator iter_;
  bool is_one_byte_;
  union {
    const uint8_t* buffer8_;
    const uint16_t* buffer16_;
  };
  const uint8_t* end_;
  SharedStringAccessGuardIfNeeded access_guard_;
};

uint16_t StringCharacterStream::GetNext() {
  DCHECK(buffer8_ != nullptr && end_ != nullptr);
  // Advance cursor if needed.
  if (buffer8_ == end_) HasMore();
  DCHECK(buffer8_ < end_);
  return is_one_byte_ ? *buffer8_++ : *buffer16_++;
}

// TODO(solanes, v8:7790, chromium:1166095): Assess if we need to use
// Isolate/LocalIsolate and pipe them through, instead of using the slow
// version of the SharedStringAccessGuardIfNeeded.
StringCharacterStream::StringCharacterStream(String string, int offset)
    : is_one_byte_(false), access_guard_(string) {
  Reset(string, offset);
}

void StringCharacterStream::Reset(String string, int offset) {
  buffer8_ = nullptr;
  end_ = nullptr;

  ConsString cons_string =
      String::VisitFlat(this, string, offset, access_guard_);
  iter_.Reset(cons_string, offset);
  if (!cons_string.is_null()) {
    string = iter_.Next(&offset);
    if (!string.is_null())
      String::VisitFlat(this, string, offset, access_guard_);
  }
}

bool StringCharacterStream::HasMore() {
  if (buffer8_ != end_) return true;
  int offset;
  String string = iter_.Next(&offset);
  DCHECK_EQ(offset, 0);
  if (string.is_null()) return false;
  String::VisitFlat(this, string, 0, access_guard_);
  DCHECK(buffer8_ != end_);
  return true;
}

void StringCharacterStream::VisitOneByteString(const uint8_t* chars,
                                               int length) {
  is_one_byte_ = true;
  buffer8_ = chars;
  end_ = chars + length;
}

void StringCharacterStream::VisitTwoByteString(const uint16_t* chars,
                                               int length) {
  is_one_byte_ = false;
  buffer16_ = chars;
  end_ = reinterpret_cast<const uint8_t*>(chars + length);
}

bool String::AsArrayIndex(uint32_t* index) {
  DisallowGarbageCollection no_gc;
  uint32_t field = raw_hash_field();
  if (ContainsCachedArrayIndex(field)) {
    *index = ArrayIndexValueBits::decode(field);
    return true;
  }
  if (IsHashFieldComputed(field) && !IsIntegerIndex(field)) {
    return false;
  }
  return SlowAsArrayIndex(index);
}

bool String::AsIntegerIndex(size_t* index) {
  uint32_t field = raw_hash_field();
  if (ContainsCachedArrayIndex(field)) {
    *index = ArrayIndexValueBits::decode(field);
    return true;
  }
  if (IsHashFieldComputed(field) && !IsIntegerIndex(field)) {
    return false;
  }
  return SlowAsIntegerIndex(index);
}

SubStringRange::SubStringRange(String string,
                               const DisallowGarbageCollection& no_gc,
                               int first, int length)
    : string_(string),
      first_(first),
      length_(length == -1 ? string.length() : length),
      no_gc_(no_gc) {}

class SubStringRange::iterator final {
 public:
  using iterator_category = std::forward_iterator_tag;
  using difference_type = int;
  using value_type = base::uc16;
  using pointer = base::uc16*;
  using reference = base::uc16&;

  iterator(const iterator& other) = default;

  base::uc16 operator*() { return content_.Get(offset_); }
  bool operator==(const iterator& other) const {
    return content_.UsesSameString(other.content_) && offset_ == other.offset_;
  }
  bool operator!=(const iterator& other) const {
    return !content_.UsesSameString(other.content_) || offset_ != other.offset_;
  }
  iterator& operator++() {
    ++offset_;
    return *this;
  }
  iterator operator++(int);

 private:
  friend class String;
  friend class SubStringRange;
  iterator(String from, int offset, const DisallowGarbageCollection& no_gc)
      : content_(from.GetFlatContent(no_gc)), offset_(offset) {}
  String::FlatContent content_;
  int offset_;
};

SubStringRange::iterator SubStringRange::begin() {
  return SubStringRange::iterator(string_, first_, no_gc_);
}

SubStringRange::iterator SubStringRange::end() {
  return SubStringRange::iterator(string_, first_ + length_, no_gc_);
}

// static
bool String::IsInPlaceInternalizable(String string) {
  return IsInPlaceInternalizable(string.map().instance_type());
}

// static
bool String::IsInPlaceInternalizable(InstanceType instance_type) {
  switch (instance_type) {
    case STRING_TYPE:
    case ONE_BYTE_STRING_TYPE:
    case SHARED_STRING_TYPE:
    case SHARED_ONE_BYTE_STRING_TYPE:
    case EXTERNAL_STRING_TYPE:
    case EXTERNAL_ONE_BYTE_STRING_TYPE:
    case SHARED_EXTERNAL_STRING_TYPE:
    case SHARED_EXTERNAL_ONE_BYTE_STRING_TYPE:
      return true;
    default:
      return false;
  }
}

// static
bool String::IsInPlaceInternalizableExcludingExternal(
    InstanceType instance_type) {
  return IsInPlaceInternalizable(instance_type) &&
         !InstanceTypeChecker::IsExternalString(instance_type);
}

}  // namespace internal
}  // namespace v8

#include "src/objects/object-macros-undef.h"

#endif  // V8_OBJECTS_STRING_INL_H_