1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
|
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_OBJECTS_CODE_H_
#define V8_OBJECTS_CODE_H_
#include "src/base/bit-field.h"
#include "src/builtins/builtins.h"
#include "src/codegen/handler-table.h"
#include "src/codegen/maglev-safepoint-table.h"
#include "src/deoptimizer/translation-array.h"
#include "src/objects/code-kind.h"
#include "src/objects/contexts.h"
#include "src/objects/fixed-array.h"
#include "src/objects/heap-object.h"
#include "src/objects/objects.h"
#include "src/objects/shared-function-info.h"
#include "src/objects/struct.h"
// Has to be the last include (doesn't have include guards):
#include "src/objects/object-macros.h"
namespace v8 {
namespace internal {
class ByteArray;
class BytecodeArray;
class CodeDataContainer;
class CodeDesc;
class LocalFactory;
template <typename Impl>
class FactoryBase;
namespace interpreter {
class Register;
} // namespace interpreter
#include "torque-generated/src/objects/code-tq.inc"
// CodeDataContainer is a container for all mutable fields associated with its
// referencing {Code} object. Since {Code} objects reside on write-protected
// pages within the heap, its header fields need to be immutable. There always
// is a 1-to-1 relation between {Code} and {CodeDataContainer}, the referencing
// field {Code::code_data_container} itself is immutable.
class CodeDataContainer : public HeapObject {
public:
NEVER_READ_ONLY_SPACE
DECL_ACCESSORS(next_code_link, Object)
DECL_RELAXED_INT32_ACCESSORS(kind_specific_flags)
// Clear uninitialized padding space. This ensures that the snapshot content
// is deterministic.
inline void clear_padding();
//
// A collection of getters and predicates that are used by respective methods
// on Code object. They are defined here mostly because they operate on the
// writable state of the respective Code object.
//
DECL_PRIMITIVE_ACCESSORS(can_have_weak_objects, bool)
DECL_PRIMITIVE_ACCESSORS(marked_for_deoptimization, bool)
DECL_PRIMITIVE_ACCESSORS(is_promise_rejection, bool)
inline HandlerTable::CatchPrediction GetBuiltinCatchPrediction() const;
// Back-reference to the Code object.
// Available only when V8_EXTERNAL_CODE_SPACE is defined.
DECL_GETTER(code, Code)
DECL_RELAXED_GETTER(code, Code)
// When V8_EXTERNAL_CODE_SPACE is enabled, Code objects are allocated in
// a separate pointer compression cage instead of the cage where all the
// other objects are allocated.
// This field contains code cage base value which is used for decompressing
// the reference to respective Code. Basically, |code_cage_base| and |code|
// fields together form a full pointer. The reason why they are split is that
// the code field must also support atomic access and the word alignment of
// the full value is not guaranteed.
inline PtrComprCageBase code_cage_base() const;
inline void set_code_cage_base(Address code_cage_base);
inline PtrComprCageBase code_cage_base(RelaxedLoadTag) const;
inline void set_code_cage_base(Address code_cage_base, RelaxedStoreTag);
// Cached value of code().InstructionStart().
// Available only when V8_EXTERNAL_CODE_SPACE is defined.
DECL_GETTER(code_entry_point, Address)
inline void SetCodeAndEntryPoint(
Isolate* isolate_for_sandbox, Code code,
WriteBarrierMode mode = UPDATE_WRITE_BARRIER);
inline void SetEntryPointForOffHeapBuiltin(Isolate* isolate_for_sandbox,
Address entry);
// Updates the value of the code entry point. The code must be equal to
// the code() value.
inline void UpdateCodeEntryPoint(Isolate* isolate_for_sandbox, Code code);
// Initializes internal flags field which stores cached values of some
// properties of the respective Code object.
// Available only when V8_EXTERNAL_CODE_SPACE is enabled.
inline void initialize_flags(CodeKind kind, Builtin builtin_id,
bool is_turbofanned,
bool is_off_heap_trampoline);
// Alias for code_entry_point to make it API compatible with Code.
inline Address InstructionStart() const;
// Alias for code_entry_point to make it API compatible with Code.
inline Address raw_instruction_start() const;
// Alias for code_entry_point to make it API compatible with Code.
inline Address entry() const;
#ifdef V8_EXTERNAL_CODE_SPACE
//
// A collection of getters and predicates that forward queries to associated
// Code object.
//
inline CodeKind kind() const;
inline Builtin builtin_id() const;
inline bool is_builtin() const;
inline bool is_optimized_code() const;
inline bool is_wasm_code() const;
// Testers for interpreter builtins.
inline bool is_interpreter_trampoline_builtin() const;
// Testers for baseline builtins.
inline bool is_baseline_trampoline_builtin() const;
inline bool is_baseline_leave_frame_builtin() const;
// Tells whether the code checks the tiering state in the function's
// feedback vector.
inline bool checks_tiering_state() const;
// Tells whether the outgoing parameters of this code are tagged pointers.
inline bool has_tagged_outgoing_params() const;
// [is_maglevved]: Tells whether the code object was generated by the
// Maglev optimizing compiler.
inline bool is_maglevved() const;
// [is_turbofanned]: Tells whether the code object was generated by the
// TurboFan optimizing compiler.
inline bool is_turbofanned() const;
// [is_off_heap_trampoline]: For kind BUILTIN tells whether
// this is a trampoline to an off-heap builtin.
inline bool is_off_heap_trampoline() const;
// [uses_safepoint_table]: Whether this Code object uses safepoint tables
// (note the table may still be empty, see has_safepoint_table).
inline bool uses_safepoint_table() const;
// [stack_slots]: If {uses_safepoint_table()}, the number of stack slots
// reserved in the code prologue; otherwise 0.
inline int stack_slots() const;
DECL_GETTER(deoptimization_data, FixedArray)
DECL_GETTER(bytecode_or_interpreter_data, HeapObject)
DECL_GETTER(source_position_table, ByteArray)
DECL_GETTER(bytecode_offset_table, ByteArray)
// Returns true if pc is inside this object's instructions.
inline bool contains(Isolate* isolate, Address pc);
inline Address SafepointTableAddress() const;
inline int safepoint_table_size() const;
inline bool has_safepoint_table() const;
inline Address HandlerTableAddress() const;
inline int handler_table_size() const;
inline bool has_handler_table() const;
inline Address constant_pool() const;
inline int constant_pool_size() const;
inline bool has_constant_pool() const;
inline Address code_comments() const;
inline int code_comments_size() const;
inline bool has_code_comments() const;
inline Address unwinding_info_start() const;
inline Address unwinding_info_end() const;
inline int unwinding_info_size() const;
inline bool has_unwinding_info() const;
inline byte* relocation_start() const;
inline byte* relocation_end() const;
inline int relocation_size() const;
// When builtins un-embedding is enabled for the Isolate
// (see Isolate::is_short_builtin_calls_enabled()) then both embedded and
// un-embedded builtins might be exeuted and thus two kinds of |pc|s might
// appear on the stack.
// Unlike the paremeterless versions of the functions above the below variants
// ensure that the instruction start correspond to the given |pc| value.
// Thus for off-heap trampoline Code objects the result might be the
// instruction start/end of the embedded code stream or of un-embedded one.
// For normal Code objects these functions just return the
// raw_instruction_start/end() values.
// TODO(11527): remove these versions once the full solution is ready.
inline Address InstructionStart(Isolate* isolate, Address pc) const;
V8_EXPORT_PRIVATE Address OffHeapInstructionStart(Isolate* isolate,
Address pc) const;
inline Address InstructionEnd(Isolate* isolate, Address pc) const;
V8_EXPORT_PRIVATE Address OffHeapInstructionEnd(Isolate* isolate,
Address pc) const;
V8_EXPORT_PRIVATE bool OffHeapBuiltinContains(Isolate* isolate,
Address pc) const;
inline Address InstructionEnd() const;
inline int InstructionSize() const;
// Get the safepoint entry for the given pc.
SafepointEntry GetSafepointEntry(Isolate* isolate, Address pc);
// Get the maglev safepoint entry for the given pc.
MaglevSafepointEntry GetMaglevSafepointEntry(Isolate* isolate, Address pc);
inline int GetOffsetFromInstructionStart(Isolate* isolate, Address pc) const;
void SetMarkedForDeoptimization(const char* reason);
#ifdef ENABLE_DISASSEMBLER
V8_EXPORT_PRIVATE void Disassemble(const char* name, std::ostream& os,
Isolate* isolate,
Address current_pc = kNullAddress);
#endif // ENABLE_DISASSEMBLER
#endif // V8_EXTERNAL_CODE_SPACE
DECL_CAST(CodeDataContainer)
// Dispatched behavior.
DECL_PRINTER(CodeDataContainer)
DECL_VERIFIER(CodeDataContainer)
// Layout description.
#define CODE_DATA_FIELDS(V) \
/* Strong pointer fields. */ \
V(kPointerFieldsStrongEndOffset, 0) \
/* Weak pointer fields. */ \
V(kNextCodeLinkOffset, kTaggedSize) \
V(kPointerFieldsWeakEndOffset, 0) \
/* Strong Code pointer fields. */ \
V(kCodeOffset, V8_EXTERNAL_CODE_SPACE_BOOL ? kTaggedSize : 0) \
V(kCodePointerFieldsStrongEndOffset, 0) \
/* Raw data fields. */ \
V(kCodeCageBaseUpper32BitsOffset, \
V8_EXTERNAL_CODE_SPACE_BOOL ? kTaggedSize : 0) \
V(kCodeEntryPointOffset, \
V8_EXTERNAL_CODE_SPACE_BOOL ? kSystemPointerSize : 0) \
V(kFlagsOffset, V8_EXTERNAL_CODE_SPACE_BOOL ? kUInt16Size : 0) \
V(kBuiltinIdOffset, V8_EXTERNAL_CODE_SPACE_BOOL ? kInt16Size : 0) \
V(kKindSpecificFlagsOffset, kInt32Size) \
V(kUnalignedSize, OBJECT_POINTER_PADDING(kUnalignedSize)) \
/* Total size. */ \
V(kSize, 0)
DEFINE_FIELD_OFFSET_CONSTANTS(HeapObject::kHeaderSize, CODE_DATA_FIELDS)
#undef CODE_DATA_FIELDS
#ifdef V8_EXTERNAL_CODE_SPACE
using ExternalCodeField =
TaggedField<Object, kCodeOffset, ExternalCodeCompressionScheme>;
#endif
class BodyDescriptor;
// Flags layout.
#define FLAGS_BIT_FIELDS(V, _) \
V(KindField, CodeKind, 4, _) \
V(IsTurbofannedField, bool, 1, _) \
V(IsOffHeapTrampoline, bool, 1, _)
/* The other 10 bits are still free. */
DEFINE_BIT_FIELDS(FLAGS_BIT_FIELDS)
#undef FLAGS_BIT_FIELDS
static_assert(FLAGS_BIT_FIELDS_Ranges::kBitsCount == 6);
static_assert(!V8_EXTERNAL_CODE_SPACE_BOOL ||
(FLAGS_BIT_FIELDS_Ranges::kBitsCount <=
FIELD_SIZE(CodeDataContainer::kFlagsOffset) * kBitsPerByte));
private:
DECL_ACCESSORS(raw_code, Object)
DECL_RELAXED_GETTER(raw_code, Object)
inline void init_code_entry_point(Isolate* isolate, Address initial_value);
inline void set_code_entry_point(Isolate* isolate, Address value);
// When V8_EXTERNAL_CODE_SPACE is enabled the flags field contains cached
// values of some flags of the from the respective Code object.
DECL_RELAXED_UINT16_ACCESSORS(flags)
inline void set_is_off_heap_trampoline_for_hash(bool value);
template <typename IsolateT>
friend class Deserializer;
friend Factory;
friend FactoryBase<Factory>;
friend FactoryBase<LocalFactory>;
friend Isolate;
OBJECT_CONSTRUCTORS(CodeDataContainer, HeapObject);
};
// Code describes objects with on-the-fly generated machine code.
class Code : public HeapObject {
public:
NEVER_READ_ONLY_SPACE
// Opaque data type for encapsulating code flags like kind, inline
// cache state, and arguments count.
using Flags = uint32_t;
// All Code objects have the following layout:
//
// +--------------------------+
// | header |
// | padded to code alignment |
// +--------------------------+ <-- raw_body_start()
// | instructions | == raw_instruction_start()
// | ... |
// | padded to meta alignment | see kMetadataAlignment
// +--------------------------+ <-- raw_instruction_end()
// | metadata | == raw_metadata_start() (MS)
// | ... |
// | | <-- MS + handler_table_offset()
// | | <-- MS + constant_pool_offset()
// | | <-- MS + code_comments_offset()
// | | <-- MS + unwinding_info_offset()
// | padded to obj alignment |
// +--------------------------+ <-- raw_metadata_end() == raw_body_end()
// | padded to code alignment |
// +--------------------------+
//
// In other words, the variable-size 'body' consists of 'instructions' and
// 'metadata'.
//
// Note the accessor functions below may be prefixed with 'raw'. In this case,
// raw accessors (e.g. raw_instruction_start) always refer to the on-heap
// Code object, while camel-case accessors (e.g. InstructionStart) may refer
// to an off-heap area in the case of embedded builtins.
//
// Embedded builtins are on-heap Code objects, with an out-of-line body
// section. The on-heap Code object contains an essentially empty body
// section, while accessors, as mentioned above, redirect to the off-heap
// area. Metadata table offsets remain relative to MetadataStart(), i.e. they
// point into the off-heap metadata section. The off-heap layout is described
// in detail in the EmbeddedData class, but at a high level one can assume a
// dedicated, out-of-line, instruction and metadata section for each embedded
// builtin *in addition* to the on-heap Code object:
//
// +--------------------------+ <-- InstructionStart()
// | off-heap instructions |
// | ... |
// +--------------------------+ <-- InstructionEnd()
//
// +--------------------------+ <-- MetadataStart() (MS)
// | off-heap metadata |
// | ... | <-- MS + handler_table_offset()
// | | <-- MS + constant_pool_offset()
// | | <-- MS + code_comments_offset()
// | | <-- MS + unwinding_info_offset()
// +--------------------------+ <-- MetadataEnd()
// Constants for use in static asserts, stating whether the body is adjacent,
// i.e. instructions and metadata areas are adjacent.
static constexpr bool kOnHeapBodyIsContiguous = true;
static constexpr bool kOffHeapBodyIsContiguous = false;
static constexpr bool kBodyIsContiguous =
kOnHeapBodyIsContiguous && kOffHeapBodyIsContiguous;
inline Address raw_body_start() const;
inline Address raw_body_end() const;
inline int raw_body_size() const;
inline Address raw_instruction_start() const;
inline Address InstructionStart() const;
inline Address raw_instruction_end() const;
inline Address InstructionEnd() const;
// When builtins un-embedding is enabled for the Isolate
// (see Isolate::is_short_builtin_calls_enabled()) then both embedded and
// un-embedded builtins might be exeuted and thus two kinds of |pc|s might
// appear on the stack.
// Unlike the paremeterless versions of the functions above the below variants
// ensure that the instruction start correspond to the given |pc| value.
// Thus for off-heap trampoline Code objects the result might be the
// instruction start/end of the embedded code stream or of un-embedded one.
// For normal Code objects these functions just return the
// raw_instruction_start/end() values.
// TODO(11527): remove these versions once the full solution is ready.
inline Address InstructionStart(Isolate* isolate, Address pc) const;
V8_EXPORT_PRIVATE Address OffHeapInstructionStart(Isolate* isolate,
Address pc) const;
inline Address InstructionEnd(Isolate* isolate, Address pc) const;
V8_EXPORT_PRIVATE Address OffHeapInstructionEnd(Isolate* isolate,
Address pc) const;
V8_EXPORT_PRIVATE bool OffHeapBuiltinContains(Isolate* isolate,
Address pc) const;
// Computes offset of the |pc| from the instruction start. The |pc| must
// belong to this code.
inline int GetOffsetFromInstructionStart(Isolate* isolate, Address pc) const;
inline int raw_instruction_size() const;
inline void set_raw_instruction_size(int value);
inline int InstructionSize() const;
inline Address raw_metadata_start() const;
inline Address raw_metadata_end() const;
inline int raw_metadata_size() const;
inline void set_raw_metadata_size(int value);
inline int MetadataSize() const;
// The metadata section is aligned to this value.
static constexpr int kMetadataAlignment = kIntSize;
// [safepoint_table_offset]: The offset where the safepoint table starts.
inline int safepoint_table_offset() const { return 0; }
inline Address raw_safepoint_table_address() const;
inline Address SafepointTableAddress() const;
inline int safepoint_table_size() const;
inline bool has_safepoint_table() const;
// [handler_table_offset]: The offset where the exception handler table
// starts.
inline int handler_table_offset() const;
inline void set_handler_table_offset(int offset);
inline Address raw_handler_table_address() const;
inline Address HandlerTableAddress() const;
inline int handler_table_size() const;
inline bool has_handler_table() const;
// [constant_pool offset]: Offset of the constant pool.
inline int constant_pool_offset() const;
inline void set_constant_pool_offset(int offset);
inline Address raw_constant_pool() const;
inline Address constant_pool() const;
inline int constant_pool_size() const;
inline bool has_constant_pool() const;
// [code_comments_offset]: Offset of the code comment section.
inline int code_comments_offset() const;
inline void set_code_comments_offset(int offset);
inline Address raw_code_comments() const;
inline Address code_comments() const;
inline int code_comments_size() const;
inline bool has_code_comments() const;
// [unwinding_info_offset]: Offset of the unwinding info section.
inline int32_t unwinding_info_offset() const;
inline void set_unwinding_info_offset(int32_t offset);
inline Address raw_unwinding_info_start() const;
inline Address unwinding_info_start() const;
inline Address unwinding_info_end() const;
inline int unwinding_info_size() const;
inline bool has_unwinding_info() const;
#ifdef ENABLE_DISASSEMBLER
V8_EXPORT_PRIVATE void Disassemble(const char* name, std::ostream& os,
Isolate* isolate,
Address current_pc = kNullAddress);
#endif
// [relocation_info]: Code relocation information
DECL_ACCESSORS(relocation_info, ByteArray)
// This function should be called only from GC.
void ClearEmbeddedObjects(Heap* heap);
// [deoptimization_data]: Array containing data for deopt for non-baseline
// code.
DECL_ACCESSORS(deoptimization_data, FixedArray)
// [bytecode_or_interpreter_data]: BytecodeArray or InterpreterData for
// baseline code.
DECL_ACCESSORS(bytecode_or_interpreter_data, HeapObject)
// [source_position_table]: ByteArray for the source positions table for
// non-baseline code.
DECL_ACCESSORS(source_position_table, ByteArray)
// [bytecode_offset_table]: ByteArray for the bytecode offset for baseline
// code.
DECL_ACCESSORS(bytecode_offset_table, ByteArray)
// If source positions have not been collected or an exception has been thrown
// this will return empty_byte_array.
inline ByteArray SourcePositionTable(PtrComprCageBase cage_base,
SharedFunctionInfo sfi) const;
// [code_data_container]: A container indirection for all mutable fields.
DECL_RELEASE_ACQUIRE_ACCESSORS(code_data_container, CodeDataContainer)
// [next_code_link]: Link for lists of optimized or deoptimized code.
// Note that this field is stored in the {CodeDataContainer} to be mutable.
inline Object next_code_link() const;
inline void set_next_code_link(Object value);
// Unchecked accessors to be used during GC.
inline ByteArray unchecked_relocation_info() const;
inline int relocation_size() const;
// [kind]: Access to specific code kind.
inline CodeKind kind() const;
inline bool is_optimized_code() const;
inline bool is_wasm_code() const;
// Testers for interpreter builtins.
inline bool is_interpreter_trampoline_builtin() const;
// Testers for baseline builtins.
inline bool is_baseline_trampoline_builtin() const;
inline bool is_baseline_leave_frame_builtin() const;
// Tells whether the code checks the tiering state in the function's
// feedback vector.
inline bool checks_tiering_state() const;
// Tells whether the outgoing parameters of this code are tagged pointers.
inline bool has_tagged_outgoing_params() const;
// [is_turbofanned]: Tells whether the code object was generated by the
// TurboFan optimizing compiler.
inline bool is_turbofanned() const;
// TODO(jgruber): Reconsider these predicates; we should probably merge them
// and rename to something appropriate.
inline bool is_maglevved() const;
// [can_have_weak_objects]: If CodeKindIsOptimizedJSFunction(kind), tells
// whether the embedded objects in code should be treated weakly.
inline bool can_have_weak_objects() const;
inline void set_can_have_weak_objects(bool value);
// [builtin]: For builtins, tells which builtin index the code object
// has. The builtin index is a non-negative integer for builtins, and
// Builtin::kNoBuiltinId (-1) otherwise.
inline Builtin builtin_id() const;
inline void set_builtin_id(Builtin builtin);
inline bool is_builtin() const;
inline unsigned inlined_bytecode_size() const;
inline void set_inlined_bytecode_size(unsigned size);
inline BytecodeOffset osr_offset() const;
inline void set_osr_offset(BytecodeOffset offset);
// [uses_safepoint_table]: Whether this Code object uses safepoint tables
// (note the table may still be empty, see has_safepoint_table).
inline bool uses_safepoint_table() const;
// [stack_slots]: If {uses_safepoint_table()}, the number of stack slots
// reserved in the code prologue; otherwise 0.
inline int stack_slots() const;
// [marked_for_deoptimization]: If CodeKindCanDeoptimize(kind), tells whether
// the code is going to be deoptimized.
inline bool marked_for_deoptimization() const;
inline void set_marked_for_deoptimization(bool flag);
// [embedded_objects_cleared]: If CodeKindIsOptimizedJSFunction(kind), tells
// whether the embedded objects in the code marked for deoptimization were
// cleared. Note that embedded_objects_cleared() implies
// marked_for_deoptimization().
inline bool embedded_objects_cleared() const;
inline void set_embedded_objects_cleared(bool flag);
// [is_promise_rejection]: For kind BUILTIN tells whether the
// exception thrown by the code will lead to promise rejection or
// uncaught if both this and is_exception_caught is set.
// Use GetBuiltinCatchPrediction to access this.
inline void set_is_promise_rejection(bool flag);
// [is_off_heap_trampoline]: For kind BUILTIN tells whether
// this is a trampoline to an off-heap builtin.
inline bool is_off_heap_trampoline() const;
// Get the safepoint entry for the given pc.
SafepointEntry GetSafepointEntry(Isolate* isolate, Address pc);
// Get the maglev safepoint entry for the given pc.
MaglevSafepointEntry GetMaglevSafepointEntry(Isolate* isolate, Address pc);
// The entire code object including its header is copied verbatim to the
// snapshot so that it can be written in one, fast, memcpy during
// deserialization. The deserializer will overwrite some pointers, rather
// like a runtime linker, but the random allocation addresses used in the
// mksnapshot process would still be present in the unlinked snapshot data,
// which would make snapshot production non-reproducible. This method wipes
// out the to-be-overwritten header data for reproducible snapshots.
inline void WipeOutHeader();
// When V8_EXTERNAL_CODE_SPACE is enabled, Code objects are allocated in
// a separate pointer compression cage instead of the cage where all the
// other objects are allocated.
// This field contains cage base value which is used for decompressing
// the references to non-Code objects (map, deoptimization_data, etc.).
inline PtrComprCageBase main_cage_base() const;
inline PtrComprCageBase main_cage_base(RelaxedLoadTag) const;
inline void set_main_cage_base(Address cage_base, RelaxedStoreTag);
// Clear uninitialized padding space. This ensures that the snapshot content
// is deterministic. Depending on the V8 build mode there could be no padding.
inline void clear_padding();
// Initialize the flags field. Similar to clear_padding above this ensure that
// the snapshot content is deterministic.
inline void initialize_flags(CodeKind kind, bool is_turbofanned,
int stack_slots, bool is_off_heap_trampoline);
// Convert a target address into a code object.
static inline Code GetCodeFromTargetAddress(Address address);
// Convert an entry address into an object.
static inline Code GetObjectFromEntryAddress(Address location_of_address);
// Returns the size of code and its metadata. This includes the size of code
// relocation information, deoptimization data.
DECL_GETTER(SizeIncludingMetadata, int)
// Returns the address of the first relocation info (read backwards!).
inline byte* relocation_start() const;
// Returns the address right after the relocation info (read backwards!).
inline byte* relocation_end() const;
// Code entry point.
inline Address entry() const;
// Returns true if pc is inside this object's instructions.
inline bool contains(Isolate* isolate, Address pc);
// Relocate the code by delta bytes. Called to signal that this code
// object has been moved by delta bytes.
void Relocate(intptr_t delta);
// Migrate code from desc without flushing the instruction cache.
void CopyFromNoFlush(ByteArray reloc_info, Heap* heap, const CodeDesc& desc);
void RelocateFromDesc(ByteArray reloc_info, Heap* heap, const CodeDesc& desc);
// Copy the RelocInfo portion of |desc| to |dest|. The ByteArray must be
// exactly the same size as the RelocInfo in |desc|.
static inline void CopyRelocInfoToByteArray(ByteArray dest,
const CodeDesc& desc);
inline uintptr_t GetBaselineStartPCForBytecodeOffset(int bytecode_offset,
BytecodeArray bytecodes);
inline uintptr_t GetBaselineEndPCForBytecodeOffset(int bytecode_offset,
BytecodeArray bytecodes);
// Returns the PC of the next bytecode in execution order.
// If the bytecode at the given offset is JumpLoop, the PC of the jump target
// is returned. Other jumps are not allowed.
// For other bytecodes this is equivalent to
// GetBaselineEndPCForBytecodeOffset.
inline uintptr_t GetBaselinePCForNextExecutedBytecode(
int bytecode_offset, BytecodeArray bytecodes);
inline int GetBytecodeOffsetForBaselinePC(Address baseline_pc,
BytecodeArray bytecodes);
// Flushes the instruction cache for the executable instructions of this code
// object. Make sure to call this while the code is still writable.
void FlushICache() const;
// Returns the object size for a given body (used for allocation).
static int SizeFor(int body_size) {
return RoundUp(kHeaderSize + body_size, kCodeAlignment);
}
inline int CodeSize() const;
// Hides HeapObject::Size(...) and redirects queries to CodeSize().
DECL_GETTER(Size, int)
DECL_CAST(Code)
// Dispatched behavior.
DECL_PRINTER(Code)
DECL_VERIFIER(Code)
bool CanDeoptAt(Isolate* isolate, Address pc);
void SetMarkedForDeoptimization(const char* reason);
inline HandlerTable::CatchPrediction GetBuiltinCatchPrediction() const;
bool IsIsolateIndependent(Isolate* isolate);
inline bool CanContainWeakObjects();
inline bool IsWeakObject(HeapObject object);
static inline bool IsWeakObjectInOptimizedCode(HeapObject object);
static inline bool IsWeakObjectInDeoptimizationLiteralArray(Object object);
// Returns false if this is an embedded builtin Code object that's in
// read_only_space and hence doesn't have execute permissions.
inline bool IsExecutable();
// Returns true if the function is inlined in the code.
bool Inlines(SharedFunctionInfo sfi);
class OptimizedCodeIterator;
// Layout description.
#define CODE_FIELDS(V) \
V(kRelocationInfoOffset, kTaggedSize) \
V(kDeoptimizationDataOrInterpreterDataOffset, kTaggedSize) \
V(kPositionTableOffset, kTaggedSize) \
V(kCodeDataContainerOffset, kTaggedSize) \
/* Data or code not directly visited by GC directly starts here. */ \
/* The serializer needs to copy bytes starting from here verbatim. */ \
/* Objects embedded into code is visited via reloc info. */ \
V(kDataStart, 0) \
V(kMainCageBaseUpper32BitsOffset, \
V8_EXTERNAL_CODE_SPACE_BOOL ? kTaggedSize : 0) \
V(kInstructionSizeOffset, kIntSize) \
V(kMetadataSizeOffset, kIntSize) \
V(kFlagsOffset, kInt32Size) \
V(kBuiltinIndexOffset, kIntSize) \
V(kInlinedBytecodeSizeOffset, kIntSize) \
V(kOsrOffsetOffset, kInt32Size) \
/* Offsets describing inline metadata tables, relative to MetadataStart. */ \
V(kHandlerTableOffsetOffset, kIntSize) \
V(kConstantPoolOffsetOffset, V8_EMBEDDED_CONSTANT_POOL_BOOL ? kIntSize : 0) \
V(kCodeCommentsOffsetOffset, kIntSize) \
V(kUnwindingInfoOffsetOffset, kInt32Size) \
V(kUnalignedHeaderSize, 0) \
/* Add padding to align the instruction start following right after */ \
/* the Code object header. */ \
V(kOptionalPaddingOffset, CODE_POINTER_PADDING(kOptionalPaddingOffset)) \
V(kHeaderSize, 0)
DEFINE_FIELD_OFFSET_CONSTANTS(HeapObject::kHeaderSize, CODE_FIELDS)
#undef CODE_FIELDS
// This documents the amount of free space we have in each Code object header
// due to padding for code alignment.
#if V8_TARGET_ARCH_ARM64
static constexpr int kHeaderPaddingSize =
V8_EXTERNAL_CODE_SPACE_BOOL ? 4 : (COMPRESS_POINTERS_BOOL ? 8 : 20);
#elif V8_TARGET_ARCH_MIPS64
static constexpr int kHeaderPaddingSize = 20;
#elif V8_TARGET_ARCH_LOONG64
static constexpr int kHeaderPaddingSize = 20;
#elif V8_TARGET_ARCH_X64
static constexpr int kHeaderPaddingSize =
V8_EXTERNAL_CODE_SPACE_BOOL ? 4 : (COMPRESS_POINTERS_BOOL ? 8 : 52);
#elif V8_TARGET_ARCH_ARM
static constexpr int kHeaderPaddingSize = 8;
#elif V8_TARGET_ARCH_IA32
static constexpr int kHeaderPaddingSize = 8;
#elif V8_TARGET_ARCH_MIPS
static constexpr int kHeaderPaddingSize = 8;
#elif V8_TARGET_ARCH_PPC64
static constexpr int kHeaderPaddingSize =
V8_EMBEDDED_CONSTANT_POOL_BOOL ? (COMPRESS_POINTERS_BOOL ? 4 : 48)
: (COMPRESS_POINTERS_BOOL ? 8 : 52);
#elif V8_TARGET_ARCH_S390X
static constexpr int kHeaderPaddingSize = COMPRESS_POINTERS_BOOL ? 8 : 20;
#elif V8_TARGET_ARCH_RISCV64
static constexpr int kHeaderPaddingSize = (COMPRESS_POINTERS_BOOL ? 8 : 20);
#elif V8_TARGET_ARCH_RISCV32
static constexpr int kHeaderPaddingSize = 8;
#else
#error Unknown architecture.
#endif
static_assert(FIELD_SIZE(kOptionalPaddingOffset) == kHeaderPaddingSize);
class BodyDescriptor;
// Flags layout. base::BitField<type, shift, size>.
#define CODE_FLAGS_BIT_FIELDS(V, _) \
V(KindField, CodeKind, 4, _) \
V(IsTurbofannedField, bool, 1, _) \
V(StackSlotsField, int, 24, _) \
V(IsOffHeapTrampoline, bool, 1, _)
DEFINE_BIT_FIELDS(CODE_FLAGS_BIT_FIELDS)
#undef CODE_FLAGS_BIT_FIELDS
static_assert(kCodeKindCount <= KindField::kNumValues);
static_assert(CODE_FLAGS_BIT_FIELDS_Ranges::kBitsCount == 30);
static_assert(CODE_FLAGS_BIT_FIELDS_Ranges::kBitsCount <=
FIELD_SIZE(kFlagsOffset) * kBitsPerByte);
// KindSpecificFlags layout.
#define CODE_KIND_SPECIFIC_FLAGS_BIT_FIELDS(V, _) \
V(MarkedForDeoptimizationField, bool, 1, _) \
V(EmbeddedObjectsClearedField, bool, 1, _) \
V(CanHaveWeakObjectsField, bool, 1, _) \
V(IsPromiseRejectionField, bool, 1, _)
DEFINE_BIT_FIELDS(CODE_KIND_SPECIFIC_FLAGS_BIT_FIELDS)
#undef CODE_KIND_SPECIFIC_FLAGS_BIT_FIELDS
static_assert(CODE_KIND_SPECIFIC_FLAGS_BIT_FIELDS_Ranges::kBitsCount == 4);
static_assert(CODE_KIND_SPECIFIC_FLAGS_BIT_FIELDS_Ranges::kBitsCount <=
FIELD_SIZE(CodeDataContainer::kKindSpecificFlagsOffset) *
kBitsPerByte);
// The {marked_for_deoptimization} field is accessed from generated code.
static const int kMarkedForDeoptimizationBit =
MarkedForDeoptimizationField::kShift;
static const int kArgumentsBits = 16;
// Reserve one argument count value as the "don't adapt arguments" sentinel.
static const int kMaxArguments = (1 << kArgumentsBits) - 2;
private:
friend class RelocIterator;
friend class EvacuateVisitorBase;
inline CodeDataContainer GCSafeCodeDataContainer(AcquireLoadTag) const;
bool is_promise_rejection() const;
enum BytecodeToPCPosition {
kPcAtStartOfBytecode,
// End of bytecode equals the start of the next bytecode.
// We need it when we deoptimize to the next bytecode (lazy deopt or deopt
// of non-topmost frame).
kPcAtEndOfBytecode
};
inline uintptr_t GetBaselinePCForBytecodeOffset(int bytecode_offset,
BytecodeToPCPosition position,
BytecodeArray bytecodes);
OBJECT_CONSTRUCTORS(Code, HeapObject);
};
// TODO(v8:11880): move these functions to CodeDataContainer once they are no
// longer used from Code.
V8_EXPORT_PRIVATE Address OffHeapInstructionStart(HeapObject code,
Builtin builtin);
V8_EXPORT_PRIVATE Address OffHeapInstructionEnd(HeapObject code,
Builtin builtin);
V8_EXPORT_PRIVATE int OffHeapInstructionSize(HeapObject code, Builtin builtin);
V8_EXPORT_PRIVATE Address OffHeapMetadataStart(HeapObject code,
Builtin builtin);
V8_EXPORT_PRIVATE Address OffHeapMetadataEnd(HeapObject code, Builtin builtin);
V8_EXPORT_PRIVATE int OffHeapMetadataSize(HeapObject code, Builtin builtin);
V8_EXPORT_PRIVATE Address OffHeapSafepointTableAddress(HeapObject code,
Builtin builtin);
V8_EXPORT_PRIVATE int OffHeapSafepointTableSize(HeapObject code,
Builtin builtin);
V8_EXPORT_PRIVATE Address OffHeapHandlerTableAddress(HeapObject code,
Builtin builtin);
V8_EXPORT_PRIVATE int OffHeapHandlerTableSize(HeapObject code, Builtin builtin);
V8_EXPORT_PRIVATE Address OffHeapConstantPoolAddress(HeapObject code,
Builtin builtin);
V8_EXPORT_PRIVATE int OffHeapConstantPoolSize(HeapObject code, Builtin builtin);
V8_EXPORT_PRIVATE Address OffHeapCodeCommentsAddress(HeapObject code,
Builtin builtin);
V8_EXPORT_PRIVATE int OffHeapCodeCommentsSize(HeapObject code, Builtin builtin);
V8_EXPORT_PRIVATE Address OffHeapUnwindingInfoAddress(HeapObject code,
Builtin builtin);
V8_EXPORT_PRIVATE int OffHeapUnwindingInfoSize(HeapObject code,
Builtin builtin);
V8_EXPORT_PRIVATE int OffHeapStackSlots(HeapObject code, Builtin builtin);
// Represents result of the code by inner address (or pc) lookup.
// When V8_EXTERNAL_CODE_SPACE is disabled there might be two variants:
// - the pc does not correspond to any known code and IsFound() will return
// false,
// - the pc corresponds to existing Code object or embedded builtin (in which
// case the code() will return the respective Code object or the trampoline
// Code object that corresponds to the builtin).
//
// When V8_EXTERNAL_CODE_SPACE is enabled there might be three variants:
// - the pc does not correspond to any known code (in which case IsFound()
// will return false),
// - the pc corresponds to existing Code object (in which case the code() will
// return the respective Code object),
// - the pc corresponds to an embedded builtin (in which case the
// code_data_container() will return CodeDataContainer object corresponding
// to the builtin).
class CodeLookupResult {
public:
// Not found.
CodeLookupResult() = default;
// Code object was found.
explicit CodeLookupResult(Code code) : code_(code) {}
#ifdef V8_EXTERNAL_CODE_SPACE
// Embedded builtin was found.
explicit CodeLookupResult(CodeDataContainer code_data_container)
: code_data_container_(code_data_container) {}
#endif
// Returns true if the lookup was successful.
bool IsFound() const { return IsCode() || IsCodeDataContainer(); }
// Returns true if the lookup found a Code object.
bool IsCode() const { return !code_.is_null(); }
// Returns true if V8_EXTERNAL_CODE_SPACE is enabled and the lookup found
// an embedded builtin.
bool IsCodeDataContainer() const {
#ifdef V8_EXTERNAL_CODE_SPACE
return !code_data_container_.is_null();
#else
return false;
#endif
}
// Returns the Code object containing the address in question.
Code code() const {
DCHECK(IsCode());
return code_;
}
// Returns the CodeDataContainer object corresponding to an embedded builtin
// containing the address in question.
// Can be used only when V8_EXTERNAL_CODE_SPACE is enabled.
CodeDataContainer code_data_container() const {
#ifdef V8_EXTERNAL_CODE_SPACE
DCHECK(IsCodeDataContainer());
return code_data_container_;
#else
UNREACHABLE();
#endif
}
// Returns the CodeT object corresponding to the result in question.
// The method doesn't try to convert Code result to CodeT, one should use
// ToCodeT() instead if the conversion logic is required.
CodeT codet() const {
#ifdef V8_EXTERNAL_CODE_SPACE
return code_data_container();
#else
return code();
#endif
}
// Helper methods, in case of successful lookup return the result of
// respective accessor of the Code/CodeDataContainer object found.
// It's safe use them from GC.
inline CodeKind kind() const;
inline Builtin builtin_id() const;
inline bool has_tagged_outgoing_params() const;
inline bool has_handler_table() const;
inline bool is_baseline_trampoline_builtin() const;
inline bool is_interpreter_trampoline_builtin() const;
inline bool is_baseline_leave_frame_builtin() const;
inline bool is_maglevved() const;
inline bool is_turbofanned() const;
inline bool is_optimized_code() const;
inline int stack_slots() const;
inline HandlerTable::CatchPrediction GetBuiltinCatchPrediction() const;
inline int GetOffsetFromInstructionStart(Isolate* isolate, Address pc) const;
inline SafepointEntry GetSafepointEntry(Isolate* isolate, Address pc) const;
inline MaglevSafepointEntry GetMaglevSafepointEntry(Isolate* isolate,
Address pc) const;
// Helper method, coverts the successful lookup result to AbstractCode object.
inline AbstractCode ToAbstractCode() const;
// Helper method, coverts the successful lookup result to Code object.
// It's not safe to be used from GC because conversion to Code might perform
// a map check.
inline Code ToCode() const;
// Helper method, coverts the successful lookup result to CodeT object.
// It's not safe to be used from GC because conversion to CodeT might perform
// a map check.
inline CodeT ToCodeT() const;
bool operator==(const CodeLookupResult& other) const {
return code_ == other.code_
#ifdef V8_EXTERNAL_CODE_SPACE
&& code_data_container_ == other.code_data_container_
#endif
; // NOLINT(whitespace/semicolon)
}
bool operator!=(const CodeLookupResult& other) const {
return !operator==(other);
}
private:
Code code_;
#ifdef V8_EXTERNAL_CODE_SPACE
CodeDataContainer code_data_container_;
#endif
};
class Code::OptimizedCodeIterator {
public:
explicit OptimizedCodeIterator(Isolate* isolate);
OptimizedCodeIterator(const OptimizedCodeIterator&) = delete;
OptimizedCodeIterator& operator=(const OptimizedCodeIterator&) = delete;
Code Next();
private:
NativeContext next_context_;
Code current_code_;
Isolate* isolate_;
DISALLOW_GARBAGE_COLLECTION(no_gc)
};
// Helper functions for converting Code objects to CodeDataContainer and back
// when V8_EXTERNAL_CODE_SPACE is enabled.
inline CodeT ToCodeT(Code code);
inline Handle<CodeT> ToCodeT(Handle<Code> code, Isolate* isolate);
inline Code FromCodeT(CodeT code);
inline Code FromCodeT(CodeT code, RelaxedLoadTag);
inline Code FromCodeT(CodeT code, AcquireLoadTag);
inline Code FromCodeT(CodeT code, PtrComprCageBase);
inline Code FromCodeT(CodeT code, PtrComprCageBase, RelaxedLoadTag);
inline Code FromCodeT(CodeT code, PtrComprCageBase, AcquireLoadTag);
inline Handle<Code> FromCodeT(Handle<CodeT> code, Isolate* isolate);
inline AbstractCode ToAbstractCode(CodeT code);
inline Handle<AbstractCode> ToAbstractCode(Handle<CodeT> code,
Isolate* isolate);
inline CodeDataContainer CodeDataContainerFromCodeT(CodeT code);
// AbsractCode is an helper wrapper around {Code | BytecodeArray} or
// {Code | CodeDataContainer | BytecodeArray} depending on whether the
// V8_REMOVE_BUILTINS_CODE_OBJECTS is disabled or not.
// Note that when V8_EXTERNAL_CODE_SPACE is enabled then the same abstract code
// can be represented either by Code object or by respective CodeDataContainer
// object.
class AbstractCode : public HeapObject {
public:
NEVER_READ_ONLY_SPACE
int SourcePosition(PtrComprCageBase cage_base, int offset);
int SourceStatementPosition(PtrComprCageBase cage_base, int offset);
// Returns the address of the first instruction. For off-heap code objects
// this differs from instruction_start (which would point to the off-heap
// trampoline instead).
inline Address InstructionStart(PtrComprCageBase cage_base);
// Returns the address right after the last instruction. For off-heap code
// objects this differs from instruction_end (which would point to the
// off-heap trampoline instead).
inline Address InstructionEnd(PtrComprCageBase cage_base);
// Returns the size of the native instructions, including embedded
// data such as the safepoints table. For off-heap code objects
// this may differ from instruction_size in that this will return the size of
// the off-heap instruction stream rather than the on-heap trampoline located
// at instruction_start.
inline int InstructionSize(PtrComprCageBase cage_base);
// Return the source position table for interpreter code.
inline ByteArray SourcePositionTable(PtrComprCageBase cage_base,
SharedFunctionInfo sfi);
void DropStackFrameCache(PtrComprCageBase cage_base);
// Returns the size of instructions and the metadata.
inline int SizeIncludingMetadata(PtrComprCageBase cage_base);
// Returns true if pc is inside this object's instructions.
inline bool contains(Isolate* isolate, Address pc);
// Returns the kind of the code.
inline CodeKind kind(PtrComprCageBase cage_base);
inline Builtin builtin_id(PtrComprCageBase cage_base);
inline bool is_off_heap_trampoline(PtrComprCageBase cage_base);
inline HandlerTable::CatchPrediction GetBuiltinCatchPrediction(
PtrComprCageBase cage_base);
DECL_CAST(AbstractCode)
// The following predicates don't have the parameterless versions on
// purpose - in order to avoid the expensive cage base computation that
// should work for both regular V8 heap objects and external code space
// objects.
inline bool IsCode(PtrComprCageBase cage_base) const;
inline bool IsCodeT(PtrComprCageBase cage_base) const;
inline bool IsBytecodeArray(PtrComprCageBase cage_base) const;
inline Code ToCode(PtrComprCageBase cage_base);
inline CodeT ToCodeT(PtrComprCageBase cage_base);
inline Code GetCode();
inline CodeT GetCodeT();
inline BytecodeArray GetBytecodeArray();
// AbstractCode might be represented by both Code and non-Code objects and
// thus regular comparison of tagged values might not be correct when
// V8_EXTERNAL_CODE_SPACE is enabled. SafeEquals() must be used instead.
constexpr bool operator==(AbstractCode other) const {
return SafeEquals(other);
}
constexpr bool operator!=(AbstractCode other) const {
return !SafeEquals(other);
}
private:
inline ByteArray SourcePositionTableInternal(PtrComprCageBase cage_base);
OBJECT_CONSTRUCTORS(AbstractCode, HeapObject);
};
// Dependent code is conceptually the list of {Code, DependencyGroup} tuples
// associated with an object, where the dependency group is a reason that could
// lead to a deopt of the corresponding code.
//
// Implementation details: DependentCode is a weak array list containing
// entries, where each entry consists of a (weak) Code object and the
// DependencyGroups bitset as a Smi.
//
// Note the underlying weak array list currently never shrinks physically (the
// contents may shrink).
// TODO(jgruber): Consider adding physical shrinking.
class DependentCode : public WeakArrayList {
public:
DECL_CAST(DependentCode)
enum DependencyGroup {
// Group of code objects that embed a transition to this map, and depend on
// being deoptimized when the transition is replaced by a new version.
kTransitionGroup = 1 << 0,
// Group of code objects that omit run-time prototype checks for prototypes
// described by this map. The group is deoptimized whenever the following
// conditions hold, possibly invalidating the assumptions embedded in the
// code:
// a) A fast-mode object described by this map changes shape (and
// transitions to a new map), or
// b) A dictionary-mode prototype described by this map changes shape, the
// const-ness of one of its properties changes, or its [[Prototype]]
// changes (only the latter causes a transition).
kPrototypeCheckGroup = 1 << 1,
// Group of code objects that depends on global property values in property
// cells not being changed.
kPropertyCellChangedGroup = 1 << 2,
// Group of code objects that omit run-time checks for field(s) introduced
// by this map, i.e. for the field type.
kFieldTypeGroup = 1 << 3,
kFieldConstGroup = 1 << 4,
kFieldRepresentationGroup = 1 << 5,
// Group of code objects that omit run-time type checks for initial maps of
// constructors.
kInitialMapChangedGroup = 1 << 6,
// Group of code objects that depends on tenuring information in
// AllocationSites not being changed.
kAllocationSiteTenuringChangedGroup = 1 << 7,
// Group of code objects that depends on element transition information in
// AllocationSites not being changed.
kAllocationSiteTransitionChangedGroup = 1 << 8,
// IMPORTANT: The last bit must fit into a Smi, i.e. into 31 bits.
};
using DependencyGroups = base::Flags<DependencyGroup, uint32_t>;
static const char* DependencyGroupName(DependencyGroup group);
// Register a dependency of {code} on {object}, of the kinds given by
// {groups}.
V8_EXPORT_PRIVATE static void InstallDependency(Isolate* isolate,
Handle<Code> code,
Handle<HeapObject> object,
DependencyGroups groups);
template <typename ObjectT>
static void DeoptimizeDependencyGroups(Isolate* isolate, ObjectT object,
DependencyGroups groups);
template <typename ObjectT>
static bool MarkCodeForDeoptimization(ObjectT object,
DependencyGroups groups);
V8_EXPORT_PRIVATE static DependentCode empty_dependent_code(
const ReadOnlyRoots& roots);
static constexpr RootIndex kEmptyDependentCode =
RootIndex::kEmptyWeakArrayList;
// Constants exposed for tests.
static constexpr int kSlotsPerEntry = 2; // {code: weak Code, groups: Smi}.
static constexpr int kCodeSlotOffset = 0;
static constexpr int kGroupsSlotOffset = 1;
private:
// Get/Set {object}'s {DependentCode}.
static DependentCode GetDependentCode(HeapObject object);
static void SetDependentCode(Handle<HeapObject> object,
Handle<DependentCode> dep);
static Handle<DependentCode> New(Isolate* isolate, DependencyGroups groups,
Handle<Code> code);
static Handle<DependentCode> InsertWeakCode(Isolate* isolate,
Handle<DependentCode> entries,
DependencyGroups groups,
Handle<Code> code);
bool MarkCodeForDeoptimization(DependencyGroups deopt_groups);
void DeoptimizeDependencyGroups(Isolate* isolate, DependencyGroups groups);
// The callback is called for all non-cleared entries, and should return true
// iff the current entry should be cleared.
using IterateAndCompactFn = std::function<bool(CodeT, DependencyGroups)>;
void IterateAndCompact(const IterateAndCompactFn& fn);
// Fills the given entry with the last non-cleared entry in this list, and
// returns the new length after the last non-cleared entry has been moved.
int FillEntryFromBack(int index, int length);
static constexpr int LengthFor(int number_of_entries) {
return number_of_entries * kSlotsPerEntry;
}
OBJECT_CONSTRUCTORS(DependentCode, WeakArrayList);
};
DEFINE_OPERATORS_FOR_FLAGS(DependentCode::DependencyGroups)
// BytecodeArray represents a sequence of interpreter bytecodes.
class BytecodeArray
: public TorqueGeneratedBytecodeArray<BytecodeArray, FixedArrayBase> {
public:
static constexpr int SizeFor(int length) {
return OBJECT_POINTER_ALIGN(kHeaderSize + length);
}
inline byte get(int index) const;
inline void set(int index, byte value);
inline Address GetFirstBytecodeAddress();
inline int32_t frame_size() const;
inline void set_frame_size(int32_t frame_size);
// Note: The register count is derived from frame_size.
inline int register_count() const;
// Note: the parameter count includes the implicit 'this' receiver.
inline int32_t parameter_count() const;
inline void set_parameter_count(int32_t number_of_parameters);
inline interpreter::Register incoming_new_target_or_generator_register()
const;
inline void set_incoming_new_target_or_generator_register(
interpreter::Register incoming_new_target_or_generator_register);
static constexpr int kBytecodeAgeSize = kUInt16Size;
static_assert(kBytecodeAgeOffset + kBytecodeAgeSize - 1 ==
kBytecodeAgeOffsetEnd);
inline uint16_t bytecode_age() const;
inline void set_bytecode_age(uint16_t age);
inline bool HasSourcePositionTable() const;
inline bool DidSourcePositionGenerationFail() const;
// If source positions have not been collected or an exception has been thrown
// this will return empty_byte_array.
DECL_GETTER(SourcePositionTable, ByteArray)
// Indicates that an attempt was made to collect source positions, but that it
// failed most likely due to stack exhaustion. When in this state
// |SourcePositionTable| will return an empty byte array rather than crashing
// as it would if no attempt was ever made to collect source positions.
inline void SetSourcePositionsFailedToCollect();
inline int BytecodeArraySize() const;
// Returns the size of bytecode and its metadata. This includes the size of
// bytecode, constant pool, source position table, and handler table.
DECL_GETTER(SizeIncludingMetadata, int)
DECL_PRINTER(BytecodeArray)
DECL_VERIFIER(BytecodeArray)
V8_EXPORT_PRIVATE void PrintJson(std::ostream& os);
V8_EXPORT_PRIVATE void Disassemble(std::ostream& os);
V8_EXPORT_PRIVATE static void Disassemble(Handle<BytecodeArray> handle,
std::ostream& os);
void CopyBytecodesTo(BytecodeArray to);
// Bytecode aging
V8_EXPORT_PRIVATE bool IsOld() const;
V8_EXPORT_PRIVATE void MakeOlder();
// Clear uninitialized padding space. This ensures that the snapshot content
// is deterministic.
inline void clear_padding();
// Maximal memory consumption for a single BytecodeArray.
static const int kMaxSize = 512 * MB;
// Maximal length of a single BytecodeArray.
static const int kMaxLength = kMaxSize - kHeaderSize;
class BodyDescriptor;
private:
// Hide accessors inherited from generated class. Use parameter_count instead.
DECL_INT_ACCESSORS(parameter_size)
TQ_OBJECT_CONSTRUCTORS(BytecodeArray)
};
// This class holds data required during deoptimization. It does not have its
// own instance type.
class DeoptimizationLiteralArray : public WeakFixedArray {
public:
// Getters for literals. These include runtime checks that the pointer was not
// cleared, if the literal was held weakly.
inline Object get(int index) const;
inline Object get(PtrComprCageBase cage_base, int index) const;
// Setter for literals. This will set the object as strong or weak depending
// on Code::IsWeakObjectInOptimizedCode.
inline void set(int index, Object value);
DECL_CAST(DeoptimizationLiteralArray)
OBJECT_CONSTRUCTORS(DeoptimizationLiteralArray, WeakFixedArray);
};
// DeoptimizationData is a fixed array used to hold the deoptimization data for
// optimized code. It also contains information about functions that were
// inlined. If N different functions were inlined then the first N elements of
// the literal array will contain these functions.
//
// It can be empty.
class DeoptimizationData : public FixedArray {
public:
// Layout description. Indices in the array.
static const int kTranslationByteArrayIndex = 0;
static const int kInlinedFunctionCountIndex = 1;
static const int kLiteralArrayIndex = 2;
static const int kOsrBytecodeOffsetIndex = 3;
static const int kOsrPcOffsetIndex = 4;
static const int kOptimizationIdIndex = 5;
static const int kSharedFunctionInfoIndex = 6;
static const int kInliningPositionsIndex = 7;
static const int kDeoptExitStartIndex = 8;
static const int kEagerDeoptCountIndex = 9;
static const int kLazyDeoptCountIndex = 10;
static const int kFirstDeoptEntryIndex = 11;
// Offsets of deopt entry elements relative to the start of the entry.
static const int kBytecodeOffsetRawOffset = 0;
static const int kTranslationIndexOffset = 1;
static const int kPcOffset = 2;
#ifdef DEBUG
static const int kNodeIdOffset = 3;
static const int kDeoptEntrySize = 4;
#else // DEBUG
static const int kDeoptEntrySize = 3;
#endif // DEBUG
// Simple element accessors.
#define DECL_ELEMENT_ACCESSORS(name, type) \
inline type name() const; \
inline void Set##name(type value);
DECL_ELEMENT_ACCESSORS(TranslationByteArray, TranslationArray)
DECL_ELEMENT_ACCESSORS(InlinedFunctionCount, Smi)
DECL_ELEMENT_ACCESSORS(LiteralArray, DeoptimizationLiteralArray)
DECL_ELEMENT_ACCESSORS(OsrBytecodeOffset, Smi)
DECL_ELEMENT_ACCESSORS(OsrPcOffset, Smi)
DECL_ELEMENT_ACCESSORS(OptimizationId, Smi)
DECL_ELEMENT_ACCESSORS(SharedFunctionInfo, Object)
DECL_ELEMENT_ACCESSORS(InliningPositions, PodArray<InliningPosition>)
DECL_ELEMENT_ACCESSORS(DeoptExitStart, Smi)
DECL_ELEMENT_ACCESSORS(EagerDeoptCount, Smi)
DECL_ELEMENT_ACCESSORS(LazyDeoptCount, Smi)
#undef DECL_ELEMENT_ACCESSORS
// Accessors for elements of the ith deoptimization entry.
#define DECL_ENTRY_ACCESSORS(name, type) \
inline type name(int i) const; \
inline void Set##name(int i, type value);
DECL_ENTRY_ACCESSORS(BytecodeOffsetRaw, Smi)
DECL_ENTRY_ACCESSORS(TranslationIndex, Smi)
DECL_ENTRY_ACCESSORS(Pc, Smi)
#ifdef DEBUG
DECL_ENTRY_ACCESSORS(NodeId, Smi)
#endif // DEBUG
#undef DECL_ENTRY_ACCESSORS
inline BytecodeOffset GetBytecodeOffset(int i) const;
inline void SetBytecodeOffset(int i, BytecodeOffset value);
inline int DeoptCount();
static const int kNotInlinedIndex = -1;
// Returns the inlined function at the given position in LiteralArray, or the
// outer function if index == kNotInlinedIndex.
class SharedFunctionInfo GetInlinedFunction(int index);
// Allocates a DeoptimizationData.
static Handle<DeoptimizationData> New(Isolate* isolate, int deopt_entry_count,
AllocationType allocation);
// Return an empty DeoptimizationData.
V8_EXPORT_PRIVATE static Handle<DeoptimizationData> Empty(Isolate* isolate);
DECL_CAST(DeoptimizationData)
#ifdef ENABLE_DISASSEMBLER
void DeoptimizationDataPrint(std::ostream& os);
#endif
private:
static int IndexForEntry(int i) {
return kFirstDeoptEntryIndex + (i * kDeoptEntrySize);
}
static int LengthFor(int entry_count) { return IndexForEntry(entry_count); }
OBJECT_CONSTRUCTORS(DeoptimizationData, FixedArray);
};
} // namespace internal
} // namespace v8
#include "src/objects/object-macros-undef.h"
#endif // V8_OBJECTS_CODE_H_
|