summaryrefslogtreecommitdiff
path: root/chromium/v8/src/builtins/ppc/builtins-ppc.cc
blob: 02b76175ec128f92ec4361d336656868309abd46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#if V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_PPC64

#include "src/api/api-arguments.h"
#include "src/codegen/code-factory.h"
#include "src/codegen/interface-descriptors-inl.h"
// For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop.
#include "src/codegen/macro-assembler-inl.h"
#include "src/codegen/register-configuration.h"
#include "src/debug/debug.h"
#include "src/deoptimizer/deoptimizer.h"
#include "src/execution/frame-constants.h"
#include "src/execution/frames.h"
#include "src/heap/heap-inl.h"
#include "src/logging/counters.h"
#include "src/objects/cell.h"
#include "src/objects/foreign.h"
#include "src/objects/heap-number.h"
#include "src/objects/js-generator.h"
#include "src/objects/smi.h"
#include "src/runtime/runtime.h"

#if V8_ENABLE_WEBASSEMBLY
#include "src/wasm/wasm-linkage.h"
#include "src/wasm/wasm-objects.h"
#endif  // V8_ENABLE_WEBASSEMBLY

namespace v8 {
namespace internal {

#define __ ACCESS_MASM(masm)

void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) {
  __ Move(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address));
  __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
          RelocInfo::CODE_TARGET);
}

static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
                                           Runtime::FunctionId function_id) {
  // ----------- S t a t e -------------
  //  -- r3 : actual argument count
  //  -- r4 : target function (preserved for callee)
  //  -- r6 : new target (preserved for callee)
  // -----------------------------------
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
    // Push a copy of the target function, the new target and the actual
    // argument count.
    // Push function as parameter to the runtime call.
    __ SmiTag(kJavaScriptCallArgCountRegister);
    __ Push(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister,
            kJavaScriptCallArgCountRegister, kJavaScriptCallTargetRegister);

    __ CallRuntime(function_id, 1);
    __ mr(r5, r3);

    // Restore target function, new target and actual argument count.
    __ Pop(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister,
           kJavaScriptCallArgCountRegister);
    __ SmiUntag(kJavaScriptCallArgCountRegister);
  }
  static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch");
  __ JumpCodeObject(r5);
}

namespace {

void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3     : number of arguments
  //  -- r4     : constructor function
  //  -- r6     : new target
  //  -- cp     : context
  //  -- lr     : return address
  //  -- sp[...]: constructor arguments
  // -----------------------------------

  Register scratch = r5;

  Label stack_overflow;

  __ StackOverflowCheck(r3, scratch, &stack_overflow);
  // Enter a construct frame.
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);

    // Preserve the incoming parameters on the stack.

    __ SmiTag(r3);
    __ Push(cp, r3);
    __ SmiUntag(r3, SetRC);

    // TODO(victorgomes): When the arguments adaptor is completely removed, we
    // should get the formal parameter count and copy the arguments in its
    // correct position (including any undefined), instead of delaying this to
    // InvokeFunction.

    // Set up pointer to last argument (skip receiver).
    __ addi(
        r7, fp,
        Operand(StandardFrameConstants::kCallerSPOffset + kSystemPointerSize));
    // Copy arguments and receiver to the expression stack.
    __ PushArray(r7, r3, r8, r0);
    // The receiver for the builtin/api call.
    __ PushRoot(RootIndex::kTheHoleValue);

    // Call the function.
    // r3: number of arguments (untagged)
    // r4: constructor function
    // r6: new target
    {
      ConstantPoolUnavailableScope constant_pool_unavailable(masm);
      __ InvokeFunctionWithNewTarget(r4, r6, r3, InvokeType::kCall);
    }

    // Restore context from the frame.
    __ LoadU64(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
    // Restore smi-tagged arguments count from the frame.
    __ LoadU64(scratch, MemOperand(fp, ConstructFrameConstants::kLengthOffset));

    // Leave construct frame.
  }
  // Remove caller arguments from the stack and return.
  __ DropArguments(scratch, TurboAssembler::kCountIsSmi,
                   TurboAssembler::kCountExcludesReceiver);
  __ blr();

  __ bind(&stack_overflow);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kThrowStackOverflow);
    __ bkpt(0);  // Unreachable code.
  }
}

}  // namespace

// The construct stub for ES5 constructor functions and ES6 class constructors.
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  --      r3: number of arguments (untagged)
  //  --      r4: constructor function
  //  --      r6: new target
  //  --      cp: context
  //  --      lr: return address
  //  -- sp[...]: constructor arguments
  // -----------------------------------

  FrameScope scope(masm, StackFrame::MANUAL);
  // Enter a construct frame.
  Label post_instantiation_deopt_entry, not_create_implicit_receiver;
  __ EnterFrame(StackFrame::CONSTRUCT);

  // Preserve the incoming parameters on the stack.
  __ SmiTag(r3);
  __ Push(cp, r3, r4);
  __ PushRoot(RootIndex::kUndefinedValue);
  __ Push(r6);

  // ----------- S t a t e -------------
  //  --        sp[0*kSystemPointerSize]: new target
  //  --        sp[1*kSystemPointerSize]: padding
  //  -- r4 and sp[2*kSystemPointerSize]: constructor function
  //  --        sp[3*kSystemPointerSize]: number of arguments (tagged)
  //  --        sp[4*kSystemPointerSize]: context
  // -----------------------------------

  __ LoadTaggedPointerField(
      r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset), r0);
  __ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kFlagsOffset));
  __ DecodeField<SharedFunctionInfo::FunctionKindBits>(r7);
  __ JumpIfIsInRange(r7, kDefaultDerivedConstructor, kDerivedConstructor,
                     &not_create_implicit_receiver);

  // If not derived class constructor: Allocate the new receiver object.
  __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, r7,
                      r8);
  __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET);
  __ b(&post_instantiation_deopt_entry);

  // Else: use TheHoleValue as receiver for constructor call
  __ bind(&not_create_implicit_receiver);
  __ LoadRoot(r3, RootIndex::kTheHoleValue);

  // ----------- S t a t e -------------
  //  --                          r3: receiver
  //  -- Slot 4 / sp[0*kSystemPointerSize]: new target
  //  -- Slot 3 / sp[1*kSystemPointerSize]: padding
  //  -- Slot 2 / sp[2*kSystemPointerSize]: constructor function
  //  -- Slot 1 / sp[3*kSystemPointerSize]: number of arguments (tagged)
  //  -- Slot 0 / sp[4*kSystemPointerSize]: context
  // -----------------------------------
  // Deoptimizer enters here.
  masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
      masm->pc_offset());
  __ bind(&post_instantiation_deopt_entry);

  // Restore new target.
  __ Pop(r6);

  // Push the allocated receiver to the stack.
  __ Push(r3);
  // We need two copies because we may have to return the original one
  // and the calling conventions dictate that the called function pops the
  // receiver. The second copy is pushed after the arguments, we saved in r6
  // since r0 needs to store the number of arguments before
  // InvokingFunction.
  __ mr(r9, r3);

  // Set up pointer to first argument (skip receiver).
  __ addi(
      r7, fp,
      Operand(StandardFrameConstants::kCallerSPOffset + kSystemPointerSize));

  // ----------- S t a t e -------------
  //  --                 r6: new target
  //  -- sp[0*kSystemPointerSize]: implicit receiver
  //  -- sp[1*kSystemPointerSize]: implicit receiver
  //  -- sp[2*kSystemPointerSize]: padding
  //  -- sp[3*kSystemPointerSize]: constructor function
  //  -- sp[4*kSystemPointerSize]: number of arguments (tagged)
  //  -- sp[5*kSystemPointerSize]: context
  // -----------------------------------

  // Restore constructor function and argument count.
  __ LoadU64(r4, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
  __ LoadU64(r3, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
  __ SmiUntag(r3);

  Label stack_overflow;
  __ StackOverflowCheck(r3, r8, &stack_overflow);

  // Copy arguments and receiver to the expression stack.
  __ PushArray(r7, r3, r8, r0);

  // Push implicit receiver.
  __ Push(r9);

  // Call the function.
  {
    ConstantPoolUnavailableScope constant_pool_unavailable(masm);
    __ InvokeFunctionWithNewTarget(r4, r6, r3, InvokeType::kCall);
  }

  // ----------- S t a t e -------------
  //  --                 r0: constructor result
  //  -- sp[0*kSystemPointerSize]: implicit receiver
  //  -- sp[1*kSystemPointerSize]: padding
  //  -- sp[2*kSystemPointerSize]: constructor function
  //  -- sp[3*kSystemPointerSize]: number of arguments
  //  -- sp[4*kSystemPointerSize]: context
  // -----------------------------------

  // Store offset of return address for deoptimizer.
  masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
      masm->pc_offset());

  // If the result is an object (in the ECMA sense), we should get rid
  // of the receiver and use the result; see ECMA-262 section 13.2.2-7
  // on page 74.
  Label use_receiver, do_throw, leave_and_return, check_receiver;

  // If the result is undefined, we jump out to using the implicit receiver.
  __ JumpIfNotRoot(r3, RootIndex::kUndefinedValue, &check_receiver);

  // Otherwise we do a smi check and fall through to check if the return value
  // is a valid receiver.

  // Throw away the result of the constructor invocation and use the
  // on-stack receiver as the result.
  __ bind(&use_receiver);
  __ LoadU64(r3, MemOperand(sp));
  __ JumpIfRoot(r3, RootIndex::kTheHoleValue, &do_throw);

  __ bind(&leave_and_return);
  // Restore smi-tagged arguments count from the frame.
  __ LoadU64(r4, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
  // Leave construct frame.
  __ LeaveFrame(StackFrame::CONSTRUCT);

  // Remove caller arguments from the stack and return.
  __ DropArguments(r4, TurboAssembler::kCountIsSmi,
                   TurboAssembler::kCountExcludesReceiver);
  __ blr();

  __ bind(&check_receiver);
  // If the result is a smi, it is *not* an object in the ECMA sense.
  __ JumpIfSmi(r3, &use_receiver);

  // If the type of the result (stored in its map) is less than
  // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
  STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
  __ CompareObjectType(r3, r7, r7, FIRST_JS_RECEIVER_TYPE);
  __ bge(&leave_and_return);
  __ b(&use_receiver);

  __ bind(&do_throw);
  // Restore the context from the frame.
  __ LoadU64(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
  __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
  __ bkpt(0);

  __ bind(&stack_overflow);
  // Restore the context from the frame.
  __ LoadU64(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
  __ CallRuntime(Runtime::kThrowStackOverflow);
  // Unreachable code.
  __ bkpt(0);
}

void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
  Generate_JSBuiltinsConstructStubHelper(masm);
}

static void GetSharedFunctionInfoBytecode(MacroAssembler* masm,
                                          Register sfi_data,
                                          Register scratch1) {
  Label done;

  __ CompareObjectType(sfi_data, scratch1, scratch1, INTERPRETER_DATA_TYPE);
  __ bne(&done);
  __ LoadTaggedPointerField(
      sfi_data,
      FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset), r0);
  __ bind(&done);
}

// static
void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : the value to pass to the generator
  //  -- r4 : the JSGeneratorObject to resume
  //  -- lr : return address
  // -----------------------------------
  // Store input value into generator object.
  __ StoreTaggedField(
      r3, FieldMemOperand(r4, JSGeneratorObject::kInputOrDebugPosOffset), r0);
  __ RecordWriteField(r4, JSGeneratorObject::kInputOrDebugPosOffset, r3, r6,
                      kLRHasNotBeenSaved, SaveFPRegsMode::kIgnore);
  // Check that r4 is still valid, RecordWrite might have clobbered it.
  __ AssertGeneratorObject(r4);

  // Load suspended function and context.
  __ LoadTaggedPointerField(
      r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset), r0);
  __ LoadTaggedPointerField(cp, FieldMemOperand(r7, JSFunction::kContextOffset),
                            r0);

  // Flood function if we are stepping.
  Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
  Label stepping_prepared;
  Register scratch = r8;
  ExternalReference debug_hook =
      ExternalReference::debug_hook_on_function_call_address(masm->isolate());
  __ Move(scratch, debug_hook);
  __ LoadU8(scratch, MemOperand(scratch), r0);
  __ extsb(scratch, scratch);
  __ CmpSmiLiteral(scratch, Smi::zero(), r0);
  __ bne(&prepare_step_in_if_stepping);

  // Flood function if we need to continue stepping in the suspended generator.

  ExternalReference debug_suspended_generator =
      ExternalReference::debug_suspended_generator_address(masm->isolate());

  __ Move(scratch, debug_suspended_generator);
  __ LoadU64(scratch, MemOperand(scratch));
  __ CmpS64(scratch, r4);
  __ beq(&prepare_step_in_suspended_generator);
  __ bind(&stepping_prepared);

  // Check the stack for overflow. We are not trying to catch interruptions
  // (i.e. debug break and preemption) here, so check the "real stack limit".
  Label stack_overflow;
  __ LoadStackLimit(scratch, StackLimitKind::kRealStackLimit);
  __ CmpU64(sp, scratch);
  __ blt(&stack_overflow);

  // ----------- S t a t e -------------
  //  -- r4    : the JSGeneratorObject to resume
  //  -- r7    : generator function
  //  -- cp    : generator context
  //  -- lr    : return address
  // -----------------------------------

  // Copy the function arguments from the generator object's register file.
  __ LoadTaggedPointerField(
      r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset), r0);
  __ LoadU16(
      r6, FieldMemOperand(r6, SharedFunctionInfo::kFormalParameterCountOffset));
  __ LoadTaggedPointerField(
      r5, FieldMemOperand(r4, JSGeneratorObject::kParametersAndRegistersOffset),
      r0);
  {
    Label done_loop, loop;
    __ bind(&loop);
    __ subi(r6, r6, Operand(1));
    __ cmpi(r6, Operand::Zero());
    __ blt(&done_loop);
    __ ShiftLeftU64(r10, r6, Operand(kTaggedSizeLog2));
    __ add(scratch, r5, r10);
    __ LoadAnyTaggedField(
        scratch, FieldMemOperand(scratch, FixedArray::kHeaderSize), r0);
    __ Push(scratch);
    __ b(&loop);
    __ bind(&done_loop);

    // Push receiver.
    __ LoadAnyTaggedField(
        scratch, FieldMemOperand(r4, JSGeneratorObject::kReceiverOffset), r0);
    __ Push(scratch);
  }

  // Underlying function needs to have bytecode available.
  if (FLAG_debug_code) {
    __ LoadTaggedPointerField(
        r6, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset), r0);
    __ LoadTaggedPointerField(
        r6, FieldMemOperand(r6, SharedFunctionInfo::kFunctionDataOffset), r0);
    GetSharedFunctionInfoBytecode(masm, r6, r3);
    __ CompareObjectType(r6, r6, r6, BYTECODE_ARRAY_TYPE);
    __ Assert(eq, AbortReason::kMissingBytecodeArray);
  }

  // Resume (Ignition/TurboFan) generator object.
  {
    __ LoadTaggedPointerField(
        r3, FieldMemOperand(r7, JSFunction::kSharedFunctionInfoOffset), r0);
    __ LoadU16(r3, FieldMemOperand(
                       r3, SharedFunctionInfo::kFormalParameterCountOffset));
    // We abuse new.target both to indicate that this is a resume call and to
    // pass in the generator object.  In ordinary calls, new.target is always
    // undefined because generator functions are non-constructable.
    __ mr(r6, r4);
    __ mr(r4, r7);
    static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch");
    __ LoadTaggedPointerField(r5, FieldMemOperand(r4, JSFunction::kCodeOffset),
                              r0);
    __ JumpCodeObject(r5);
  }

  __ bind(&prepare_step_in_if_stepping);
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
    __ Push(r4, r7);
    // Push hole as receiver since we do not use it for stepping.
    __ PushRoot(RootIndex::kTheHoleValue);
    __ CallRuntime(Runtime::kDebugOnFunctionCall);
    __ Pop(r4);
    __ LoadTaggedPointerField(
        r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset), r0);
  }
  __ b(&stepping_prepared);

  __ bind(&prepare_step_in_suspended_generator);
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
    __ Push(r4);
    __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
    __ Pop(r4);
    __ LoadTaggedPointerField(
        r7, FieldMemOperand(r4, JSGeneratorObject::kFunctionOffset), r0);
  }
  __ b(&stepping_prepared);

  __ bind(&stack_overflow);
  {
    FrameScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kThrowStackOverflow);
    __ bkpt(0);  // This should be unreachable.
  }
}

void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
  FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
  __ push(r4);
  __ CallRuntime(Runtime::kThrowConstructedNonConstructable);
}

namespace {

// Called with the native C calling convention. The corresponding function
// signature is either:
//
//   using JSEntryFunction = GeneratedCode<Address(
//       Address root_register_value, Address new_target, Address target,
//       Address receiver, intptr_t argc, Address** args)>;
// or
//   using JSEntryFunction = GeneratedCode<Address(
//       Address root_register_value, MicrotaskQueue* microtask_queue)>;
void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
                             Builtin entry_trampoline) {
  // The register state is either:
  //   r3: root_register_value
  //   r4: code entry
  //   r5: function
  //   r6: receiver
  //   r7: argc
  //   r8: argv
  // or
  //   r3: root_register_value
  //   r4: microtask_queue

  Label invoke, handler_entry, exit;

  {
    NoRootArrayScope no_root_array(masm);

    // PPC LINUX ABI:
    // preserve LR in pre-reserved slot in caller's frame
    __ mflr(r0);
    __ StoreU64(r0, MemOperand(sp, kStackFrameLRSlot * kSystemPointerSize));

    // Save callee saved registers on the stack.
    __ MultiPush(kCalleeSaved);

    // Save callee-saved double registers.
    __ MultiPushDoubles(kCalleeSavedDoubles);
    // Set up the reserved register for 0.0.
    __ LoadDoubleLiteral(kDoubleRegZero, base::Double(0.0), r0);

    // Initialize the root register.
    // C calling convention. The first argument is passed in r3.
    __ mr(kRootRegister, r3);
  }

  // Push a frame with special values setup to mark it as an entry frame.
  // r4: code entry
  // r5: function
  // r6: receiver
  // r7: argc
  // r8: argv
  __ li(r0, Operand(-1));  // Push a bad frame pointer to fail if it is used.
  __ push(r0);
  if (FLAG_enable_embedded_constant_pool) {
    __ li(kConstantPoolRegister, Operand::Zero());
    __ push(kConstantPoolRegister);
  }
  __ mov(r0, Operand(StackFrame::TypeToMarker(type)));
  __ push(r0);
  __ push(r0);
  // Save copies of the top frame descriptor on the stack.
  __ Move(r3, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
                                        masm->isolate()));
  __ LoadU64(r0, MemOperand(r3));
  __ push(r0);

  // Clear c_entry_fp, now we've pushed its previous value to the stack.
  // If the c_entry_fp is not already zero and we don't clear it, the
  // SafeStackFrameIterator will assume we are executing C++ and miss the JS
  // frames on top.
  __ li(r0, Operand::Zero());
  __ StoreU64(r0, MemOperand(r3));

  Register scratch = r9;
  // Set up frame pointer for the frame to be pushed.
  __ addi(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));

  // If this is the outermost JS call, set js_entry_sp value.
  Label non_outermost_js;
  ExternalReference js_entry_sp =
      ExternalReference::Create(IsolateAddressId::kJSEntrySPAddress,
                                masm->isolate());
  __ Move(r3, js_entry_sp);
  __ LoadU64(scratch, MemOperand(r3));
  __ cmpi(scratch, Operand::Zero());
  __ bne(&non_outermost_js);
  __ StoreU64(fp, MemOperand(r3));
  __ mov(scratch, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
  Label cont;
  __ b(&cont);
  __ bind(&non_outermost_js);
  __ mov(scratch, Operand(StackFrame::INNER_JSENTRY_FRAME));
  __ bind(&cont);
  __ push(scratch);  // frame-type

  // Jump to a faked try block that does the invoke, with a faked catch
  // block that sets the pending exception.
  __ b(&invoke);

  // Block literal pool emission whilst taking the position of the handler
  // entry. This avoids making the assumption that literal pools are always
  // emitted after an instruction is emitted, rather than before.
  {
    ConstantPoolUnavailableScope constant_pool_unavailable(masm);
    __ bind(&handler_entry);

    // Store the current pc as the handler offset. It's used later to create the
    // handler table.
    masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos());

    // Caught exception: Store result (exception) in the pending exception
    // field in the JSEnv and return a failure sentinel.  Coming in here the
    // fp will be invalid because the PushStackHandler below sets it to 0 to
    // signal the existence of the JSEntry frame.
    __ Move(scratch,
            ExternalReference::Create(
                IsolateAddressId::kPendingExceptionAddress, masm->isolate()));
  }

  __ StoreU64(r3, MemOperand(scratch));
  __ LoadRoot(r3, RootIndex::kException);
  __ b(&exit);

  // Invoke: Link this frame into the handler chain.
  __ bind(&invoke);
  // Must preserve r4-r8.
  __ PushStackHandler();
  // If an exception not caught by another handler occurs, this handler
  // returns control to the code after the b(&invoke) above, which
  // restores all kCalleeSaved registers (including cp and fp) to their
  // saved values before returning a failure to C.

  // Invoke the function by calling through JS entry trampoline builtin.
  // Notice that we cannot store a reference to the trampoline code directly in
  // this stub, because runtime stubs are not traversed when doing GC.

  // Invoke the function by calling through JS entry trampoline builtin and
  // pop the faked function when we return.
  Handle<Code> trampoline_code =
      masm->isolate()->builtins()->code_handle(entry_trampoline);
  __ Call(trampoline_code, RelocInfo::CODE_TARGET);

  // Unlink this frame from the handler chain.
  __ PopStackHandler();

  __ bind(&exit);  // r3 holds result
  // Check if the current stack frame is marked as the outermost JS frame.
  Label non_outermost_js_2;
  __ pop(r8);
  __ cmpi(r8, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
  __ bne(&non_outermost_js_2);
  __ mov(scratch, Operand::Zero());
  __ Move(r8, js_entry_sp);
  __ StoreU64(scratch, MemOperand(r8));
  __ bind(&non_outermost_js_2);

  // Restore the top frame descriptors from the stack.
  __ pop(r6);
  __ Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
                                             masm->isolate()));
  __ StoreU64(r6, MemOperand(scratch));

  // Reset the stack to the callee saved registers.
  __ addi(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));

  // Restore callee-saved double registers.
  __ MultiPopDoubles(kCalleeSavedDoubles);

  // Restore callee-saved registers.
  __ MultiPop(kCalleeSaved);

  // Return
  __ LoadU64(r0, MemOperand(sp, kStackFrameLRSlot * kSystemPointerSize));
  __ mtlr(r0);
  __ blr();
}

}  // namespace

void Builtins::Generate_JSEntry(MacroAssembler* masm) {
  Generate_JSEntryVariant(masm, StackFrame::ENTRY, Builtin::kJSEntryTrampoline);
}

void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) {
  Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY,
                          Builtin::kJSConstructEntryTrampoline);
}

void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) {
  Generate_JSEntryVariant(masm, StackFrame::ENTRY,
                          Builtin::kRunMicrotasksTrampoline);
}

static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
                                             bool is_construct) {
  // Called from Generate_JS_Entry
  // r4: new.target
  // r5: function
  // r6: receiver
  // r7: argc
  // r8: argv
  // r0,r3,r9, cp may be clobbered

  // Enter an internal frame.
  {
    FrameScope scope(masm, StackFrame::INTERNAL);

    // Setup the context (we need to use the caller context from the isolate).
    ExternalReference context_address = ExternalReference::Create(
        IsolateAddressId::kContextAddress, masm->isolate());
    __ Move(cp, context_address);
    __ LoadU64(cp, MemOperand(cp));

    // Push the function.
    __ Push(r5);

    // Check if we have enough stack space to push all arguments.
    Label enough_stack_space, stack_overflow;
    __ addi(r3, r7, Operand(1));
    __ StackOverflowCheck(r3, r9, &stack_overflow);
    __ b(&enough_stack_space);
    __ bind(&stack_overflow);
    __ CallRuntime(Runtime::kThrowStackOverflow);
    // Unreachable code.
    __ bkpt(0);

    __ bind(&enough_stack_space);

    // Copy arguments to the stack in a loop.
    // r4: function
    // r7: argc
    // r8: argv, i.e. points to first arg
    Label loop, done;
    __ cmpi(r7, Operand::Zero());
    __ beq(&done);

    __ ShiftLeftU64(r9, r7, Operand(kSystemPointerSizeLog2));
    __ add(r8, r8, r9);  // point to last arg

    __ mtctr(r7);
    __ bind(&loop);
    __ LoadU64WithUpdate(
        r9, MemOperand(r8, -kSystemPointerSize));        // read next parameter
    __ LoadU64(r0, MemOperand(r9));                      // dereference handle
    __ push(r0);                                         // push parameter
    __ bdnz(&loop);
    __ bind(&done);

    // Push the receiver.
    __ Push(r6);

    // r3: argc
    // r4: function
    // r6: new.target
    __ mr(r3, r7);
    __ mr(r6, r4);
    __ mr(r4, r5);

    // Initialize all JavaScript callee-saved registers, since they will be seen
    // by the garbage collector as part of handlers.
    __ LoadRoot(r7, RootIndex::kUndefinedValue);
    __ mr(r8, r7);
    __ mr(r14, r7);
    __ mr(r15, r7);
    __ mr(r16, r7);
    __ mr(r17, r7);

    // Invoke the code.
    Handle<Code> builtin = is_construct
                               ? BUILTIN_CODE(masm->isolate(), Construct)
                               : masm->isolate()->builtins()->Call();
    __ Call(builtin, RelocInfo::CODE_TARGET);

    // Exit the JS frame and remove the parameters (except function), and
    // return.
  }
  __ blr();

  // r3: result
}

void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, false);
}

void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
  Generate_JSEntryTrampolineHelper(masm, true);
}

void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) {
  // This expects two C++ function parameters passed by Invoke() in
  // execution.cc.
  //   r3: root_register_value
  //   r4: microtask_queue

  __ mr(RunMicrotasksDescriptor::MicrotaskQueueRegister(), r4);
  __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET);
}

static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm,
                                                Register optimized_code,
                                                Register closure,
                                                Register scratch1,
                                                Register slot_address) {
  DCHECK(!AreAliased(optimized_code, closure, scratch1, slot_address));
  DCHECK_EQ(closure, kJSFunctionRegister);
  DCHECK(!AreAliased(optimized_code, closure));
  // Store code entry in the closure.
  __ StoreTaggedField(optimized_code,
                      FieldMemOperand(closure, JSFunction::kCodeOffset), r0);
  // Write barrier clobbers scratch1 below.
  Register value = scratch1;
  __ mr(value, optimized_code);

  __ RecordWriteField(closure, JSFunction::kCodeOffset, value, slot_address,
                      kLRHasNotBeenSaved, SaveFPRegsMode::kIgnore,
                      RememberedSetAction::kOmit, SmiCheck::kOmit);
}

static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
                                  Register scratch2) {
  Register params_size = scratch1;
  // Get the size of the formal parameters + receiver (in bytes).
  __ LoadU64(params_size,
             MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ lwz(params_size,
         FieldMemOperand(params_size, BytecodeArray::kParameterSizeOffset));

  Register actual_params_size = scratch2;
  // Compute the size of the actual parameters + receiver (in bytes).
  __ LoadU64(actual_params_size,
             MemOperand(fp, StandardFrameConstants::kArgCOffset));
  __ ShiftLeftU64(actual_params_size, actual_params_size,
                  Operand(kSystemPointerSizeLog2));
  __ addi(actual_params_size, actual_params_size, Operand(kSystemPointerSize));

  // If actual is bigger than formal, then we should use it to free up the stack
  // arguments.
  Label corrected_args_count;
  __ CmpS64(params_size, actual_params_size);
  __ bge(&corrected_args_count);
  __ mr(params_size, actual_params_size);
  __ bind(&corrected_args_count);
  // Leave the frame (also dropping the register file).
  __ LeaveFrame(StackFrame::INTERPRETED);

  __ DropArguments(params_size, TurboAssembler::kCountIsBytes,
                   TurboAssembler::kCountIncludesReceiver);
}

// Tail-call |function_id| if |actual_marker| == |expected_marker|
static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
                                          Register actual_marker,
                                          OptimizationMarker expected_marker,
                                          Runtime::FunctionId function_id) {
  Label no_match;
  __ cmpi(actual_marker, Operand(expected_marker));
  __ bne(&no_match);
  GenerateTailCallToReturnedCode(masm, function_id);
  __ bind(&no_match);
}

static void TailCallOptimizedCodeSlot(MacroAssembler* masm,
                                      Register optimized_code_entry,
                                      Register scratch) {
  // ----------- S t a t e -------------
  //  -- r3 : actual argument count
  //  -- r6 : new target (preserved for callee if needed, and caller)
  //  -- r4 : target function (preserved for callee if needed, and caller)
  // -----------------------------------
  DCHECK(!AreAliased(r4, r6, optimized_code_entry, scratch));

  Register closure = r4;
  Label heal_optimized_code_slot;

  // If the optimized code is cleared, go to runtime to update the optimization
  // marker field.
  __ LoadWeakValue(optimized_code_entry, optimized_code_entry,
                   &heal_optimized_code_slot);

  // Check if the optimized code is marked for deopt. If it is, call the
  // runtime to clear it.
  __ LoadTaggedPointerField(
      scratch,
      FieldMemOperand(optimized_code_entry, Code::kCodeDataContainerOffset),
      r0);
  __ LoadS32(
      scratch,
      FieldMemOperand(scratch, CodeDataContainer::kKindSpecificFlagsOffset),
      r0);
  __ TestBit(scratch, Code::kMarkedForDeoptimizationBit, r0);
  __ bne(&heal_optimized_code_slot, cr0);

  // Optimized code is good, get it into the closure and link the closure
  // into the optimized functions list, then tail call the optimized code.
  ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure,
                                      scratch, r8);
  static_assert(kJavaScriptCallCodeStartRegister == r5, "ABI mismatch");
  __ LoadCodeObjectEntry(r5, optimized_code_entry);
  __ Jump(r5);

  // Optimized code slot contains deoptimized code or code is cleared and
  // optimized code marker isn't updated. Evict the code, update the marker
  // and re-enter the closure's code.
  __ bind(&heal_optimized_code_slot);
  GenerateTailCallToReturnedCode(masm, Runtime::kHealOptimizedCodeSlot);
}

static void MaybeOptimizeCode(MacroAssembler* masm, Register feedback_vector,
                              Register optimization_marker) {
  // ----------- S t a t e -------------
  //  -- r3 : actual argument count
  //  -- r6 : new target (preserved for callee if needed, and caller)
  //  -- r4 : target function (preserved for callee if needed, and caller)
  //  -- feedback vector (preserved for caller if needed)
  //  -- optimization_marker : a int32 containing a non-zero optimization
  //  marker.
  // -----------------------------------
  DCHECK(!AreAliased(feedback_vector, r4, r6, optimization_marker));

  // TODO(v8:8394): The logging of first execution will break if
  // feedback vectors are not allocated. We need to find a different way of
  // logging these events if required.
  TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
                                OptimizationMarker::kLogFirstExecution,
                                Runtime::kFunctionFirstExecution);
  TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
                                OptimizationMarker::kCompileOptimized,
                                Runtime::kCompileOptimized_NotConcurrent);
  TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
                                OptimizationMarker::kCompileOptimizedConcurrent,
                                Runtime::kCompileOptimized_Concurrent);

  // Marker should be one of LogFirstExecution / CompileOptimized /
  // CompileOptimizedConcurrent. InOptimizationQueue and None shouldn't reach
  // here.
  if (FLAG_debug_code) {
    __ stop();
  }
}

// Advance the current bytecode offset. This simulates what all bytecode
// handlers do upon completion of the underlying operation. Will bail out to a
// label if the bytecode (without prefix) is a return bytecode. Will not advance
// the bytecode offset if the current bytecode is a JumpLoop, instead just
// re-executing the JumpLoop to jump to the correct bytecode.
static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
                                          Register bytecode_array,
                                          Register bytecode_offset,
                                          Register bytecode, Register scratch1,
                                          Register scratch2, Label* if_return) {
  Register bytecode_size_table = scratch1;
  Register scratch3 = bytecode;

  // The bytecode offset value will be increased by one in wide and extra wide
  // cases. In the case of having a wide or extra wide JumpLoop bytecode, we
  // will restore the original bytecode. In order to simplify the code, we have
  // a backup of it.
  Register original_bytecode_offset = scratch2;
  DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
                     bytecode, original_bytecode_offset));
  __ Move(bytecode_size_table,
          ExternalReference::bytecode_size_table_address());
  __ Move(original_bytecode_offset, bytecode_offset);

  // Check if the bytecode is a Wide or ExtraWide prefix bytecode.
  Label process_bytecode, extra_wide;
  STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
  STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
  STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
  STATIC_ASSERT(3 ==
                static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
  __ cmpi(bytecode, Operand(0x3));
  __ bgt(&process_bytecode);
  __ andi(r0, bytecode, Operand(0x1));
  __ bne(&extra_wide, cr0);

  // Load the next bytecode and update table to the wide scaled table.
  __ addi(bytecode_offset, bytecode_offset, Operand(1));
  __ lbzx(bytecode, MemOperand(bytecode_array, bytecode_offset));
  __ addi(bytecode_size_table, bytecode_size_table,
          Operand(kByteSize * interpreter::Bytecodes::kBytecodeCount));
  __ b(&process_bytecode);

  __ bind(&extra_wide);
  // Load the next bytecode and update table to the extra wide scaled table.
  __ addi(bytecode_offset, bytecode_offset, Operand(1));
  __ lbzx(bytecode, MemOperand(bytecode_array, bytecode_offset));
  __ addi(bytecode_size_table, bytecode_size_table,
          Operand(2 * kByteSize * interpreter::Bytecodes::kBytecodeCount));

  // Load the size of the current bytecode.
  __ bind(&process_bytecode);

  // Bailout to the return label if this is a return bytecode.
#define JUMP_IF_EQUAL(NAME)                                           \
  __ cmpi(bytecode,                                                   \
          Operand(static_cast<int>(interpreter::Bytecode::k##NAME))); \
  __ beq(if_return);
  RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
#undef JUMP_IF_EQUAL

  // If this is a JumpLoop, re-execute it to perform the jump to the beginning
  // of the loop.
  Label end, not_jump_loop;
  __ cmpi(bytecode,
          Operand(static_cast<int>(interpreter::Bytecode::kJumpLoop)));
  __ bne(&not_jump_loop);
  // We need to restore the original bytecode_offset since we might have
  // increased it to skip the wide / extra-wide prefix bytecode.
  __ Move(bytecode_offset, original_bytecode_offset);
  __ b(&end);

  __ bind(&not_jump_loop);
  // Otherwise, load the size of the current bytecode and advance the offset.
  __ lbzx(scratch3, MemOperand(bytecode_size_table, bytecode));
  __ add(bytecode_offset, bytecode_offset, scratch3);

  __ bind(&end);
}

static void MaybeOptimizeCodeOrTailCallOptimizedCodeSlot(
    MacroAssembler* masm, Register optimization_state,
    Register feedback_vector) {
  DCHECK(!AreAliased(optimization_state, feedback_vector));
  Label maybe_has_optimized_code;
  // Check if optimized code is available
  __ TestBitMask(optimization_state,
                 FeedbackVector::kHasCompileOptimizedOrLogFirstExecutionMarker,
                 r0);
  __ beq(&maybe_has_optimized_code, cr0);

  Register optimization_marker = optimization_state;
  __ DecodeField<FeedbackVector::OptimizationMarkerBits>(optimization_marker);
  MaybeOptimizeCode(masm, feedback_vector, optimization_marker);

  __ bind(&maybe_has_optimized_code);
  Register optimized_code_entry = optimization_state;
  __ LoadAnyTaggedField(
      optimization_marker,
      FieldMemOperand(feedback_vector,
                      FeedbackVector::kMaybeOptimizedCodeOffset),
      r0);
  TailCallOptimizedCodeSlot(masm, optimized_code_entry, r9);
}

// Generate code for entering a JS function with the interpreter.
// On entry to the function the receiver and arguments have been pushed on the
// stack left to right.
//
// The live registers are:
//   o r3: actual argument count (not including the receiver)
//   o r4: the JS function object being called.
//   o r6: the incoming new target or generator object
//   o cp: our context
//   o pp: the caller's constant pool pointer (if enabled)
//   o fp: the caller's frame pointer
//   o sp: stack pointer
//   o lr: return address
//
// The function builds an interpreter frame.  See InterpreterFrameConstants in
// frame-constants.h for its layout.
void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
  Register closure = r4;
  Register feedback_vector = r5;

  // Get the bytecode array from the function object and load it into
  // kInterpreterBytecodeArrayRegister.
  __ LoadTaggedPointerField(
      r7, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset), r0);
  // Load original bytecode array or the debug copy.
  __ LoadTaggedPointerField(
      kInterpreterBytecodeArrayRegister,
      FieldMemOperand(r7, SharedFunctionInfo::kFunctionDataOffset), r0);
  GetSharedFunctionInfoBytecode(masm, kInterpreterBytecodeArrayRegister, ip);

  // The bytecode array could have been flushed from the shared function info,
  // if so, call into CompileLazy.
  Label compile_lazy;
  __ CompareObjectType(kInterpreterBytecodeArrayRegister, r7, no_reg,
                       BYTECODE_ARRAY_TYPE);
  __ bne(&compile_lazy);

  // Load the feedback vector from the closure.
  __ LoadTaggedPointerField(
      feedback_vector,
      FieldMemOperand(closure, JSFunction::kFeedbackCellOffset), r0);
  __ LoadTaggedPointerField(
      feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset),
      r0);

  Label push_stack_frame;
  // Check if feedback vector is valid. If valid, check for optimized code
  // and update invocation count. Otherwise, setup the stack frame.
  __ LoadTaggedPointerField(
      r7, FieldMemOperand(feedback_vector, HeapObject::kMapOffset), r0);
  __ LoadU16(r7, FieldMemOperand(r7, Map::kInstanceTypeOffset));
  __ cmpi(r7, Operand(FEEDBACK_VECTOR_TYPE));
  __ bne(&push_stack_frame);

  Register optimization_state = r7;

  // Read off the optimization state in the feedback vector.
  __ LoadU32(optimization_state,
             FieldMemOperand(feedback_vector, FeedbackVector::kFlagsOffset),
             r0);

  // Check if the optimized code slot is not empty or has a optimization marker.
  Label has_optimized_code_or_marker;
  __ TestBitMask(optimization_state,
                 FeedbackVector::kHasOptimizedCodeOrCompileOptimizedMarkerMask,
                 r0);
  __ bne(&has_optimized_code_or_marker, cr0);

  Label not_optimized;
  __ bind(&not_optimized);

  // Increment invocation count for the function.
  __ LoadU32(
      r8,
      FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset),
      r0);
  __ addi(r8, r8, Operand(1));
  __ StoreU32(
      r8,
      FieldMemOperand(feedback_vector, FeedbackVector::kInvocationCountOffset),
      r0);

  // Open a frame scope to indicate that there is a frame on the stack.  The
  // MANUAL indicates that the scope shouldn't actually generate code to set up
  // the frame (that is done below).

  __ bind(&push_stack_frame);

  FrameScope frame_scope(masm, StackFrame::MANUAL);
  __ PushStandardFrame(closure);

  // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are
  // 8-bit fields next to each other, so we could just optimize by writing a
  // 16-bit. These static asserts guard our assumption is valid.
  STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset ==
                BytecodeArray::kOsrLoopNestingLevelOffset + kCharSize);
  STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0);
  __ li(r8, Operand(0));
  __ StoreU16(r8,
              FieldMemOperand(kInterpreterBytecodeArrayRegister,
                              BytecodeArray::kOsrLoopNestingLevelOffset),
              r0);

  // Load initial bytecode offset.
  __ mov(kInterpreterBytecodeOffsetRegister,
         Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));

  // Push bytecode array and Smi tagged bytecode array offset.
  __ SmiTag(r7, kInterpreterBytecodeOffsetRegister);
  __ Push(kInterpreterBytecodeArrayRegister, r7);

  // Allocate the local and temporary register file on the stack.
  Label stack_overflow;
  {
    // Load frame size (word) from the BytecodeArray object.
    __ lwz(r5, FieldMemOperand(kInterpreterBytecodeArrayRegister,
                               BytecodeArray::kFrameSizeOffset));

    // Do a stack check to ensure we don't go over the limit.
    __ sub(r8, sp, r5);
    __ LoadStackLimit(r0, StackLimitKind::kRealStackLimit);
    __ CmpU64(r8, r0);
    __ blt(&stack_overflow);

    // If ok, push undefined as the initial value for all register file entries.
    // TODO(rmcilroy): Consider doing more than one push per loop iteration.
    Label loop, no_args;
    __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
    __ ShiftRightU64(r5, r5, Operand(kSystemPointerSizeLog2), SetRC);
    __ beq(&no_args, cr0);
    __ mtctr(r5);
    __ bind(&loop);
    __ push(kInterpreterAccumulatorRegister);
    __ bdnz(&loop);
    __ bind(&no_args);
  }

  // If the bytecode array has a valid incoming new target or generator object
  // register, initialize it with incoming value which was passed in r6.
  Label no_incoming_new_target_or_generator_register;
  __ LoadS32(r8,
             FieldMemOperand(
                 kInterpreterBytecodeArrayRegister,
                 BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset),
             r0);
  __ cmpi(r8, Operand::Zero());
  __ beq(&no_incoming_new_target_or_generator_register);
  __ ShiftLeftU64(r8, r8, Operand(kSystemPointerSizeLog2));
  __ StoreU64(r6, MemOperand(fp, r8));
  __ bind(&no_incoming_new_target_or_generator_register);

  // Perform interrupt stack check.
  // TODO(solanes): Merge with the real stack limit check above.
  Label stack_check_interrupt, after_stack_check_interrupt;
  __ LoadStackLimit(r0, StackLimitKind::kInterruptStackLimit);
  __ CmpU64(sp, r0);
  __ blt(&stack_check_interrupt);
  __ bind(&after_stack_check_interrupt);

  // The accumulator is already loaded with undefined.

  // Load the dispatch table into a register and dispatch to the bytecode
  // handler at the current bytecode offset.
  Label do_dispatch;
  __ bind(&do_dispatch);
  __ Move(
      kInterpreterDispatchTableRegister,
      ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
  __ lbzx(r6, MemOperand(kInterpreterBytecodeArrayRegister,
                         kInterpreterBytecodeOffsetRegister));
  __ ShiftLeftU64(r6, r6, Operand(kSystemPointerSizeLog2));
  __ LoadU64(kJavaScriptCallCodeStartRegister,
             MemOperand(kInterpreterDispatchTableRegister, r6));
  __ Call(kJavaScriptCallCodeStartRegister);

  masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());

  // Any returns to the entry trampoline are either due to the return bytecode
  // or the interpreter tail calling a builtin and then a dispatch.

  // Get bytecode array and bytecode offset from the stack frame.
  __ LoadU64(kInterpreterBytecodeArrayRegister,
             MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ LoadU64(kInterpreterBytecodeOffsetRegister,
             MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
  __ SmiUntag(kInterpreterBytecodeOffsetRegister);

  // Either return, or advance to the next bytecode and dispatch.
  Label do_return;
  __ lbzx(r4, MemOperand(kInterpreterBytecodeArrayRegister,
                         kInterpreterBytecodeOffsetRegister));
  AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
                                kInterpreterBytecodeOffsetRegister, r4, r5, r6,
                                &do_return);
  __ b(&do_dispatch);

  __ bind(&do_return);
  // The return value is in r3.
  LeaveInterpreterFrame(masm, r5, r7);
  __ blr();

  __ bind(&stack_check_interrupt);
  // Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset
  // for the call to the StackGuard.
  __ mov(kInterpreterBytecodeOffsetRegister,
         Operand(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag +
                              kFunctionEntryBytecodeOffset)));
  __ StoreU64(kInterpreterBytecodeOffsetRegister,
              MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
  __ CallRuntime(Runtime::kStackGuard);

  // After the call, restore the bytecode array, bytecode offset and accumulator
  // registers again. Also, restore the bytecode offset in the stack to its
  // previous value.
  __ LoadU64(kInterpreterBytecodeArrayRegister,
             MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ mov(kInterpreterBytecodeOffsetRegister,
         Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
  __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);

  __ SmiTag(r0, kInterpreterBytecodeOffsetRegister);
  __ StoreU64(r0,
              MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));

  __ jmp(&after_stack_check_interrupt);

  __ bind(&has_optimized_code_or_marker);
  MaybeOptimizeCodeOrTailCallOptimizedCodeSlot(masm, optimization_state,
                                               feedback_vector);

  __ bind(&compile_lazy);
  GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);

  __ bind(&stack_overflow);
  __ CallRuntime(Runtime::kThrowStackOverflow);
  __ bkpt(0);  // Should not return.
}

static void GenerateInterpreterPushArgs(MacroAssembler* masm, Register num_args,
                                        Register start_address,
                                        Register scratch) {
  ASM_CODE_COMMENT(masm);
  __ subi(scratch, num_args, Operand(1));
  __ ShiftLeftU64(scratch, scratch, Operand(kSystemPointerSizeLog2));
  __ sub(start_address, start_address, scratch);
  // Push the arguments.
  __ PushArray(start_address, num_args, scratch, r0,
               TurboAssembler::PushArrayOrder::kReverse);
}

// static
void Builtins::Generate_InterpreterPushArgsThenCallImpl(
    MacroAssembler* masm, ConvertReceiverMode receiver_mode,
    InterpreterPushArgsMode mode) {
  DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r5 : the address of the first argument to be pushed. Subsequent
  //          arguments should be consecutive above this, in the same order as
  //          they are to be pushed onto the stack.
  //  -- r4 : the target to call (can be any Object).
  // -----------------------------------
  Label stack_overflow;

  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    // The spread argument should not be pushed.
    __ subi(r3, r3, Operand(1));
  }

  // Calculate number of arguments (add one for receiver).
  __ addi(r6, r3, Operand(1));
  __ StackOverflowCheck(r6, ip, &stack_overflow);

  if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
    // Don't copy receiver. Argument count is correct.
    __ mr(r6, r3);
  }

  // Push the arguments.
  GenerateInterpreterPushArgs(masm, r6, r5, r7);

  if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
    __ PushRoot(RootIndex::kUndefinedValue);
  }

  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    // Pass the spread in the register r3.
    // r2 already points to the penultimate argument, the spread
    // lies in the next interpreter register.
    __ LoadU64(r5, MemOperand(r5, -kSystemPointerSize));
  }

  // Call the target.
  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
            RelocInfo::CODE_TARGET);
  } else {
    __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
            RelocInfo::CODE_TARGET);
  }

  __ bind(&stack_overflow);
  {
    __ TailCallRuntime(Runtime::kThrowStackOverflow);
    // Unreachable Code.
    __ bkpt(0);
  }
}

// static
void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
    MacroAssembler* masm, InterpreterPushArgsMode mode) {
  // ----------- S t a t e -------------
  // -- r3 : argument count (not including receiver)
  // -- r6 : new target
  // -- r4 : constructor to call
  // -- r5 : allocation site feedback if available, undefined otherwise.
  // -- r7 : address of the first argument
  // -----------------------------------
  Label stack_overflow;
  __ addi(r8, r3, Operand(1));
  __ StackOverflowCheck(r8, ip, &stack_overflow);

  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    // The spread argument should not be pushed.
    __ subi(r3, r3, Operand(1));
  }

  // Push the arguments.
  GenerateInterpreterPushArgs(masm, r3, r7, r8);

  // Push a slot for the receiver to be constructed.
  __ li(r0, Operand::Zero());
  __ push(r0);

  if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    // Pass the spread in the register r2.
    // r4 already points to the penultimate argument, the spread
    // lies in the next interpreter register.
    __ subi(r7, r7, Operand(kSystemPointerSize));
    __ LoadU64(r5, MemOperand(r7));
  } else {
    __ AssertUndefinedOrAllocationSite(r5, r8);
  }

  if (mode == InterpreterPushArgsMode::kArrayFunction) {
    __ AssertFunction(r4);

    // Tail call to the array construct stub (still in the caller
    // context at this point).
    Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl);
    __ Jump(code, RelocInfo::CODE_TARGET);
  } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
    // Call the constructor with r3, r4, and r6 unmodified.
    __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
            RelocInfo::CODE_TARGET);
  } else {
    DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
    // Call the constructor with r3, r4, and r6 unmodified.
    __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
  }

  __ bind(&stack_overflow);
  {
    __ TailCallRuntime(Runtime::kThrowStackOverflow);
    // Unreachable Code.
    __ bkpt(0);
  }
}

static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
  // Set the return address to the correct point in the interpreter entry
  // trampoline.
  Label builtin_trampoline, trampoline_loaded;
  Smi interpreter_entry_return_pc_offset(
      masm->isolate()->heap()->interpreter_entry_return_pc_offset());
  DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero());

  // If the SFI function_data is an InterpreterData, the function will have a
  // custom copy of the interpreter entry trampoline for profiling. If so,
  // get the custom trampoline, otherwise grab the entry address of the global
  // trampoline.
  __ LoadU64(r5, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
  __ LoadTaggedPointerField(
      r5, FieldMemOperand(r5, JSFunction::kSharedFunctionInfoOffset), r0);
  __ LoadTaggedPointerField(
      r5, FieldMemOperand(r5, SharedFunctionInfo::kFunctionDataOffset), r0);
  __ CompareObjectType(r5, kInterpreterDispatchTableRegister,
                       kInterpreterDispatchTableRegister,
                       INTERPRETER_DATA_TYPE);
  __ bne(&builtin_trampoline);

  __ LoadTaggedPointerField(
      r5, FieldMemOperand(r5, InterpreterData::kInterpreterTrampolineOffset),
      r0);
  __ addi(r5, r5, Operand(Code::kHeaderSize - kHeapObjectTag));
  __ b(&trampoline_loaded);

  __ bind(&builtin_trampoline);
  __ Move(r5, ExternalReference::
                  address_of_interpreter_entry_trampoline_instruction_start(
                      masm->isolate()));
  __ LoadU64(r5, MemOperand(r5));

  __ bind(&trampoline_loaded);
  __ addi(r0, r5, Operand(interpreter_entry_return_pc_offset.value()));
  __ mtlr(r0);

  // Initialize the dispatch table register.
  __ Move(
      kInterpreterDispatchTableRegister,
      ExternalReference::interpreter_dispatch_table_address(masm->isolate()));

  // Get the bytecode array pointer from the frame.
  __ LoadU64(kInterpreterBytecodeArrayRegister,
             MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));

  if (FLAG_debug_code) {
    // Check function data field is actually a BytecodeArray object.
    __ TestIfSmi(kInterpreterBytecodeArrayRegister, r0);
    __ Assert(ne,
              AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry,
              cr0);
    __ CompareObjectType(kInterpreterBytecodeArrayRegister, r4, no_reg,
                         BYTECODE_ARRAY_TYPE);
    __ Assert(
        eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
  }

  // Get the target bytecode offset from the frame.
  __ LoadU64(kInterpreterBytecodeOffsetRegister,
             MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
  __ SmiUntag(kInterpreterBytecodeOffsetRegister);

  if (FLAG_debug_code) {
    Label okay;
    __ cmpi(kInterpreterBytecodeOffsetRegister,
            Operand(BytecodeArray::kHeaderSize - kHeapObjectTag +
                    kFunctionEntryBytecodeOffset));
    __ bge(&okay);
    __ bkpt(0);
    __ bind(&okay);
  }

  // Dispatch to the target bytecode.
  UseScratchRegisterScope temps(masm);
  Register scratch = temps.Acquire();
  __ lbzx(ip, MemOperand(kInterpreterBytecodeArrayRegister,
                         kInterpreterBytecodeOffsetRegister));
  __ ShiftLeftU64(scratch, scratch, Operand(kSystemPointerSizeLog2));
  __ LoadU64(kJavaScriptCallCodeStartRegister,
             MemOperand(kInterpreterDispatchTableRegister, scratch));
  __ Jump(kJavaScriptCallCodeStartRegister);
}

void Builtins::Generate_InterpreterEnterAtNextBytecode(MacroAssembler* masm) {
  // Get bytecode array and bytecode offset from the stack frame.
  __ LoadU64(kInterpreterBytecodeArrayRegister,
             MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
  __ LoadU64(kInterpreterBytecodeOffsetRegister,
             MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
  __ SmiUntag(kInterpreterBytecodeOffsetRegister);

  Label enter_bytecode, function_entry_bytecode;
  __ cmpi(kInterpreterBytecodeOffsetRegister,
          Operand(BytecodeArray::kHeaderSize - kHeapObjectTag +
                  kFunctionEntryBytecodeOffset));
  __ beq(&function_entry_bytecode);

  // Load the current bytecode.
  __ lbzx(r4, MemOperand(kInterpreterBytecodeArrayRegister,
                         kInterpreterBytecodeOffsetRegister));

  // Advance to the next bytecode.
  Label if_return;
  AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
                                kInterpreterBytecodeOffsetRegister, r4, r5, r6,
                                &if_return);

  __ bind(&enter_bytecode);
  // Convert new bytecode offset to a Smi and save in the stackframe.
  __ SmiTag(r5, kInterpreterBytecodeOffsetRegister);
  __ StoreU64(r5,
              MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));

  Generate_InterpreterEnterBytecode(masm);

  __ bind(&function_entry_bytecode);
  // If the code deoptimizes during the implicit function entry stack interrupt
  // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
  // not a valid bytecode offset. Detect this case and advance to the first
  // actual bytecode.
  __ mov(kInterpreterBytecodeOffsetRegister,
         Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
  __ b(&enter_bytecode);

  // We should never take the if_return path.
  __ bind(&if_return);
  __ Abort(AbortReason::kInvalidBytecodeAdvance);
}

void Builtins::Generate_InterpreterEnterAtBytecode(MacroAssembler* masm) {
  Generate_InterpreterEnterBytecode(masm);
}

namespace {
void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
                                      bool java_script_builtin,
                                      bool with_result) {
  const RegisterConfiguration* config(RegisterConfiguration::Default());
  int allocatable_register_count = config->num_allocatable_general_registers();
  Register scratch = ip;
  if (with_result) {
    if (java_script_builtin) {
      __ mr(scratch, r3);
    } else {
      // Overwrite the hole inserted by the deoptimizer with the return value
      // from the LAZY deopt point.
      __ StoreU64(
          r3, MemOperand(
                  sp, config->num_allocatable_general_registers() *
                              kSystemPointerSize +
                          BuiltinContinuationFrameConstants::kFixedFrameSize));
    }
  }
  for (int i = allocatable_register_count - 1; i >= 0; --i) {
    int code = config->GetAllocatableGeneralCode(i);
    __ Pop(Register::from_code(code));
    if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
      __ SmiUntag(Register::from_code(code));
    }
  }
  if (java_script_builtin && with_result) {
    // Overwrite the hole inserted by the deoptimizer with the return value from
    // the LAZY deopt point. r0 contains the arguments count, the return value
    // from LAZY is always the last argument.
    __ addi(r3, r3,
            Operand(BuiltinContinuationFrameConstants::kFixedSlotCount));
    __ ShiftLeftU64(r0, r3, Operand(kSystemPointerSizeLog2));
    __ StoreU64(scratch, MemOperand(sp, r0));
    // Recover arguments count.
    __ subi(r3, r3,
            Operand(BuiltinContinuationFrameConstants::kFixedSlotCount));
  }
  __ LoadU64(
      fp,
      MemOperand(sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
  // Load builtin index (stored as a Smi) and use it to get the builtin start
  // address from the builtins table.
  UseScratchRegisterScope temps(masm);
  Register builtin = temps.Acquire();
  __ Pop(builtin);
  __ addi(sp, sp,
          Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
  __ Pop(r0);
  __ mtlr(r0);
  __ LoadEntryFromBuiltinIndex(builtin);
  __ Jump(builtin);
}
}  // namespace

void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, false, false);
}

void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
    MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, false, true);
}

void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, true, false);
}

void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
    MacroAssembler* masm) {
  Generate_ContinueToBuiltinHelper(masm, true, true);
}

void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kNotifyDeoptimized);
  }

  DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r3.code());
  __ LoadU64(r3, MemOperand(sp, 0 * kSystemPointerSize));
  __ addi(sp, sp, Operand(1 * kSystemPointerSize));
  __ Ret();
}

void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
    __ CallRuntime(Runtime::kCompileForOnStackReplacement);
  }

  // If the code object is null, just return to the caller.
  Label skip;
  __ CmpSmiLiteral(r3, Smi::zero(), r0);
  __ bne(&skip);
  __ Ret();

  __ bind(&skip);

  // Drop the handler frame that is be sitting on top of the actual
  // JavaScript frame. This is the case then OSR is triggered from bytecode.
  __ LeaveFrame(StackFrame::STUB);

  // Load deoptimization data from the code object.
  // <deopt_data> = <code>[#deoptimization_data_offset]
  __ LoadTaggedPointerField(
      r4, FieldMemOperand(r3, Code::kDeoptimizationDataOffset), r0);

  {
    ConstantPoolUnavailableScope constant_pool_unavailable(masm);
    __ addi(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag));  // Code start

    if (FLAG_enable_embedded_constant_pool) {
      __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r3);
    }

    // Load the OSR entrypoint offset from the deoptimization data.
    // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
    __ SmiUntag(r4,
                FieldMemOperand(r4, FixedArray::OffsetOfElementAt(
                                        DeoptimizationData::kOsrPcOffsetIndex)),
                LeaveRC, r0);

    // Compute the target address = code start + osr_offset
    __ add(r0, r3, r4);

    // And "return" to the OSR entry point of the function.
    __ mtlr(r0);
    __ blr();
  }
}

// static
void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3    : argc
  //  -- sp[0] : receiver
  //  -- sp[4] : thisArg
  //  -- sp[8] : argArray
  // -----------------------------------

  // 1. Load receiver into r4, argArray into r5 (if present), remove all
  // arguments from the stack (including the receiver), and push thisArg (if
  // present) instead.
  {
    __ LoadRoot(r8, RootIndex::kUndefinedValue);
    __ mr(r5, r8);

    Label done;
    __ LoadU64(r4, MemOperand(sp));  // receiver
    __ cmpi(r3, Operand(1));
    __ blt(&done);
    __ LoadU64(r8, MemOperand(sp, kSystemPointerSize));  // thisArg
    __ cmpi(r3, Operand(2));
    __ blt(&done);
    __ LoadU64(r5, MemOperand(sp, 2 * kSystemPointerSize));  // argArray

    __ bind(&done);
    __ DropArgumentsAndPushNewReceiver(r3, r8, TurboAssembler::kCountIsInteger,
                                       TurboAssembler::kCountExcludesReceiver);
  }

  // ----------- S t a t e -------------
  //  -- r5    : argArray
  //  -- r4    : receiver
  //  -- sp[0] : thisArg
  // -----------------------------------

  // 2. We don't need to check explicitly for callable receiver here,
  // since that's the first thing the Call/CallWithArrayLike builtins
  // will do.

  // 3. Tail call with no arguments if argArray is null or undefined.
  Label no_arguments;
  __ JumpIfRoot(r5, RootIndex::kNullValue, &no_arguments);
  __ JumpIfRoot(r5, RootIndex::kUndefinedValue, &no_arguments);

  // 4a. Apply the receiver to the given argArray.
  __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
          RelocInfo::CODE_TARGET);

  // 4b. The argArray is either null or undefined, so we tail call without any
  // arguments to the receiver.
  __ bind(&no_arguments);
  {
    __ li(r3, Operand::Zero());
    __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
  }
}

// static
void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
  // 1. Get the callable to call (passed as receiver) from the stack.
  __ Pop(r4);

  // 2. Make sure we have at least one argument.
  // r3: actual number of arguments
  {
    Label done;
    __ cmpi(r3, Operand::Zero());
    __ bne(&done);
    __ PushRoot(RootIndex::kUndefinedValue);
    __ addi(r3, r3, Operand(1));
    __ bind(&done);
  }

  // 3. Adjust the actual number of arguments.
  __ subi(r3, r3, Operand(1));

  // 4. Call the callable.
  __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
}

void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3     : argc
  //  -- sp[0]  : receiver
  //  -- sp[4]  : target         (if argc >= 1)
  //  -- sp[8]  : thisArgument   (if argc >= 2)
  //  -- sp[12] : argumentsList  (if argc == 3)
  // -----------------------------------

  // 1. Load target into r4 (if present), argumentsList into r5 (if present),
  // remove all arguments from the stack (including the receiver), and push
  // thisArgument (if present) instead.
  {
    __ LoadRoot(r4, RootIndex::kUndefinedValue);
    __ mr(r8, r4);
    __ mr(r5, r4);

    Label done;
    __ cmpi(r3, Operand(1));
    __ blt(&done);
    __ LoadU64(r4, MemOperand(sp, kSystemPointerSize));  // thisArg
    __ cmpi(r3, Operand(2));
    __ blt(&done);
    __ LoadU64(r8, MemOperand(sp, 2 * kSystemPointerSize));  // argArray
    __ cmpi(r3, Operand(3));
    __ blt(&done);
    __ LoadU64(r5, MemOperand(sp, 3 * kSystemPointerSize));  // argArray

    __ bind(&done);
    __ DropArgumentsAndPushNewReceiver(r3, r8, TurboAssembler::kCountIsInteger,
                                       TurboAssembler::kCountExcludesReceiver);
  }

  // ----------- S t a t e -------------
  //  -- r5    : argumentsList
  //  -- r4    : target
  //  -- sp[0] : thisArgument
  // -----------------------------------

  // 2. We don't need to check explicitly for callable target here,
  // since that's the first thing the Call/CallWithArrayLike builtins
  // will do.

  // 3. Apply the target to the given argumentsList.
  __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
          RelocInfo::CODE_TARGET);
}

void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3     : argc
  //  -- sp[0]  : receiver
  //  -- sp[4]  : target
  //  -- sp[8]  : argumentsList
  //  -- sp[12] : new.target (optional)
  // -----------------------------------

  // 1. Load target into r4 (if present), argumentsList into r5 (if present),
  // new.target into r6 (if present, otherwise use target), remove all
  // arguments from the stack (including the receiver), and push thisArgument
  // (if present) instead.
  {
    __ LoadRoot(r4, RootIndex::kUndefinedValue);
    __ mr(r5, r4);

    Label done;
    __ mr(r7, r4);
    __ cmpi(r3, Operand(1));
    __ blt(&done);
    __ LoadU64(r4, MemOperand(sp, kSystemPointerSize));  // thisArg
    __ mr(r6, r4);
    __ cmpi(r3, Operand(2));
    __ blt(&done);
    __ LoadU64(r5, MemOperand(sp, 2 * kSystemPointerSize));  // argArray
    __ cmpi(r3, Operand(3));
    __ blt(&done);
    __ LoadU64(r6, MemOperand(sp, 3 * kSystemPointerSize));  // argArray
    __ bind(&done);
    __ DropArgumentsAndPushNewReceiver(r3, r7, TurboAssembler::kCountIsInteger,
                                       TurboAssembler::kCountExcludesReceiver);
  }

  // ----------- S t a t e -------------
  //  -- r5    : argumentsList
  //  -- r6    : new.target
  //  -- r4    : target
  //  -- sp[0] : receiver (undefined)
  // -----------------------------------

  // 2. We don't need to check explicitly for constructor target here,
  // since that's the first thing the Construct/ConstructWithArrayLike
  // builtins will do.

  // 3. We don't need to check explicitly for constructor new.target here,
  // since that's the second thing the Construct/ConstructWithArrayLike
  // builtins will do.

  // 4. Construct the target with the given new.target and argumentsList.
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
          RelocInfo::CODE_TARGET);
}

// static
// TODO(v8:11615): Observe Code::kMaxArguments in CallOrConstructVarargs
void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
                                               Handle<Code> code) {
  // ----------- S t a t e -------------
  //  -- r4 : target
  //  -- r3 : number of parameters on the stack (not including the receiver)
  //  -- r5 : arguments list (a FixedArray)
  //  -- r7 : len (number of elements to push from args)
  //  -- r6 : new.target (for [[Construct]])
  // -----------------------------------

  Register scratch = ip;

  if (FLAG_debug_code) {
    // Allow r5 to be a FixedArray, or a FixedDoubleArray if r7 == 0.
    Label ok, fail;
    __ AssertNotSmi(r5);
    __ LoadTaggedPointerField(scratch,
                              FieldMemOperand(r5, HeapObject::kMapOffset), r0);
    __ LoadU16(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
    __ cmpi(scratch, Operand(FIXED_ARRAY_TYPE));
    __ beq(&ok);
    __ cmpi(scratch, Operand(FIXED_DOUBLE_ARRAY_TYPE));
    __ bne(&fail);
    __ cmpi(r7, Operand::Zero());
    __ beq(&ok);
    // Fall through.
    __ bind(&fail);
    __ Abort(AbortReason::kOperandIsNotAFixedArray);

    __ bind(&ok);
  }

  // Check for stack overflow.
  Label stack_overflow;
  __ StackOverflowCheck(r7, scratch, &stack_overflow);

  // Move the arguments already in the stack,
  // including the receiver and the return address.
  {
    Label copy;
    Register src = r9, dest = r8;
    __ addi(src, sp, Operand(-kSystemPointerSize));
    __ ShiftLeftU64(r0, r7, Operand(kSystemPointerSizeLog2));
    __ sub(sp, sp, r0);
    // Update stack pointer.
    __ addi(dest, sp, Operand(-kSystemPointerSize));
    __ addi(r0, r3, Operand(1));
    __ mtctr(r0);

    __ bind(&copy);
    __ LoadU64WithUpdate(r0, MemOperand(src, kSystemPointerSize));
    __ StoreU64WithUpdate(r0, MemOperand(dest, kSystemPointerSize));
    __ bdnz(&copy);
  }

  // Push arguments onto the stack (thisArgument is already on the stack).
  {
    Label loop, no_args, skip;
    __ cmpi(r7, Operand::Zero());
    __ beq(&no_args);
    __ addi(r5, r5,
            Operand(FixedArray::kHeaderSize - kHeapObjectTag - kTaggedSize));
    __ mtctr(r7);
    __ bind(&loop);
    __ LoadTaggedPointerField(scratch, MemOperand(r5, kTaggedSize), r0);
    __ addi(r5, r5, Operand(kTaggedSize));
    __ CompareRoot(scratch, RootIndex::kTheHoleValue);
    __ bne(&skip);
    __ LoadRoot(scratch, RootIndex::kUndefinedValue);
    __ bind(&skip);
    __ StoreU64WithUpdate(scratch, MemOperand(r8, kSystemPointerSize));
    __ bdnz(&loop);
    __ bind(&no_args);
    __ add(r3, r3, r7);
  }

  // Tail-call to the actual Call or Construct builtin.
  __ Jump(code, RelocInfo::CODE_TARGET);

  __ bind(&stack_overflow);
  __ TailCallRuntime(Runtime::kThrowStackOverflow);
}

// static
void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
                                                      CallOrConstructMode mode,
                                                      Handle<Code> code) {
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r6 : the new.target (for [[Construct]] calls)
  //  -- r4 : the target to call (can be any Object)
  //  -- r5 : start index (to support rest parameters)
  // -----------------------------------

  Register scratch = r9;

  if (mode == CallOrConstructMode::kConstruct) {
    Label new_target_constructor, new_target_not_constructor;
    __ JumpIfSmi(r6, &new_target_not_constructor);
    __ LoadTaggedPointerField(scratch,
                              FieldMemOperand(r6, HeapObject::kMapOffset), r0);
    __ lbz(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
    __ TestBit(scratch, Map::Bits1::IsConstructorBit::kShift, r0);
    __ bne(&new_target_constructor, cr0);
    __ bind(&new_target_not_constructor);
    {
      FrameScope scope(masm, StackFrame::MANUAL);
      __ EnterFrame(StackFrame::INTERNAL);
      __ Push(r6);
      __ CallRuntime(Runtime::kThrowNotConstructor);
    }
    __ bind(&new_target_constructor);
  }

  Label stack_done, stack_overflow;
  __ LoadU64(r8, MemOperand(fp, StandardFrameConstants::kArgCOffset));
  __ sub(r8, r8, r5, LeaveOE, SetRC);
  __ ble(&stack_done, cr0);
  {
    // ----------- S t a t e -------------
    //  -- r3 : the number of arguments already in the stack (not including the
    //  receiver)
    //  -- r4 : the target to call (can be any Object)
    //  -- r5 : start index (to support rest parameters)
    //  -- r6 : the new.target (for [[Construct]] calls)
    //  -- fp : point to the caller stack frame
    //  -- r8 : number of arguments to copy, i.e. arguments count - start index
    // -----------------------------------

    // Check for stack overflow.
    __ StackOverflowCheck(r8, scratch, &stack_overflow);

    // Forward the arguments from the caller frame.
    // Point to the first argument to copy (skipping the receiver).
    __ addi(r7, fp,
            Operand(CommonFrameConstants::kFixedFrameSizeAboveFp +
                    kSystemPointerSize));
    __ ShiftLeftU64(scratch, r5, Operand(kSystemPointerSizeLog2));
    __ add(r7, r7, scratch);

    // Move the arguments already in the stack,
    // including the receiver and the return address.
    {
      Label copy;
      Register src = ip, dest = r5;  // r7 and r10 are context and root.
      __ addi(src, sp, Operand(-kSystemPointerSize));
      // Update stack pointer.
      __ ShiftLeftU64(scratch, r8, Operand(kSystemPointerSizeLog2));
      __ sub(sp, sp, scratch);
      __ addi(dest, sp, Operand(-kSystemPointerSize));
      __ addi(r0, r3, Operand(1));
      __ mtctr(r0);

      __ bind(&copy);
      __ LoadU64WithUpdate(r0, MemOperand(src, kSystemPointerSize));
      __ StoreU64WithUpdate(r0, MemOperand(dest, kSystemPointerSize));
      __ bdnz(&copy);
    }
    // Copy arguments from the caller frame.
    // TODO(victorgomes): Consider using forward order as potentially more cache
    // friendly.
    {
      Label loop;
      __ add(r3, r3, r8);
      __ addi(r5, r5, Operand(kSystemPointerSize));
      __ bind(&loop);
      {
        __ subi(r8, r8, Operand(1));
        __ ShiftLeftU64(scratch, r8, Operand(kSystemPointerSizeLog2));
        __ LoadU64(r0, MemOperand(r7, scratch));
        __ StoreU64(r0, MemOperand(r5, scratch));
        __ cmpi(r8, Operand::Zero());
        __ bne(&loop);
      }
    }
  }
  __ b(&stack_done);
  __ bind(&stack_overflow);
  __ TailCallRuntime(Runtime::kThrowStackOverflow);
  __ bind(&stack_done);

  // Tail-call to the {code} handler.
  __ Jump(code, RelocInfo::CODE_TARGET);
}

// static
void Builtins::Generate_CallFunction(MacroAssembler* masm,
                                     ConvertReceiverMode mode) {
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the function to call (checked to be a JSFunction)
  // -----------------------------------
  __ AssertFunction(r4);

  // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
  // Check that the function is not a "classConstructor".
  Label class_constructor;
  __ LoadTaggedPointerField(
      r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset), r0);
  __ lwz(r6, FieldMemOperand(r5, SharedFunctionInfo::kFlagsOffset));
  __ TestBitMask(r6, SharedFunctionInfo::IsClassConstructorBit::kMask, r0);
  __ bne(&class_constructor, cr0);

  // Enter the context of the function; ToObject has to run in the function
  // context, and we also need to take the global proxy from the function
  // context in case of conversion.
  __ LoadTaggedPointerField(cp, FieldMemOperand(r4, JSFunction::kContextOffset),
                            r0);
  // We need to convert the receiver for non-native sloppy mode functions.
  Label done_convert;
  __ andi(r0, r6,
          Operand(SharedFunctionInfo::IsStrictBit::kMask |
                  SharedFunctionInfo::IsNativeBit::kMask));
  __ bne(&done_convert, cr0);
  {
    // ----------- S t a t e -------------
    //  -- r3 : the number of arguments (not including the receiver)
    //  -- r4 : the function to call (checked to be a JSFunction)
    //  -- r5 : the shared function info.
    //  -- cp : the function context.
    // -----------------------------------

    if (mode == ConvertReceiverMode::kNullOrUndefined) {
      // Patch receiver to global proxy.
      __ LoadGlobalProxy(r6);
    } else {
      Label convert_to_object, convert_receiver;
      __ LoadReceiver(r6, r3);
      __ JumpIfSmi(r6, &convert_to_object);
      STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
      __ CompareObjectType(r6, r7, r7, FIRST_JS_RECEIVER_TYPE);
      __ bge(&done_convert);
      if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
        Label convert_global_proxy;
        __ JumpIfRoot(r6, RootIndex::kUndefinedValue, &convert_global_proxy);
        __ JumpIfNotRoot(r6, RootIndex::kNullValue, &convert_to_object);
        __ bind(&convert_global_proxy);
        {
          // Patch receiver to global proxy.
          __ LoadGlobalProxy(r6);
        }
        __ b(&convert_receiver);
      }
      __ bind(&convert_to_object);
      {
        // Convert receiver using ToObject.
        // TODO(bmeurer): Inline the allocation here to avoid building the frame
        // in the fast case? (fall back to AllocateInNewSpace?)
        FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
        __ SmiTag(r3);
        __ Push(r3, r4);
        __ mr(r3, r6);
        __ Push(cp);
        __ Call(BUILTIN_CODE(masm->isolate(), ToObject),
                RelocInfo::CODE_TARGET);
        __ Pop(cp);
        __ mr(r6, r3);
        __ Pop(r3, r4);
        __ SmiUntag(r3);
      }
      __ LoadTaggedPointerField(
          r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset), r0);
      __ bind(&convert_receiver);
    }
    __ StoreReceiver(r6, r3, r7);
  }
  __ bind(&done_convert);

  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the function to call (checked to be a JSFunction)
  //  -- r5 : the shared function info.
  //  -- cp : the function context.
  // -----------------------------------

  __ LoadU16(
      r5, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset));
  __ InvokeFunctionCode(r4, no_reg, r5, r3, InvokeType::kJump);

  // The function is a "classConstructor", need to raise an exception.
  __ bind(&class_constructor);
  {
    FrameAndConstantPoolScope frame(masm, StackFrame::INTERNAL);
    __ push(r4);
    __ CallRuntime(Runtime::kThrowConstructorNonCallableError);
  }
}

namespace {

void Generate_PushBoundArguments(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : target (checked to be a JSBoundFunction)
  //  -- r6 : new.target (only in case of [[Construct]])
  // -----------------------------------

  // Load [[BoundArguments]] into r5 and length of that into r7.
  Label no_bound_arguments;
  __ LoadTaggedPointerField(
      r5, FieldMemOperand(r4, JSBoundFunction::kBoundArgumentsOffset), r0);
  __ SmiUntag(r7, FieldMemOperand(r5, FixedArray::kLengthOffset), SetRC, r0);
  __ beq(&no_bound_arguments, cr0);
  {
    // ----------- S t a t e -------------
    //  -- r3 : the number of arguments (not including the receiver)
    //  -- r4 : target (checked to be a JSBoundFunction)
    //  -- r5 : the [[BoundArguments]] (implemented as FixedArray)
    //  -- r6 : new.target (only in case of [[Construct]])
    //  -- r7 : the number of [[BoundArguments]]
    // -----------------------------------

    Register scratch = r9;
    // Reserve stack space for the [[BoundArguments]].
    {
      Label done;
      __ ShiftLeftU64(r10, r7, Operand(kSystemPointerSizeLog2));
      __ sub(r0, sp, r10);
      // Check the stack for overflow. We are not trying to catch interruptions
      // (i.e. debug break and preemption) here, so check the "real stack
      // limit".
      {
        __ LoadStackLimit(scratch, StackLimitKind::kRealStackLimit);
        __ CmpU64(r0, scratch);
      }
      __ bgt(&done);  // Signed comparison.
      {
        FrameScope scope(masm, StackFrame::MANUAL);
        __ EnterFrame(StackFrame::INTERNAL);
        __ CallRuntime(Runtime::kThrowStackOverflow);
      }
      __ bind(&done);
    }

    // Pop receiver.
    __ Pop(r8);

    // Push [[BoundArguments]].
    {
      Label loop, done;
      __ add(r3, r3, r7);  // Adjust effective number of arguments.
      __ addi(r5, r5, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
      __ mtctr(r7);

      __ bind(&loop);
      __ subi(r7, r7, Operand(1));
      __ ShiftLeftU64(scratch, r7, Operand(kTaggedSizeLog2));
      __ add(scratch, scratch, r5);
      __ LoadAnyTaggedField(scratch, MemOperand(scratch), r0);
      __ Push(scratch);
      __ bdnz(&loop);
      __ bind(&done);
    }

    // Push receiver.
    __ Push(r8);
  }
  __ bind(&no_bound_arguments);
}

}  // namespace

// static
void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the function to call (checked to be a JSBoundFunction)
  // -----------------------------------
  __ AssertBoundFunction(r4);

  // Patch the receiver to [[BoundThis]].
  __ LoadAnyTaggedField(
      r6, FieldMemOperand(r4, JSBoundFunction::kBoundThisOffset), r0);
  __ StoreReceiver(r6, r3, ip);

  // Push the [[BoundArguments]] onto the stack.
  Generate_PushBoundArguments(masm);

  // Call the [[BoundTargetFunction]] via the Call builtin.
  __ LoadTaggedPointerField(
      r4, FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset), r0);
  __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
          RelocInfo::CODE_TARGET);
}

// static
void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the target to call (can be any Object).
  // -----------------------------------

  Label non_callable, non_smi;
  __ JumpIfSmi(r4, &non_callable);
  __ bind(&non_smi);
  __ LoadMap(r7, r4);
  __ CompareInstanceTypeRange(r7, r8, FIRST_JS_FUNCTION_TYPE,
                              LAST_JS_FUNCTION_TYPE);
  __ Jump(masm->isolate()->builtins()->CallFunction(mode),
          RelocInfo::CODE_TARGET, le);
  __ cmpi(r8, Operand(JS_BOUND_FUNCTION_TYPE));
  __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
          RelocInfo::CODE_TARGET, eq);

  // Check if target has a [[Call]] internal method.
  __ lbz(r7, FieldMemOperand(r7, Map::kBitFieldOffset));
  __ TestBit(r7, Map::Bits1::IsCallableBit::kShift, r0);
  __ beq(&non_callable, cr0);

  // Check if target is a proxy and call CallProxy external builtin
  __ cmpi(r8, Operand(JS_PROXY_TYPE));
  __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET, eq);

  // 2. Call to something else, which might have a [[Call]] internal method (if
  // not we raise an exception).
  // Overwrite the original receiver the (original) target.
  __ StoreReceiver(r4, r3, r8);
  // Let the "call_as_function_delegate" take care of the rest.
  __ LoadNativeContextSlot(r4, Context::CALL_AS_FUNCTION_DELEGATE_INDEX);
  __ Jump(masm->isolate()->builtins()->CallFunction(
              ConvertReceiverMode::kNotNullOrUndefined),
          RelocInfo::CODE_TARGET);

  // 3. Call to something that is not callable.
  __ bind(&non_callable);
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
    __ Push(r4);
    __ CallRuntime(Runtime::kThrowCalledNonCallable);
  }
}

// static
void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the constructor to call (checked to be a JSFunction)
  //  -- r6 : the new target (checked to be a constructor)
  // -----------------------------------
  __ AssertConstructor(r4);
  __ AssertFunction(r4);

  // Calling convention for function specific ConstructStubs require
  // r5 to contain either an AllocationSite or undefined.
  __ LoadRoot(r5, RootIndex::kUndefinedValue);

  Label call_generic_stub;

  // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
  __ LoadTaggedPointerField(
      r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset), r0);
  __ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kFlagsOffset));
  __ mov(ip, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
  __ and_(r7, r7, ip, SetRC);
  __ beq(&call_generic_stub, cr0);

  __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
          RelocInfo::CODE_TARGET);

  __ bind(&call_generic_stub);
  __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
          RelocInfo::CODE_TARGET);
}

// static
void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the function to call (checked to be a JSBoundFunction)
  //  -- r6 : the new target (checked to be a constructor)
  // -----------------------------------
  __ AssertConstructor(r4);
  __ AssertBoundFunction(r4);

  // Push the [[BoundArguments]] onto the stack.
  Generate_PushBoundArguments(masm);

  // Patch new.target to [[BoundTargetFunction]] if new.target equals target.
  Label skip;
  __ CompareTagged(r4, r6);
  __ bne(&skip);
  __ LoadTaggedPointerField(
      r6, FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset), r0);
  __ bind(&skip);

  // Construct the [[BoundTargetFunction]] via the Construct builtin.
  __ LoadTaggedPointerField(
      r4, FieldMemOperand(r4, JSBoundFunction::kBoundTargetFunctionOffset), r0);
  __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
}

// static
void Builtins::Generate_Construct(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- r3 : the number of arguments (not including the receiver)
  //  -- r4 : the constructor to call (can be any Object)
  //  -- r6 : the new target (either the same as the constructor or
  //          the JSFunction on which new was invoked initially)
  // -----------------------------------

  // Check if target is a Smi.
  Label non_constructor, non_proxy;
  __ JumpIfSmi(r4, &non_constructor);

  // Check if target has a [[Construct]] internal method.
  __ LoadTaggedPointerField(r7, FieldMemOperand(r4, HeapObject::kMapOffset),
                            r0);
  __ lbz(r5, FieldMemOperand(r7, Map::kBitFieldOffset));
  __ TestBit(r5, Map::Bits1::IsConstructorBit::kShift, r0);
  __ beq(&non_constructor, cr0);

  // Dispatch based on instance type.
  __ CompareInstanceTypeRange(r7, r8, FIRST_JS_FUNCTION_TYPE,
                              LAST_JS_FUNCTION_TYPE);
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
          RelocInfo::CODE_TARGET, le);

  // Only dispatch to bound functions after checking whether they are
  // constructors.
  __ cmpi(r8, Operand(JS_BOUND_FUNCTION_TYPE));
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
          RelocInfo::CODE_TARGET, eq);

  // Only dispatch to proxies after checking whether they are constructors.
  __ cmpi(r8, Operand(JS_PROXY_TYPE));
  __ bne(&non_proxy);
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
          RelocInfo::CODE_TARGET);

  // Called Construct on an exotic Object with a [[Construct]] internal method.
  __ bind(&non_proxy);
  {
    // Overwrite the original receiver with the (original) target.
    __ StoreReceiver(r4, r3, r8);
    // Let the "call_as_constructor_delegate" take care of the rest.
    __ LoadNativeContextSlot(r4, Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX);
    __ Jump(masm->isolate()->builtins()->CallFunction(),
            RelocInfo::CODE_TARGET);
  }

  // Called Construct on an Object that doesn't have a [[Construct]] internal
  // method.
  __ bind(&non_constructor);
  __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
          RelocInfo::CODE_TARGET);
}

#if V8_ENABLE_WEBASSEMBLY
void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
  // The function index was put in a register by the jump table trampoline.
  // Convert to Smi for the runtime call.
  __ SmiTag(kWasmCompileLazyFuncIndexRegister,
            kWasmCompileLazyFuncIndexRegister);
  {
    HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
    FrameAndConstantPoolScope scope(masm, StackFrame::WASM_COMPILE_LAZY);

    // Save all parameter registers (see wasm-linkage.h). They might be
    // overwritten in the runtime call below. We don't have any callee-saved
    // registers in wasm, so no need to store anything else.
    RegList gp_regs = 0;
    for (Register gp_param_reg : wasm::kGpParamRegisters) {
      gp_regs |= gp_param_reg.bit();
    }

    RegList fp_regs = 0;
    for (DoubleRegister fp_param_reg : wasm::kFpParamRegisters) {
      fp_regs |= fp_param_reg.bit();
    }

    // List must match register numbers under kFpParamRegisters.
    constexpr RegList simd_regs =
        Simd128Register::ListOf(v1, v2, v3, v4, v5, v6, v7, v8);

    CHECK_EQ(NumRegs(gp_regs), arraysize(wasm::kGpParamRegisters));
    CHECK_EQ(NumRegs(fp_regs), arraysize(wasm::kFpParamRegisters));
    CHECK_EQ(NumRegs(simd_regs), arraysize(wasm::kFpParamRegisters));
    CHECK_EQ(WasmCompileLazyFrameConstants::kNumberOfSavedGpParamRegs,
             NumRegs(gp_regs));
    CHECK_EQ(WasmCompileLazyFrameConstants::kNumberOfSavedFpParamRegs,
             NumRegs(fp_regs));
    CHECK_EQ(WasmCompileLazyFrameConstants::kNumberOfSavedFpParamRegs,
             NumRegs(simd_regs));

    __ MultiPush(gp_regs);
    __ MultiPushF64AndV128(fp_regs, simd_regs);

    // Pass instance and function index as explicit arguments to the runtime
    // function.
    __ Push(kWasmInstanceRegister, kWasmCompileLazyFuncIndexRegister);
    // Initialize the JavaScript context with 0. CEntry will use it to
    // set the current context on the isolate.
    __ LoadSmiLiteral(cp, Smi::zero());
    __ CallRuntime(Runtime::kWasmCompileLazy, 2);
    // The entrypoint address is the return value.
    __ mr(r11, kReturnRegister0);

    // Restore registers.
    __ MultiPopF64AndV128(fp_regs, simd_regs);
    __ MultiPop(gp_regs);
  }
  // Finally, jump to the entrypoint.
  __ Jump(r11);
}

void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) {
  HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
  {
    FrameAndConstantPoolScope scope(masm, StackFrame::WASM_DEBUG_BREAK);

    // Save all parameter registers. They might hold live values, we restore
    // them after the runtime call.
    __ MultiPush(WasmDebugBreakFrameConstants::kPushedGpRegs);
    __ MultiPushF64AndV128(WasmDebugBreakFrameConstants::kPushedFpRegs,
                           WasmDebugBreakFrameConstants::kPushedFpRegs);

    // Initialize the JavaScript context with 0. CEntry will use it to
    // set the current context on the isolate.
    __ LoadSmiLiteral(cp, Smi::zero());
    __ CallRuntime(Runtime::kWasmDebugBreak, 0);

    // Restore registers.
    __ MultiPopF64AndV128(WasmDebugBreakFrameConstants::kPushedFpRegs,
                          WasmDebugBreakFrameConstants::kPushedFpRegs);
    __ MultiPop(WasmDebugBreakFrameConstants::kPushedGpRegs);
  }
  __ Ret();
}

void Builtins::Generate_GenericJSToWasmWrapper(MacroAssembler* masm) {
  // TODO(v8:10701): Implement for this platform.
  __ Trap();
}

void Builtins::Generate_WasmOnStackReplace(MacroAssembler* masm) {
  // Only needed on x64.
  __ Trap();
}
#endif  // V8_ENABLE_WEBASSEMBLY

void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
                               SaveFPRegsMode save_doubles, ArgvMode argv_mode,
                               bool builtin_exit_frame) {
  // Called from JavaScript; parameters are on stack as if calling JS function.
  // r3: number of arguments including receiver
  // r4: pointer to builtin function
  // fp: frame pointer  (restored after C call)
  // sp: stack pointer  (restored as callee's sp after C call)
  // cp: current context  (C callee-saved)
  //
  // If argv_mode == ArgvMode::kRegister:
  // r5: pointer to the first argument

  __ mr(r15, r4);

  if (argv_mode == ArgvMode::kRegister) {
    // Move argv into the correct register.
    __ mr(r4, r5);
  } else {
    // Compute the argv pointer.
    __ ShiftLeftU64(r4, r3, Operand(kSystemPointerSizeLog2));
    __ add(r4, r4, sp);
    __ subi(r4, r4, Operand(kSystemPointerSize));
  }

  // Enter the exit frame that transitions from JavaScript to C++.
  FrameScope scope(masm, StackFrame::MANUAL);

  // Need at least one extra slot for return address location.
  int arg_stack_space = 1;

  // Pass buffer for return value on stack if necessary
  bool needs_return_buffer =
      (result_size == 2 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS);
  if (needs_return_buffer) {
    arg_stack_space += result_size;
  }

  __ EnterExitFrame(
      save_doubles == SaveFPRegsMode::kSave, arg_stack_space,
      builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);

  // Store a copy of argc in callee-saved registers for later.
  __ mr(r14, r3);

  // r3, r14: number of arguments including receiver  (C callee-saved)
  // r4: pointer to the first argument
  // r15: pointer to builtin function  (C callee-saved)

  // Result returned in registers or stack, depending on result size and ABI.

  Register isolate_reg = r5;
  if (needs_return_buffer) {
    // The return value is a non-scalar value.
    // Use frame storage reserved by calling function to pass return
    // buffer as implicit first argument.
    __ mr(r5, r4);
    __ mr(r4, r3);
    __ addi(r3, sp,
            Operand((kStackFrameExtraParamSlot + 1) * kSystemPointerSize));
    isolate_reg = r6;
  }

  // Call C built-in.
  __ Move(isolate_reg, ExternalReference::isolate_address(masm->isolate()));

  Register target = r15;
  __ StoreReturnAddressAndCall(target);

  // If return value is on the stack, pop it to registers.
  if (needs_return_buffer) {
    __ LoadU64(r4, MemOperand(r3, kSystemPointerSize));
    __ LoadU64(r3, MemOperand(r3));
  }

  // Check result for exception sentinel.
  Label exception_returned;
  __ CompareRoot(r3, RootIndex::kException);
  __ beq(&exception_returned);

  // Check that there is no pending exception, otherwise we
  // should have returned the exception sentinel.
  if (FLAG_debug_code) {
    Label okay;
    ExternalReference pending_exception_address = ExternalReference::Create(
        IsolateAddressId::kPendingExceptionAddress, masm->isolate());

    __ Move(r6, pending_exception_address);
    __ LoadU64(r6, MemOperand(r6));
    __ CompareRoot(r6, RootIndex::kTheHoleValue);
    // Cannot use check here as it attempts to generate call into runtime.
    __ beq(&okay);
    __ stop();
    __ bind(&okay);
  }

  // Exit C frame and return.
  // r3:r4: result
  // sp: stack pointer
  // fp: frame pointer
  Register argc = argv_mode == ArgvMode::kRegister
                      // We don't want to pop arguments so set argc to no_reg.
                      ? no_reg
                      // r14: still holds argc (callee-saved).
                      : r14;
  __ LeaveExitFrame(save_doubles == SaveFPRegsMode::kSave, argc);
  __ blr();

  // Handling of exception.
  __ bind(&exception_returned);

  ExternalReference pending_handler_context_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
  ExternalReference pending_handler_entrypoint_address =
      ExternalReference::Create(
          IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
  ExternalReference pending_handler_constant_pool_address =
      ExternalReference::Create(
          IsolateAddressId::kPendingHandlerConstantPoolAddress,
          masm->isolate());
  ExternalReference pending_handler_fp_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
  ExternalReference pending_handler_sp_address = ExternalReference::Create(
      IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());

  // Ask the runtime for help to determine the handler. This will set r3 to
  // contain the current pending exception, don't clobber it.
  ExternalReference find_handler =
      ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
  {
    FrameScope scope(masm, StackFrame::MANUAL);
    __ PrepareCallCFunction(3, 0, r3);
    __ li(r3, Operand::Zero());
    __ li(r4, Operand::Zero());
    __ Move(r5, ExternalReference::isolate_address(masm->isolate()));
    __ CallCFunction(find_handler, 3);
  }

  // Retrieve the handler context, SP and FP.
  __ Move(cp, pending_handler_context_address);
  __ LoadU64(cp, MemOperand(cp));
  __ Move(sp, pending_handler_sp_address);
  __ LoadU64(sp, MemOperand(sp));
  __ Move(fp, pending_handler_fp_address);
  __ LoadU64(fp, MemOperand(fp));

  // If the handler is a JS frame, restore the context to the frame. Note that
  // the context will be set to (cp == 0) for non-JS frames.
  Label skip;
  __ cmpi(cp, Operand::Zero());
  __ beq(&skip);
  __ StoreU64(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
  __ bind(&skip);

  // Reset the masking register. This is done independent of the underlying
  // feature flag {FLAG_untrusted_code_mitigations} to make the snapshot work
  // with both configurations. It is safe to always do this, because the
  // underlying register is caller-saved and can be arbitrarily clobbered.
  __ ResetSpeculationPoisonRegister();

  // Clear c_entry_fp, like we do in `LeaveExitFrame`.
  {
    UseScratchRegisterScope temps(masm);
    __ Move(ip, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
                                          masm->isolate()));
    __ mov(r0, Operand::Zero());
    __ StoreU64(r0, MemOperand(ip));
  }

  // Compute the handler entry address and jump to it.
  ConstantPoolUnavailableScope constant_pool_unavailable(masm);
  __ Move(ip, pending_handler_entrypoint_address);
  __ LoadU64(ip, MemOperand(ip));
  if (FLAG_enable_embedded_constant_pool) {
    __ Move(kConstantPoolRegister, pending_handler_constant_pool_address);
    __ LoadU64(kConstantPoolRegister, MemOperand(kConstantPoolRegister));
  }
  __ Jump(ip);
}

void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
  Label out_of_range, only_low, negate, done, fastpath_done;
  Register result_reg = r3;

  HardAbortScope hard_abort(masm);  // Avoid calls to Abort.

  // Immediate values for this stub fit in instructions, so it's safe to use ip.
  Register scratch = GetRegisterThatIsNotOneOf(result_reg);
  Register scratch_low = GetRegisterThatIsNotOneOf(result_reg, scratch);
  Register scratch_high =
      GetRegisterThatIsNotOneOf(result_reg, scratch, scratch_low);
  DoubleRegister double_scratch = kScratchDoubleReg;

  __ Push(result_reg, scratch);
  // Account for saved regs.
  int argument_offset = 2 * kSystemPointerSize;

  // Load double input.
  __ lfd(double_scratch, MemOperand(sp, argument_offset));

  // Do fast-path convert from double to int.
  __ ConvertDoubleToInt64(double_scratch,
#if !V8_TARGET_ARCH_PPC64
                          scratch,
#endif
                          result_reg, d0);

// Test for overflow
#if V8_TARGET_ARCH_PPC64
  __ TestIfInt32(result_reg, r0);
#else
  __ TestIfInt32(scratch, result_reg, r0);
#endif
  __ beq(&fastpath_done);

  __ Push(scratch_high, scratch_low);
  // Account for saved regs.
  argument_offset += 2 * kSystemPointerSize;

  __ lwz(scratch_high,
         MemOperand(sp, argument_offset + Register::kExponentOffset));
  __ lwz(scratch_low,
         MemOperand(sp, argument_offset + Register::kMantissaOffset));

  __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask);
  // Load scratch with exponent - 1. This is faster than loading
  // with exponent because Bias + 1 = 1024 which is a *PPC* immediate value.
  STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
  __ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
  // If exponent is greater than or equal to 84, the 32 less significant
  // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
  // the result is 0.
  // Compare exponent with 84 (compare exponent - 1 with 83).
  __ cmpi(scratch, Operand(83));
  __ bge(&out_of_range);

  // If we reach this code, 31 <= exponent <= 83.
  // So, we don't have to handle cases where 0 <= exponent <= 20 for
  // which we would need to shift right the high part of the mantissa.
  // Scratch contains exponent - 1.
  // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
  __ subfic(scratch, scratch, Operand(51));
  __ cmpi(scratch, Operand::Zero());
  __ ble(&only_low);
  // 21 <= exponent <= 51, shift scratch_low and scratch_high
  // to generate the result.
  __ srw(scratch_low, scratch_low, scratch);
  // Scratch contains: 52 - exponent.
  // We needs: exponent - 20.
  // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
  __ subfic(scratch, scratch, Operand(32));
  __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask);
  // Set the implicit 1 before the mantissa part in scratch_high.
  STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16);
  __ oris(result_reg, result_reg,
          Operand(1 << ((HeapNumber::kMantissaBitsInTopWord)-16)));
  __ ShiftLeftU32(r0, result_reg, scratch);
  __ orx(result_reg, scratch_low, r0);
  __ b(&negate);

  __ bind(&out_of_range);
  __ mov(result_reg, Operand::Zero());
  __ b(&done);

  __ bind(&only_low);
  // 52 <= exponent <= 83, shift only scratch_low.
  // On entry, scratch contains: 52 - exponent.
  __ neg(scratch, scratch);
  __ ShiftLeftU32(result_reg, scratch_low, scratch);

  __ bind(&negate);
  // If input was positive, scratch_high ASR 31 equals 0 and
  // scratch_high LSR 31 equals zero.
  // New result = (result eor 0) + 0 = result.
  // If the input was negative, we have to negate the result.
  // Input_high ASR 31 equals 0xFFFFFFFF and scratch_high LSR 31 equals 1.
  // New result = (result eor 0xFFFFFFFF) + 1 = 0 - result.
  __ srawi(r0, scratch_high, 31);
#if V8_TARGET_ARCH_PPC64
  __ srdi(r0, r0, Operand(32));
#endif
  __ xor_(result_reg, result_reg, r0);
  __ srwi(r0, scratch_high, Operand(31));
  __ add(result_reg, result_reg, r0);

  __ bind(&done);
  __ Pop(scratch_high, scratch_low);
  // Account for saved regs.
  argument_offset -= 2 * kSystemPointerSize;

  __ bind(&fastpath_done);
  __ StoreU64(result_reg, MemOperand(sp, argument_offset));
  __ Pop(result_reg, scratch);

  __ Ret();
}

namespace {

static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
  return ref0.address() - ref1.address();
}


// Calls an API function.  Allocates HandleScope, extracts returned value
// from handle and propagates exceptions.  Restores context.  stack_space
// - space to be unwound on exit (includes the call JS arguments space and
// the additional space allocated for the fast call).
static void CallApiFunctionAndReturn(MacroAssembler* masm,
                                     Register function_address,
                                     ExternalReference thunk_ref,
                                     int stack_space,
                                     MemOperand* stack_space_operand,
                                     MemOperand return_value_operand) {
  Isolate* isolate = masm->isolate();
  ExternalReference next_address =
      ExternalReference::handle_scope_next_address(isolate);
  const int kNextOffset = 0;
  const int kLimitOffset = AddressOffset(
      ExternalReference::handle_scope_limit_address(isolate), next_address);
  const int kLevelOffset = AddressOffset(
      ExternalReference::handle_scope_level_address(isolate), next_address);

  // Additional parameter is the address of the actual callback.
  DCHECK(function_address == r4 || function_address == r5);
  Register scratch = r6;

  __ Move(scratch, ExternalReference::is_profiling_address(isolate));
  __ lbz(scratch, MemOperand(scratch, 0));
  __ cmpi(scratch, Operand::Zero());

  if (CpuFeatures::IsSupported(PPC_7_PLUS)) {
    __ Move(scratch, thunk_ref);
    __ isel(eq, scratch, function_address, scratch);
  } else {
    Label profiler_enabled, end_profiler_check;
    __ bne(&profiler_enabled);
    __ Move(scratch, ExternalReference::address_of_runtime_stats_flag());
    __ lwz(scratch, MemOperand(scratch, 0));
    __ cmpi(scratch, Operand::Zero());
    __ bne(&profiler_enabled);
    {
      // Call the api function directly.
      __ mr(scratch, function_address);
      __ b(&end_profiler_check);
    }
    __ bind(&profiler_enabled);
    {
      // Additional parameter is the address of the actual callback.
      __ Move(scratch, thunk_ref);
    }
    __ bind(&end_profiler_check);
  }

  // Allocate HandleScope in callee-save registers.
  // r17 - next_address
  // r14 - next_address->kNextOffset
  // r15 - next_address->kLimitOffset
  // r16 - next_address->kLevelOffset
  __ Move(r17, next_address);
  __ LoadU64(r14, MemOperand(r17, kNextOffset));
  __ LoadU64(r15, MemOperand(r17, kLimitOffset));
  __ lwz(r16, MemOperand(r17, kLevelOffset));
  __ addi(r16, r16, Operand(1));
  __ stw(r16, MemOperand(r17, kLevelOffset));

  __ StoreReturnAddressAndCall(scratch);

  Label promote_scheduled_exception;
  Label delete_allocated_handles;
  Label leave_exit_frame;
  Label return_value_loaded;

  // load value from ReturnValue
  __ LoadU64(r3, return_value_operand);
  __ bind(&return_value_loaded);
  // No more valid handles (the result handle was the last one). Restore
  // previous handle scope.
  __ StoreU64(r14, MemOperand(r17, kNextOffset));
  if (FLAG_debug_code) {
    __ lwz(r4, MemOperand(r17, kLevelOffset));
    __ CmpS64(r4, r16);
    __ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall);
  }
  __ subi(r16, r16, Operand(1));
  __ stw(r16, MemOperand(r17, kLevelOffset));
  __ LoadU64(r0, MemOperand(r17, kLimitOffset));
  __ CmpS64(r15, r0);
  __ bne(&delete_allocated_handles);

  // Leave the API exit frame.
  __ bind(&leave_exit_frame);
  // LeaveExitFrame expects unwind space to be in a register.
  if (stack_space_operand != nullptr) {
    __ LoadU64(r14, *stack_space_operand);
  } else {
    __ mov(r14, Operand(stack_space));
  }
  __ LeaveExitFrame(false, r14, stack_space_operand != nullptr);

  // Check if the function scheduled an exception.
  __ LoadRoot(r14, RootIndex::kTheHoleValue);
  __ Move(r15, ExternalReference::scheduled_exception_address(isolate));
  __ LoadU64(r15, MemOperand(r15));
  __ CmpS64(r14, r15);
  __ bne(&promote_scheduled_exception);

  __ blr();

  // Re-throw by promoting a scheduled exception.
  __ bind(&promote_scheduled_exception);
  __ TailCallRuntime(Runtime::kPromoteScheduledException);

  // HandleScope limit has changed. Delete allocated extensions.
  __ bind(&delete_allocated_handles);
  __ StoreU64(r15, MemOperand(r17, kLimitOffset));
  __ mr(r14, r3);
  __ PrepareCallCFunction(1, r15);
  __ Move(r3, ExternalReference::isolate_address(isolate));
  __ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1);
  __ mr(r3, r14);
  __ b(&leave_exit_frame);
}

}  // namespace

void Builtins::Generate_CallApiCallback(MacroAssembler* masm) {
  // ----------- S t a t e -------------
  //  -- cp                  : context
  //  -- r4                  : api function address
  //  -- r5                  : arguments count (not including the receiver)
  //  -- r6                  : call data
  //  -- r3                  : holder
  //  -- sp[0]               : receiver
  //  -- sp[8]               : first argument
  //  -- ...
  //  -- sp[(argc) * 8]      : last argument
  // -----------------------------------

  Register api_function_address = r4;
  Register argc = r5;
  Register call_data = r6;
  Register holder = r3;
  Register scratch = r7;
  DCHECK(!AreAliased(api_function_address, argc, call_data, holder, scratch));

  using FCA = FunctionCallbackArguments;

  STATIC_ASSERT(FCA::kArgsLength == 6);
  STATIC_ASSERT(FCA::kNewTargetIndex == 5);
  STATIC_ASSERT(FCA::kDataIndex == 4);
  STATIC_ASSERT(FCA::kReturnValueOffset == 3);
  STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
  STATIC_ASSERT(FCA::kIsolateIndex == 1);
  STATIC_ASSERT(FCA::kHolderIndex == 0);

  // Set up FunctionCallbackInfo's implicit_args on the stack as follows:
  //
  // Target state:
  //   sp[0 * kSystemPointerSize]: kHolder
  //   sp[1 * kSystemPointerSize]: kIsolate
  //   sp[2 * kSystemPointerSize]: undefined (kReturnValueDefaultValue)
  //   sp[3 * kSystemPointerSize]: undefined (kReturnValue)
  //   sp[4 * kSystemPointerSize]: kData
  //   sp[5 * kSystemPointerSize]: undefined (kNewTarget)

  // Reserve space on the stack.
  __ subi(sp, sp, Operand(FCA::kArgsLength * kSystemPointerSize));

  // kHolder.
  __ StoreU64(holder, MemOperand(sp, 0 * kSystemPointerSize));

  // kIsolate.
  __ Move(scratch, ExternalReference::isolate_address(masm->isolate()));
  __ StoreU64(scratch, MemOperand(sp, 1 * kSystemPointerSize));

  // kReturnValueDefaultValue and kReturnValue.
  __ LoadRoot(scratch, RootIndex::kUndefinedValue);
  __ StoreU64(scratch, MemOperand(sp, 2 * kSystemPointerSize));
  __ StoreU64(scratch, MemOperand(sp, 3 * kSystemPointerSize));

  // kData.
  __ StoreU64(call_data, MemOperand(sp, 4 * kSystemPointerSize));

  // kNewTarget.
  __ StoreU64(scratch, MemOperand(sp, 5 * kSystemPointerSize));

  // Keep a pointer to kHolder (= implicit_args) in a scratch register.
  // We use it below to set up the FunctionCallbackInfo object.
  __ mr(scratch, sp);

  // Allocate the v8::Arguments structure in the arguments' space since
  // it's not controlled by GC.
  // PPC LINUX ABI:
  //
  // Create 4 extra slots on stack:
  //    [0] space for DirectCEntryStub's LR save
  //    [1-3] FunctionCallbackInfo
  //    [4] number of bytes to drop from the stack after returning
  static constexpr int kApiStackSpace = 5;
  static constexpr bool kDontSaveDoubles = false;

  FrameScope frame_scope(masm, StackFrame::MANUAL);
  __ EnterExitFrame(kDontSaveDoubles, kApiStackSpace);

  // FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above).
  // Arguments are after the return address (pushed by EnterExitFrame()).
  __ StoreU64(scratch, MemOperand(sp, (kStackFrameExtraParamSlot + 1) *
                                          kSystemPointerSize));

  // FunctionCallbackInfo::values_ (points at the first varargs argument passed
  // on the stack).
  __ addi(scratch, scratch,
          Operand((FCA::kArgsLength + 1) * kSystemPointerSize));
  __ StoreU64(scratch, MemOperand(sp, (kStackFrameExtraParamSlot + 2) *
                                          kSystemPointerSize));

  // FunctionCallbackInfo::length_.
  __ stw(argc,
         MemOperand(sp, (kStackFrameExtraParamSlot + 3) * kSystemPointerSize));

  // We also store the number of bytes to drop from the stack after returning
  // from the API function here.
  __ mov(scratch,
         Operand((FCA::kArgsLength + 1 /* receiver */) * kSystemPointerSize));
  __ ShiftLeftU64(ip, argc, Operand(kSystemPointerSizeLog2));
  __ add(scratch, scratch, ip);
  __ StoreU64(scratch, MemOperand(sp, (kStackFrameExtraParamSlot + 4) *
                                          kSystemPointerSize));

  // v8::InvocationCallback's argument.
  __ addi(r3, sp,
          Operand((kStackFrameExtraParamSlot + 1) * kSystemPointerSize));

  ExternalReference thunk_ref = ExternalReference::invoke_function_callback();

  // There are two stack slots above the arguments we constructed on the stack.
  // TODO(jgruber): Document what these arguments are.
  static constexpr int kStackSlotsAboveFCA = 2;
  MemOperand return_value_operand(
      fp, (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kSystemPointerSize);

  static constexpr int kUseStackSpaceOperand = 0;
  MemOperand stack_space_operand(
      sp, (kStackFrameExtraParamSlot + 4) * kSystemPointerSize);

  AllowExternalCallThatCantCauseGC scope(masm);
  CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
                           kUseStackSpaceOperand, &stack_space_operand,
                           return_value_operand);
}


void Builtins::Generate_CallApiGetter(MacroAssembler* masm) {
  int arg0Slot = 0;
  int accessorInfoSlot = 0;
  int apiStackSpace = 0;
  // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
  // name below the exit frame to make GC aware of them.
  STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
  STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
  STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
  STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
  STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
  STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);

  Register receiver = ApiGetterDescriptor::ReceiverRegister();
  Register holder = ApiGetterDescriptor::HolderRegister();
  Register callback = ApiGetterDescriptor::CallbackRegister();
  Register scratch = r7;
  DCHECK(!AreAliased(receiver, holder, callback, scratch));

  Register api_function_address = r5;

  __ push(receiver);
  // Push data from AccessorInfo.
  __ LoadAnyTaggedField(
      scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset), r0);
  __ push(scratch);
  __ LoadRoot(scratch, RootIndex::kUndefinedValue);
  __ Push(scratch, scratch);
  __ Move(scratch, ExternalReference::isolate_address(masm->isolate()));
  __ Push(scratch, holder);
  __ Push(Smi::zero());  // should_throw_on_error -> false
  __ LoadTaggedPointerField(
      scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset), r0);
  __ push(scratch);

  // v8::PropertyCallbackInfo::args_ array and name handle.
  const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;

  // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
  __ mr(r3, sp);                               // r3 = Handle<Name>
  __ addi(r4, r3, Operand(1 * kSystemPointerSize));  // r4 = v8::PCI::args_

  // If ABI passes Handles (pointer-sized struct) in a register:
  //
  // Create 2 extra slots on stack:
  //    [0] space for DirectCEntryStub's LR save
  //    [1] AccessorInfo&
  //
  // Otherwise:
  //
  // Create 3 extra slots on stack:
  //    [0] space for DirectCEntryStub's LR save
  //    [1] copy of Handle (first arg)
  //    [2] AccessorInfo&
  if (ABI_PASSES_HANDLES_IN_REGS) {
    accessorInfoSlot = kStackFrameExtraParamSlot + 1;
    apiStackSpace = 2;
  } else {
    arg0Slot = kStackFrameExtraParamSlot + 1;
    accessorInfoSlot = arg0Slot + 1;
    apiStackSpace = 3;
  }

  FrameScope frame_scope(masm, StackFrame::MANUAL);
  __ EnterExitFrame(false, apiStackSpace);

  if (!ABI_PASSES_HANDLES_IN_REGS) {
    // pass 1st arg by reference
    __ StoreU64(r3, MemOperand(sp, arg0Slot * kSystemPointerSize));
    __ addi(r3, sp, Operand(arg0Slot * kSystemPointerSize));
  }

  // Create v8::PropertyCallbackInfo object on the stack and initialize
  // it's args_ field.
  __ StoreU64(r4, MemOperand(sp, accessorInfoSlot * kSystemPointerSize));
  __ addi(r4, sp, Operand(accessorInfoSlot * kSystemPointerSize));
  // r4 = v8::PropertyCallbackInfo&

  ExternalReference thunk_ref =
      ExternalReference::invoke_accessor_getter_callback();

  __ LoadTaggedPointerField(
      scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset), r0);
  __ LoadU64(api_function_address,
             FieldMemOperand(scratch, Foreign::kForeignAddressOffset), r0);

  // +3 is to skip prolog, return address and name handle.
  MemOperand return_value_operand(
      fp,
      (PropertyCallbackArguments::kReturnValueOffset + 3) * kSystemPointerSize);
  MemOperand* const kUseStackSpaceConstant = nullptr;
  CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
                           kStackUnwindSpace, kUseStackSpaceConstant,
                           return_value_operand);
}

void Builtins::Generate_DirectCEntry(MacroAssembler* masm) {
  UseScratchRegisterScope temps(masm);
  Register temp2 = temps.Acquire();
  // Place the return address on the stack, making the call
  // GC safe. The RegExp backend also relies on this.
  __ mflr(r0);
  __ StoreU64(r0,
              MemOperand(sp, kStackFrameExtraParamSlot * kSystemPointerSize));

  if (ABI_USES_FUNCTION_DESCRIPTORS) {
    // AIX/PPC64BE Linux use a function descriptor;
    __ LoadU64(ToRegister(ABI_TOC_REGISTER),
               MemOperand(temp2, kSystemPointerSize));
    __ LoadU64(temp2, MemOperand(temp2, 0));  // Instruction address
  }

  __ Call(temp2);  // Call the C++ function.
  __ LoadU64(r0,
             MemOperand(sp, kStackFrameExtraParamSlot * kSystemPointerSize));
  __ mtlr(r0);
  __ blr();
}

namespace {

// This code tries to be close to ia32 code so that any changes can be
// easily ported.
void Generate_DeoptimizationEntry(MacroAssembler* masm,
                                  DeoptimizeKind deopt_kind) {
  Isolate* isolate = masm->isolate();

  // Unlike on ARM we don't save all the registers, just the useful ones.
  // For the rest, there are gaps on the stack, so the offsets remain the same.
  const int kNumberOfRegisters = Register::kNumRegisters;

  RegList restored_regs = kJSCallerSaved | kCalleeSaved;
  RegList saved_regs = restored_regs | sp.bit();

  const int kDoubleRegsSize = kDoubleSize * DoubleRegister::kNumRegisters;

  // Save all double registers before messing with them.
  __ subi(sp, sp, Operand(kDoubleRegsSize));
  const RegisterConfiguration* config = RegisterConfiguration::Default();
  for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
    int code = config->GetAllocatableDoubleCode(i);
    const DoubleRegister dreg = DoubleRegister::from_code(code);
    int offset = code * kDoubleSize;
    __ stfd(dreg, MemOperand(sp, offset));
  }

  // Push saved_regs (needed to populate FrameDescription::registers_).
  // Leave gaps for other registers.
  __ subi(sp, sp, Operand(kNumberOfRegisters * kSystemPointerSize));
  for (int16_t i = kNumberOfRegisters - 1; i >= 0; i--) {
    if ((saved_regs & (1 << i)) != 0) {
      __ StoreU64(ToRegister(i), MemOperand(sp, kSystemPointerSize * i));
    }
  }
  {
    UseScratchRegisterScope temps(masm);
    Register scratch = temps.Acquire();
    __ Move(scratch, ExternalReference::Create(
                         IsolateAddressId::kCEntryFPAddress, isolate));
    __ StoreU64(fp, MemOperand(scratch));
  }
  const int kSavedRegistersAreaSize =
      (kNumberOfRegisters * kSystemPointerSize) + kDoubleRegsSize;

  __ mov(r5, Operand(Deoptimizer::kFixedExitSizeMarker));
  // Get the address of the location in the code object (r6) (return
  // address for lazy deoptimization) and compute the fp-to-sp delta in
  // register r7.
  __ mflr(r6);
  __ addi(r7, sp, Operand(kSavedRegistersAreaSize));
  __ sub(r7, fp, r7);

  // Allocate a new deoptimizer object.
  // Pass six arguments in r3 to r8.
  __ PrepareCallCFunction(6, r8);
  __ li(r3, Operand::Zero());
  Label context_check;
  __ LoadU64(r4,
             MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset));
  __ JumpIfSmi(r4, &context_check);
  __ LoadU64(r3, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
  __ bind(&context_check);
  __ li(r4, Operand(static_cast<int>(deopt_kind)));
  // r5: bailout id already loaded.
  // r6: code address or 0 already loaded.
  // r7: Fp-to-sp delta.
  __ Move(r8, ExternalReference::isolate_address(isolate));
  // Call Deoptimizer::New().
  {
    AllowExternalCallThatCantCauseGC scope(masm);
    __ CallCFunction(ExternalReference::new_deoptimizer_function(), 6);
  }

  // Preserve "deoptimizer" object in register r3 and get the input
  // frame descriptor pointer to r4 (deoptimizer->input_);
  __ LoadU64(r4, MemOperand(r3, Deoptimizer::input_offset()));

  // Copy core registers into FrameDescription::registers_[kNumRegisters].
  DCHECK_EQ(Register::kNumRegisters, kNumberOfRegisters);
  for (int i = 0; i < kNumberOfRegisters; i++) {
    int offset =
        (i * kSystemPointerSize) + FrameDescription::registers_offset();
    __ LoadU64(r5, MemOperand(sp, i * kSystemPointerSize));
    __ StoreU64(r5, MemOperand(r4, offset));
  }

  int double_regs_offset = FrameDescription::double_registers_offset();
  // Copy double registers to
  // double_registers_[DoubleRegister::kNumRegisters]
  for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
    int code = config->GetAllocatableDoubleCode(i);
    int dst_offset = code * kDoubleSize + double_regs_offset;
    int src_offset =
        code * kDoubleSize + kNumberOfRegisters * kSystemPointerSize;
    __ lfd(d0, MemOperand(sp, src_offset));
    __ stfd(d0, MemOperand(r4, dst_offset));
  }

  // Mark the stack as not iterable for the CPU profiler which won't be able to
  // walk the stack without the return address.
  {
    UseScratchRegisterScope temps(masm);
    Register is_iterable = temps.Acquire();
    Register zero = r7;
    __ Move(is_iterable, ExternalReference::stack_is_iterable_address(isolate));
    __ li(zero, Operand(0));
    __ stb(zero, MemOperand(is_iterable));
  }

  // Remove the saved registers from the stack.
  __ addi(sp, sp, Operand(kSavedRegistersAreaSize));

  // Compute a pointer to the unwinding limit in register r5; that is
  // the first stack slot not part of the input frame.
  __ LoadU64(r5, MemOperand(r4, FrameDescription::frame_size_offset()));
  __ add(r5, r5, sp);

  // Unwind the stack down to - but not including - the unwinding
  // limit and copy the contents of the activation frame to the input
  // frame description.
  __ addi(r6, r4, Operand(FrameDescription::frame_content_offset()));
  Label pop_loop;
  Label pop_loop_header;
  __ b(&pop_loop_header);
  __ bind(&pop_loop);
  __ pop(r7);
  __ StoreU64(r7, MemOperand(r6, 0));
  __ addi(r6, r6, Operand(kSystemPointerSize));
  __ bind(&pop_loop_header);
  __ CmpS64(r5, sp);
  __ bne(&pop_loop);

  // Compute the output frame in the deoptimizer.
  __ push(r3);  // Preserve deoptimizer object across call.
  // r3: deoptimizer object; r4: scratch.
  __ PrepareCallCFunction(1, r4);
  // Call Deoptimizer::ComputeOutputFrames().
  {
    AllowExternalCallThatCantCauseGC scope(masm);
    __ CallCFunction(ExternalReference::compute_output_frames_function(), 1);
  }
  __ pop(r3);  // Restore deoptimizer object (class Deoptimizer).

  __ LoadU64(sp, MemOperand(r3, Deoptimizer::caller_frame_top_offset()));

  // Replace the current (input) frame with the output frames.
  Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header;
  // Outer loop state: r7 = current "FrameDescription** output_",
  // r4 = one past the last FrameDescription**.
  __ lwz(r4, MemOperand(r3, Deoptimizer::output_count_offset()));
  __ LoadU64(r7,
             MemOperand(r3, Deoptimizer::output_offset()));  // r7 is output_.
  __ ShiftLeftU64(r4, r4, Operand(kSystemPointerSizeLog2));
  __ add(r4, r7, r4);
  __ b(&outer_loop_header);

  __ bind(&outer_push_loop);
  // Inner loop state: r5 = current FrameDescription*, r6 = loop index.
  __ LoadU64(r5, MemOperand(r7, 0));  // output_[ix]
  __ LoadU64(r6, MemOperand(r5, FrameDescription::frame_size_offset()));
  __ b(&inner_loop_header);

  __ bind(&inner_push_loop);
  __ addi(r6, r6, Operand(-sizeof(intptr_t)));
  __ add(r9, r5, r6);
  __ LoadU64(r9, MemOperand(r9, FrameDescription::frame_content_offset()));
  __ push(r9);

  __ bind(&inner_loop_header);
  __ cmpi(r6, Operand::Zero());
  __ bne(&inner_push_loop);  // test for gt?

  __ addi(r7, r7, Operand(kSystemPointerSize));
  __ bind(&outer_loop_header);
  __ CmpS64(r7, r4);
  __ blt(&outer_push_loop);

  __ LoadU64(r4, MemOperand(r3, Deoptimizer::input_offset()));
  for (int i = 0; i < config->num_allocatable_double_registers(); ++i) {
    int code = config->GetAllocatableDoubleCode(i);
    const DoubleRegister dreg = DoubleRegister::from_code(code);
    int src_offset = code * kDoubleSize + double_regs_offset;
    __ lfd(dreg, MemOperand(r4, src_offset));
  }

  // Push pc, and continuation from the last output frame.
  __ LoadU64(r9, MemOperand(r5, FrameDescription::pc_offset()));
  __ push(r9);
  __ LoadU64(r9, MemOperand(r5, FrameDescription::continuation_offset()));
  __ push(r9);

  // Restore the registers from the last output frame.
  {
    UseScratchRegisterScope temps(masm);
    Register scratch = temps.Acquire();
    DCHECK(!(scratch.bit() & restored_regs));
    __ mr(scratch, r5);
    for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
      int offset =
          (i * kSystemPointerSize) + FrameDescription::registers_offset();
      if ((restored_regs & (1 << i)) != 0) {
        __ LoadU64(ToRegister(i), MemOperand(scratch, offset));
      }
    }
  }

  {
    UseScratchRegisterScope temps(masm);
    Register is_iterable = temps.Acquire();
    Register one = r7;
    __ Move(is_iterable, ExternalReference::stack_is_iterable_address(isolate));
    __ li(one, Operand(1));
    __ stb(one, MemOperand(is_iterable));
  }

  {
    UseScratchRegisterScope temps(masm);
    Register scratch = temps.Acquire();
    __ pop(scratch);  // get continuation, leave pc on stack
    __ pop(r0);
    __ mtlr(r0);
    __ Jump(scratch);
  }

  __ stop();
}

}  // namespace

void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) {
  Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager);
}

void Builtins::Generate_DeoptimizationEntry_Soft(MacroAssembler* masm) {
  Generate_DeoptimizationEntry(masm, DeoptimizeKind::kSoft);
}

void Builtins::Generate_DeoptimizationEntry_Bailout(MacroAssembler* masm) {
  Generate_DeoptimizationEntry(masm, DeoptimizeKind::kBailout);
}

void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) {
  Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy);
}

void Builtins::Generate_BaselineOrInterpreterEnterAtBytecode(
    MacroAssembler* masm) {
  // Implement on this platform, https://crrev.com/c/2695591.
  __ bkpt(0);
}

void Builtins::Generate_BaselineOrInterpreterEnterAtNextBytecode(
    MacroAssembler* masm) {
  // Implement on this platform, https://crrev.com/c/2695591.
  __ bkpt(0);
}

void Builtins::Generate_InterpreterOnStackReplacement_ToBaseline(
    MacroAssembler* masm) {
  // Implement on this platform, https://crrev.com/c/2800112.
  __ bkpt(0);
}

void Builtins::Generate_DynamicCheckMapsTrampoline(MacroAssembler* masm) {
  Generate_DynamicCheckMapsTrampoline<DynamicCheckMapsDescriptor>(
      masm, BUILTIN_CODE(masm->isolate(), DynamicCheckMaps));
}

void Builtins::Generate_DynamicCheckMapsWithFeedbackVectorTrampoline(
    MacroAssembler* masm) {
  Generate_DynamicCheckMapsTrampoline<
      DynamicCheckMapsWithFeedbackVectorDescriptor>(
      masm, BUILTIN_CODE(masm->isolate(), DynamicCheckMapsWithFeedbackVector));
}

template <class Descriptor>
void Builtins::Generate_DynamicCheckMapsTrampoline(
    MacroAssembler* masm, Handle<Code> builtin_target) {
  FrameScope scope(masm, StackFrame::MANUAL);
  __ EnterFrame(StackFrame::INTERNAL);

  // Only save the registers that the DynamicCheckMaps builtin can clobber.
  Descriptor descriptor;
  RegList registers = descriptor.allocatable_registers();
  // FLAG_debug_code is enabled CSA checks will call C function and so we need
  // to save all CallerSaved registers too.
  if (FLAG_debug_code) registers |= kJSCallerSaved;
  __ MaybeSaveRegisters(registers);

  // Load the immediate arguments from the deopt exit to pass to the builtin.
  Register slot_arg = descriptor.GetRegisterParameter(Descriptor::kSlot);
  Register handler_arg = descriptor.GetRegisterParameter(Descriptor::kHandler);
  __ LoadU64(handler_arg,
             MemOperand(fp, CommonFrameConstants::kCallerPCOffset));
  __ LoadU64(
      slot_arg,
      MemOperand(handler_arg, Deoptimizer::kEagerWithResumeImmedArgs1PcOffset));
  __ LoadU64(
      handler_arg,
      MemOperand(handler_arg, Deoptimizer::kEagerWithResumeImmedArgs2PcOffset));

  __ Call(builtin_target, RelocInfo::CODE_TARGET);

  Label deopt, bailout;
  __ cmpi(r3, Operand(static_cast<int>(DynamicCheckMapsStatus::kSuccess)));
  __ bne(&deopt);

  __ MaybeRestoreRegisters(registers);
  __ LeaveFrame(StackFrame::INTERNAL);
  __ Ret();

  __ bind(&deopt);
  __ cmpi(r3, Operand(static_cast<int>(DynamicCheckMapsStatus::kBailout)));
  __ beq(&bailout);

  if (FLAG_debug_code) {
    __ cmpi(r3, Operand(static_cast<int>(DynamicCheckMapsStatus::kDeopt)));
    __ Assert(eq, AbortReason::kUnexpectedDynamicCheckMapsStatus);
  }
  __ MaybeRestoreRegisters(registers);
  __ LeaveFrame(StackFrame::INTERNAL);
  Handle<Code> deopt_eager = masm->isolate()->builtins()->code_handle(
      Deoptimizer::GetDeoptimizationEntry(DeoptimizeKind::kEager));
  __ Jump(deopt_eager, RelocInfo::CODE_TARGET);

  __ bind(&bailout);
  __ MaybeRestoreRegisters(registers);
  __ LeaveFrame(StackFrame::INTERNAL);
  Handle<Code> deopt_bailout = masm->isolate()->builtins()->code_handle(
      Deoptimizer::GetDeoptimizationEntry(DeoptimizeKind::kBailout));
  __ Jump(deopt_bailout, RelocInfo::CODE_TARGET);
}

#undef __
}  // namespace internal
}  // namespace v8

#endif  // V8_TARGET_ARCH_PPC64 || V8_TARGET_ARCH_PPC64