1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
|
// Copyright 2019 the V8 project authors. All rights reserved. Use of this
// source code is governed by a BSD-style license that can be found in the
// LICENSE file.
#include 'src/ic/binary-op-assembler.h'
extern enum Operation extends uint31 {
// Binary operations.
kAdd,
kSubtract,
kMultiply,
kDivide,
kModulus,
kExponentiate,
kBitwiseAnd,
kBitwiseOr,
kBitwiseXor,
kShiftLeft,
kShiftRight,
kShiftRightLogical,
// Unary operations.
kBitwiseNot,
kNegate,
kIncrement,
kDecrement,
// Compare operations.
kEqual,
kStrictEqual,
kLessThan,
kLessThanOrEqual,
kGreaterThan,
kGreaterThanOrEqual
}
namespace runtime {
extern transitioning runtime
DoubleToStringWithRadix(implicit context: Context)(Number, Number): String;
extern transitioning runtime StringParseFloat(implicit context: Context)(
String): Number;
extern transitioning runtime StringParseInt(implicit context: Context)(
JSAny, JSAny): Number;
extern runtime BigIntUnaryOp(Context, BigInt, SmiTagged<Operation>): BigInt;
extern runtime BigIntBinaryOp(
Context, Numeric, Numeric, SmiTagged<Operation>): BigInt;
} // namespace runtime
namespace number {
extern macro NaNStringConstant(): String;
extern macro ZeroStringConstant(): String;
extern macro InfinityStringConstant(): String;
extern macro MinusInfinityStringConstant(): String;
const kAsciiZero: constexpr int32 = 48; // '0' (ascii)
const kAsciiLowerCaseA: constexpr int32 = 97; // 'a' (ascii)
transitioning macro ThisNumberValue(implicit context: Context)(
receiver: JSAny, method: constexpr string): Number {
return UnsafeCast<Number>(
ToThisValue(receiver, PrimitiveType::kNumber, method));
}
macro ToCharCode(input: int32): char8 {
dcheck(0 <= input && input < 36);
return input < 10 ?
%RawDownCast<char8>(Unsigned(input + kAsciiZero)) :
%RawDownCast<char8>(Unsigned(input - 10 + kAsciiLowerCaseA));
}
@export
macro NumberToStringSmi(x: int32, radix: int32): String labels Slow {
const isNegative: bool = x < 0;
let n: int32 = x;
if (!isNegative) {
// Fast case where the result is a one character string.
if (x < radix) {
return StringFromSingleCharCode(ToCharCode(n));
}
} else {
dcheck(isNegative);
if (n == kMinInt32) {
goto Slow;
}
n = 0 - n;
}
// Calculate length and pre-allocate the result string.
let temp: int32 = n;
let length: int32 = isNegative ? 1 : 0;
while (temp > 0) {
temp = temp / radix;
length = length + 1;
}
dcheck(length > 0);
const strSeq = AllocateNonEmptySeqOneByteString(Unsigned(length));
let cursor: intptr = Convert<intptr>(length) - 1;
while (n > 0) {
const digit: int32 = n % radix;
n = n / radix;
*UnsafeConstCast(&strSeq.chars[cursor]) = ToCharCode(digit);
cursor = cursor - 1;
}
if (isNegative) {
dcheck(cursor == 0);
// Insert '-' to result.
*UnsafeConstCast(&strSeq.chars[0]) = 45;
} else {
dcheck(cursor == -1);
// In sync with Factory::SmiToString: If radix = 10 and positive number,
// update hash for string.
if (radix == 10) {
dcheck(strSeq.raw_hash_field == kNameEmptyHashField);
strSeq.raw_hash_field = MakeArrayIndexHash(Unsigned(x), Unsigned(length));
}
}
return strSeq;
}
// https://tc39.github.io/ecma262/#sec-number.prototype.tostring
transitioning javascript builtin NumberPrototypeToString(
js-implicit context: NativeContext, receiver: JSAny)(...arguments): String {
// 1. Let x be ? thisNumberValue(this value).
const x = ThisNumberValue(receiver, 'Number.prototype.toString');
// 2. If radix is not present, let radixNumber be 10.
// 3. Else if radix is undefined, let radixNumber be 10.
// 4. Else, let radixNumber be ? ToInteger(radix).
const radix: JSAny = arguments[0];
const radixNumber: Number = radix == Undefined ? 10 : ToInteger_Inline(radix);
// 5. If radixNumber < 2 or radixNumber > 36, throw a RangeError exception.
if (radixNumber < 2 || radixNumber > 36) {
ThrowRangeError(MessageTemplate::kToRadixFormatRange);
}
// 6. If radixNumber = 10, return ! ToString(x).
if (radixNumber == 10) {
return NumberToString(x);
}
// 7. Return the String representation of this Number
// value using the radix specified by radixNumber.
if (TaggedIsSmi(x)) {
return NumberToStringSmi(Convert<int32>(x), Convert<int32>(radixNumber))
otherwise return runtime::DoubleToStringWithRadix(x, radixNumber);
}
if (x == -0) {
return ZeroStringConstant();
} else if (::NumberIsNaN(x)) {
return NaNStringConstant();
} else if (x == V8_INFINITY) {
return InfinityStringConstant();
} else if (x == MINUS_V8_INFINITY) {
return MinusInfinityStringConstant();
}
return runtime::DoubleToStringWithRadix(x, radixNumber);
}
// ES6 #sec-number.isfinite
javascript builtin NumberIsFinite(
js-implicit context: NativeContext,
receiver: JSAny)(value: JSAny): Boolean {
typeswitch (value) {
case (Smi): {
return True;
}
case (h: HeapNumber): {
const number: float64 = Convert<float64>(h);
const infiniteOrNaN: bool = Float64IsNaN(number - number);
return Convert<Boolean>(!infiniteOrNaN);
}
case (JSAnyNotNumber): {
return False;
}
}
}
// ES6 #sec-number.isinteger
javascript builtin NumberIsInteger(js-implicit context: NativeContext)(
value: JSAny): Boolean {
return SelectBooleanConstant(IsInteger(value));
}
// ES6 #sec-number.isnan
javascript builtin NumberIsNaN(js-implicit context: NativeContext)(
value: JSAny): Boolean {
typeswitch (value) {
case (Smi): {
return False;
}
case (h: HeapNumber): {
const number: float64 = Convert<float64>(h);
return Convert<Boolean>(Float64IsNaN(number));
}
case (JSAnyNotNumber): {
return False;
}
}
}
// ES6 #sec-number.issafeinteger
javascript builtin NumberIsSafeInteger(js-implicit context: NativeContext)(
value: JSAny): Boolean {
return SelectBooleanConstant(IsSafeInteger(value));
}
// ES6 #sec-number.prototype.valueof
transitioning javascript builtin NumberPrototypeValueOf(
js-implicit context: NativeContext, receiver: JSAny)(): JSAny {
return ToThisValue(
receiver, PrimitiveType::kNumber, 'Number.prototype.valueOf');
}
// ES6 #sec-number.parsefloat
transitioning javascript builtin NumberParseFloat(
js-implicit context: NativeContext)(value: JSAny): Number {
try {
typeswitch (value) {
case (s: Smi): {
return s;
}
case (h: HeapNumber): {
// The input is already a Number. Take care of -0.
// The sense of comparison is important for the NaN case.
return (Convert<float64>(h) == 0) ? SmiConstant(0) : h;
}
case (s: String): {
goto String(s);
}
case (HeapObject): {
goto String(string::ToString(context, value));
}
}
} label String(s: String) {
// Check if the string is a cached array index.
const hash: NameHash = s.raw_hash_field;
if (!hash.is_not_integer_index_mask &&
hash.array_index_length < kMaxCachedArrayIndexLength) {
const arrayIndex: uint32 = hash.array_index_value;
return SmiFromUint32(arrayIndex);
}
// Fall back to the runtime to convert string to a number.
return runtime::StringParseFloat(s);
}
}
extern macro TruncateFloat64ToWord32(float64): uint32;
transitioning builtin ParseInt(implicit context: Context)(
input: JSAny, radix: JSAny): Number {
try {
// Check if radix should be 10 (i.e. undefined, 0 or 10).
if (radix != Undefined && !TaggedEqual(radix, SmiConstant(10)) &&
!TaggedEqual(radix, SmiConstant(0))) {
goto CallRuntime;
}
typeswitch (input) {
case (s: Smi): {
return s;
}
case (h: HeapNumber): {
// Check if the input value is in Signed32 range.
const asFloat64: float64 = Convert<float64>(h);
const asInt32: int32 = Signed(TruncateFloat64ToWord32(asFloat64));
// The sense of comparison is important for the NaN case.
if (asFloat64 == ChangeInt32ToFloat64(asInt32)) goto Int32(asInt32);
// Check if the absolute value of input is in the [1,1<<31[ range. Call
// the runtime for the range [0,1[ because the result could be -0.
const kMaxAbsValue: float64 = 2147483648.0;
const absInput: float64 = math::Float64Abs(asFloat64);
if (absInput < kMaxAbsValue && absInput >= 1) goto Int32(asInt32);
goto CallRuntime;
}
case (s: String): {
goto String(s);
}
case (HeapObject): {
goto CallRuntime;
}
}
} label Int32(i: int32) {
return ChangeInt32ToTagged(i);
} label String(s: String) {
// Check if the string is a cached array index.
const hash: NameHash = s.raw_hash_field;
if (!hash.is_not_integer_index_mask &&
hash.array_index_length < kMaxCachedArrayIndexLength) {
const arrayIndex: uint32 = hash.array_index_value;
return SmiFromUint32(arrayIndex);
}
// Fall back to the runtime.
goto CallRuntime;
} label CallRuntime {
tail runtime::StringParseInt(input, radix);
}
}
// ES6 #sec-number.parseint
transitioning javascript builtin NumberParseInt(
js-implicit context: NativeContext)(value: JSAny, radix: JSAny): Number {
return ParseInt(value, radix);
}
extern builtin NonNumberToNumeric(implicit context: Context)(JSAny): Numeric;
extern builtin BitwiseXor(implicit context: Context)(Number, Number): Number;
extern builtin Subtract(implicit context: Context)(Number, Number): Number;
extern builtin Add(implicit context: Context)(Number, Number): Number;
extern builtin StringAddConvertLeft(implicit context: Context)(
JSAny, String): JSAny;
extern builtin StringAddConvertRight(implicit context: Context)(
String, JSAny): JSAny;
extern macro BitwiseOp(int32, int32, constexpr Operation): Number;
extern macro RelationalComparison(
constexpr Operation, JSAny, JSAny, Context): Boolean;
// TODO(bbudge) Use a simpler macro structure that doesn't loop when converting
// non-numbers, if such a code sequence doesn't make the builtin bigger.
transitioning macro ToNumericOrPrimitive(implicit context: Context)(
value: JSAny): JSAny {
typeswitch (value) {
case (v: JSReceiver): {
return NonPrimitiveToPrimitive_Default(context, v);
}
case (v: JSPrimitive): {
return NonNumberToNumeric(v);
}
}
}
transitioning builtin Add(implicit context: Context)(
leftArg: JSAny, rightArg: JSAny): JSAny {
let left: JSAny = leftArg;
let right: JSAny = rightArg;
try {
while (true) {
typeswitch (left) {
case (left: Smi): {
typeswitch (right) {
case (right: Smi): {
return math::TrySmiAdd(left, right) otherwise goto Float64s(
SmiToFloat64(left), SmiToFloat64(right));
}
case (right: HeapNumber): {
goto Float64s(SmiToFloat64(left), Convert<float64>(right));
}
case (right: BigInt): {
goto Numerics(left, right);
}
case (right: String): {
goto StringAddConvertLeft(left, right);
}
case (HeapObject): {
right = ToNumericOrPrimitive(right);
continue;
}
}
}
case (left: HeapNumber): {
typeswitch (right) {
case (right: Smi): {
goto Float64s(Convert<float64>(left), SmiToFloat64(right));
}
case (right: HeapNumber): {
goto Float64s(Convert<float64>(left), Convert<float64>(right));
}
case (right: BigInt): {
goto Numerics(left, right);
}
case (right: String): {
goto StringAddConvertLeft(left, right);
}
case (HeapObject): {
right = ToNumericOrPrimitive(right);
continue;
}
}
}
case (left: BigInt): {
typeswitch (right) {
case (right: Numeric): {
goto Numerics(left, right);
}
case (right: String): {
goto StringAddConvertLeft(left, right);
}
case (HeapObject): {
right = ToNumericOrPrimitive(right);
continue;
}
}
}
case (left: String): {
goto StringAddConvertRight(left, right);
}
case (leftReceiver: JSReceiver): {
left = ToPrimitiveDefault(leftReceiver);
}
case (HeapObject): {
// left: HeapObject
typeswitch (right) {
case (right: String): {
goto StringAddConvertLeft(left, right);
}
case (rightReceiver: JSReceiver): {
// left is JSPrimitive and right is JSReceiver, convert right
// with priority.
right = ToPrimitiveDefault(rightReceiver);
continue;
}
case (JSPrimitive): {
// Neither left or right is JSReceiver, convert left.
left = NonNumberToNumeric(left);
continue;
}
}
}
}
}
} label StringAddConvertLeft(left: JSAny, right: String) {
tail StringAddConvertLeft(left, right);
} label StringAddConvertRight(left: String, right: JSAny) {
tail StringAddConvertRight(left, right);
} label Numerics(left: Numeric, right: Numeric) {
tail bigint::BigIntAdd(left, right);
} label Float64s(left: float64, right: float64) {
return AllocateHeapNumberWithValue(left + right);
}
unreachable;
}
// Unary type switch on Number | BigInt.
macro UnaryOp1(implicit context: Context)(value: JSAny): never labels
Number(Number), BigInt(BigInt) {
let x: JSAny = value;
while (true) {
typeswitch (x) {
case (n: Number): {
goto Number(n);
}
case (b: BigInt): {
goto BigInt(b);
}
case (JSAnyNotNumeric): {
x = NonNumberToNumeric(x);
}
}
}
unreachable;
}
// Unary type switch on Smi | HeapNumber | BigInt.
macro UnaryOp2(implicit context: Context)(value: JSAny): never labels
Smi(Smi), HeapNumber(HeapNumber), BigInt(BigInt) {
let x: JSAny = value;
while (true) {
typeswitch (x) {
case (s: Smi): {
goto Smi(s);
}
case (h: HeapNumber): {
goto HeapNumber(h);
}
case (b: BigInt): {
goto BigInt(b);
}
case (JSAnyNotNumeric): {
x = NonNumberToNumeric(x);
}
}
}
unreachable;
}
// Binary type switch on Number | BigInt.
macro BinaryOp1(implicit context: Context)(
leftVal: JSAny, rightVal: JSAny): never labels
Number(Number, Number), AtLeastOneBigInt(Numeric, Numeric) {
let left: JSAny = leftVal;
let right: JSAny = rightVal;
while (true) {
try {
typeswitch (left) {
case (left: Number): {
typeswitch (right) {
case (right: Number): {
goto Number(left, right);
}
case (right: BigInt): {
goto AtLeastOneBigInt(left, right);
}
case (JSAnyNotNumeric): {
goto RightNotNumeric;
}
}
}
case (left: BigInt): {
typeswitch (right) {
case (right: Numeric): {
goto AtLeastOneBigInt(left, right);
}
case (JSAnyNotNumeric): {
goto RightNotNumeric;
}
}
}
case (JSAnyNotNumeric): {
left = NonNumberToNumeric(left);
}
}
} label RightNotNumeric {
right = NonNumberToNumeric(right);
}
}
unreachable;
}
// Binary type switch on Smi | HeapNumber | BigInt.
macro BinaryOp2(implicit context: Context)(leftVal: JSAny, rightVal: JSAny):
never labels Smis(Smi, Smi), Float64s(float64, float64),
AtLeastOneBigInt(Numeric, Numeric) {
let left: JSAny = leftVal;
let right: JSAny = rightVal;
while (true) {
try {
typeswitch (left) {
case (left: Smi): {
typeswitch (right) {
case (right: Smi): {
goto Smis(left, right);
}
case (right: HeapNumber): {
goto Float64s(SmiToFloat64(left), Convert<float64>(right));
}
case (right: BigInt): {
goto AtLeastOneBigInt(left, right);
}
case (JSAnyNotNumeric): {
goto RightNotNumeric;
}
}
}
case (left: HeapNumber): {
typeswitch (right) {
case (right: Smi): {
goto Float64s(Convert<float64>(left), SmiToFloat64(right));
}
case (right: HeapNumber): {
goto Float64s(Convert<float64>(left), Convert<float64>(right));
}
case (right: BigInt): {
goto AtLeastOneBigInt(left, right);
}
case (JSAnyNotNumeric): {
goto RightNotNumeric;
}
}
}
case (left: BigInt): {
typeswitch (right) {
case (right: Numeric): {
goto AtLeastOneBigInt(left, right);
}
case (JSAnyNotNumeric): {
goto RightNotNumeric;
}
}
}
case (JSAnyNotNumeric): {
left = NonNumberToNumeric(left);
}
}
} label RightNotNumeric {
right = NonNumberToNumeric(right);
}
}
unreachable;
}
builtin Subtract(implicit context: Context)(
left: JSAny, right: JSAny): Numeric {
try {
BinaryOp2(left, right) otherwise Smis, Float64s, AtLeastOneBigInt;
} label Smis(left: Smi, right: Smi) {
try {
return math::TrySmiSub(left, right) otherwise Overflow;
} label Overflow {
goto Float64s(SmiToFloat64(left), SmiToFloat64(right));
}
} label Float64s(left: float64, right: float64) {
return AllocateHeapNumberWithValue(left - right);
} label AtLeastOneBigInt(left: Numeric, right: Numeric) {
tail bigint::BigIntSubtract(left, right);
}
}
builtin Multiply(implicit context: Context)(
left: JSAny, right: JSAny): Numeric {
try {
BinaryOp2(left, right) otherwise Smis, Float64s, AtLeastOneBigInt;
} label Smis(left: Smi, right: Smi) {
// The result is not necessarily a smi, in case of overflow.
return SmiMul(left, right);
} label Float64s(left: float64, right: float64) {
return AllocateHeapNumberWithValue(left * right);
} label AtLeastOneBigInt(left: Numeric, right: Numeric) {
tail runtime::BigIntBinaryOp(
context, left, right, SmiTag<Operation>(Operation::kMultiply));
}
}
const kSmiValueSize: constexpr int32 generates 'kSmiValueSize';
const kMinInt32: constexpr int32 generates 'kMinInt';
const kMinInt31: constexpr int32 generates 'kMinInt31';
const kMinimumDividend: int32 = (kSmiValueSize == 32) ? kMinInt32 : kMinInt31;
builtin Divide(implicit context: Context)(left: JSAny, right: JSAny): Numeric {
try {
BinaryOp2(left, right) otherwise Smis, Float64s, AtLeastOneBigInt;
} label Smis(left: Smi, right: Smi) {
// TODO(jkummerow): Consider just always doing a double division.
// Bail out if {divisor} is zero.
if (right == 0) goto SmiBailout(left, right);
// Bail out if dividend is zero and divisor is negative.
if (left == 0 && right < 0) goto SmiBailout(left, right);
const dividend: int32 = SmiToInt32(left);
const divisor: int32 = SmiToInt32(right);
// Bail out if dividend is kMinInt31 (or kMinInt32 if Smis are 32 bits)
// and divisor is -1.
if (divisor == -1 && dividend == kMinimumDividend) {
goto SmiBailout(left, right);
}
// TODO(epertoso): consider adding a machine instruction that returns
// both the result and the remainder.
const result: int32 = dividend / divisor;
const truncated: int32 = result * divisor;
if (dividend != truncated) goto SmiBailout(left, right);
return SmiFromInt32(result);
} label SmiBailout(left: Smi, right: Smi) {
goto Float64s(SmiToFloat64(left), SmiToFloat64(right));
} label Float64s(left: float64, right: float64) {
return AllocateHeapNumberWithValue(left / right);
} label AtLeastOneBigInt(left: Numeric, right: Numeric) {
tail runtime::BigIntBinaryOp(
context, left, right, SmiTag<Operation>(Operation::kDivide));
}
}
builtin Modulus(implicit context: Context)(left: JSAny, right: JSAny): Numeric {
try {
BinaryOp2(left, right) otherwise Smis, Float64s, AtLeastOneBigInt;
} label Smis(left: Smi, right: Smi) {
return SmiMod(left, right);
} label Float64s(left: float64, right: float64) {
return AllocateHeapNumberWithValue(left % right);
} label AtLeastOneBigInt(left: Numeric, right: Numeric) {
tail runtime::BigIntBinaryOp(
context, left, right, SmiTag<Operation>(Operation::kModulus));
}
}
builtin Exponentiate(implicit context: Context)(
left: JSAny, right: JSAny): Numeric {
try {
BinaryOp1(left, right) otherwise Numbers, AtLeastOneBigInt;
} label Numbers(left: Number, right: Number) {
return math::MathPowImpl(left, right);
} label AtLeastOneBigInt(left: Numeric, right: Numeric) {
tail runtime::BigIntBinaryOp(
context, left, right, SmiTag<Operation>(Operation::kExponentiate));
}
}
builtin Negate(implicit context: Context)(value: JSAny): Numeric {
try {
UnaryOp2(value) otherwise Smi, HeapNumber, BigInt;
} label Smi(s: Smi) {
return SmiMul(s, -1);
} label HeapNumber(h: HeapNumber) {
return AllocateHeapNumberWithValue(Convert<float64>(h) * -1);
} label BigInt(b: BigInt) {
tail runtime::BigIntUnaryOp(
context, b, SmiTag<Operation>(Operation::kNegate));
}
}
builtin BitwiseNot(implicit context: Context)(value: JSAny): Numeric {
try {
UnaryOp1(value) otherwise Number, BigInt;
} label Number(n: Number) {
tail BitwiseXor(n, -1);
} label BigInt(b: BigInt) {
return runtime::BigIntUnaryOp(
context, b, SmiTag<Operation>(Operation::kBitwiseNot));
}
}
builtin Decrement(implicit context: Context)(value: JSAny): Numeric {
try {
UnaryOp1(value) otherwise Number, BigInt;
} label Number(n: Number) {
tail Subtract(n, 1);
} label BigInt(b: BigInt) {
return runtime::BigIntUnaryOp(
context, b, SmiTag<Operation>(Operation::kDecrement));
}
}
builtin Increment(implicit context: Context)(value: JSAny): Numeric {
try {
UnaryOp1(value) otherwise Number, BigInt;
} label Number(n: Number) {
tail Add(n, 1);
} label BigInt(b: BigInt) {
return runtime::BigIntUnaryOp(
context, b, SmiTag<Operation>(Operation::kIncrement));
}
}
// Bitwise binary operations.
extern macro BinaryOpAssembler::Generate_BitwiseBinaryOp(
constexpr Operation, JSAny, JSAny, Context): Object;
builtin ShiftLeft(implicit context: Context)(
left: JSAny, right: JSAny): Object {
return Generate_BitwiseBinaryOp(Operation::kShiftLeft, left, right, context);
}
builtin ShiftRight(implicit context: Context)(
left: JSAny, right: JSAny): Object {
return Generate_BitwiseBinaryOp(Operation::kShiftRight, left, right, context);
}
builtin ShiftRightLogical(implicit context: Context)(
left: JSAny, right: JSAny): Object {
return Generate_BitwiseBinaryOp(
Operation::kShiftRightLogical, left, right, context);
}
builtin BitwiseAnd(implicit context: Context)(
left: JSAny, right: JSAny): Object {
return Generate_BitwiseBinaryOp(Operation::kBitwiseAnd, left, right, context);
}
builtin BitwiseOr(implicit context: Context)(
left: JSAny, right: JSAny): Object {
return Generate_BitwiseBinaryOp(Operation::kBitwiseOr, left, right, context);
}
builtin BitwiseXor(implicit context: Context)(
left: JSAny, right: JSAny): Object {
return Generate_BitwiseBinaryOp(Operation::kBitwiseXor, left, right, context);
}
// Relational builtins.
builtin LessThan(implicit context: Context)(left: JSAny, right: JSAny): Object {
return RelationalComparison(Operation::kLessThan, left, right, context);
}
builtin LessThanOrEqual(implicit context: Context)(
left: JSAny, right: JSAny): Object {
return RelationalComparison(
Operation::kLessThanOrEqual, left, right, context);
}
builtin GreaterThan(implicit context: Context)(
left: JSAny, right: JSAny): Object {
return RelationalComparison(Operation::kGreaterThan, left, right, context);
}
builtin GreaterThanOrEqual(implicit context: Context)(
left: JSAny, right: JSAny): Object {
return RelationalComparison(
Operation::kGreaterThanOrEqual, left, right, context);
}
builtin Equal(implicit context: Context)(left: JSAny, right: JSAny): Object {
return Equal(left, right, context);
}
builtin StrictEqual(implicit context: Context)(
left: JSAny, right: JSAny): Object {
return ::StrictEqual(left, right);
}
} // namespace number
|