summaryrefslogtreecommitdiff
path: root/chromium/v8/include/v8-platform.h
blob: fc9a357feb66cb0625a37dbc208af745ca9e54bb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_V8_PLATFORM_H_
#define V8_V8_PLATFORM_H_

#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>  // For abort.
#include <memory>
#include <string>

#include "v8config.h"  // NOLINT(build/include_directory)

namespace v8 {

class Isolate;

// Valid priorities supported by the task scheduling infrastructure.
enum class TaskPriority : uint8_t {
  /**
   * Best effort tasks are not critical for performance of the application. The
   * platform implementation should preempt such tasks if higher priority tasks
   * arrive.
   */
  kBestEffort,
  /**
   * User visible tasks are long running background tasks that will
   * improve performance and memory usage of the application upon completion.
   * Example: background compilation and garbage collection.
   */
  kUserVisible,
  /**
   * User blocking tasks are highest priority tasks that block the execution
   * thread (e.g. major garbage collection). They must be finished as soon as
   * possible.
   */
  kUserBlocking,
};

/**
 * A Task represents a unit of work.
 */
class Task {
 public:
  virtual ~Task() = default;

  virtual void Run() = 0;
};

/**
 * An IdleTask represents a unit of work to be performed in idle time.
 * The Run method is invoked with an argument that specifies the deadline in
 * seconds returned by MonotonicallyIncreasingTime().
 * The idle task is expected to complete by this deadline.
 */
class IdleTask {
 public:
  virtual ~IdleTask() = default;
  virtual void Run(double deadline_in_seconds) = 0;
};

/**
 * A TaskRunner allows scheduling of tasks. The TaskRunner may still be used to
 * post tasks after the isolate gets destructed, but these tasks may not get
 * executed anymore. All tasks posted to a given TaskRunner will be invoked in
 * sequence. Tasks can be posted from any thread.
 */
class TaskRunner {
 public:
  /**
   * Schedules a task to be invoked by this TaskRunner. The TaskRunner
   * implementation takes ownership of |task|.
   */
  virtual void PostTask(std::unique_ptr<Task> task) = 0;

  /**
   * Schedules a task to be invoked by this TaskRunner. The TaskRunner
   * implementation takes ownership of |task|. The |task| cannot be nested
   * within other task executions.
   *
   * Tasks which shouldn't be interleaved with JS execution must be posted with
   * |PostNonNestableTask| or |PostNonNestableDelayedTask|. This is because the
   * embedder may process tasks in a callback which is called during JS
   * execution.
   *
   * In particular, tasks which execute JS must be non-nestable, since JS
   * execution is not allowed to nest.
   *
   * Requires that |TaskRunner::NonNestableTasksEnabled()| is true.
   */
  virtual void PostNonNestableTask(std::unique_ptr<Task> task) {}

  /**
   * Schedules a task to be invoked by this TaskRunner. The task is scheduled
   * after the given number of seconds |delay_in_seconds|. The TaskRunner
   * implementation takes ownership of |task|.
   */
  virtual void PostDelayedTask(std::unique_ptr<Task> task,
                               double delay_in_seconds) = 0;

  /**
   * Schedules a task to be invoked by this TaskRunner. The task is scheduled
   * after the given number of seconds |delay_in_seconds|. The TaskRunner
   * implementation takes ownership of |task|. The |task| cannot be nested
   * within other task executions.
   *
   * Tasks which shouldn't be interleaved with JS execution must be posted with
   * |PostNonNestableTask| or |PostNonNestableDelayedTask|. This is because the
   * embedder may process tasks in a callback which is called during JS
   * execution.
   *
   * In particular, tasks which execute JS must be non-nestable, since JS
   * execution is not allowed to nest.
   *
   * Requires that |TaskRunner::NonNestableDelayedTasksEnabled()| is true.
   */
  virtual void PostNonNestableDelayedTask(std::unique_ptr<Task> task,
                                          double delay_in_seconds) {}

  /**
   * Schedules an idle task to be invoked by this TaskRunner. The task is
   * scheduled when the embedder is idle. Requires that
   * |TaskRunner::IdleTasksEnabled()| is true. Idle tasks may be reordered
   * relative to other task types and may be starved for an arbitrarily long
   * time if no idle time is available. The TaskRunner implementation takes
   * ownership of |task|.
   */
  virtual void PostIdleTask(std::unique_ptr<IdleTask> task) = 0;

  /**
   * Returns true if idle tasks are enabled for this TaskRunner.
   */
  virtual bool IdleTasksEnabled() = 0;

  /**
   * Returns true if non-nestable tasks are enabled for this TaskRunner.
   */
  virtual bool NonNestableTasksEnabled() const { return false; }

  /**
   * Returns true if non-nestable delayed tasks are enabled for this TaskRunner.
   */
  virtual bool NonNestableDelayedTasksEnabled() const { return false; }

  TaskRunner() = default;
  virtual ~TaskRunner() = default;

  TaskRunner(const TaskRunner&) = delete;
  TaskRunner& operator=(const TaskRunner&) = delete;
};

/**
 * Delegate that's passed to Job's worker task, providing an entry point to
 * communicate with the scheduler.
 */
class JobDelegate {
 public:
  /**
   * Returns true if this thread should return from the worker task on the
   * current thread ASAP. Workers should periodically invoke ShouldYield (or
   * YieldIfNeeded()) as often as is reasonable.
   */
  virtual bool ShouldYield() = 0;

  /**
   * Notifies the scheduler that max concurrency was increased, and the number
   * of worker should be adjusted accordingly. See Platform::PostJob() for more
   * details.
   */
  virtual void NotifyConcurrencyIncrease() = 0;

  /**
   * Returns a task_id unique among threads currently running this job, such
   * that GetTaskId() < worker count. To achieve this, the same task_id may be
   * reused by a different thread after a worker_task returns.
   */
  virtual uint8_t GetTaskId() = 0;

  /**
   * Returns true if the current task is called from the thread currently
   * running JobHandle::Join().
   */
  virtual bool IsJoiningThread() const = 0;
};

/**
 * Handle returned when posting a Job. Provides methods to control execution of
 * the posted Job.
 */
class JobHandle {
 public:
  virtual ~JobHandle() = default;

  /**
   * Notifies the scheduler that max concurrency was increased, and the number
   * of worker should be adjusted accordingly. See Platform::PostJob() for more
   * details.
   */
  virtual void NotifyConcurrencyIncrease() = 0;

  /**
   * Contributes to the job on this thread. Doesn't return until all tasks have
   * completed and max concurrency becomes 0. When Join() is called and max
   * concurrency reaches 0, it should not increase again. This also promotes
   * this Job's priority to be at least as high as the calling thread's
   * priority.
   */
  virtual void Join() = 0;

  /**
   * Forces all existing workers to yield ASAP. Waits until they have all
   * returned from the Job's callback before returning.
   */
  virtual void Cancel() = 0;

  /*
   * Forces all existing workers to yield ASAP but doesn’t wait for them.
   * Warning, this is dangerous if the Job's callback is bound to or has access
   * to state which may be deleted after this call.
   */
  virtual void CancelAndDetach() = 0;

  /**
   * Returns true if there's any work pending or any worker running.
   */
  virtual bool IsActive() = 0;

  /**
   * Returns true if associated with a Job and other methods may be called.
   * Returns false after Join() or Cancel() was called. This may return true
   * even if no workers are running and IsCompleted() returns true
   */
  virtual bool IsValid() = 0;

  /**
   * Returns true if job priority can be changed.
   */
  virtual bool UpdatePriorityEnabled() const { return false; }

  /**
   *  Update this Job's priority.
   */
  virtual void UpdatePriority(TaskPriority new_priority) {}
};

/**
 * A JobTask represents work to run in parallel from Platform::PostJob().
 */
class JobTask {
 public:
  virtual ~JobTask() = default;

  virtual void Run(JobDelegate* delegate) = 0;

  /**
   * Controls the maximum number of threads calling Run() concurrently, given
   * the number of threads currently assigned to this job and executing Run().
   * Run() is only invoked if the number of threads previously running Run() was
   * less than the value returned. Since GetMaxConcurrency() is a leaf function,
   * it must not call back any JobHandle methods.
   */
  virtual size_t GetMaxConcurrency(size_t worker_count) const = 0;
};

/**
 * The interface represents complex arguments to trace events.
 */
class ConvertableToTraceFormat {
 public:
  virtual ~ConvertableToTraceFormat() = default;

  /**
   * Append the class info to the provided |out| string. The appended
   * data must be a valid JSON object. Strings must be properly quoted, and
   * escaped. There is no processing applied to the content after it is
   * appended.
   */
  virtual void AppendAsTraceFormat(std::string* out) const = 0;
};

/**
 * V8 Tracing controller.
 *
 * Can be implemented by an embedder to record trace events from V8.
 */
class TracingController {
 public:
  virtual ~TracingController() = default;

  // In Perfetto mode, trace events are written using Perfetto's Track Event
  // API directly without going through the embedder. However, it is still
  // possible to observe tracing being enabled and disabled.
#if !defined(V8_USE_PERFETTO)
  /**
   * Called by TRACE_EVENT* macros, don't call this directly.
   * The name parameter is a category group for example:
   * TRACE_EVENT0("v8,parse", "V8.Parse")
   * The pointer returned points to a value with zero or more of the bits
   * defined in CategoryGroupEnabledFlags.
   **/
  virtual const uint8_t* GetCategoryGroupEnabled(const char* name) {
    static uint8_t no = 0;
    return &no;
  }

  /**
   * Adds a trace event to the platform tracing system. These function calls are
   * usually the result of a TRACE_* macro from trace_event_common.h when
   * tracing and the category of the particular trace are enabled. It is not
   * advisable to call these functions on their own; they are really only meant
   * to be used by the trace macros. The returned handle can be used by
   * UpdateTraceEventDuration to update the duration of COMPLETE events.
   */
  virtual uint64_t AddTraceEvent(
      char phase, const uint8_t* category_enabled_flag, const char* name,
      const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args,
      const char** arg_names, const uint8_t* arg_types,
      const uint64_t* arg_values,
      std::unique_ptr<ConvertableToTraceFormat>* arg_convertables,
      unsigned int flags) {
    return 0;
  }
  virtual uint64_t AddTraceEventWithTimestamp(
      char phase, const uint8_t* category_enabled_flag, const char* name,
      const char* scope, uint64_t id, uint64_t bind_id, int32_t num_args,
      const char** arg_names, const uint8_t* arg_types,
      const uint64_t* arg_values,
      std::unique_ptr<ConvertableToTraceFormat>* arg_convertables,
      unsigned int flags, int64_t timestamp) {
    return 0;
  }

  /**
   * Sets the duration field of a COMPLETE trace event. It must be called with
   * the handle returned from AddTraceEvent().
   **/
  virtual void UpdateTraceEventDuration(const uint8_t* category_enabled_flag,
                                        const char* name, uint64_t handle) {}
#endif  // !defined(V8_USE_PERFETTO)

  class TraceStateObserver {
   public:
    virtual ~TraceStateObserver() = default;
    virtual void OnTraceEnabled() = 0;
    virtual void OnTraceDisabled() = 0;
  };

  /** Adds tracing state change observer. */
  virtual void AddTraceStateObserver(TraceStateObserver*) {}

  /** Removes tracing state change observer. */
  virtual void RemoveTraceStateObserver(TraceStateObserver*) {}
};

/**
 * A V8 memory page allocator.
 *
 * Can be implemented by an embedder to manage large host OS allocations.
 */
class PageAllocator {
 public:
  virtual ~PageAllocator() = default;

  /**
   * Gets the page granularity for AllocatePages and FreePages. Addresses and
   * lengths for those calls should be multiples of AllocatePageSize().
   */
  virtual size_t AllocatePageSize() = 0;

  /**
   * Gets the page granularity for SetPermissions and ReleasePages. Addresses
   * and lengths for those calls should be multiples of CommitPageSize().
   */
  virtual size_t CommitPageSize() = 0;

  /**
   * Sets the random seed so that GetRandomMmapAddr() will generate repeatable
   * sequences of random mmap addresses.
   */
  virtual void SetRandomMmapSeed(int64_t seed) = 0;

  /**
   * Returns a randomized address, suitable for memory allocation under ASLR.
   * The address will be aligned to AllocatePageSize.
   */
  virtual void* GetRandomMmapAddr() = 0;

  /**
   * Memory permissions.
   */
  enum Permission {
    kNoAccess,
    kRead,
    kReadWrite,
    kReadWriteExecute,
    kReadExecute,
    // Set this when reserving memory that will later require kReadWriteExecute
    // permissions. The resulting behavior is platform-specific, currently
    // this is used to set the MAP_JIT flag on Apple Silicon.
    // TODO(jkummerow): Remove this when Wasm has a platform-independent
    // w^x implementation.
    kNoAccessWillJitLater
  };

  /**
   * Allocates memory in range with the given alignment and permission.
   */
  virtual void* AllocatePages(void* address, size_t length, size_t alignment,
                              Permission permissions) = 0;

  /**
   * Frees memory in a range that was allocated by a call to AllocatePages.
   */
  virtual bool FreePages(void* address, size_t length) = 0;

  /**
   * Releases memory in a range that was allocated by a call to AllocatePages.
   */
  virtual bool ReleasePages(void* address, size_t length,
                            size_t new_length) = 0;

  /**
   * Sets permissions on pages in an allocated range.
   */
  virtual bool SetPermissions(void* address, size_t length,
                              Permission permissions) = 0;

  /**
   * Frees memory in the given [address, address + size) range. address and size
   * should be operating system page-aligned. The next write to this
   * memory area brings the memory transparently back.
   */
  virtual bool DiscardSystemPages(void* address, size_t size) { return true; }

  /**
   * INTERNAL ONLY: This interface has not been stabilised and may change
   * without notice from one release to another without being deprecated first.
   */
  class SharedMemoryMapping {
   public:
    // Implementations are expected to free the shared memory mapping in the
    // destructor.
    virtual ~SharedMemoryMapping() = default;
    virtual void* GetMemory() const = 0;
  };

  /**
   * INTERNAL ONLY: This interface has not been stabilised and may change
   * without notice from one release to another without being deprecated first.
   */
  class SharedMemory {
   public:
    // Implementations are expected to free the shared memory in the destructor.
    virtual ~SharedMemory() = default;
    virtual std::unique_ptr<SharedMemoryMapping> RemapTo(
        void* new_address) const = 0;
    virtual void* GetMemory() const = 0;
    virtual size_t GetSize() const = 0;
  };

  /**
   * INTERNAL ONLY: This interface has not been stabilised and may change
   * without notice from one release to another without being deprecated first.
   *
   * Reserve pages at a fixed address returning whether the reservation is
   * possible. The reserved memory is detached from the PageAllocator and so
   * should not be freed by it. It's intended for use with
   * SharedMemory::RemapTo, where ~SharedMemoryMapping would free the memory.
   */
  virtual bool ReserveForSharedMemoryMapping(void* address, size_t size) {
    return false;
  }

  /**
   * INTERNAL ONLY: This interface has not been stabilised and may change
   * without notice from one release to another without being deprecated first.
   *
   * Allocates shared memory pages. Not all PageAllocators need support this and
   * so this method need not be overridden.
   * Allocates a new read-only shared memory region of size |length| and copies
   * the memory at |original_address| into it.
   */
  virtual std::unique_ptr<SharedMemory> AllocateSharedPages(
      size_t length, const void* original_address) {
    return {};
  }

  /**
   * INTERNAL ONLY: This interface has not been stabilised and may change
   * without notice from one release to another without being deprecated first.
   *
   * If not overridden and changed to return true, V8 will not attempt to call
   * AllocateSharedPages or RemapSharedPages. If overridden, AllocateSharedPages
   * and RemapSharedPages must also be overridden.
   */
  virtual bool CanAllocateSharedPages() { return false; }
};

/**
 * V8 Platform abstraction layer.
 *
 * The embedder has to provide an implementation of this interface before
 * initializing the rest of V8.
 */
class Platform {
 public:
  virtual ~Platform() = default;

  /**
   * Allows the embedder to manage memory page allocations.
   */
  virtual PageAllocator* GetPageAllocator() {
    // TODO(bbudge) Make this abstract after all embedders implement this.
    return nullptr;
  }

  /**
   * Enables the embedder to respond in cases where V8 can't allocate large
   * blocks of memory. V8 retries the failed allocation once after calling this
   * method. On success, execution continues; otherwise V8 exits with a fatal
   * error.
   * Embedder overrides of this function must NOT call back into V8.
   */
  virtual void OnCriticalMemoryPressure() {
    // TODO(bbudge) Remove this when embedders override the following method.
    // See crbug.com/634547.
  }

  /**
   * Enables the embedder to respond in cases where V8 can't allocate large
   * memory regions. The |length| parameter is the amount of memory needed.
   * Returns true if memory is now available. Returns false if no memory could
   * be made available. V8 will retry allocations until this method returns
   * false.
   *
   * Embedder overrides of this function must NOT call back into V8.
   */
  virtual bool OnCriticalMemoryPressure(size_t length) { return false; }

  /**
   * Gets the number of worker threads used by
   * Call(BlockingTask)OnWorkerThread(). This can be used to estimate the number
   * of tasks a work package should be split into. A return value of 0 means
   * that there are no worker threads available. Note that a value of 0 won't
   * prohibit V8 from posting tasks using |CallOnWorkerThread|.
   */
  virtual int NumberOfWorkerThreads() = 0;

  /**
   * Returns a TaskRunner which can be used to post a task on the foreground.
   * The TaskRunner's NonNestableTasksEnabled() must be true. This function
   * should only be called from a foreground thread.
   */
  virtual std::shared_ptr<v8::TaskRunner> GetForegroundTaskRunner(
      Isolate* isolate) = 0;

  /**
   * Schedules a task to be invoked on a worker thread.
   */
  virtual void CallOnWorkerThread(std::unique_ptr<Task> task) = 0;

  /**
   * Schedules a task that blocks the main thread to be invoked with
   * high-priority on a worker thread.
   */
  virtual void CallBlockingTaskOnWorkerThread(std::unique_ptr<Task> task) {
    // Embedders may optionally override this to process these tasks in a high
    // priority pool.
    CallOnWorkerThread(std::move(task));
  }

  /**
   * Schedules a task to be invoked with low-priority on a worker thread.
   */
  virtual void CallLowPriorityTaskOnWorkerThread(std::unique_ptr<Task> task) {
    // Embedders may optionally override this to process these tasks in a low
    // priority pool.
    CallOnWorkerThread(std::move(task));
  }

  /**
   * Schedules a task to be invoked on a worker thread after |delay_in_seconds|
   * expires.
   */
  virtual void CallDelayedOnWorkerThread(std::unique_ptr<Task> task,
                                         double delay_in_seconds) = 0;

  /**
   * Returns true if idle tasks are enabled for the given |isolate|.
   */
  virtual bool IdleTasksEnabled(Isolate* isolate) { return false; }

  /**
   * Posts |job_task| to run in parallel. Returns a JobHandle associated with
   * the Job, which can be joined or canceled.
   * This avoids degenerate cases:
   * - Calling CallOnWorkerThread() for each work item, causing significant
   *   overhead.
   * - Fixed number of CallOnWorkerThread() calls that split the work and might
   *   run for a long time. This is problematic when many components post
   *   "num cores" tasks and all expect to use all the cores. In these cases,
   *   the scheduler lacks context to be fair to multiple same-priority requests
   *   and/or ability to request lower priority work to yield when high priority
   *   work comes in.
   * A canonical implementation of |job_task| looks like:
   * class MyJobTask : public JobTask {
   *  public:
   *   MyJobTask(...) : worker_queue_(...) {}
   *   // JobTask:
   *   void Run(JobDelegate* delegate) override {
   *     while (!delegate->ShouldYield()) {
   *       // Smallest unit of work.
   *       auto work_item = worker_queue_.TakeWorkItem(); // Thread safe.
   *       if (!work_item) return;
   *       ProcessWork(work_item);
   *     }
   *   }
   *
   *   size_t GetMaxConcurrency() const override {
   *     return worker_queue_.GetSize(); // Thread safe.
   *   }
   * };
   * auto handle = PostJob(TaskPriority::kUserVisible,
   *                       std::make_unique<MyJobTask>(...));
   * handle->Join();
   *
   * PostJob() and methods of the returned JobHandle/JobDelegate, must never be
   * called while holding a lock that could be acquired by JobTask::Run or
   * JobTask::GetMaxConcurrency -- that could result in a deadlock. This is
   * because [1] JobTask::GetMaxConcurrency may be invoked while holding
   * internal lock (A), hence JobTask::GetMaxConcurrency can only use a lock (B)
   * if that lock is *never* held while calling back into JobHandle from any
   * thread (A=>B/B=>A deadlock) and [2] JobTask::Run or
   * JobTask::GetMaxConcurrency may be invoked synchronously from JobHandle
   * (B=>JobHandle::foo=>B deadlock).
   *
   * A sufficient PostJob() implementation that uses the default Job provided in
   * libplatform looks like:
   *  std::unique_ptr<JobHandle> PostJob(
   *      TaskPriority priority, std::unique_ptr<JobTask> job_task) override {
   *    return v8::platform::NewDefaultJobHandle(
   *        this, priority, std::move(job_task), NumberOfWorkerThreads());
   * }
   */
  virtual std::unique_ptr<JobHandle> PostJob(
      TaskPriority priority, std::unique_ptr<JobTask> job_task) = 0;

  /**
   * Monotonically increasing time in seconds from an arbitrary fixed point in
   * the past. This function is expected to return at least
   * millisecond-precision values. For this reason,
   * it is recommended that the fixed point be no further in the past than
   * the epoch.
   **/
  virtual double MonotonicallyIncreasingTime() = 0;

  /**
   * Current wall-clock time in milliseconds since epoch.
   * This function is expected to return at least millisecond-precision values.
   */
  virtual double CurrentClockTimeMillis() = 0;

  typedef void (*StackTracePrinter)();

  /**
   * Returns a function pointer that print a stack trace of the current stack
   * on invocation. Disables printing of the stack trace if nullptr.
   */
  virtual StackTracePrinter GetStackTracePrinter() { return nullptr; }

  /**
   * Returns an instance of a v8::TracingController. This must be non-nullptr.
   */
  virtual TracingController* GetTracingController() = 0;

  /**
   * Tells the embedder to generate and upload a crashdump during an unexpected
   * but non-critical scenario.
   */
  virtual void DumpWithoutCrashing() {}

 protected:
  /**
   * Default implementation of current wall-clock time in milliseconds
   * since epoch. Useful for implementing |CurrentClockTimeMillis| if
   * nothing special needed.
   */
  V8_EXPORT static double SystemClockTimeMillis();
};

}  // namespace v8

#endif  // V8_V8_PLATFORM_H_