1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/gfx/transform_util.h"
#include <algorithm>
#include <cmath>
#include <string>
#include "base/check.h"
#include "base/strings/stringprintf.h"
#include "ui/gfx/geometry/point3_f.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/rect_f.h"
namespace gfx {
namespace {
SkScalar Length3(SkScalar v[3]) {
double vd[3] = {v[0], v[1], v[2]};
return SkDoubleToScalar(
std::sqrt(vd[0] * vd[0] + vd[1] * vd[1] + vd[2] * vd[2]));
}
template <int n>
SkScalar Dot(const SkScalar* a, const SkScalar* b) {
double total = 0.0;
for (int i = 0; i < n; ++i)
total += a[i] * b[i];
return SkDoubleToScalar(total);
}
template <int n>
void Combine(SkScalar* out,
const SkScalar* a,
const SkScalar* b,
double scale_a,
double scale_b) {
for (int i = 0; i < n; ++i)
out[i] = SkDoubleToScalar(a[i] * scale_a + b[i] * scale_b);
}
void Cross3(SkScalar out[3], SkScalar a[3], SkScalar b[3]) {
SkScalar x = a[1] * b[2] - a[2] * b[1];
SkScalar y = a[2] * b[0] - a[0] * b[2];
SkScalar z = a[0] * b[1] - a[1] * b[0];
out[0] = x;
out[1] = y;
out[2] = z;
}
SkScalar Round(SkScalar n) {
return SkDoubleToScalar(std::floor(double{n} + 0.5));
}
// Returns false if the matrix cannot be normalized.
bool Normalize(SkMatrix44& m) {
if (m.get(3, 3) == 0.0)
// Cannot normalize.
return false;
SkScalar scale = SK_Scalar1 / m.get(3, 3);
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
m.set(i, j, m.get(i, j) * scale);
return true;
}
SkMatrix44 BuildPerspectiveMatrix(const DecomposedTransform& decomp) {
SkMatrix44 matrix(SkMatrix44::kIdentity_Constructor);
for (int i = 0; i < 4; i++)
matrix.setDouble(3, i, decomp.perspective[i]);
return matrix;
}
SkMatrix44 BuildTranslationMatrix(const DecomposedTransform& decomp) {
SkMatrix44 matrix(SkMatrix44::kUninitialized_Constructor);
// Implicitly calls matrix.setIdentity()
matrix.setTranslate(SkDoubleToScalar(decomp.translate[0]),
SkDoubleToScalar(decomp.translate[1]),
SkDoubleToScalar(decomp.translate[2]));
return matrix;
}
SkMatrix44 BuildSnappedTranslationMatrix(DecomposedTransform decomp) {
decomp.translate[0] = Round(decomp.translate[0]);
decomp.translate[1] = Round(decomp.translate[1]);
decomp.translate[2] = Round(decomp.translate[2]);
return BuildTranslationMatrix(decomp);
}
SkMatrix44 BuildRotationMatrix(const DecomposedTransform& decomp) {
return Transform(decomp.quaternion).matrix();
}
SkMatrix44 BuildSnappedRotationMatrix(const DecomposedTransform& decomp) {
// Create snapped rotation.
SkMatrix44 rotation_matrix = BuildRotationMatrix(decomp);
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
SkScalar value = rotation_matrix.get(i, j);
// Snap values to -1, 0 or 1.
if (value < -0.5f) {
value = -1.0f;
} else if (value > 0.5f) {
value = 1.0f;
} else {
value = 0.0f;
}
rotation_matrix.set(i, j, value);
}
}
return rotation_matrix;
}
SkMatrix44 BuildSkewMatrix(const DecomposedTransform& decomp) {
SkMatrix44 matrix(SkMatrix44::kIdentity_Constructor);
SkMatrix44 temp(SkMatrix44::kIdentity_Constructor);
if (decomp.skew[2]) {
temp.setDouble(1, 2, decomp.skew[2]);
matrix.preConcat(temp);
}
if (decomp.skew[1]) {
temp.setDouble(1, 2, 0);
temp.setDouble(0, 2, decomp.skew[1]);
matrix.preConcat(temp);
}
if (decomp.skew[0]) {
temp.setDouble(0, 2, 0);
temp.setDouble(0, 1, decomp.skew[0]);
matrix.preConcat(temp);
}
return matrix;
}
SkMatrix44 BuildScaleMatrix(const DecomposedTransform& decomp) {
SkMatrix44 matrix(SkMatrix44::kUninitialized_Constructor);
matrix.setScale(SkDoubleToScalar(decomp.scale[0]),
SkDoubleToScalar(decomp.scale[1]),
SkDoubleToScalar(decomp.scale[2]));
return matrix;
}
SkMatrix44 BuildSnappedScaleMatrix(DecomposedTransform decomp) {
decomp.scale[0] = Round(decomp.scale[0]);
decomp.scale[1] = Round(decomp.scale[1]);
decomp.scale[2] = Round(decomp.scale[2]);
return BuildScaleMatrix(decomp);
}
Transform ComposeTransform(const SkMatrix44& perspective,
const SkMatrix44& translation,
const SkMatrix44& rotation,
const SkMatrix44& skew,
const SkMatrix44& scale) {
SkMatrix44 matrix(SkMatrix44::kIdentity_Constructor);
matrix.preConcat(perspective);
matrix.preConcat(translation);
matrix.preConcat(rotation);
matrix.preConcat(skew);
matrix.preConcat(scale);
Transform to_return;
to_return.matrix() = matrix;
return to_return;
}
bool CheckViewportPointMapsWithinOnePixel(const Point& point,
const Transform& transform) {
auto point_original = Point3F(PointF(point));
auto point_transformed = Point3F(PointF(point));
// Can't use TransformRect here since it would give us the axis-aligned
// bounding rect of the 4 points in the initial rectable which is not what we
// want.
transform.TransformPoint(&point_transformed);
if ((point_transformed - point_original).Length() > 1.f) {
// The changed distance should not be more than 1 pixel.
return false;
}
return true;
}
bool CheckTransformsMapsIntViewportWithinOnePixel(const Rect& viewport,
const Transform& original,
const Transform& snapped) {
Transform original_inv(Transform::kSkipInitialization);
bool invertible = true;
invertible &= original.GetInverse(&original_inv);
DCHECK(invertible) << "Non-invertible transform, cannot snap.";
Transform combined = snapped * original_inv;
return CheckViewportPointMapsWithinOnePixel(viewport.origin(), combined) &&
CheckViewportPointMapsWithinOnePixel(viewport.top_right(), combined) &&
CheckViewportPointMapsWithinOnePixel(viewport.bottom_left(),
combined) &&
CheckViewportPointMapsWithinOnePixel(viewport.bottom_right(),
combined);
}
bool Is2dTransform(const Transform& transform) {
const SkMatrix44 matrix = transform.matrix();
if (matrix.hasPerspective())
return false;
return matrix.get(2, 0) == 0 && matrix.get(2, 1) == 0 &&
matrix.get(0, 2) == 0 && matrix.get(1, 2) == 0 &&
matrix.get(2, 2) == 1 && matrix.get(3, 2) == 0 &&
matrix.get(2, 3) == 0;
}
bool Decompose2DTransform(DecomposedTransform* decomp,
const Transform& transform) {
if (!Is2dTransform(transform)) {
return false;
}
const SkMatrix44 matrix = transform.matrix();
double m11 = matrix.getDouble(0, 0);
double m21 = matrix.getDouble(0, 1);
double m12 = matrix.getDouble(1, 0);
double m22 = matrix.getDouble(1, 1);
double determinant = m11 * m22 - m12 * m21;
// Test for matrix being singular.
if (determinant == 0) {
return false;
}
// Translation transform.
// [m11 m21 0 m41] [1 0 0 Tx] [m11 m21 0 0]
// [m12 m22 0 m42] = [0 1 0 Ty] [m12 m22 0 0]
// [ 0 0 1 0 ] [0 0 1 0 ] [ 0 0 1 0]
// [ 0 0 0 1 ] [0 0 0 1 ] [ 0 0 0 1]
decomp->translate[0] = matrix.get(0, 3);
decomp->translate[1] = matrix.get(1, 3);
// For the remainder of the decomposition process, we can focus on the upper
// 2x2 submatrix
// [m11 m21] = [cos(R) -sin(R)] [1 K] [Sx 0 ]
// [m12 m22] [sin(R) cos(R)] [0 1] [0 Sy]
// = [Sx*cos(R) Sy*(K*cos(R) - sin(R))]
// [Sx*sin(R) Sy*(K*sin(R) + cos(R))]
// Determine sign of the x and y scale.
if (determinant < 0) {
// If the determinant is negative, we need to flip either the x or y scale.
// Flipping both is equivalent to rotating by 180 degrees.
if (m11 < m22) {
decomp->scale[0] *= -1;
} else {
decomp->scale[1] *= -1;
}
}
// X Scale.
// m11^2 + m12^2 = Sx^2*(cos^2(R) + sin^2(R)) = Sx^2.
// Sx = +/-sqrt(m11^2 + m22^2)
decomp->scale[0] *= sqrt(m11 * m11 + m12 * m12);
m11 /= decomp->scale[0];
m12 /= decomp->scale[0];
// Post normalization, the submatrix is now of the form:
// [m11 m21] = [cos(R) Sy*(K*cos(R) - sin(R))]
// [m12 m22] [sin(R) Sy*(K*sin(R) + cos(R))]
// XY Shear.
// m11 * m21 + m12 * m22 = Sy*K*cos^2(R) - Sy*sin(R)*cos(R) +
// Sy*K*sin^2(R) + Sy*cos(R)*sin(R)
// = Sy*K
double scaledShear = m11 * m21 + m12 * m22;
m21 -= m11 * scaledShear;
m22 -= m12 * scaledShear;
// Post normalization, the submatrix is now of the form:
// [m11 m21] = [cos(R) -Sy*sin(R)]
// [m12 m22] [sin(R) Sy*cos(R)]
// Y Scale.
// Similar process to determining x-scale.
decomp->scale[1] *= sqrt(m21 * m21 + m22 * m22);
m21 /= decomp->scale[1];
m22 /= decomp->scale[1];
decomp->skew[0] = scaledShear / decomp->scale[1];
// Rotation transform.
// [1-2(yy+zz) 2(xy-zw) 2(xz+yw) ] [cos(R) -sin(R) 0]
// [2(xy+zw) 1-2(xx+zz) 2(yz-xw) ] = [sin(R) cos(R) 0]
// [2(xz-yw) 2*(yz+xw) 1-2(xx+yy)] [ 0 0 1]
// Comparing terms, we can conclude that x = y = 0.
// [1-2zz -2zw 0] [cos(R) -sin(R) 0]
// [ 2zw 1-2zz 0] = [sin(R) cos(R) 0]
// [ 0 0 1] [ 0 0 1]
// cos(R) = 1 - 2*z^2
// From the double angle formula: cos(2a) = 1 - 2 sin(a)^2
// cos(R) = 1 - 2*sin(R/2)^2 = 1 - 2*z^2 ==> z = sin(R/2)
// sin(R) = 2*z*w
// But sin(2a) = 2 sin(a) cos(a)
// sin(R) = 2 sin(R/2) cos(R/2) = 2*z*w ==> w = cos(R/2)
double angle = atan2(m12, m11);
decomp->quaternion.set_x(0);
decomp->quaternion.set_y(0);
decomp->quaternion.set_z(sin(0.5 * angle));
decomp->quaternion.set_w(cos(0.5 * angle));
return true;
}
} // namespace
Transform GetScaleTransform(const Point& anchor, float scale) {
Transform transform;
transform.Translate(anchor.x() * (1 - scale), anchor.y() * (1 - scale));
transform.Scale(scale, scale);
return transform;
}
DecomposedTransform::DecomposedTransform() {
translate[0] = translate[1] = translate[2] = 0.0;
scale[0] = scale[1] = scale[2] = 1.0;
skew[0] = skew[1] = skew[2] = 0.0;
perspective[0] = perspective[1] = perspective[2] = 0.0;
perspective[3] = 1.0;
}
DecomposedTransform BlendDecomposedTransforms(const DecomposedTransform& to,
const DecomposedTransform& from,
double progress) {
DecomposedTransform out;
double scalea = progress;
double scaleb = 1.0 - progress;
Combine<3>(out.translate, to.translate, from.translate, scalea, scaleb);
Combine<3>(out.scale, to.scale, from.scale, scalea, scaleb);
Combine<3>(out.skew, to.skew, from.skew, scalea, scaleb);
Combine<4>(out.perspective, to.perspective, from.perspective, scalea, scaleb);
out.quaternion = from.quaternion.Slerp(to.quaternion, progress);
return out;
}
// Taken from http://www.w3.org/TR/css3-transforms/.
// TODO(crbug/937296): This implementation is virtually identical to the
// implementation in blink::TransformationMatrix with the main difference being
// the representation of the underlying matrix. These implementations should be
// consolidated.
bool DecomposeTransform(DecomposedTransform* decomp,
const Transform& transform) {
if (!decomp)
return false;
if (Decompose2DTransform(decomp, transform))
return true;
// We'll operate on a copy of the matrix.
SkMatrix44 matrix = transform.matrix();
// If we cannot normalize the matrix, then bail early as we cannot decompose.
if (!Normalize(matrix))
return false;
SkMatrix44 perspectiveMatrix = matrix;
for (int i = 0; i < 3; ++i)
perspectiveMatrix.set(3, i, 0.0);
perspectiveMatrix.set(3, 3, 1.0);
// If the perspective matrix is not invertible, we are also unable to
// decompose, so we'll bail early. Constant taken from SkMatrix44::invert.
if (std::abs(perspectiveMatrix.determinant()) < 1e-8)
return false;
if (matrix.get(3, 0) != 0.0 || matrix.get(3, 1) != 0.0 ||
matrix.get(3, 2) != 0.0) {
// rhs is the right hand side of the equation.
SkScalar rhs[4] = {matrix.get(3, 0), matrix.get(3, 1), matrix.get(3, 2),
matrix.get(3, 3)};
// Solve the equation by inverting perspectiveMatrix and multiplying
// rhs by the inverse.
SkMatrix44 inversePerspectiveMatrix(SkMatrix44::kUninitialized_Constructor);
if (!perspectiveMatrix.invert(&inversePerspectiveMatrix))
return false;
SkMatrix44 transposedInversePerspectiveMatrix = inversePerspectiveMatrix;
transposedInversePerspectiveMatrix.transpose();
transposedInversePerspectiveMatrix.mapScalars(rhs);
for (int i = 0; i < 4; ++i)
decomp->perspective[i] = rhs[i];
} else {
// No perspective.
for (int i = 0; i < 3; ++i)
decomp->perspective[i] = 0.0;
decomp->perspective[3] = 1.0;
}
for (int i = 0; i < 3; i++)
decomp->translate[i] = matrix.get(i, 3);
// Copy of matrix is stored in column major order to facilitate column-level
// operations.
SkScalar column[3][3];
for (int i = 0; i < 3; i++)
for (int j = 0; j < 3; ++j)
column[i][j] = matrix.get(j, i);
// Compute X scale factor and normalize first column.
decomp->scale[0] = Length3(column[0]);
if (decomp->scale[0] != 0.0) {
column[0][0] /= decomp->scale[0];
column[0][1] /= decomp->scale[0];
column[0][2] /= decomp->scale[0];
}
// Compute XY shear factor and make 2nd column orthogonal to 1st.
decomp->skew[0] = Dot<3>(column[0], column[1]);
Combine<3>(column[1], column[1], column[0], 1.0, -decomp->skew[0]);
// Now, compute Y scale and normalize 2nd column.
decomp->scale[1] = Length3(column[1]);
if (decomp->scale[1] != 0.0) {
column[1][0] /= decomp->scale[1];
column[1][1] /= decomp->scale[1];
column[1][2] /= decomp->scale[1];
}
decomp->skew[0] /= decomp->scale[1];
// Compute XZ and YZ shears, orthogonalize the 3rd column.
decomp->skew[1] = Dot<3>(column[0], column[2]);
Combine<3>(column[2], column[2], column[0], 1.0, -decomp->skew[1]);
decomp->skew[2] = Dot<3>(column[1], column[2]);
Combine<3>(column[2], column[2], column[1], 1.0, -decomp->skew[2]);
// Next, get Z scale and normalize the 3rd column.
decomp->scale[2] = Length3(column[2]);
if (decomp->scale[2] != 0.0) {
column[2][0] /= decomp->scale[2];
column[2][1] /= decomp->scale[2];
column[2][2] /= decomp->scale[2];
}
decomp->skew[1] /= decomp->scale[2];
decomp->skew[2] /= decomp->scale[2];
// At this point, the matrix is orthonormal.
// Check for a coordinate system flip. If the determinant
// is -1, then negate the matrix and the scaling factors.
// TODO(kevers): This is inconsistent from the 2D specification, in which
// only 1 axis is flipped when the determinant is negative. Verify if it is
// correct to flip all of the scales and matrix elements, as this introduces
// rotation for the simple case of a single axis scale inversion.
SkScalar pdum3[3];
Cross3(pdum3, column[1], column[2]);
if (Dot<3>(column[0], pdum3) < 0) {
for (int i = 0; i < 3; i++) {
decomp->scale[i] *= -1.0;
for (int j = 0; j < 3; ++j)
column[i][j] *= -1.0;
}
}
// See https://en.wikipedia.org/wiki/Rotation_matrix#Quaternion.
// Note: deviating from spec (http://www.w3.org/TR/css3-transforms/)
// which has a degenerate case of zero off-diagonal elements in the
// orthonormal matrix, which leads to errors in determining the sign
// of the quaternions.
double q_xx = column[0][0];
double q_xy = column[1][0];
double q_xz = column[2][0];
double q_yx = column[0][1];
double q_yy = column[1][1];
double q_yz = column[2][1];
double q_zx = column[0][2];
double q_zy = column[1][2];
double q_zz = column[2][2];
double r, s, t, x, y, z, w;
t = q_xx + q_yy + q_zz;
if (t > 0) {
r = std::sqrt(1.0 + t);
s = 0.5 / r;
w = 0.5 * r;
x = (q_zy - q_yz) * s;
y = (q_xz - q_zx) * s;
z = (q_yx - q_xy) * s;
} else if (q_xx > q_yy && q_xx > q_zz) {
r = std::sqrt(1.0 + q_xx - q_yy - q_zz);
s = 0.5 / r;
x = 0.5 * r;
y = (q_xy + q_yx) * s;
z = (q_xz + q_zx) * s;
w = (q_zy - q_yz) * s;
} else if (q_yy > q_zz) {
r = std::sqrt(1.0 - q_xx + q_yy - q_zz);
s = 0.5 / r;
x = (q_xy + q_yx) * s;
y = 0.5 * r;
z = (q_yz + q_zy) * s;
w = (q_xz - q_zx) * s;
} else {
r = std::sqrt(1.0 - q_xx - q_yy + q_zz);
s = 0.5 / r;
x = (q_xz + q_zx) * s;
y = (q_yz + q_zy) * s;
z = 0.5 * r;
w = (q_yx - q_xy) * s;
}
decomp->quaternion.set_x(SkDoubleToScalar(x));
decomp->quaternion.set_y(SkDoubleToScalar(y));
decomp->quaternion.set_z(SkDoubleToScalar(z));
decomp->quaternion.set_w(SkDoubleToScalar(w));
return true;
}
// Taken from http://www.w3.org/TR/css3-transforms/.
Transform ComposeTransform(const DecomposedTransform& decomp) {
SkMatrix44 perspective = BuildPerspectiveMatrix(decomp);
SkMatrix44 translation = BuildTranslationMatrix(decomp);
SkMatrix44 rotation = BuildRotationMatrix(decomp);
SkMatrix44 skew = BuildSkewMatrix(decomp);
SkMatrix44 scale = BuildScaleMatrix(decomp);
return ComposeTransform(perspective, translation, rotation, skew, scale);
}
bool SnapTransform(Transform* out,
const Transform& transform,
const Rect& viewport) {
DecomposedTransform decomp;
DecomposeTransform(&decomp, transform);
SkMatrix44 rotation_matrix = BuildSnappedRotationMatrix(decomp);
SkMatrix44 translation = BuildSnappedTranslationMatrix(decomp);
SkMatrix44 scale = BuildSnappedScaleMatrix(decomp);
// Rebuild matrices for other unchanged components.
SkMatrix44 perspective = BuildPerspectiveMatrix(decomp);
// Completely ignore the skew.
SkMatrix44 skew(SkMatrix44::kIdentity_Constructor);
// Get full tranform
Transform snapped =
ComposeTransform(perspective, translation, rotation_matrix, skew, scale);
// Verify that viewport is not moved unnaturally.
bool snappable = CheckTransformsMapsIntViewportWithinOnePixel(
viewport, transform, snapped);
if (snappable) {
*out = snapped;
}
return snappable;
}
Transform TransformAboutPivot(const Point& pivot, const Transform& transform) {
Transform result;
result.Translate(pivot.x(), pivot.y());
result.PreconcatTransform(transform);
result.Translate(-pivot.x(), -pivot.y());
return result;
}
Transform TransformBetweenRects(const RectF& src, const RectF& dst) {
DCHECK(!src.IsEmpty());
Transform result;
result.Translate(dst.origin() - src.origin());
result.Scale(dst.width() / src.width(), dst.height() / src.height());
return result;
}
std::string DecomposedTransform::ToString() const {
return base::StringPrintf(
"translate: %+0.4f %+0.4f %+0.4f\n"
"scale: %+0.4f %+0.4f %+0.4f\n"
"skew: %+0.4f %+0.4f %+0.4f\n"
"perspective: %+0.4f %+0.4f %+0.4f %+0.4f\n"
"quaternion: %+0.4f %+0.4f %+0.4f %+0.4f\n",
translate[0], translate[1], translate[2], scale[0], scale[1], scale[2],
skew[0], skew[1], skew[2], perspective[0], perspective[1], perspective[2],
perspective[3], quaternion.x(), quaternion.y(), quaternion.z(),
quaternion.w());
}
} // namespace gfx
|