summaryrefslogtreecommitdiff
path: root/chromium/ui/accessibility/ax_tree.cc
blob: 9c26f68ce8ffac4eccab1f9d5fd55dcdb552b020 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "ui/accessibility/ax_tree.h"

#include <stddef.h>

#include <numeric>
#include <set>

#include "base/auto_reset.h"
#include "base/command_line.h"
#include "base/logging.h"
#include "base/no_destructor.h"
#include "base/stl_util.h"
#include "base/strings/stringprintf.h"
#include "ui/accessibility/accessibility_switches.h"
#include "ui/accessibility/ax_language_detection.h"
#include "ui/accessibility/ax_node.h"
#include "ui/accessibility/ax_node_position.h"
#include "ui/accessibility/ax_role_properties.h"
#include "ui/accessibility/ax_table_info.h"
#include "ui/accessibility/ax_tree_observer.h"
#include "ui/gfx/transform.h"

namespace ui {

namespace {

std::string TreeToStringHelper(const AXNode* node, int indent) {
  if (!node)
    return "";

  return std::accumulate(
      node->children().cbegin(), node->children().cend(),
      std::string(2 * indent, ' ') + node->data().ToString() + "\n",
      [indent](const std::string& str, const auto* child) {
        return str + TreeToStringHelper(child, indent + 1);
      });
}

template <typename K, typename V>
bool KeyValuePairsKeysMatch(std::vector<std::pair<K, V>> pairs1,
                            std::vector<std::pair<K, V>> pairs2) {
  if (pairs1.size() != pairs2.size())
    return false;
  for (size_t i = 0; i < pairs1.size(); ++i) {
    if (pairs1[i].first != pairs2[i].first)
      return false;
  }
  return true;
}

template <typename K, typename V>
std::map<K, V> MapFromKeyValuePairs(std::vector<std::pair<K, V>> pairs) {
  std::map<K, V> result;
  for (size_t i = 0; i < pairs.size(); ++i)
    result[pairs[i].first] = pairs[i].second;
  return result;
}

// Given two vectors of <K, V> key, value pairs representing an "old" vs "new"
// state, or "before" vs "after", calls a callback function for each key that
// changed value. Note that if an attribute is removed, that will result in
// a call to the callback with the value changing from the previous value to
// |empty_value|, and similarly when an attribute is added.
template <typename K, typename V, typename F>
void CallIfAttributeValuesChanged(const std::vector<std::pair<K, V>>& pairs1,
                                  const std::vector<std::pair<K, V>>& pairs2,
                                  const V& empty_value,
                                  F callback) {
  // Fast path - if they both have the same keys in the same order.
  if (KeyValuePairsKeysMatch(pairs1, pairs2)) {
    for (size_t i = 0; i < pairs1.size(); ++i) {
      if (pairs1[i].second != pairs2[i].second)
        callback(pairs1[i].first, pairs1[i].second, pairs2[i].second);
    }
    return;
  }

  // Slower path - they don't have the same keys in the same order, so
  // check all keys against each other, using maps to prevent this from
  // becoming O(n^2) as the size grows.
  auto map1 = MapFromKeyValuePairs(pairs1);
  auto map2 = MapFromKeyValuePairs(pairs2);
  for (size_t i = 0; i < pairs1.size(); ++i) {
    const auto& new_iter = map2.find(pairs1[i].first);
    if (pairs1[i].second != empty_value && new_iter == map2.end())
      callback(pairs1[i].first, pairs1[i].second, empty_value);
  }

  for (size_t i = 0; i < pairs2.size(); ++i) {
    const auto& iter = map1.find(pairs2[i].first);
    if (iter == map1.end())
      callback(pairs2[i].first, empty_value, pairs2[i].second);
    else if (iter->second != pairs2[i].second)
      callback(pairs2[i].first, iter->second, pairs2[i].second);
  }
}

bool IsCollapsed(const AXNode* node) {
  return node && node->data().HasState(ax::mojom::State::kCollapsed);
}

}  // namespace

// This object is used to track structure changes that will occur for a specific
// AXID. This includes how many times we expect that a node with a specific AXID
// will be created and/or destroyed, and how many times a subtree rooted at AXID
// expects to be destroyed during an AXTreeUpdate.
//
// An AXTreeUpdate is a serialized representation of an atomic change to an
// AXTree. See also |AXTreeUpdate| which documents the nature and invariants
// required to atomically update the AXTree.
//
// The reason that we must track these counts, and the reason these are counts
// rather than a bool/flag is because an AXTreeUpdate may contain multiple
// AXNodeData updates for a given AXID. A common way that this occurs is when
// multiple AXTreeUpdates are merged together, combining their AXNodeData list.
// Additionally AXIDs may be reused after being removed from the tree,
// most notably when "reparenting" a node. A "reparent" occurs when an AXID is
// first destroyed from the tree then created again in the same AXTreeUpdate,
// which may also occur multiple times with merged updates.
//
// We need to accumulate these counts for 3 reasons :
//   1. To determine what structure changes *will* occur before applying
//      updates to the tree so that we can notify observers of structure changes
//      when the tree is still in a stable and unchanged state.
//   2. Capture any errors *before* applying updates to the tree structure
//      due to the order of (or lack of) AXNodeData entries in the update
//      so we can abort a bad update instead of applying it partway.
//   3. To validate that the expectations we accumulate actually match
//      updates that are applied to the tree.
//
// To reiterate the invariants that this structure is taking a dependency on
// from |AXTreeUpdate|, suppose that the next AXNodeData to be applied is
// |node|. The following invariants must hold:
// 1. Either
//   a) |node.id| is already in the tree, or
//   b) the tree is empty, and
//      |node| is the new root of the tree, and
//      |node.role| == WebAXRoleRootWebArea.
// 2. Every child id in |node.child_ids| must either be already a child
//        of this node, or a new id not previously in the tree. It is not
//        allowed to "reparent" a child to this node without first removing
//        that child from its previous parent.
// 3. When a new id appears in |node.child_ids|, the tree should create a
//        new uninitialized placeholder node for it immediately. That
//        placeholder must be updated within the same AXTreeUpdate, otherwise
//        it's a fatal error. This guarantees the tree is always complete
//        before or after an AXTreeUpdate.
struct PendingStructureChanges {
  PendingStructureChanges(const AXNode* node)
      : destroy_subtree_count(0),
        destroy_node_count(0),
        create_node_count(0),
        node_exists(!!node),
        parent_node_id((node && node->parent())
                           ? base::Optional<AXNode::AXID>{node->parent()->id()}
                           : base::nullopt),
        last_known_data(node ? &node->data() : nullptr) {}

  // Returns true if this node has any changes remaining.
  // This includes pending subtree or node destruction, and node creation.
  bool DoesNodeExpectAnyStructureChanges() const {
    return DoesNodeExpectSubtreeWillBeDestroyed() ||
           DoesNodeExpectNodeWillBeDestroyed() ||
           DoesNodeExpectNodeWillBeCreated();
  }

  // Returns true if there are any pending changes that require destroying
  // this node or its subtree.
  bool DoesNodeExpectSubtreeOrNodeWillBeDestroyed() const {
    return DoesNodeExpectSubtreeWillBeDestroyed() ||
           DoesNodeExpectNodeWillBeDestroyed();
  }

  // Returns true if the subtree rooted at this node needs to be destroyed
  // during the update, but this may not be the next action that needs to be
  // performed on the node.
  bool DoesNodeExpectSubtreeWillBeDestroyed() const {
    return destroy_subtree_count;
  }

  // Returns true if this node needs to be destroyed during the update, but this
  // may not be the next action that needs to be performed on the node.
  bool DoesNodeExpectNodeWillBeDestroyed() const { return destroy_node_count; }

  // Returns true if this node needs be created during the update, but this
  // may not be the next action that needs to be performed on the node.
  bool DoesNodeExpectNodeWillBeCreated() const { return create_node_count; }

  // Returns true if this node would exist in the tree as of the last pending
  // update that was processed, and the node has not been provided node data.
  bool DoesNodeRequireInit() const { return node_exists && !last_known_data; }

  // Keep track of the number of times the subtree rooted at this node
  // will be destroyed.
  // An example of when this count may be larger than 1 is if updates were
  // merged together. A subtree may be [created,] destroyed, created, and
  // destroyed again within the same |AXTreeUpdate|. The important takeaway here
  // is that an update may request destruction of a subtree rooted at an
  // AXID more than once, not that a specific subtree is being destroyed
  // more than once.
  int32_t destroy_subtree_count;

  // Keep track of the number of times this node will be destroyed.
  // An example of when this count may be larger than 1 is if updates were
  // merged together. A node may be [created,] destroyed, created, and destroyed
  // again within the same |AXTreeUpdate|. The important takeaway here is that
  // an AXID may request destruction more than once, not that a specific node
  // is being destroyed more than once.
  int32_t destroy_node_count;

  // Keep track of the number of times this node will be created.
  // An example of when this count may be larger than 1 is if updates were
  // merged together. A node may be [destroyed,] created, destroyed, and created
  // again within the same |AXTreeUpdate|. The important takeaway here is that
  // an AXID may request creation more than once, not that a specific node is
  // being created more than once.
  int32_t create_node_count;

  // Keep track of whether this node exists in the tree as of the last pending
  // update that was processed.
  bool node_exists;

  // Keep track of the parent id for this node as of the last pending
  // update that was processed.
  base::Optional<AXNode::AXID> parent_node_id;

  // Keep track of the last known node data for this node.
  // This will be null either when a node does not exist in the tree, or
  // when the node is new and has not been initialized with node data yet.
  // This is needed to determine what children have changed between pending
  // updates.
  const AXNodeData* last_known_data;
};

// Intermediate state to keep track of during a tree update.
struct AXTreeUpdateState {
  AXTreeUpdateState(const AXTree& tree)
      : computing_pending_changes(false),
        root_will_be_created(false),
        tree(tree) {}

  // Returns whether this update removes |node|.
  bool IsRemovedNode(const AXNode* node) const {
    return base::Contains(removed_node_ids, node->id());
  }

  // Returns whether this update creates |node|.
  bool IsCreatedNode(const AXNode* node) const {
    return base::Contains(new_node_ids, node->id());
  }

  // If this node is removed, it should be considered reparented.
  bool IsPotentiallyReparentedNode(const AXNode* node) const {
    return base::Contains(node_ids_found_in_update, node->id());
  }

  // Returns whether this update reparents |node|.
  bool IsReparentedNode(const AXNode* node) const {
    return IsPotentiallyReparentedNode(node) && IsRemovedNode(node);
  }

  // Returns true if the node should exist in the tree but doesn't have
  // any node data yet.
  bool DoesPendingNodeRequireInit(AXNode::AXID node_id) const {
    DCHECK(computing_pending_changes) << "This method should be called before "
                                         "any updates are made to the tree.";
    PendingStructureChanges* data = GetPendingStructureChanges(node_id);
    return data && data->DoesNodeRequireInit();
  }

  // Returns the parent node id for the pending node.
  base::Optional<AXNode::AXID> GetParentIdForPendingNode(AXNode::AXID node_id) {
    DCHECK(computing_pending_changes) << "This method should be called before "
                                         "any updates are made to the tree.";
    PendingStructureChanges* data = GetOrCreatePendingStructureChanges(node_id);
    DCHECK(!data->parent_node_id ||
           ShouldPendingNodeExistInTree(*data->parent_node_id));
    return data->parent_node_id;
  }

  // Returns true if this node should exist in the tree.
  bool ShouldPendingNodeExistInTree(AXNode::AXID node_id) {
    DCHECK(computing_pending_changes) << "This method should be called before "
                                         "any updates are made to the tree.";
    return GetOrCreatePendingStructureChanges(node_id)->node_exists;
  }

  // Returns the last known node data for a pending node.
  const AXNodeData& GetLastKnownPendingNodeData(AXNode::AXID node_id) const {
    DCHECK(computing_pending_changes) << "This method should be called before "
                                         "any updates are made to the tree.";
    static base::NoDestructor<ui::AXNodeData> empty_data;
    PendingStructureChanges* data = GetPendingStructureChanges(node_id);
    return (data && data->last_known_data) ? *data->last_known_data
                                           : *empty_data;
  }

  // Clear the last known pending data for |node_id|.
  void ClearLastKnownPendingNodeData(AXNode::AXID node_id) {
    DCHECK(computing_pending_changes) << "This method should be called before "
                                         "any updates are made to the tree.";
    GetOrCreatePendingStructureChanges(node_id)->last_known_data = nullptr;
  }

  // Update the last known pending node data for |node_data.id|.
  void SetLastKnownPendingNodeData(const AXNodeData* node_data) {
    DCHECK(computing_pending_changes) << "This method should be called before "
                                         "any updates are made to the tree.";
    GetOrCreatePendingStructureChanges(node_data->id)->last_known_data =
        node_data;
  }

  // Returns the number of times the update is expected to destroy a
  // subtree rooted at |node_id|.
  int32_t GetPendingDestroySubtreeCount(AXNode::AXID node_id) const {
    DCHECK(!computing_pending_changes)
        << "This method should not be called before any updates are made to "
           "the tree.";
    if (PendingStructureChanges* data = GetPendingStructureChanges(node_id))
      return data->destroy_subtree_count;
    return 0;
  }

  // Increments the number of times the update is expected to
  // destroy a subtree rooted at |node_id|.
  // Returns true on success, false on failure when the node will not exist.
  bool IncrementPendingDestroySubtreeCount(AXNode::AXID node_id) {
    DCHECK(computing_pending_changes) << "This method should be called before "
                                         "any updates are made to the tree.";
    PendingStructureChanges* data = GetOrCreatePendingStructureChanges(node_id);
    if (!data->node_exists)
      return false;

    ++data->destroy_subtree_count;
    return true;
  }

  // Decrements the number of times the update is expected to
  // destroy a subtree rooted at |node_id|.
  void DecrementPendingDestroySubtreeCount(AXNode::AXID node_id) {
    DCHECK(!computing_pending_changes)
        << "This method should not be called before any updates are made to "
           "the tree.";
    if (PendingStructureChanges* data = GetPendingStructureChanges(node_id)) {
      DCHECK_GT(data->destroy_subtree_count, 0);
      --data->destroy_subtree_count;
    }
  }

  // Returns the number of times the update is expected to destroy
  // a node with |node_id|.
  int32_t GetPendingDestroyNodeCount(AXNode::AXID node_id) const {
    DCHECK(!computing_pending_changes)
        << "This method should not be called before any updates are made to "
           "the tree.";
    if (PendingStructureChanges* data = GetPendingStructureChanges(node_id))
      return data->destroy_node_count;
    return 0;
  }

  // Increments the number of times the update is expected to
  // destroy a node with |node_id|.
  // Returns true on success, false on failure when the node will not exist.
  bool IncrementPendingDestroyNodeCount(AXNode::AXID node_id) {
    DCHECK(computing_pending_changes) << "This method should be called before "
                                         "any updates are made to the tree.";
    PendingStructureChanges* data = GetOrCreatePendingStructureChanges(node_id);
    if (!data->node_exists)
      return false;

    ++data->destroy_node_count;
    data->node_exists = false;
    data->last_known_data = nullptr;
    data->parent_node_id = base::nullopt;
    if (pending_root_id == node_id)
      pending_root_id = base::nullopt;
    return true;
  }

  // Decrements the number of times the update is expected to
  // destroy a node with |node_id|.
  void DecrementPendingDestroyNodeCount(AXNode::AXID node_id) {
    DCHECK(!computing_pending_changes)
        << "This method should not be called before any updates are made to "
           "the tree.";
    if (PendingStructureChanges* data = GetPendingStructureChanges(node_id)) {
      DCHECK_GT(data->destroy_node_count, 0);
      --data->destroy_node_count;
    }
  }

  // Returns the number of times the update is expected to create
  // a node with |node_id|.
  int32_t GetPendingCreateNodeCount(AXNode::AXID node_id) const {
    DCHECK(!computing_pending_changes)
        << "This method should not be called before any updates are made to "
           "the tree.";
    if (PendingStructureChanges* data = GetPendingStructureChanges(node_id))
      return data->create_node_count;
    return 0;
  }

  // Increments the number of times the update is expected to
  // create a node with |node_id|.
  // Returns true on success, false on failure when the node will already exist.
  bool IncrementPendingCreateNodeCount(
      AXNode::AXID node_id,
      base::Optional<AXNode::AXID> parent_node_id) {
    DCHECK(computing_pending_changes) << "This method should be called before "
                                         "any updates are made to the tree.";
    PendingStructureChanges* data = GetOrCreatePendingStructureChanges(node_id);
    if (data->node_exists)
      return false;

    ++data->create_node_count;
    data->node_exists = true;
    data->parent_node_id = parent_node_id;
    return true;
  }

  // Decrements the number of times the update is expected to
  // create a node with |node_id|.
  void DecrementPendingCreateNodeCount(AXNode::AXID node_id) {
    DCHECK(!computing_pending_changes)
        << "This method should not be called before any updates are made to "
           "the tree.";
    if (PendingStructureChanges* data = GetPendingStructureChanges(node_id)) {
      DCHECK_GT(data->create_node_count, 0);
      --data->create_node_count;
    }
  }

  // Returns whether this update must invalidate the unignored cached
  // values for |node_id|.
  bool InvalidatesUnignoredCachedValues(AXNode::AXID node_id) {
    return base::Contains(invalidate_unignored_cached_values_ids, node_id);
  }

  // Adds the parent of |node_id| to the list of nodes to invalidate unignored
  // cached values.
  void InvalidateParentNodeUnignoredCacheValues(AXNode::AXID node_id) {
    DCHECK(computing_pending_changes) << "This method should be called before "
                                         "any updates are made to the tree.";
    base::Optional<AXNode::AXID> parent_node_id =
        GetParentIdForPendingNode(node_id);
    if (parent_node_id) {
      invalidate_unignored_cached_values_ids.insert(*parent_node_id);
    }
  }

  // Indicates if the tree is calculating what changes will occur during
  // an update before the update applies changes.
  bool computing_pending_changes;

  // Keeps track of the root node id when calculating what changes will occur
  // during an update before the update applies changes.
  base::Optional<AXNode::AXID> pending_root_id;

  // Keeps track of whether the root node will need to be created as a new node.
  // This may occur either when the root node does not exist before applying
  // updates to the tree (new tree), or if the root is the |node_id_to_clear|
  // and will be destroyed before applying AXNodeData updates to the tree.
  bool root_will_be_created;

  // During an update, this keeps track of all nodes that have been
  // implicitly referenced as part of this update, but haven't been
  // updated yet. It's an error if there are any pending nodes at the
  // end of Unserialize.
  std::set<AXNode::AXID> pending_nodes;

  // Keeps track of nodes whose cached unignored child count, or unignored
  // index in parent may have changed, and must be updated.
  std::set<AXNode::AXID> invalidate_unignored_cached_values_ids;

  // All child node ids touched by the update, as well as the new root
  // node id. Nodes are considered reparented if they are in this list
  // and removed from somewhere else.
  std::set<AXNode::AXID> node_ids_found_in_update;

  // Keeps track of nodes that have changed their node data.
  std::set<AXNode::AXID> node_data_changed_ids;

  // Keeps track of new nodes created during this update.
  std::set<AXNode::AXID> new_node_ids;

  // Keeps track of any nodes removed. Nodes are removed when their AXID no
  // longer exist in the parent |child_ids| list, or the node is part of to the
  // subtree of the AXID that was explicitally cleared with |node_id_to_clear|.
  // Used to identify re-parented nodes. A re-parented occurs when any AXID
  // is first removed from the tree then added to the tree again.
  std::set<AXNode::AXID> removed_node_ids;

  // Maps between a node id and its pending update information.
  std::map<AXNode::AXID, std::unique_ptr<PendingStructureChanges>>
      node_id_to_pending_data;

  // Maps between a node id and the data it owned before being updated.
  // We need to keep this around in order to correctly fire post-update events.
  std::map<AXNode::AXID, AXNodeData> old_node_id_to_data;

  // Optional copy of the old tree data, only populated when the tree
  // data has changed.
  base::Optional<AXTreeData> old_tree_data;

 private:
  PendingStructureChanges* GetPendingStructureChanges(
      AXNode::AXID node_id) const {
    auto iter = node_id_to_pending_data.find(node_id);
    return (iter != node_id_to_pending_data.cend()) ? iter->second.get()
                                                    : nullptr;
  }

  PendingStructureChanges* GetOrCreatePendingStructureChanges(
      AXNode::AXID node_id) {
    auto iter = node_id_to_pending_data.find(node_id);
    if (iter == node_id_to_pending_data.cend()) {
      const AXNode* node = tree.GetFromId(node_id);
      iter = node_id_to_pending_data
                 .emplace(std::make_pair(
                     node_id, std::make_unique<PendingStructureChanges>(node)))
                 .first;
    }
    return iter->second.get();
  }

  // We need to hold onto a reference to the AXTree so that we can
  // lazily initialize |PendingStructureChanges| objects.
  const AXTree& tree;
};

AXTree::AXTree() {
  AXNodeData root;
  root.id = AXNode::kInvalidAXID;

  AXTreeUpdate initial_state;
  initial_state.root_id = AXNode::kInvalidAXID;
  initial_state.nodes.push_back(root);
  CHECK(Unserialize(initial_state)) << error();
  // TODO(chrishall): should language_detection_manager be a member or pointer?
  // TODO(chrishall): do we want to initialize all the time, on demand, or only
  //                  when feature flag is set?
  DCHECK(!language_detection_manager);
  language_detection_manager.reset(new AXLanguageDetectionManager());
}

AXTree::AXTree(const AXTreeUpdate& initial_state) {
  CHECK(Unserialize(initial_state)) << error();
  DCHECK(!language_detection_manager);
  language_detection_manager.reset(new AXLanguageDetectionManager());
}

AXTree::~AXTree() {
  if (root_) {
    RecursivelyNotifyNodeWillBeDeleted(root_);
    base::AutoReset<bool> update_state_resetter(&tree_update_in_progress_,
                                                true);
    DestroyNodeAndSubtree(root_, nullptr);
  }
  for (auto& entry : table_info_map_)
    delete entry.second;
  table_info_map_.clear();
}

void AXTree::AddObserver(AXTreeObserver* observer) {
  observers_.AddObserver(observer);
}

bool AXTree::HasObserver(AXTreeObserver* observer) {
  return observers_.HasObserver(observer);
}

void AXTree::RemoveObserver(const AXTreeObserver* observer) {
  observers_.RemoveObserver(observer);
}

AXNode* AXTree::GetFromId(int32_t id) const {
  auto iter = id_map_.find(id);
  return iter != id_map_.end() ? iter->second : nullptr;
}

void AXTree::UpdateData(const AXTreeData& new_data) {
  if (data_ == new_data)
    return;

  AXTreeData old_data = data_;
  data_ = new_data;
  for (AXTreeObserver& observer : observers_)
    observer.OnTreeDataChanged(this, old_data, new_data);
}

gfx::RectF AXTree::RelativeToTreeBounds(const AXNode* node,
                                        gfx::RectF bounds,
                                        bool* offscreen,
                                        bool clip_bounds) const {
  // If |bounds| is uninitialized, which is not the same as empty,
  // start with the node bounds.
  if (bounds.width() == 0 && bounds.height() == 0) {
    bounds = node->data().relative_bounds.bounds;

    // If the node bounds is empty (either width or height is zero),
    // try to compute good bounds from the children.
    if (bounds.IsEmpty()) {
      for (size_t i = 0; i < node->children().size(); i++) {
        ui::AXNode* child = node->children()[i];
        bounds.Union(GetTreeBounds(child));
      }
      if (bounds.width() > 0 && bounds.height() > 0) {
        return bounds;
      }
    }
  } else {
    bounds.Offset(node->data().relative_bounds.bounds.x(),
                  node->data().relative_bounds.bounds.y());
  }

  while (node != nullptr) {
    if (node->data().relative_bounds.transform)
      node->data().relative_bounds.transform->TransformRect(&bounds);
    const AXNode* container;

    // Normally we apply any transforms and offsets for each node and
    // then walk up to its offset container - however, if the node has
    // no width or height, walk up to its nearest ancestor until we find
    // one that has bounds.
    if (bounds.width() == 0 && bounds.height() == 0)
      container = node->parent();
    else
      container = GetFromId(node->data().relative_bounds.offset_container_id);
    if (!container && container != root())
      container = root();
    if (!container || container == node)
      break;

    gfx::RectF container_bounds = container->data().relative_bounds.bounds;
    bounds.Offset(container_bounds.x(), container_bounds.y());

    // If we don't have any size yet, take the size from this ancestor.
    // The rationale is that it's not useful to the user for an object to
    // have no width or height and it's probably a bug; it's better to
    // reflect the bounds of the nearest ancestor rather than a 0x0 box.
    // Tag this node as 'offscreen' because it has no true size, just a
    // size inherited from the ancestor.
    if (bounds.width() == 0 && bounds.height() == 0) {
      bounds.set_size(container_bounds.size());
      if (offscreen != nullptr)
        *offscreen |= true;
    }

    int scroll_x = 0;
    int scroll_y = 0;
    if (container->data().GetIntAttribute(ax::mojom::IntAttribute::kScrollX,
                                          &scroll_x) &&
        container->data().GetIntAttribute(ax::mojom::IntAttribute::kScrollY,
                                          &scroll_y)) {
      bounds.Offset(-scroll_x, -scroll_y);
    }

    // Get the intersection between the bounds and the container.
    gfx::RectF intersection = bounds;
    intersection.Intersect(container_bounds);

    // Calculate the clipped bounds to determine offscreen state.
    gfx::RectF clipped = bounds;
    // If this is the root web area, make sure we clip the node to fit.
    if (container->data().GetBoolAttribute(
            ax::mojom::BoolAttribute::kClipsChildren)) {
      if (!intersection.IsEmpty()) {
        // We can simply clip it to the container.
        clipped = intersection;
      } else {
        // Totally offscreen. Find the nearest edge or corner.
        // Make the minimum dimension 1 instead of 0.
        if (clipped.x() >= container_bounds.width()) {
          clipped.set_x(container_bounds.right() - 1);
          clipped.set_width(1);
        } else if (clipped.x() + clipped.width() <= 0) {
          clipped.set_x(container_bounds.x());
          clipped.set_width(1);
        }
        if (clipped.y() >= container_bounds.height()) {
          clipped.set_y(container_bounds.bottom() - 1);
          clipped.set_height(1);
        } else if (clipped.y() + clipped.height() <= 0) {
          clipped.set_y(container_bounds.y());
          clipped.set_height(1);
        }
      }
    }

    if (clip_bounds)
      bounds = clipped;

    if (container->data().GetBoolAttribute(
            ax::mojom::BoolAttribute::kClipsChildren) &&
        intersection.IsEmpty() && !clipped.IsEmpty()) {
      // If it is offscreen with respect to its parent, and the node itself is
      // not empty, label it offscreen.
      // Here we are extending the definition of offscreen to include elements
      // that are clipped by their parents in addition to those clipped by
      // the rootWebArea.
      // No need to update |offscreen| if |intersection| is not empty, because
      // it should be false by default.
      if (offscreen != nullptr)
        *offscreen |= true;
    }

    node = container;
  }

  return bounds;
}

gfx::RectF AXTree::GetTreeBounds(const AXNode* node,
                                 bool* offscreen,
                                 bool clip_bounds) const {
  return RelativeToTreeBounds(node, gfx::RectF(), offscreen, clip_bounds);
}

std::set<int32_t> AXTree::GetReverseRelations(ax::mojom::IntAttribute attr,
                                              int32_t dst_id) const {
  DCHECK(IsNodeIdIntAttribute(attr));

  // Conceptually, this is the "const" version of:
  //   return int_reverse_relations_[attr][dst_id];
  const auto& attr_relations = int_reverse_relations_.find(attr);
  if (attr_relations != int_reverse_relations_.end()) {
    const auto& result = attr_relations->second.find(dst_id);
    if (result != attr_relations->second.end())
      return result->second;
  }
  return std::set<int32_t>();
}

std::set<int32_t> AXTree::GetReverseRelations(ax::mojom::IntListAttribute attr,
                                              int32_t dst_id) const {
  DCHECK(IsNodeIdIntListAttribute(attr));

  // Conceptually, this is the "const" version of:
  //   return intlist_reverse_relations_[attr][dst_id];
  const auto& attr_relations = intlist_reverse_relations_.find(attr);
  if (attr_relations != intlist_reverse_relations_.end()) {
    const auto& result = attr_relations->second.find(dst_id);
    if (result != attr_relations->second.end())
      return result->second;
  }
  return std::set<int32_t>();
}

std::set<int32_t> AXTree::GetNodeIdsForChildTreeId(
    AXTreeID child_tree_id) const {
  // Conceptually, this is the "const" version of:
  //   return child_tree_id_reverse_map_[child_tree_id];
  const auto& result = child_tree_id_reverse_map_.find(child_tree_id);
  if (result != child_tree_id_reverse_map_.end())
    return result->second;
  return std::set<int32_t>();
}

const std::set<AXTreeID> AXTree::GetAllChildTreeIds() const {
  std::set<AXTreeID> result;
  for (auto entry : child_tree_id_reverse_map_)
    result.insert(entry.first);
  return result;
}

bool AXTree::Unserialize(const AXTreeUpdate& update) {
  AXTreeUpdateState update_state(*this);
  const AXNode::AXID old_root_id = root_ ? root_->id() : AXNode::kInvalidAXID;

  // Get all of the node ids that are certain to exist after the update.
  // These are the nodes that are considered reparented if they are removed from
  // somewhere else.
  if (update.root_id != AXNode::kInvalidAXID)
    update_state.node_ids_found_in_update.emplace(update.root_id);
  for (const AXNodeData& update_node_data : update.nodes) {
    update_state.node_ids_found_in_update.insert(
        update_node_data.child_ids.begin(), update_node_data.child_ids.end());
  }

  // Accumulates the work that will be required to update the AXTree.
  // This allows us to notify observers of structure changes when the
  // tree is still in a stable and unchanged state.
  if (!ComputePendingChanges(update, update_state))
    return false;

  // Notify observers of subtrees and nodes that are about to be destroyed or
  // reparented, this must be done before applying any updates to the tree.
  for (auto&& pair : update_state.node_id_to_pending_data) {
    const AXNode::AXID node_id = pair.first;
    const std::unique_ptr<PendingStructureChanges>& data = pair.second;
    if (data->DoesNodeExpectSubtreeOrNodeWillBeDestroyed()) {
      if (AXNode* node = GetFromId(node_id)) {
        if (data->DoesNodeExpectSubtreeWillBeDestroyed())
          NotifySubtreeWillBeReparentedOrDeleted(node, &update_state);
        if (data->DoesNodeExpectNodeWillBeDestroyed())
          NotifyNodeWillBeReparentedOrDeleted(node, &update_state);
      }
    }
  }

  // Notify observers of nodes that are about to change their data.
  // This must be done before applying any updates to the tree.
  // This is iterating in reverse order so that we only notify once per node id,
  // and that we only notify the initial node data against the final node data,
  // unless the node is a new root.
  std::set<int32_t> notified_node_data_will_change;
  for (size_t i = update.nodes.size(); i-- > 0;) {
    const AXNodeData& new_data = update.nodes[i];
    const bool is_new_root =
        update_state.root_will_be_created && new_data.id == update.root_id;
    if (!is_new_root) {
      AXNode* node = GetFromId(new_data.id);
      if (node && notified_node_data_will_change.insert(new_data.id).second)
        NotifyNodeDataWillChange(node->data(), new_data);
    }
  }

  // Now that we have finished sending events for changes that will  happen,
  // set update state to true. |tree_update_in_progress_| gets set back to
  // false whenever this function exits.
  base::AutoReset<bool> update_state_resetter(&tree_update_in_progress_, true);

  // Handle |node_id_to_clear| before applying ordinary node updates.
  // We distinguish between updating the root, e.g. changing its children or
  // some of its attributes, or replacing the root completely. If the root is
  // being updated, update.node_id_to_clear should hold the current root's ID.
  // Otherwise if the root is being replaced, update.root_id should hold the ID
  // of the new root.
  bool root_updated = false;
  if (update.node_id_to_clear != AXNode::kInvalidAXID) {
    if (AXNode* cleared_node = GetFromId(update.node_id_to_clear)) {
      DCHECK(root_);
      if (cleared_node == root_) {
        // Only destroy the root if the root was replaced and not if it's simply
        // updated. To figure out if the root was simply updated, we compare
        // the ID of the new root with the existing root ID.
        if (update.root_id != old_root_id) {
          // Clear root_ before calling DestroySubtree so that root_ doesn't
          // ever point to an invalid node.
          AXNode* old_root = root_;
          root_ = nullptr;
          DestroySubtree(old_root, &update_state);
        } else {
          // If the root has simply been updated, we treat it like an update to
          // any other node.
          root_updated = true;
        }
      }

      // If the tree doesn't exists any more because the root has just been
      // replaced, there is nothing more to clear.
      if (root_) {
        for (auto* child : cleared_node->children())
          DestroySubtree(child, &update_state);
        std::vector<AXNode*> children;
        cleared_node->SwapChildren(children);
        update_state.pending_nodes.insert(cleared_node->id());
      }
    }
  }

  DCHECK_EQ(!GetFromId(update.root_id), update_state.root_will_be_created);

  // Update the tree data, do not call |UpdateData| since we want to defer
  // the |OnTreeDataChanged| event until after the tree has finished updating.
  if (update.has_tree_data && data_ != update.tree_data) {
    update_state.old_tree_data = data_;
    data_ = update.tree_data;
  }

  // Update all of the nodes in the update.
  for (size_t i = 0; i < update.nodes.size(); ++i) {
    const bool is_new_root = update_state.root_will_be_created &&
                             update.nodes[i].id == update.root_id;
    if (!UpdateNode(update.nodes[i], is_new_root, &update_state))
      return false;
  }

  if (!root_) {
    error_ = "Tree has no root.";
    return false;
  }

  if (!ValidatePendingChangesComplete(update_state))
    return false;

  // Look for changes to nodes that are a descendant of a table,
  // and invalidate their table info if so.  We have to walk up the
  // ancestry of every node that was updated potentially, so keep track of
  // ids that were checked to eliminate duplicate work.
  std::set<int32_t> table_ids_checked;
  for (size_t i = 0; i < update.nodes.size(); ++i) {
    AXNode* node = GetFromId(update.nodes[i].id);
    while (node) {
      if (table_ids_checked.find(node->id()) != table_ids_checked.end())
        break;
      // Remove any table infos.
      const auto& table_info_entry = table_info_map_.find(node->id());
      if (table_info_entry != table_info_map_.end())
        table_info_entry->second->Invalidate();
      table_ids_checked.insert(node->id());
      node = node->parent();
    }
  }

  // Clear list_info_map_
  ordered_set_info_map_.clear();

  std::vector<AXTreeObserver::Change> changes;
  changes.reserve(update.nodes.size());
  for (size_t i = 0; i < update.nodes.size(); ++i) {
    AXNode* node = GetFromId(update.nodes[i].id);
    if (!node)
      continue;

    bool is_new_node = update_state.IsCreatedNode(node);
    bool is_reparented_node = update_state.IsReparentedNode(node);

    AXTreeObserver::ChangeType change = AXTreeObserver::NODE_CHANGED;
    if (is_new_node) {
      if (is_reparented_node) {
        // A reparented subtree is any new node whose parent either doesn't
        // exist, or whose parent is not new.
        // Note that we also need to check for the special case when we update
        // the root without replacing it.
        bool is_subtree = !node->parent() ||
                          !update_state.IsCreatedNode(node->parent()) ||
                          (node->parent() == root_ && root_updated);
        change = is_subtree ? AXTreeObserver::SUBTREE_REPARENTED
                            : AXTreeObserver::NODE_REPARENTED;
      } else {
        // A new subtree is any new node whose parent is either not new, or
        // whose parent happens to be new only because it has been reparented.
        // Note that we also need to check for the special case when we update
        // the root without replacing it.
        bool is_subtree = !node->parent() ||
                          !update_state.IsCreatedNode(node->parent()) ||
                          update_state.IsRemovedNode(node->parent()) ||
                          (node->parent() == root_ && root_updated);
        change = is_subtree ? AXTreeObserver::SUBTREE_CREATED
                            : AXTreeObserver::NODE_CREATED;
      }
    }
    changes.push_back(AXTreeObserver::Change(node, change));
  }

  // Update the unignored cached values as necessary, ensuring that we only
  // update once for each unignored node.
  // If the node is ignored, we must update from an unignored ancestor.
  std::set<AXNode::AXID> updated_unignored_cached_values_ids;
  for (AXNode::AXID node_id :
       update_state.invalidate_unignored_cached_values_ids) {
    AXNode* node = GetFromId(node_id);
    while (node && node->data().HasState(ax::mojom::State::kIgnored))
      node = node->parent();
    if (node && updated_unignored_cached_values_ids.insert(node->id()).second)
      node->UpdateUnignoredCachedValues();
  }

  // Tree is no longer updating.
  SetTreeUpdateInProgressState(false);

  // Now that the tree is stable and its nodes have been updated, notify if
  // the tree data changed. We must do this after updating nodes in case the
  // root has been replaced, so observers have the most up-to-date information.
  if (update_state.old_tree_data) {
    for (AXTreeObserver& observer : observers_)
      observer.OnTreeDataChanged(this, *update_state.old_tree_data, data_);
  }

  // Now that the unignored cached values are up to date, update observers to
  // new nodes in the tree.
  for (AXNode::AXID node_id : update_state.new_node_ids) {
    NotifyNodeHasBeenReparentedOrCreated(GetFromId(node_id), &update_state);
  }

  // Now that the unignored cached values are up to date, update observers to
  // node changes.
  for (AXNode::AXID node_data_changed_id : update_state.node_data_changed_ids) {
    AXNode* node = GetFromId(node_data_changed_id);
    DCHECK(node);

    // If the node exists and is in the old data map, then the node data
    // may have changed unless this is a new root.
    const bool is_new_root = update_state.root_will_be_created &&
                             node_data_changed_id == update.root_id;
    if (!is_new_root) {
      auto it = update_state.old_node_id_to_data.find(node_data_changed_id);
      if (it != update_state.old_node_id_to_data.end()) {
        const AXNodeData& old_node_data = it->second;
        NotifyNodeDataHasBeenChanged(node, old_node_data, node->data());
      }
    }

    // |OnNodeChanged| should be fired for all nodes that have been updated.
    for (AXTreeObserver& observer : observers_)
      observer.OnNodeChanged(this, node);
  }

  for (AXTreeObserver& observer : observers_) {
    observer.OnAtomicUpdateFinished(this, root_->id() != old_root_id, changes);
  }

  return true;
}

AXTableInfo* AXTree::GetTableInfo(const AXNode* const_table_node) const {
  DCHECK(!GetTreeUpdateInProgressState());
  // Note: the const_casts are here because we want this function to be able
  // to be called from a const virtual function on AXNode. AXTableInfo is
  // computed on demand and cached, but that's an implementation detail
  // we want to hide from users of this API.
  AXNode* table_node = const_cast<AXNode*>(const_table_node);
  AXTree* tree = const_cast<AXTree*>(this);

  DCHECK(table_node);
  const auto& cached = table_info_map_.find(table_node->id());
  if (cached != table_info_map_.end()) {
    // Get existing table info, and update if invalid because the
    // tree has changed since the last time we accessed it.
    AXTableInfo* table_info = cached->second;
    if (!table_info->valid()) {
      bool success = table_info->Update();
      if (!success) {
        // If Update() returned false, this is no longer a valid table.
        // Remove it from the map.
        delete table_info;
        table_info = nullptr;
        table_info_map_.erase(table_node->id());
      }
      // See note about const_cast, above.
      for (AXTreeObserver& observer : observers_)
        observer.OnNodeChanged(tree, table_node);
    }
    return table_info;
  }

  AXTableInfo* table_info = AXTableInfo::Create(tree, table_node);
  if (!table_info)
    return nullptr;

  table_info_map_[table_node->id()] = table_info;
  for (AXTreeObserver& observer : observers_)
    observer.OnNodeChanged(tree, table_node);

  return table_info;
}

std::string AXTree::ToString() const {
  return "AXTree" + data_.ToString() + "\n" + TreeToStringHelper(root_, 0);
}

AXNode* AXTree::CreateNode(AXNode* parent,
                           AXNode::AXID id,
                           size_t index_in_parent,
                           AXTreeUpdateState* update_state) {
  DCHECK(GetTreeUpdateInProgressState());
  // |update_state| must already contain information about all of the expected
  // changes and invalidations to apply. If any of these are missing, observers
  // may not be notified of changes.
  DCHECK(!GetFromId(id));
  DCHECK_GT(update_state->GetPendingCreateNodeCount(id), 0);
  DCHECK(update_state->InvalidatesUnignoredCachedValues(id));
  DCHECK(!parent ||
         update_state->InvalidatesUnignoredCachedValues(parent->id()));
  update_state->DecrementPendingCreateNodeCount(id);
  update_state->new_node_ids.insert(id);
  // If this node is the root, use the given index_in_parent as the unignored
  // index in parent to provide consistency with index_in_parent.
  AXNode* new_node = new AXNode(this, parent, id, index_in_parent,
                                parent ? 0 : index_in_parent);
  id_map_[new_node->id()] = new_node;
  return new_node;
}

bool AXTree::ComputePendingChanges(const AXTreeUpdate& update,
                                   AXTreeUpdateState& update_state) {
  base::AutoReset<bool> computing_pending_changes_resetter(
      &update_state.computing_pending_changes, true);
  base::AutoReset<base::Optional<AXNode::AXID>> pending_root_id_resetter(
      &update_state.pending_root_id,
      root_ ? base::Optional<AXNode::AXID>{root_->id()} : base::nullopt);

  // We distinguish between updating the root, e.g. changing its children or
  // some of its attributes, or replacing the root completely. If the root is
  // being updated, update.node_id_to_clear should hold the current root's ID.
  // Otherwise if the root is being replaced, update.root_id should hold the ID
  // of the new root.
  if (update.node_id_to_clear != AXNode::kInvalidAXID) {
    if (AXNode* cleared_node = GetFromId(update.node_id_to_clear)) {
      DCHECK(root_);
      if (cleared_node == root_ &&
          update.root_id != update_state.pending_root_id) {
        // Only destroy the root if the root was replaced and not if it's simply
        // updated. To figure out if the root was simply updated, we compare
        // the ID of the new root with the existing root ID.
        MarkSubtreeForDestruction(*update_state.pending_root_id, &update_state);
      }

      // If the tree has been marked for destruction because the root will be
      // replaced, there is nothing more to clear.
      if (update_state.ShouldPendingNodeExistInTree(root_->id())) {
        update_state.invalidate_unignored_cached_values_ids.insert(
            cleared_node->id());
        update_state.ClearLastKnownPendingNodeData(cleared_node->id());
        for (AXNode* child : cleared_node->children()) {
          MarkSubtreeForDestruction(child->id(), &update_state);
        }
      }
    }
  }

  update_state.root_will_be_created =
      !GetFromId(update.root_id) ||
      !update_state.ShouldPendingNodeExistInTree(update.root_id);

  // Populate |update_state| with all of the changes that will be performed
  // on the tree during the update.
  for (const AXNodeData& new_data : update.nodes) {
    bool is_new_root =
        update_state.root_will_be_created && new_data.id == update.root_id;
    if (!ComputePendingChangesToNode(new_data, is_new_root, &update_state)) {
      return false;
    }
  }

  return true;
}

bool AXTree::ComputePendingChangesToNode(const AXNodeData& new_data,
                                         bool is_new_root,
                                         AXTreeUpdateState* update_state) {
  // If the node does not exist in the tree throw an error unless this
  // is the new root and it can be created.
  if (!update_state->ShouldPendingNodeExistInTree(new_data.id)) {
    if (!is_new_root) {
      error_ = base::StringPrintf(
          "%d will not be in the tree and is not the new root", new_data.id);
      return false;
    }

    // Creation is implicit for new root nodes. If |new_data.id| is already
    // pending for creation, then it must be a duplicate entry in the tree.
    if (!update_state->IncrementPendingCreateNodeCount(new_data.id,
                                                       base::nullopt)) {
      error_ = base::StringPrintf(
          "Node %d is already pending for creation, cannot be the new root",
          new_data.id);
      return false;
    }
    if (update_state->pending_root_id) {
      MarkSubtreeForDestruction(*update_state->pending_root_id, update_state);
    }
    update_state->pending_root_id = new_data.id;
  }

  // Create a set of new child ids so we can use it to find the nodes that
  // have been added and removed. Returns false if a duplicate is found.
  std::set<AXNode::AXID> new_child_id_set;
  for (AXNode::AXID new_child_id : new_data.child_ids) {
    if (base::Contains(new_child_id_set, new_child_id)) {
      error_ = base::StringPrintf("Node %d has duplicate child id %d",
                                  new_data.id, new_child_id);
      return false;
    }
    new_child_id_set.insert(new_child_id);
  }

  // If the node has not been initialized yet then its node data has either been
  // cleared when handling |node_id_to_clear|, or it's a new node.
  // In either case, all children must be created.
  if (update_state->DoesPendingNodeRequireInit(new_data.id)) {
    update_state->invalidate_unignored_cached_values_ids.insert(new_data.id);

    // If this node has been cleared via |node_id_to_clear| or is a new node,
    // the last-known parent's unignored cache needs to be updated.
    update_state->InvalidateParentNodeUnignoredCacheValues(new_data.id);

    for (AXNode::AXID child_id : new_child_id_set) {
      // If a |child_id| is already pending for creation, then it must be a
      // duplicate entry in the tree.
      update_state->invalidate_unignored_cached_values_ids.insert(child_id);
      if (!update_state->IncrementPendingCreateNodeCount(child_id,
                                                         new_data.id)) {
        error_ = base::StringPrintf(
            "Node %d is already pending for creation, cannot be a new child",
            child_id);
        return false;
      }
    }

    update_state->SetLastKnownPendingNodeData(&new_data);
    return true;
  }

  const AXNodeData& old_data =
      update_state->GetLastKnownPendingNodeData(new_data.id);

  // Create a set of old child ids so we can use it to find the nodes that
  // have been added and removed.
  std::set<AXNode::AXID> old_child_id_set(old_data.child_ids.cbegin(),
                                          old_data.child_ids.cend());

  std::vector<AXNode::AXID> create_or_destroy_ids;
  std::set_symmetric_difference(
      old_child_id_set.cbegin(), old_child_id_set.cend(),
      new_child_id_set.cbegin(), new_child_id_set.cend(),
      std::back_inserter(create_or_destroy_ids));

  // If the node has changed ignored state or there are any differences in
  // its children, then its unignored cached values must be invalidated.
  const bool ignored_changed = old_data.HasState(ax::mojom::State::kIgnored) !=
                               new_data.HasState(ax::mojom::State::kIgnored);
  if (!create_or_destroy_ids.empty() || ignored_changed) {
    update_state->invalidate_unignored_cached_values_ids.insert(new_data.id);

    // If this ignored state had changed also invalidate the parent.
    update_state->InvalidateParentNodeUnignoredCacheValues(new_data.id);
  }

  for (AXNode::AXID child_id : create_or_destroy_ids) {
    if (base::Contains(new_child_id_set, child_id)) {
      // This is a serious error - nodes should never be reparented without
      // first being removed from the tree. If a node exists in the tree already
      // then adding it to a new parent would mean stealing the node from its
      // old parent which hadn't been updated to reflect the change.
      if (update_state->ShouldPendingNodeExistInTree(child_id)) {
        error_ = base::StringPrintf(
            "Node %d is not marked for destruction, would be reparented to %d",
            child_id, new_data.id);
        return false;
      }

      // If a |child_id| is already pending for creation, then it must be a
      // duplicate entry in the tree.
      update_state->invalidate_unignored_cached_values_ids.insert(child_id);
      if (!update_state->IncrementPendingCreateNodeCount(child_id,
                                                         new_data.id)) {
        error_ = base::StringPrintf(
            "Node %d is already pending for creation, cannot be a new child",
            child_id);
        return false;
      }
    } else {
      // If |child_id| does not exist in the new set, then it has
      // been removed from |node|, and the subtree must be deleted.
      MarkSubtreeForDestruction(child_id, update_state);
    }
  }

  update_state->SetLastKnownPendingNodeData(&new_data);
  return true;
}

bool AXTree::UpdateNode(const AXNodeData& src,
                        bool is_new_root,
                        AXTreeUpdateState* update_state) {
  DCHECK(GetTreeUpdateInProgressState());
  // This method updates one node in the tree based on serialized data
  // received in an AXTreeUpdate. See AXTreeUpdate for pre and post
  // conditions.

  // Look up the node by id. If it's not found, then either the root
  // of the tree is being swapped, or we're out of sync with the source
  // and this is a serious error.
  AXNode* node = GetFromId(src.id);
  if (node) {
    update_state->pending_nodes.erase(node->id());
    UpdateReverseRelations(node, src);
    if (!update_state->IsCreatedNode(node) ||
        update_state->IsReparentedNode(node)) {
      update_state->old_node_id_to_data.insert(
          std::make_pair(node->id(), node->TakeData()));
    }
    node->SetData(src);
  } else {
    if (!is_new_root) {
      error_ = base::StringPrintf(
          "%d is not in the tree and not the new root", src.id);
      return false;
    }

    node = CreateNode(nullptr, src.id, 0, update_state);
    UpdateReverseRelations(node, src);
    node->SetData(src);
  }

  update_state->node_data_changed_ids.insert(node->id());

  // First, delete nodes that used to be children of this node but aren't
  // anymore.
  DeleteOldChildren(node, src.child_ids, update_state);

  // Now build a new children vector, reusing nodes when possible,
  // and swap it in.
  std::vector<AXNode*> new_children;
  bool success = CreateNewChildVector(
      node, src.child_ids, &new_children, update_state);
  node->SwapChildren(new_children);

  // Update the root of the tree if needed.
  if (is_new_root) {
    // Make sure root_ always points to something valid or null_, even inside
    // DestroySubtree.
    AXNode* old_root = root_;
    root_ = node;
    if (old_root && old_root != node)
      DestroySubtree(old_root, update_state);
  }

  return success;
}

void AXTree::NotifySubtreeWillBeReparentedOrDeleted(
    AXNode* node,
    const AXTreeUpdateState* update_state) {
  DCHECK(!GetTreeUpdateInProgressState());
  if (node->id() == AXNode::kInvalidAXID)
    return;

  for (AXTreeObserver& observer : observers_) {
    if (update_state->IsPotentiallyReparentedNode(node)) {
      observer.OnSubtreeWillBeReparented(this, node);
    } else {
      observer.OnSubtreeWillBeDeleted(this, node);
    }
  }
}

void AXTree::NotifyNodeWillBeReparentedOrDeleted(
    AXNode* node,
    const AXTreeUpdateState* update_state) {
  DCHECK(!GetTreeUpdateInProgressState());
  if (node->id() == AXNode::kInvalidAXID)
    return;

  for (AXTreeObserver& observer : observers_) {
    if (update_state->IsPotentiallyReparentedNode(node)) {
      observer.OnNodeWillBeReparented(this, node);
    } else {
      observer.OnNodeWillBeDeleted(this, node);
    }
  }
}

void AXTree::RecursivelyNotifyNodeWillBeDeleted(AXNode* node) {
  DCHECK(!GetTreeUpdateInProgressState());
  if (node->id() == AXNode::kInvalidAXID)
    return;

  for (AXTreeObserver& observer : observers_)
    observer.OnNodeWillBeDeleted(this, node);
  for (auto* child : node->children())
    RecursivelyNotifyNodeWillBeDeleted(child);
}

void AXTree::NotifyNodeHasBeenReparentedOrCreated(
    AXNode* node,
    const AXTreeUpdateState* update_state) {
  DCHECK(!GetTreeUpdateInProgressState());
  if (node->id() == AXNode::kInvalidAXID)
    return;

  for (AXTreeObserver& observer : observers_) {
    if (update_state->IsReparentedNode(node)) {
      observer.OnNodeReparented(this, node);
    } else {
      observer.OnNodeCreated(this, node);
    }
  }
}

void AXTree::NotifyNodeDataWillChange(const AXNodeData& old_data,
                                      const AXNodeData& new_data) {
  DCHECK(!GetTreeUpdateInProgressState());
  if (new_data.id == AXNode::kInvalidAXID)
    return;

  for (AXTreeObserver& observer : observers_)
    observer.OnNodeDataWillChange(this, old_data, new_data);
}

void AXTree::NotifyNodeDataHasBeenChanged(AXNode* node,
                                          const AXNodeData& old_data,
                                          const AXNodeData& new_data) {
  DCHECK(!GetTreeUpdateInProgressState());
  if (node->id() == AXNode::kInvalidAXID)
    return;

  for (AXTreeObserver& observer : observers_)
    observer.OnNodeDataChanged(this, old_data, new_data);

  if (old_data.role != new_data.role) {
    for (AXTreeObserver& observer : observers_)
      observer.OnRoleChanged(this, node, old_data.role, new_data.role);
  }

  if (old_data.state != new_data.state) {
    for (int32_t i = static_cast<int32_t>(ax::mojom::State::kNone) + 1;
         i <= static_cast<int32_t>(ax::mojom::State::kMaxValue); ++i) {
      ax::mojom::State state = static_cast<ax::mojom::State>(i);
      if (old_data.HasState(state) != new_data.HasState(state)) {
        for (AXTreeObserver& observer : observers_)
          observer.OnStateChanged(this, node, state, new_data.HasState(state));
      }
    }
  }

  auto string_callback = [this, node](ax::mojom::StringAttribute attr,
                                      const std::string& old_string,
                                      const std::string& new_string) {
    for (AXTreeObserver& observer : observers_) {
      observer.OnStringAttributeChanged(this, node, attr, old_string,
                                        new_string);
    }
  };
  CallIfAttributeValuesChanged(old_data.string_attributes,
                               new_data.string_attributes, std::string(),
                               string_callback);

  auto bool_callback = [this, node](ax::mojom::BoolAttribute attr,
                                    const bool& old_bool,
                                    const bool& new_bool) {
    for (AXTreeObserver& observer : observers_)
      observer.OnBoolAttributeChanged(this, node, attr, new_bool);
  };
  CallIfAttributeValuesChanged(old_data.bool_attributes,
                               new_data.bool_attributes, false, bool_callback);

  auto float_callback = [this, node](ax::mojom::FloatAttribute attr,
                                     const float& old_float,
                                     const float& new_float) {
    for (AXTreeObserver& observer : observers_)
      observer.OnFloatAttributeChanged(this, node, attr, old_float, new_float);
  };
  CallIfAttributeValuesChanged(old_data.float_attributes,
                               new_data.float_attributes, 0.0f, float_callback);

  auto int_callback = [this, node](ax::mojom::IntAttribute attr,
                                   const int& old_int, const int& new_int) {
    for (AXTreeObserver& observer : observers_)
      observer.OnIntAttributeChanged(this, node, attr, old_int, new_int);
  };
  CallIfAttributeValuesChanged(old_data.int_attributes, new_data.int_attributes,
                               0, int_callback);

  auto intlist_callback = [this, node](
                              ax::mojom::IntListAttribute attr,
                              const std::vector<int32_t>& old_intlist,
                              const std::vector<int32_t>& new_intlist) {
    for (AXTreeObserver& observer : observers_)
      observer.OnIntListAttributeChanged(this, node, attr, old_intlist,
                                         new_intlist);
  };
  CallIfAttributeValuesChanged(old_data.intlist_attributes,
                               new_data.intlist_attributes,
                               std::vector<int32_t>(), intlist_callback);

  auto stringlist_callback =
      [this, node](ax::mojom::StringListAttribute attr,
                   const std::vector<std::string>& old_stringlist,
                   const std::vector<std::string>& new_stringlist) {
        for (AXTreeObserver& observer : observers_)
          observer.OnStringListAttributeChanged(this, node, attr,
                                                old_stringlist, new_stringlist);
      };
  CallIfAttributeValuesChanged(old_data.stringlist_attributes,
                               new_data.stringlist_attributes,
                               std::vector<std::string>(), stringlist_callback);
}

void AXTree::UpdateReverseRelations(AXNode* node, const AXNodeData& new_data) {
  DCHECK(GetTreeUpdateInProgressState());
  const AXNodeData& old_data = node->data();
  int id = new_data.id;
  auto int_callback = [this, id](ax::mojom::IntAttribute attr,
                                 const int& old_id, const int& new_id) {
    if (!IsNodeIdIntAttribute(attr))
      return;

    // Remove old_id -> id from the map, and clear map keys if their
    // values are now empty.
    auto& map = int_reverse_relations_[attr];
    if (map.find(old_id) != map.end()) {
      map[old_id].erase(id);
      if (map[old_id].empty())
        map.erase(old_id);
    }

    // Add new_id -> id to the map, unless new_id is zero indicating that
    // we're only removing a relation.
    if (new_id)
      map[new_id].insert(id);
  };
  CallIfAttributeValuesChanged(old_data.int_attributes, new_data.int_attributes,
                               0, int_callback);

  auto intlist_callback = [this, id](ax::mojom::IntListAttribute attr,
                                     const std::vector<int32_t>& old_idlist,
                                     const std::vector<int32_t>& new_idlist) {
    if (!IsNodeIdIntListAttribute(attr))
      return;

    auto& map = intlist_reverse_relations_[attr];
    for (int32_t old_id : old_idlist) {
      if (map.find(old_id) != map.end()) {
        map[old_id].erase(id);
        if (map[old_id].empty())
          map.erase(old_id);
      }
    }
    for (int32_t new_id : new_idlist)
      intlist_reverse_relations_[attr][new_id].insert(id);
  };
  CallIfAttributeValuesChanged(old_data.intlist_attributes,
                               new_data.intlist_attributes,
                               std::vector<int32_t>(), intlist_callback);

  auto string_callback = [this, id](ax::mojom::StringAttribute attr,
                                    const std::string& old_string,
                                    const std::string& new_string) {
    if (attr == ax::mojom::StringAttribute::kChildTreeId) {
      // Remove old_string -> id from the map, and clear map keys if
      // their values are now empty.
      AXTreeID old_ax_tree_id = AXTreeID::FromString(old_string);
      if (child_tree_id_reverse_map_.find(old_ax_tree_id) !=
          child_tree_id_reverse_map_.end()) {
        child_tree_id_reverse_map_[old_ax_tree_id].erase(id);
        if (child_tree_id_reverse_map_[old_ax_tree_id].empty())
          child_tree_id_reverse_map_.erase(old_ax_tree_id);
      }

      // Add new_string -> id to the map, unless new_id is zero indicating that
      // we're only removing a relation.
      if (!new_string.empty()) {
        AXTreeID new_ax_tree_id = AXTreeID::FromString(new_string);
        child_tree_id_reverse_map_[new_ax_tree_id].insert(id);
      }
    }
  };

  CallIfAttributeValuesChanged(old_data.string_attributes,
                               new_data.string_attributes, std::string(),
                               string_callback);
}

bool AXTree::ValidatePendingChangesComplete(
    const AXTreeUpdateState& update_state) {
  if (!update_state.pending_nodes.empty()) {
    error_ = "Nodes left pending by the update:";
    for (const AXNode::AXID pending_id : update_state.pending_nodes)
      error_ += base::StringPrintf(" %d", pending_id);
    return false;
  }

  if (!update_state.node_id_to_pending_data.empty()) {
    std::string destroy_subtree_ids;
    std::string destroy_node_ids;
    std::string create_node_ids;

    bool has_pending_changes = false;
    for (auto&& pair : update_state.node_id_to_pending_data) {
      const AXNode::AXID pending_id = pair.first;
      const std::unique_ptr<PendingStructureChanges>& data = pair.second;
      if (data->DoesNodeExpectAnyStructureChanges()) {
        if (data->DoesNodeExpectSubtreeWillBeDestroyed())
          destroy_subtree_ids += base::StringPrintf(" %d", pending_id);
        if (data->DoesNodeExpectNodeWillBeDestroyed())
          destroy_node_ids += base::StringPrintf(" %d", pending_id);
        if (data->DoesNodeExpectNodeWillBeCreated())
          create_node_ids += base::StringPrintf(" %d", pending_id);
        has_pending_changes = true;
      }
    }
    if (has_pending_changes) {
      error_ = base::StringPrintf(
          "Changes left pending by the update; "
          "destroy subtrees: %s, destroy nodes: %s, create nodes: %s",
          destroy_subtree_ids.c_str(), destroy_node_ids.c_str(),
          create_node_ids.c_str());
    }
    return !has_pending_changes;
  }

  return true;
}

void AXTree::MarkSubtreeForDestruction(AXNode::AXID node_id,
                                       AXTreeUpdateState* update_state) {
  update_state->IncrementPendingDestroySubtreeCount(node_id);
  MarkNodesForDestructionRecursive(node_id, update_state);
}

void AXTree::MarkNodesForDestructionRecursive(AXNode::AXID node_id,
                                              AXTreeUpdateState* update_state) {
  // If this subtree has already been marked for destruction, return so
  // we don't walk it again.
  if (!update_state->ShouldPendingNodeExistInTree(node_id))
    return;

  const AXNodeData& last_known_data =
      update_state->GetLastKnownPendingNodeData(node_id);

  update_state->IncrementPendingDestroyNodeCount(node_id);
  for (AXNode::AXID child_id : last_known_data.child_ids) {
    MarkNodesForDestructionRecursive(child_id, update_state);
  }
}

void AXTree::DestroySubtree(AXNode* node,
                            AXTreeUpdateState* update_state) {
  DCHECK(GetTreeUpdateInProgressState());
  // |update_state| must already contain information about all of the expected
  // changes and invalidations to apply. If any of these are missing, observers
  // may not be notified of changes.
  DCHECK(update_state);
  DCHECK_GT(update_state->GetPendingDestroySubtreeCount(node->id()), 0);
  DCHECK(!node->parent() ||
         update_state->InvalidatesUnignoredCachedValues(node->parent()->id()));
  update_state->DecrementPendingDestroySubtreeCount(node->id());
  DestroyNodeAndSubtree(node, update_state);
}

void AXTree::DestroyNodeAndSubtree(AXNode* node,
                                   AXTreeUpdateState* update_state) {
  DCHECK(GetTreeUpdateInProgressState());
  DCHECK(!update_state ||
         update_state->GetPendingDestroyNodeCount(node->id()) > 0);

  // Clear out any reverse relations.
  AXNodeData empty_data;
  empty_data.id = node->id();
  UpdateReverseRelations(node, empty_data);

  // Remove any table infos.
  const auto& table_info_entry = table_info_map_.find(node->id());
  if (table_info_entry != table_info_map_.end()) {
    delete table_info_entry->second;
    table_info_map_.erase(node->id());
  }

  id_map_.erase(node->id());
  for (auto* child : node->children())
    DestroyNodeAndSubtree(child, update_state);
  if (update_state) {
    update_state->pending_nodes.erase(node->id());
    update_state->DecrementPendingDestroyNodeCount(node->id());
    update_state->removed_node_ids.insert(node->id());
    update_state->new_node_ids.erase(node->id());
    update_state->node_data_changed_ids.erase(node->id());
    if (update_state->IsReparentedNode(node)) {
      update_state->old_node_id_to_data.emplace(
          std::make_pair(node->id(), node->TakeData()));
    }
  }
  node->Destroy();
}

void AXTree::DeleteOldChildren(AXNode* node,
                               const std::vector<int32_t>& new_child_ids,
                               AXTreeUpdateState* update_state) {
  DCHECK(GetTreeUpdateInProgressState());
  // Create a set of child ids in |src| for fast lookup, we know the set does
  // not contain duplicate entries already, because that was handled when
  // populating |update_state| with information about all of the expected
  // changes to be applied.
  std::set<int32_t> new_child_id_set(new_child_ids.begin(),
                                     new_child_ids.end());

  // Delete the old children.
  for (AXNode* child : node->children()) {
    if (!base::Contains(new_child_id_set, child->id()))
      DestroySubtree(child, update_state);
  }
}

bool AXTree::CreateNewChildVector(AXNode* node,
                                  const std::vector<int32_t>& new_child_ids,
                                  std::vector<AXNode*>* new_children,
                                  AXTreeUpdateState* update_state) {
  DCHECK(GetTreeUpdateInProgressState());
  bool success = true;
  for (size_t i = 0; i < new_child_ids.size(); ++i) {
    int32_t child_id = new_child_ids[i];
    AXNode* child = GetFromId(child_id);
    if (child) {
      if (child->parent() != node) {
        // This is a serious error - nodes should never be reparented.
        // If this case occurs, continue so this node isn't left in an
        // inconsistent state, but return failure at the end.
        error_ = base::StringPrintf(
            "Node %d reparented from %d to %d",
            child->id(),
            child->parent() ? child->parent()->id() : 0,
            node->id());
        success = false;
        continue;
      }
      child->SetIndexInParent(i);
    } else {
      child = CreateNode(node, child_id, i, update_state);
      update_state->pending_nodes.insert(child->id());
    }
    new_children->push_back(child);
  }

  return success;
}

void AXTree::SetEnableExtraMacNodes(bool enabled) {
  DCHECK(enable_extra_mac_nodes_ != enabled);
  DCHECK_EQ(0U, table_info_map_.size());
  enable_extra_mac_nodes_ = enabled;
}

int32_t AXTree::GetNextNegativeInternalNodeId() {
  int32_t return_value = next_negative_internal_node_id_;
  next_negative_internal_node_id_--;
  if (next_negative_internal_node_id_ > 0)
    next_negative_internal_node_id_ = -1;
  return return_value;
}

// Populates items vector with all items within ordered_set.
// Will only add items whose roles match the role of the
// ordered_set.
void AXTree::PopulateOrderedSetItems(const AXNode* ordered_set,
                                     const AXNode* local_parent,
                                     std::vector<const AXNode*>& items,
                                     const AXNode& original_node) const {
  // Ignored nodes are not a part of ordered sets.
  if (original_node.IsIgnored())
    return;

  // Stop searching current path if roles of local_parent and ordered set match.
  // Don't compare the container to itself.
  if (!(ordered_set == local_parent)) {
    if (local_parent->data().role == ordered_set->data().role)
      return;
  }

  // Initialize necessary variables.
  // Default hierarchical_level is 0, which represents that no hierarchical
  // level was detected on original_node.
  int original_level = original_node.GetIntAttribute(
      ax::mojom::IntAttribute::kHierarchicalLevel);
  // If original node is ordered set, then set its hierarchical level equal to
  // its first child that sets a hierarchical level, if any.
  if (ordered_set == &original_node) {
    for (auto unignored_iterator = original_node.UnignoredChildrenBegin();
         unignored_iterator != original_node.UnignoredChildrenEnd();
         ++unignored_iterator) {
      int32_t level = unignored_iterator->GetIntAttribute(
          ax::mojom::IntAttribute::kHierarchicalLevel);
      if (level)
        original_level =
            original_level ? std::min(level, original_level) : level;
    }
  }
  size_t original_node_index = original_node.GetUnignoredIndexInParent();
  bool node_is_radio_button =
      (original_node.data().role == ax::mojom::Role::kRadioButton);

  size_t i = 0;
  for (AXNode::UnignoredChildIterator it =
           local_parent->UnignoredChildrenBegin();
       it != local_parent->UnignoredChildrenEnd(); ++it, ++i) {
    const AXNode* child = it.get();

    // Invisible children should not be counted.
    // However, in the collapsed container case (e.g. a combobox), items can
    // still be chosen/navigated. However, the options in these collapsed
    // containers are historically marked invisible. Therefore, in that case,
    // count the invisible items. Only check 2 levels up, as combobox containers
    // are never higher.
    if (child->data().HasState(ax::mojom::State::kInvisible) &&
        !IsCollapsed(local_parent) && !IsCollapsed(local_parent->parent())) {
      continue;
    }

    int child_level =
        child->GetIntAttribute(ax::mojom::IntAttribute::kHierarchicalLevel);

    if (child_level < original_level) {
      // If a decrease in level occurs after the original node has been
      // examined, stop adding to this set.
      if (original_node_index < i)
        break;

      // If a decrease in level has been detected before the original node
      // has been examined, then everything previously added to items actually
      // belongs to a different set. Clear items vector.
      items.clear();
      continue;
    } else if (child_level > original_level) {
      continue;
    }

    // If role of node is kRadioButton, only add other kRadioButtons.
    if (node_is_radio_button &&
        child->data().role == ax::mojom::Role::kRadioButton)
      items.push_back(child);

    // Add child to items if role matches with ordered set's role. If role of
    // node is kRadioButton, don't add items of other roles, even if item role
    // matches ordered set role.
    if (!node_is_radio_button && child->SetRoleMatchesItemRole(ordered_set))
      items.push_back(child);

    // Recurse if there is a generic container or is ignored.
    if (child->data().role == ax::mojom::Role::kGenericContainer ||
        child->data().role == ax::mojom::Role::kIgnored) {
      PopulateOrderedSetItems(ordered_set, child, items, original_node);
    }
  }
}

// Given an ordered_set, compute pos_in_set and set_size for all of its items
// and store values in cache.
// Ordered_set should never be nullptr.
void AXTree::ComputeSetSizePosInSetAndCache(const AXNode& node,
                                            const AXNode* ordered_set) {
  DCHECK(ordered_set);
  std::vector<const AXNode*> items;
  // Find all items within ordered_set and add to vector.
  PopulateOrderedSetItems(ordered_set, ordered_set, items, node);

  // If ordered_set role is kPopUpButton and it wraps a kMenuListPopUp, then we
  // would like it to inherit the SetSize from the kMenuListPopUp it wraps. To
  // do this, we treat the kMenuListPopUp as the ordered_set and eventually
  // assign its SetSize value to the kPopUpButton.
  if ((node.data().role == ax::mojom::Role::kPopUpButton) &&
      (items.size() != 0)) {
    // kPopUpButtons are only allowed to contain one kMenuListPopUp.
    // The single element is guaranteed to be a kMenuListPopUp because that is
    // the only item role that matches the ordered set role of kPopUpButton.
    // Please see AXNode::SetRoleMatchesItemRole for more details.
    DCHECK(items.size() == 1);
    const AXNode* menu_list_popup = items[0];
    items.clear();
    PopulateOrderedSetItems(menu_list_popup, menu_list_popup, items, node);
  }

  // Keep track of the number of elements ordered_set has.
  int32_t num_elements = 0;
  // Necessary for calculating set_size.
  int32_t largest_assigned_set_size = 0;
  int hierarchical_level =
      node.GetIntAttribute(ax::mojom::IntAttribute::kHierarchicalLevel);

  // Compute pos_in_set_values.
  for (size_t i = 0; i < items.size(); ++i) {
    const AXNode* item = items[i];
    ordered_set_info_map_[item->id()] = OrderedSetInfo();
    int32_t pos_in_set_value = 0;

    pos_in_set_value = num_elements + 1;

    // Check if item has a valid kPosInSet assignment, which takes precedence
    // over previous assignment. Invalid assignments are decreasing or
    // duplicates, and should be ignored.
    pos_in_set_value =
        std::max(pos_in_set_value,
                 item->GetIntAttribute(ax::mojom::IntAttribute::kPosInSet));

    // If level is specified, use author-provided value, if present.
    if (hierarchical_level != 0 &&
        item->HasIntAttribute(ax::mojom::IntAttribute::kPosInSet)) {
      pos_in_set_value =
          item->GetIntAttribute(ax::mojom::IntAttribute::kPosInSet);
    }

    // Assign pos_in_set and update role counts.
    ordered_set_info_map_[item->id()].pos_in_set = pos_in_set_value;
    num_elements = pos_in_set_value;

    // Check if kSetSize is assigned and update if it's the largest assigned
    // kSetSize.
    if (item->HasIntAttribute(ax::mojom::IntAttribute::kSetSize))
      largest_assigned_set_size =
          std::max(largest_assigned_set_size,
                   item->GetIntAttribute(ax::mojom::IntAttribute::kSetSize));
  }

  // Compute set_size value.
  // The SetSize of an ordered set (and all of its items) is the maximum of the
  // following candidate values:
  // 1. The number of elements in the ordered set.
  // 2. The Largest assigned SetSize in the ordered set.
  // 3. The SetSize assigned within the ordered set.

  // Set to 0 if ordered_set has no kSetSize attribute.
  int32_t ordered_set_candidate =
      ordered_set->GetIntAttribute(ax::mojom::IntAttribute::kSetSize);

  int32_t set_size_value = std::max(
      std::max(num_elements, largest_assigned_set_size), ordered_set_candidate);

  // Assign set_size to ordered_set.
  // Must meet one of two conditions:
  // 1. Node role matches ordered set role.
  // 2. The node that calculations were called on is the ordered_set.
  if (node.SetRoleMatchesItemRole(ordered_set) || ordered_set == &node) {
    auto ordered_set_info_result =
        ordered_set_info_map_.find(ordered_set->id());
    // If ordered_set is not in the cache, assign it a new set_size.
    if (ordered_set_info_result == ordered_set_info_map_.end()) {
      ordered_set_info_map_[ordered_set->id()] = OrderedSetInfo();
      ordered_set_info_map_[ordered_set->id()].set_size = set_size_value;
      ordered_set_info_map_[ordered_set->id()].lowest_hierarchical_level =
          hierarchical_level;
    } else {
      OrderedSetInfo ordered_set_info = ordered_set_info_result->second;
      if (ordered_set_info.lowest_hierarchical_level > hierarchical_level) {
        ordered_set_info.set_size = set_size_value;
        ordered_set_info.lowest_hierarchical_level = hierarchical_level;
      }
    }
  }

  // Assign set_size to items.
  for (size_t j = 0; j < items.size(); ++j) {
    const AXNode* item = items[j];
    // If level is specified, use author-provided value, if present.
    if (hierarchical_level != 0 &&
        item->HasIntAttribute(ax::mojom::IntAttribute::kSetSize))
      ordered_set_info_map_[item->id()].set_size =
          item->GetIntAttribute(ax::mojom::IntAttribute::kSetSize);
    else
      ordered_set_info_map_[item->id()].set_size = set_size_value;
  }
}

// Returns the pos_in_set of item. Looks in ordered_set_info_map_ for cached
// value. Calculates pos_in_set and set_size for item (and all other items in
// the same ordered set) if no value is present in the cache.
// This function is guaranteed to be only called on nodes that can hold
// pos_in_set values, minimizing the size of the cache.
int32_t AXTree::GetPosInSet(const AXNode& node, const AXNode* ordered_set) {
  // If item's id is not in the cache, compute it.
  if (ordered_set_info_map_.find(node.id()) == ordered_set_info_map_.end())
    ComputeSetSizePosInSetAndCache(node, ordered_set);
  return ordered_set_info_map_[node.id()].pos_in_set;
}

// Returns the set_size of node. node could be an ordered set or an item.
// Looks in ordered_set_info_map_ for cached value. Calculates pos_inset_set
// and set_size for all nodes in same ordered set if no value is present in the
// cache.
// This function is guaranteed to be only called on nodes that can hold
// set_size values, minimizing the size of the cache.
int32_t AXTree::GetSetSize(const AXNode& node, const AXNode* ordered_set) {
  // If node's id is not in the cache, compute it.
  if (ordered_set_info_map_.find(node.id()) == ordered_set_info_map_.end())
    ComputeSetSizePosInSetAndCache(node, ordered_set);
  return ordered_set_info_map_[node.id()].set_size;
}

AXTree::Selection AXTree::GetUnignoredSelection() const {
  Selection unignored_selection = {
      data().sel_is_backward,     data().sel_anchor_object_id,
      data().sel_anchor_offset,   data().sel_anchor_affinity,
      data().sel_focus_object_id, data().sel_focus_offset,
      data().sel_focus_affinity};
  AXNode* anchor_node = GetFromId(data().sel_anchor_object_id);
  AXNode* focus_node = GetFromId(data().sel_focus_object_id);

  AXNodePosition::AXPositionInstance anchor_position =
      anchor_node ? AXNodePosition::CreatePosition(data().tree_id, *anchor_node,
                                                   data().sel_anchor_offset,
                                                   data().sel_anchor_affinity)
                  : AXNodePosition::CreateNullPosition();
  if (anchor_position->IsIgnoredPosition()) {
    anchor_position = anchor_position->AsUnignoredTextPosition(
        data().sel_is_backward ? AXNodePosition::AdjustmentBehavior::kMoveRight
                               : AXNodePosition::AdjustmentBehavior::kMoveLeft);
    // We do not expect the selection to have an endpoint on an inline text
    // box.
    if (!anchor_position->IsNullPosition() &&
        anchor_position->GetAnchor()->data().role ==
            ax::mojom::Role::kInlineTextBox)
      anchor_position = anchor_position->CreateParentPosition();
    unignored_selection.anchor_object_id = anchor_position->anchor_id();
    unignored_selection.anchor_offset = anchor_position->text_offset();
    unignored_selection.anchor_affinity = anchor_position->affinity();
  } else if (anchor_position->IsTreePosition()) {
    // Fix offset to be in terms of the unignored index.
    if (data().sel_anchor_offset == int32_t{anchor_node->children().size()}) {
      unignored_selection.anchor_offset = anchor_node->GetUnignoredChildCount();
    } else {
      AXNode* child = anchor_node->children()[data().sel_anchor_offset];
      unignored_selection.anchor_offset = child->GetUnignoredIndexInParent();
    }
  }

  AXNodePosition::AXPositionInstance focus_position =
      focus_node ? AXNodePosition::CreatePosition(data().tree_id, *focus_node,
                                                  data().sel_focus_offset,
                                                  data().sel_focus_affinity)
                 : AXNodePosition::CreateNullPosition();
  if (focus_position->IsIgnoredPosition()) {
    focus_position = focus_position->AsUnignoredTextPosition(
        !data().sel_is_backward
            ? AXNodePosition::AdjustmentBehavior::kMoveRight
            : AXNodePosition::AdjustmentBehavior::kMoveLeft);
    // We do not expect the selection to have an endpoint on an inline text
    // box.
    if (!focus_position->IsNullPosition() &&
        focus_position->GetAnchor()->data().role ==
            ax::mojom::Role::kInlineTextBox)
      focus_position = focus_position->CreateParentPosition();
    unignored_selection.focus_object_id = focus_position->anchor_id();
    unignored_selection.focus_offset = focus_position->text_offset();
    unignored_selection.focus_affinity = focus_position->affinity();
  } else if (focus_position->IsTreePosition()) {
    // Fix offset to be in terms of the unignored index.
    if (data().sel_focus_offset == int32_t{focus_node->children().size()}) {
      unignored_selection.focus_offset = focus_node->GetUnignoredChildCount();
    } else {
      AXNode* child = focus_node->children()[data().sel_focus_offset];
      unignored_selection.focus_offset = child->GetUnignoredIndexInParent();
    }
  }

  return unignored_selection;
}

bool AXTree::GetTreeUpdateInProgressState() const {
  return tree_update_in_progress_;
}

void AXTree::SetTreeUpdateInProgressState(bool set_tree_update_value) {
  tree_update_in_progress_ = set_tree_update_value;
}

}  // namespace ui