1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
|
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/accessibility/ax_tree.h"
#include <stddef.h>
#include <set>
#include "base/logging.h"
#include "base/strings/stringprintf.h"
#include "ui/accessibility/ax_node.h"
#include "ui/accessibility/ax_table_info.h"
#include "ui/gfx/transform.h"
namespace ui {
namespace {
std::string TreeToStringHelper(AXNode* node, int indent) {
std::string result = std::string(2 * indent, ' ');
result += node->data().ToString() + "\n";
for (int i = 0; i < node->child_count(); ++i)
result += TreeToStringHelper(node->ChildAtIndex(i), indent + 1);
return result;
}
template <typename K, typename V>
bool KeyValuePairsKeysMatch(std::vector<std::pair<K, V>> pairs1,
std::vector<std::pair<K, V>> pairs2) {
if (pairs1.size() != pairs2.size())
return false;
for (size_t i = 0; i < pairs1.size(); ++i) {
if (pairs1[i].first != pairs2[i].first)
return false;
}
return true;
}
template <typename K, typename V>
std::map<K, V> MapFromKeyValuePairs(std::vector<std::pair<K, V>> pairs) {
std::map<K, V> result;
for (size_t i = 0; i < pairs.size(); ++i)
result[pairs[i].first] = pairs[i].second;
return result;
}
// Given two vectors of <K, V> key, value pairs representing an "old" vs "new"
// state, or "before" vs "after", calls a callback function for each key that
// changed value. Note that if an attribute is removed, that will result in
// a call to the callback with the value changing from the previous value to
// |empty_value|, and similarly when an attribute is added.
template <typename K, typename V, typename F>
void CallIfAttributeValuesChanged(const std::vector<std::pair<K, V>>& pairs1,
const std::vector<std::pair<K, V>>& pairs2,
const V& empty_value,
F callback) {
// Fast path - if they both have the same keys in the same order.
if (KeyValuePairsKeysMatch(pairs1, pairs2)) {
for (size_t i = 0; i < pairs1.size(); ++i) {
if (pairs1[i].second != pairs2[i].second)
callback(pairs1[i].first, pairs1[i].second, pairs2[i].second);
}
return;
}
// Slower path - they don't have the same keys in the same order, so
// check all keys against each other, using maps to prevent this from
// becoming O(n^2) as the size grows.
auto map1 = MapFromKeyValuePairs(pairs1);
auto map2 = MapFromKeyValuePairs(pairs2);
for (size_t i = 0; i < pairs1.size(); ++i) {
const auto& new_iter = map2.find(pairs1[i].first);
if (pairs1[i].second != empty_value && new_iter == map2.end())
callback(pairs1[i].first, pairs1[i].second, empty_value);
}
for (size_t i = 0; i < pairs2.size(); ++i) {
const auto& iter = map1.find(pairs2[i].first);
if (iter == map1.end())
callback(pairs2[i].first, empty_value, pairs2[i].second);
else if (iter->second != pairs2[i].second)
callback(pairs2[i].first, iter->second, pairs2[i].second);
}
}
} // namespace
// Intermediate state to keep track of during a tree update.
struct AXTreeUpdateState {
AXTreeUpdateState() : new_root(nullptr) {}
// Returns whether this update changes |node|.
bool HasChangedNode(const AXNode* node) {
return changed_node_ids.find(node->id()) != changed_node_ids.end();
}
// Returns whether this update removes |node|.
bool HasRemovedNode(const AXNode* node) {
return removed_node_ids.find(node->id()) != removed_node_ids.end();
}
// During an update, this keeps track of all nodes that have been
// implicitly referenced as part of this update, but haven't been
// updated yet. It's an error if there are any pending nodes at the
// end of Unserialize.
std::set<AXNode*> pending_nodes;
// This is similar to above, but we store node ids here because this list gets
// generated before any nodes get created or re-used. Its purpose is to allow
// us to know what nodes will be updated so we can make more intelligent
// decisions about when to notify delegates of removals or reparenting.
std::set<int> changed_node_ids;
// Keeps track of new nodes created during this update.
std::set<AXNode*> new_nodes;
// The new root in this update, if any.
AXNode* new_root;
// Keeps track of any nodes removed. Used to identify re-parented nodes.
std::set<int> removed_node_ids;
};
AXTreeDelegate::AXTreeDelegate() = default;
AXTreeDelegate::~AXTreeDelegate() = default;
AXTree::AXTree() {
AXNodeData root;
root.id = -1;
AXTreeUpdate initial_state;
initial_state.root_id = -1;
initial_state.nodes.push_back(root);
CHECK(Unserialize(initial_state)) << error();
}
AXTree::AXTree(const AXTreeUpdate& initial_state) {
CHECK(Unserialize(initial_state)) << error();
}
AXTree::~AXTree() {
if (root_)
DestroyNodeAndSubtree(root_, nullptr);
for (auto& entry : table_info_map_)
delete entry.second;
table_info_map_.clear();
}
void AXTree::SetDelegate(AXTreeDelegate* delegate) {
delegate_ = delegate;
}
AXNode* AXTree::GetFromId(int32_t id) const {
auto iter = id_map_.find(id);
return iter != id_map_.end() ? iter->second : nullptr;
}
void AXTree::UpdateData(const AXTreeData& new_data) {
if (data_ == new_data)
return;
AXTreeData old_data = data_;
data_ = new_data;
if (delegate_)
delegate_->OnTreeDataChanged(this, old_data, new_data);
}
gfx::RectF AXTree::RelativeToTreeBounds(const AXNode* node,
gfx::RectF bounds,
bool* offscreen,
bool clip_bounds) const {
// If |bounds| is uninitialized, which is not the same as empty,
// start with the node bounds.
if (bounds.width() == 0 && bounds.height() == 0) {
bounds = node->data().location;
// If the node bounds is empty (either width or height is zero),
// try to compute good bounds from the children.
if (bounds.IsEmpty()) {
for (size_t i = 0; i < node->children().size(); i++) {
ui::AXNode* child = node->children()[i];
bounds.Union(GetTreeBounds(child));
}
if (bounds.width() > 0 && bounds.height() > 0) {
return bounds;
}
}
} else {
bounds.Offset(node->data().location.x(), node->data().location.y());
}
while (node != nullptr) {
if (node->data().transform)
node->data().transform->TransformRect(&bounds);
const AXNode* container;
// Normally we apply any transforms and offsets for each node and
// then walk up to its offset container - however, if the node has
// no width or height, walk up to its nearest ancestor until we find
// one that has bounds.
if (bounds.width() == 0 && bounds.height() == 0)
container = node->parent();
else
container = GetFromId(node->data().offset_container_id);
if (!container && container != root())
container = root();
if (!container || container == node)
break;
gfx::RectF container_bounds = container->data().location;
bounds.Offset(container_bounds.x(), container_bounds.y());
// If we don't have any size yet, take the size from this ancestor.
// The rationale is that it's not useful to the user for an object to
// have no width or height and it's probably a bug; it's better to
// reflect the bounds of the nearest ancestor rather than a 0x0 box.
// Tag this node as 'offscreen' because it has no true size, just a
// size inherited from the ancestor.
if (bounds.width() == 0 && bounds.height() == 0) {
bounds.set_size(container_bounds.size());
if (offscreen != nullptr)
*offscreen |= true;
}
int scroll_x = 0;
int scroll_y = 0;
if (container->data().GetIntAttribute(ax::mojom::IntAttribute::kScrollX,
&scroll_x) &&
container->data().GetIntAttribute(ax::mojom::IntAttribute::kScrollY,
&scroll_y)) {
bounds.Offset(-scroll_x, -scroll_y);
}
// Get the intersection between the bounds and the container.
gfx::RectF intersection = bounds;
intersection.Intersect(container_bounds);
// Calculate the clipped bounds to determine offscreen state.
gfx::RectF clipped = bounds;
// If this is the root web area, make sure we clip the node to fit.
if (container->data().GetBoolAttribute(
ax::mojom::BoolAttribute::kClipsChildren)) {
if (!intersection.IsEmpty()) {
// We can simply clip it to the container.
clipped = intersection;
} else {
// Totally offscreen. Find the nearest edge or corner.
// Make the minimum dimension 1 instead of 0.
if (clipped.x() >= container_bounds.width()) {
clipped.set_x(container_bounds.right() - 1);
clipped.set_width(1);
} else if (clipped.x() + clipped.width() <= 0) {
clipped.set_x(container_bounds.x());
clipped.set_width(1);
}
if (clipped.y() >= container_bounds.height()) {
clipped.set_y(container_bounds.bottom() - 1);
clipped.set_height(1);
} else if (clipped.y() + clipped.height() <= 0) {
clipped.set_y(container_bounds.y());
clipped.set_height(1);
}
}
}
if (clip_bounds)
bounds = clipped;
if (container->data().GetBoolAttribute(
ax::mojom::BoolAttribute::kClipsChildren) &&
intersection.IsEmpty() && !clipped.IsEmpty()) {
// If it is offscreen with respect to its parent, and the node itself is
// not empty, label it offscreen.
// Here we are extending the definition of offscreen to include elements
// that are clipped by their parents in addition to those clipped by
// the rootWebArea.
// No need to update |offscreen| if |intersection| is not empty, because
// it should be false by default.
if (offscreen != nullptr)
*offscreen |= true;
}
node = container;
}
return bounds;
}
gfx::RectF AXTree::GetTreeBounds(const AXNode* node,
bool* offscreen,
bool clip_bounds) const {
return RelativeToTreeBounds(node, gfx::RectF(), offscreen, clip_bounds);
}
std::set<int32_t> AXTree::GetReverseRelations(ax::mojom::IntAttribute attr,
int32_t dst_id) const {
DCHECK(IsNodeIdIntAttribute(attr));
// Conceptually, this is the "const" version of:
// return int_reverse_relations_[attr][dst_id];
const auto& attr_relations = int_reverse_relations_.find(attr);
if (attr_relations != int_reverse_relations_.end()) {
const auto& result = attr_relations->second.find(dst_id);
if (result != attr_relations->second.end())
return result->second;
}
return std::set<int32_t>();
}
std::set<int32_t> AXTree::GetReverseRelations(ax::mojom::IntListAttribute attr,
int32_t dst_id) const {
DCHECK(IsNodeIdIntListAttribute(attr));
// Conceptually, this is the "const" version of:
// return intlist_reverse_relations_[attr][dst_id];
const auto& attr_relations = intlist_reverse_relations_.find(attr);
if (attr_relations != intlist_reverse_relations_.end()) {
const auto& result = attr_relations->second.find(dst_id);
if (result != attr_relations->second.end())
return result->second;
}
return std::set<int32_t>();
}
std::set<int32_t> AXTree::GetNodeIdsForChildTreeId(
AXTreeID child_tree_id) const {
// Conceptually, this is the "const" version of:
// return child_tree_id_reverse_map_[child_tree_id];
const auto& result = child_tree_id_reverse_map_.find(child_tree_id);
if (result != child_tree_id_reverse_map_.end())
return result->second;
return std::set<int32_t>();
}
bool AXTree::Unserialize(const AXTreeUpdate& update) {
AXTreeUpdateState update_state;
int32_t old_root_id = root_ ? root_->id() : 0;
// First, make a note of any nodes we will touch as part of this update.
for (size_t i = 0; i < update.nodes.size(); ++i)
update_state.changed_node_ids.insert(update.nodes[i].id);
if (update.has_tree_data)
UpdateData(update.tree_data);
// We distinguish between updating the root, e.g. changing its children or
// some of its attributes, or replacing the root completely.
bool root_updated = false;
if (update.node_id_to_clear != 0) {
AXNode* node = GetFromId(update.node_id_to_clear);
// Only destroy the root if the root was replaced and not if it's simply
// updated. To figure out if the root was simply updated, we compare the ID
// of the new root with the existing root ID.
if (node && node == root_) {
if (update.root_id != old_root_id) {
// Clear root_ before calling DestroySubtree so that root_ doesn't ever
// point to an invalid node.
AXNode* old_root = root_;
root_ = nullptr;
DestroySubtree(old_root, &update_state);
} else {
root_updated = true;
}
}
// If the root has simply been updated, we treat it like an update to any
// other node.
if (node && root_ && (node != root_ || root_updated)) {
for (int i = 0; i < node->child_count(); ++i)
DestroySubtree(node->ChildAtIndex(i), &update_state);
std::vector<AXNode*> children;
node->SwapChildren(children);
update_state.pending_nodes.insert(node);
}
}
bool root_exists = GetFromId(update.root_id) != nullptr;
for (size_t i = 0; i < update.nodes.size(); ++i) {
bool is_new_root = !root_exists && update.nodes[i].id == update.root_id;
if (!UpdateNode(update.nodes[i], is_new_root, &update_state))
return false;
}
if (!root_) {
error_ = "Tree has no root.";
return false;
}
if (!update_state.pending_nodes.empty()) {
error_ = "Nodes left pending by the update:";
for (const AXNode* pending : update_state.pending_nodes)
error_ += base::StringPrintf(" %d", pending->id());
return false;
}
// Look for changes to nodes that are a descendant of a table,
// and invalidate their table info if so. We have to walk up the
// ancestry of every node that was updated potentially, so keep track of
// ids that were checked to eliminate duplicate work.
std::set<int32_t> table_ids_checked;
for (size_t i = 0; i < update.nodes.size(); ++i) {
AXNode* node = GetFromId(update.nodes[i].id);
while (node) {
if (table_ids_checked.find(node->id()) != table_ids_checked.end())
break;
// Remove any table infos.
const auto& table_info_entry = table_info_map_.find(node->id());
if (table_info_entry != table_info_map_.end())
table_info_entry->second->Invalidate();
table_ids_checked.insert(node->id());
node = node->parent();
}
}
if (delegate_) {
std::set<AXNode*>& new_nodes = update_state.new_nodes;
std::vector<AXTreeDelegate::Change> changes;
changes.reserve(update.nodes.size());
for (size_t i = 0; i < update.nodes.size(); ++i) {
AXNode* node = GetFromId(update.nodes[i].id);
if (!node)
continue;
bool is_new_node = new_nodes.find(node) != new_nodes.end();
bool is_reparented_node =
is_new_node && update_state.HasRemovedNode(node);
AXTreeDelegate::ChangeType change = AXTreeDelegate::NODE_CHANGED;
if (is_new_node) {
if (is_reparented_node) {
// A reparented subtree is any new node whose parent either doesn't
// exist, or whose parent is not new.
// Note that we also need to check for the special case when we update
// the root without replacing it.
bool is_subtree = !node->parent() ||
new_nodes.find(node->parent()) == new_nodes.end() ||
(node->parent() == root_ && root_updated);
change = is_subtree ? AXTreeDelegate::SUBTREE_REPARENTED
: AXTreeDelegate::NODE_REPARENTED;
} else {
// A new subtree is any new node whose parent is either not new, or
// whose parent happens to be new only because it has been reparented.
// Note that we also need to check for the special case when we update
// the root without replacing it.
bool is_subtree = !node->parent() ||
new_nodes.find(node->parent()) == new_nodes.end() ||
update_state.HasRemovedNode(node->parent()) ||
(node->parent() == root_ && root_updated);
change = is_subtree ? AXTreeDelegate::SUBTREE_CREATED
: AXTreeDelegate::NODE_CREATED;
}
}
changes.push_back(AXTreeDelegate::Change(node, change));
}
delegate_->OnAtomicUpdateFinished(
this, root_->id() != old_root_id, changes);
}
return true;
}
AXTableInfo* AXTree::GetTableInfo(AXNode* table_node) {
DCHECK(table_node);
const auto& cached = table_info_map_.find(table_node->id());
if (cached != table_info_map_.end()) {
// Get existing table info, and update if invalid because the
// tree has changed since the last time we accessed it.
AXTableInfo* table_info = cached->second;
if (!table_info->valid()) {
bool success = table_info->Update();
if (!success) {
// If Update() returned false, this is no longer a valid table.
// Remove it from the map.
delete table_info;
table_info_map_.erase(table_node->id());
}
if (delegate_)
delegate_->OnNodeChanged(this, table_node);
}
return table_info;
}
AXTableInfo* table_info = AXTableInfo::Create(this, table_node);
if (!table_info)
return nullptr;
table_info_map_[table_node->id()] = table_info;
if (delegate_)
delegate_->OnNodeChanged(this, table_node);
return table_info;
}
std::string AXTree::ToString() const {
return "AXTree" + data_.ToString() + "\n" + TreeToStringHelper(root_, 0);
}
AXNode* AXTree::CreateNode(AXNode* parent,
int32_t id,
int32_t index_in_parent,
AXTreeUpdateState* update_state) {
AXNode* new_node = new AXNode(parent, id, index_in_parent);
id_map_[new_node->id()] = new_node;
if (delegate_) {
if (update_state->HasChangedNode(new_node) &&
!update_state->HasRemovedNode(new_node))
delegate_->OnNodeCreated(this, new_node);
else
delegate_->OnNodeReparented(this, new_node);
}
return new_node;
}
bool AXTree::UpdateNode(const AXNodeData& src,
bool is_new_root,
AXTreeUpdateState* update_state) {
// This method updates one node in the tree based on serialized data
// received in an AXTreeUpdate. See AXTreeUpdate for pre and post
// conditions.
// Look up the node by id. If it's not found, then either the root
// of the tree is being swapped, or we're out of sync with the source
// and this is a serious error.
AXNode* node = GetFromId(src.id);
if (node) {
update_state->pending_nodes.erase(node);
// TODO(accessibility): CallNodeChangeCallbacks should not pass |node|,
// since the tree and the node data are not yet in a consistent
// state. Possibly only pass id.
if (update_state->new_nodes.find(node) == update_state->new_nodes.end())
CallNodeChangeCallbacks(node, src);
UpdateReverseRelations(node, src);
node->SetData(src);
} else {
if (!is_new_root) {
error_ = base::StringPrintf(
"%d is not in the tree and not the new root", src.id);
return false;
}
update_state->new_root = CreateNode(nullptr, src.id, 0, update_state);
node = update_state->new_root;
update_state->new_nodes.insert(node);
UpdateReverseRelations(node, src);
node->SetData(src);
}
if (delegate_)
delegate_->OnNodeChanged(this, node);
// First, delete nodes that used to be children of this node but aren't
// anymore.
if (!DeleteOldChildren(node, src.child_ids, update_state)) {
// If DeleteOldChildren failed, we need to carefully clean up before
// returning false as well. In particular, if this node was a new root,
// we need to safely destroy the whole tree.
if (update_state->new_root) {
AXNode* old_root = root_;
root_ = nullptr;
DestroySubtree(old_root, update_state);
// Delete |node|'s subtree too as long as it wasn't already removed
// or added elsewhere in the tree.
if (update_state->removed_node_ids.find(src.id) ==
update_state->removed_node_ids.end() &&
update_state->new_nodes.find(node) != update_state->new_nodes.end()) {
DestroySubtree(node, update_state);
}
}
return false;
}
// Now build a new children vector, reusing nodes when possible,
// and swap it in.
std::vector<AXNode*> new_children;
bool success = CreateNewChildVector(
node, src.child_ids, &new_children, update_state);
node->SwapChildren(new_children);
// Update the root of the tree if needed.
if (is_new_root) {
// Make sure root_ always points to something valid or null_, even inside
// DestroySubtree.
AXNode* old_root = root_;
root_ = node;
if (old_root && old_root != node)
DestroySubtree(old_root, update_state);
}
return success;
}
void AXTree::CallNodeChangeCallbacks(AXNode* node, const AXNodeData& new_data) {
if (!delegate_)
return;
const AXNodeData& old_data = node->data();
delegate_->OnNodeDataWillChange(this, old_data, new_data);
if (old_data.role != new_data.role)
delegate_->OnRoleChanged(this, node, old_data.role, new_data.role);
if (old_data.state != new_data.state) {
for (int32_t i = static_cast<int32_t>(ax::mojom::State::kNone) + 1;
i <= static_cast<int32_t>(ax::mojom::State::kMaxValue); ++i) {
ax::mojom::State state = static_cast<ax::mojom::State>(i);
if (old_data.HasState(state) != new_data.HasState(state))
delegate_->OnStateChanged(this, node, state, new_data.HasState(state));
}
}
auto string_callback = [this, node](ax::mojom::StringAttribute attr,
const std::string& old_string,
const std::string& new_string) {
delegate_->OnStringAttributeChanged(this, node, attr, old_string,
new_string);
};
CallIfAttributeValuesChanged(old_data.string_attributes,
new_data.string_attributes, std::string(),
string_callback);
auto bool_callback = [this, node](ax::mojom::BoolAttribute attr,
const bool& old_bool,
const bool& new_bool) {
delegate_->OnBoolAttributeChanged(this, node, attr, new_bool);
};
CallIfAttributeValuesChanged(old_data.bool_attributes,
new_data.bool_attributes, false, bool_callback);
auto float_callback = [this, node](ax::mojom::FloatAttribute attr,
const float& old_float,
const float& new_float) {
delegate_->OnFloatAttributeChanged(this, node, attr, old_float, new_float);
};
CallIfAttributeValuesChanged(old_data.float_attributes,
new_data.float_attributes, 0.0f, float_callback);
auto int_callback = [this, node](ax::mojom::IntAttribute attr,
const int& old_int, const int& new_int) {
delegate_->OnIntAttributeChanged(this, node, attr, old_int, new_int);
};
CallIfAttributeValuesChanged(old_data.int_attributes, new_data.int_attributes,
0, int_callback);
auto intlist_callback = [this, node](
ax::mojom::IntListAttribute attr,
const std::vector<int32_t>& old_intlist,
const std::vector<int32_t>& new_intlist) {
delegate_->OnIntListAttributeChanged(this, node, attr, old_intlist,
new_intlist);
};
CallIfAttributeValuesChanged(old_data.intlist_attributes,
new_data.intlist_attributes,
std::vector<int32_t>(), intlist_callback);
auto stringlist_callback =
[this, node](ax::mojom::StringListAttribute attr,
const std::vector<std::string>& old_stringlist,
const std::vector<std::string>& new_stringlist) {
delegate_->OnStringListAttributeChanged(this, node, attr,
old_stringlist, new_stringlist);
};
CallIfAttributeValuesChanged(old_data.stringlist_attributes,
new_data.stringlist_attributes,
std::vector<std::string>(), stringlist_callback);
}
void AXTree::UpdateReverseRelations(AXNode* node, const AXNodeData& new_data) {
const AXNodeData& old_data = node->data();
int id = new_data.id;
auto int_callback = [this, node, id](ax::mojom::IntAttribute attr,
const int& old_id, const int& new_id) {
if (!IsNodeIdIntAttribute(attr))
return;
// Remove old_id -> id from the map, and clear map keys if their
// values are now empty.
auto& map = int_reverse_relations_[attr];
if (map.find(old_id) != map.end()) {
map[old_id].erase(id);
if (map[old_id].empty())
map.erase(old_id);
}
// Add new_id -> id to the map, unless new_id is zero indicating that
// we're only removing a relation.
if (new_id)
map[new_id].insert(id);
};
CallIfAttributeValuesChanged(old_data.int_attributes, new_data.int_attributes,
0, int_callback);
auto intlist_callback = [this, node, id](
ax::mojom::IntListAttribute attr,
const std::vector<int32_t>& old_idlist,
const std::vector<int32_t>& new_idlist) {
if (!IsNodeIdIntListAttribute(attr))
return;
auto& map = intlist_reverse_relations_[attr];
for (int32_t old_id : old_idlist) {
if (map.find(old_id) != map.end()) {
map[old_id].erase(id);
if (map[old_id].empty())
map.erase(old_id);
}
}
for (int32_t new_id : new_idlist)
intlist_reverse_relations_[attr][new_id].insert(id);
};
CallIfAttributeValuesChanged(old_data.intlist_attributes,
new_data.intlist_attributes,
std::vector<int32_t>(), intlist_callback);
auto string_callback = [this, node, id](ax::mojom::StringAttribute attr,
const std::string& old_string,
const std::string& new_string) {
if (attr == ax::mojom::StringAttribute::kChildTreeId) {
// Remove old_string -> id from the map, and clear map keys if
// their values are now empty.
AXTreeID old_ax_tree_id = AXTreeID::FromString(old_string);
if (child_tree_id_reverse_map_.find(old_ax_tree_id) !=
child_tree_id_reverse_map_.end()) {
child_tree_id_reverse_map_[old_ax_tree_id].erase(id);
if (child_tree_id_reverse_map_[old_ax_tree_id].empty())
child_tree_id_reverse_map_.erase(old_ax_tree_id);
}
// Add new_string -> id to the map, unless new_id is zero indicating that
// we're only removing a relation.
if (!new_string.empty()) {
AXTreeID new_ax_tree_id = AXTreeID::FromString(new_string);
child_tree_id_reverse_map_[new_ax_tree_id].insert(id);
}
}
};
CallIfAttributeValuesChanged(old_data.string_attributes,
new_data.string_attributes, std::string(),
string_callback);
}
void AXTree::DestroySubtree(AXNode* node,
AXTreeUpdateState* update_state) {
DCHECK(update_state);
if (delegate_) {
if (!update_state->HasChangedNode(node))
delegate_->OnSubtreeWillBeDeleted(this, node);
else
delegate_->OnSubtreeWillBeReparented(this, node);
}
DestroyNodeAndSubtree(node, update_state);
}
void AXTree::DestroyNodeAndSubtree(AXNode* node,
AXTreeUpdateState* update_state) {
// Clear out any reverse relations.
AXNodeData empty_data;
empty_data.id = node->id();
UpdateReverseRelations(node, empty_data);
// Remove any table infos.
const auto& table_info_entry = table_info_map_.find(node->id());
if (table_info_entry != table_info_map_.end()) {
delete table_info_entry->second;
table_info_map_.erase(node->id());
}
if (delegate_) {
if (!update_state || !update_state->HasChangedNode(node))
delegate_->OnNodeWillBeDeleted(this, node);
else
delegate_->OnNodeWillBeReparented(this, node);
}
id_map_.erase(node->id());
for (int i = 0; i < node->child_count(); ++i)
DestroyNodeAndSubtree(node->ChildAtIndex(i), update_state);
if (update_state) {
update_state->pending_nodes.erase(node);
update_state->removed_node_ids.insert(node->id());
}
node->Destroy();
}
bool AXTree::DeleteOldChildren(AXNode* node,
const std::vector<int32_t>& new_child_ids,
AXTreeUpdateState* update_state) {
// Create a set of child ids in |src| for fast lookup, and return false
// if a duplicate is found;
std::set<int32_t> new_child_id_set;
for (size_t i = 0; i < new_child_ids.size(); ++i) {
if (new_child_id_set.find(new_child_ids[i]) != new_child_id_set.end()) {
error_ = base::StringPrintf("Node %d has duplicate child id %d",
node->id(), new_child_ids[i]);
return false;
}
new_child_id_set.insert(new_child_ids[i]);
}
// Delete the old children.
const std::vector<AXNode*>& old_children = node->children();
for (size_t i = 0; i < old_children.size(); ++i) {
int old_id = old_children[i]->id();
if (new_child_id_set.find(old_id) == new_child_id_set.end())
DestroySubtree(old_children[i], update_state);
}
return true;
}
bool AXTree::CreateNewChildVector(AXNode* node,
const std::vector<int32_t>& new_child_ids,
std::vector<AXNode*>* new_children,
AXTreeUpdateState* update_state) {
bool success = true;
for (size_t i = 0; i < new_child_ids.size(); ++i) {
int32_t child_id = new_child_ids[i];
int32_t index_in_parent = static_cast<int32_t>(i);
AXNode* child = GetFromId(child_id);
if (child) {
if (child->parent() != node) {
// This is a serious error - nodes should never be reparented.
// If this case occurs, continue so this node isn't left in an
// inconsistent state, but return failure at the end.
error_ = base::StringPrintf(
"Node %d reparented from %d to %d",
child->id(),
child->parent() ? child->parent()->id() : 0,
node->id());
success = false;
continue;
}
child->SetIndexInParent(index_in_parent);
} else {
child = CreateNode(node, child_id, index_in_parent, update_state);
update_state->pending_nodes.insert(child);
update_state->new_nodes.insert(child);
}
new_children->push_back(child);
}
return success;
}
void AXTree::SetEnableExtraMacNodes(bool enabled) {
DCHECK(enable_extra_mac_nodes_ != enabled);
DCHECK_EQ(0U, table_info_map_.size());
enable_extra_mac_nodes_ = enabled;
}
int32_t AXTree::GetNextNegativeInternalNodeId() {
int32_t return_value = next_negative_internal_node_id_;
next_negative_internal_node_id_--;
if (next_negative_internal_node_id_ > 0)
next_negative_internal_node_id_ = -1;
return return_value;
}
} // namespace ui
|