1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
/*
* Copyright (C) 2006, 2007, 2008, 2010 Apple Inc. All rights reserved.
* Copyright (C) 2007 Alp Toker <alp@atoker.com>
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "platform/graphics/Gradient.h"
#include "platform/geometry/FloatRect.h"
#include "platform/graphics/Color.h"
#include "platform/graphics/GraphicsContext.h"
#include "platform/graphics/skia/SkiaUtils.h"
#include "third_party/skia/include/core/SkColorShader.h"
#include "third_party/skia/include/core/SkShader.h"
#include "third_party/skia/include/effects/SkGradientShader.h"
namespace WebCore {
Gradient::Gradient(const FloatPoint& p0, const FloatPoint& p1)
: m_radial(false)
, m_p0(p0)
, m_p1(p1)
, m_r0(0)
, m_r1(0)
, m_aspectRatio(1)
, m_stopsSorted(false)
, m_spreadMethod(SpreadMethodPad)
, m_drawInPMColorSpace(false)
{
}
Gradient::Gradient(const FloatPoint& p0, float r0, const FloatPoint& p1, float r1, float aspectRatio)
: m_radial(true)
, m_p0(p0)
, m_p1(p1)
, m_r0(r0)
, m_r1(r1)
, m_aspectRatio(aspectRatio)
, m_stopsSorted(false)
, m_spreadMethod(SpreadMethodPad)
, m_drawInPMColorSpace(false)
{
}
Gradient::~Gradient()
{
}
void Gradient::addColorStop(float value, const Color& color)
{
float r;
float g;
float b;
float a;
color.getRGBA(r, g, b, a);
m_stops.append(ColorStop(value, r, g, b, a));
m_stopsSorted = false;
m_gradient.clear();
}
void Gradient::addColorStop(const Gradient::ColorStop& stop)
{
m_stops.append(stop);
m_stopsSorted = false;
m_gradient.clear();
}
static inline bool compareStops(const Gradient::ColorStop& a, const Gradient::ColorStop& b)
{
return a.stop < b.stop;
}
void Gradient::sortStopsIfNecessary()
{
if (m_stopsSorted)
return;
m_stopsSorted = true;
if (!m_stops.size())
return;
std::stable_sort(m_stops.begin(), m_stops.end(), compareStops);
}
bool Gradient::hasAlpha() const
{
for (size_t i = 0; i < m_stops.size(); i++) {
if (m_stops[i].alpha < 1)
return true;
}
return false;
}
void Gradient::setSpreadMethod(GradientSpreadMethod spreadMethod)
{
// FIXME: Should it become necessary, allow calls to this method after m_gradient has been set.
ASSERT(!m_gradient);
if (m_spreadMethod == spreadMethod)
return;
m_spreadMethod = spreadMethod;
}
void Gradient::setDrawsInPMColorSpace(bool drawInPMColorSpace)
{
if (drawInPMColorSpace == m_drawInPMColorSpace)
return;
m_drawInPMColorSpace = drawInPMColorSpace;
m_gradient.clear();
}
void Gradient::setGradientSpaceTransform(const AffineTransform& gradientSpaceTransformation)
{
if (m_gradientSpaceTransformation == gradientSpaceTransformation)
return;
m_gradientSpaceTransformation = gradientSpaceTransformation;
if (m_gradient)
m_gradient->setLocalMatrix(affineTransformToSkMatrix(m_gradientSpaceTransformation));
}
static inline U8CPU F2B(float x)
{
return static_cast<int>(x * 255);
}
static SkColor makeSkColor(float a, float r, float g, float b)
{
return SkColorSetARGB(F2B(a), F2B(r), F2B(g), F2B(b));
}
// Determine the total number of stops needed, including pseudo-stops at the
// ends as necessary.
static size_t totalStopsNeeded(const Gradient::ColorStop* stopData, size_t count)
{
// N.B.: The tests in this function should kept in sync with the ones in
// fillStops(), or badness happens.
const Gradient::ColorStop* stop = stopData;
size_t countUsed = count;
if (count < 1 || stop->stop > 0.0)
countUsed++;
stop += count - 1;
if (count < 1 || stop->stop < 1.0)
countUsed++;
return countUsed;
}
// Collect sorted stop position and color information into the pos and colors
// buffers, ensuring stops at both 0.0 and 1.0. The buffers must be large
// enough to hold information for all stops, including the new endpoints if
// stops at 0.0 and 1.0 aren't already included.
static void fillStops(const Gradient::ColorStop* stopData,
size_t count, SkScalar* pos, SkColor* colors)
{
const Gradient::ColorStop* stop = stopData;
size_t start = 0;
if (count < 1) {
// A gradient with no stops must be transparent black.
pos[0] = WebCoreFloatToSkScalar(0.0);
colors[0] = makeSkColor(0.0, 0.0, 0.0, 0.0);
start = 1;
} else if (stop->stop > 0.0) {
// Copy the first stop to 0.0. The first stop position may have a slight
// rounding error, but we don't care in this float comparison, since
// 0.0 comes through cleanly and people aren't likely to want a gradient
// with a stop at (0 + epsilon).
pos[0] = WebCoreFloatToSkScalar(0.0);
colors[0] = makeSkColor(stop->alpha, stop->red, stop->green, stop->blue);
start = 1;
}
for (size_t i = start; i < start + count; i++) {
pos[i] = WebCoreFloatToSkScalar(stop->stop);
colors[i] = makeSkColor(stop->alpha, stop->red, stop->green, stop->blue);
++stop;
}
// Copy the last stop to 1.0 if needed. See comment above about this float
// comparison.
if (count < 1 || (--stop)->stop < 1.0) {
pos[start + count] = WebCoreFloatToSkScalar(1.0);
colors[start + count] = colors[start + count - 1];
}
}
SkShader* Gradient::shader()
{
if (m_gradient)
return m_gradient.get();
sortStopsIfNecessary();
ASSERT(m_stopsSorted);
size_t countUsed = totalStopsNeeded(m_stops.data(), m_stops.size());
ASSERT(countUsed >= 2);
ASSERT(countUsed >= m_stops.size());
// FIXME: Why is all this manual pointer math needed?!
SkAutoMalloc storage(countUsed * (sizeof(SkColor) + sizeof(SkScalar)));
SkColor* colors = (SkColor*)storage.get();
SkScalar* pos = (SkScalar*)(colors + countUsed);
fillStops(m_stops.data(), m_stops.size(), pos, colors);
SkShader::TileMode tile = SkShader::kClamp_TileMode;
switch (m_spreadMethod) {
case SpreadMethodReflect:
tile = SkShader::kMirror_TileMode;
break;
case SpreadMethodRepeat:
tile = SkShader::kRepeat_TileMode;
break;
case SpreadMethodPad:
tile = SkShader::kClamp_TileMode;
break;
}
uint32_t shouldDrawInPMColorSpace = m_drawInPMColorSpace ? SkGradientShader::kInterpolateColorsInPremul_Flag : 0;
if (m_radial) {
// Since the two-point radial gradient is slower than the plain radial,
// only use it if we have to.
if (m_p0 == m_p1 && m_r0 <= 0.0f) {
m_gradient = adoptRef(SkGradientShader::CreateRadial(m_p1, m_r1, colors, pos, static_cast<int>(countUsed), tile, 0, shouldDrawInPMColorSpace));
} else {
// The radii we give to Skia must be positive. If we're given a
// negative radius, ask for zero instead.
SkScalar radius0 = m_r0 >= 0.0f ? WebCoreFloatToSkScalar(m_r0) : 0;
SkScalar radius1 = m_r1 >= 0.0f ? WebCoreFloatToSkScalar(m_r1) : 0;
m_gradient = adoptRef(SkGradientShader::CreateTwoPointConical(m_p0, radius0, m_p1, radius1, colors, pos, static_cast<int>(countUsed), tile, 0, shouldDrawInPMColorSpace));
}
if (aspectRatio() != 1) {
// CSS3 elliptical gradients: apply the elliptical scaling at the
// gradient center point.
m_gradientSpaceTransformation.translate(m_p0.x(), m_p0.y());
m_gradientSpaceTransformation.scale(1, 1 / aspectRatio());
m_gradientSpaceTransformation.translate(-m_p0.x(), -m_p0.y());
ASSERT(m_p0 == m_p1);
}
} else {
SkPoint pts[2] = { m_p0, m_p1 };
m_gradient = adoptRef(SkGradientShader::CreateLinear(pts, colors, pos, static_cast<int>(countUsed), tile, 0, shouldDrawInPMColorSpace));
}
if (!m_gradient) {
// use last color, since our "geometry" was degenerate (e.g. radius==0)
m_gradient = adoptRef(new SkColorShader(colors[countUsed - 1]));
} else {
m_gradient->setLocalMatrix(affineTransformToSkMatrix(m_gradientSpaceTransformation));
}
return m_gradient.get();
}
} //namespace
|