1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
|
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/test/cert_builder.h"
#include "base/files/file_path.h"
#include "base/memory/ptr_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_piece.h"
#include "crypto/openssl_util.h"
#include "crypto/rsa_private_key.h"
#include "net/cert/asn1_util.h"
#include "net/cert/internal/parse_certificate.h"
#include "net/cert/x509_util.h"
#include "net/der/encode_values.h"
#include "net/der/input.h"
#include "net/der/parse_values.h"
#include "net/der/parser.h"
#include "net/test/cert_test_util.h"
#include "net/test/test_data_directory.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/boringssl/src/include/openssl/evp.h"
#include "third_party/boringssl/src/include/openssl/mem.h"
#include "url/gurl.h"
namespace net {
namespace {
std::string MakeRandomHexString(size_t num_bytes) {
std::vector<char> rand_bytes;
rand_bytes.resize(num_bytes);
base::RandBytes(rand_bytes.data(), rand_bytes.size());
return base::HexEncode(rand_bytes.data(), rand_bytes.size());
}
std::string Sha256WithRSAEncryption() {
const uint8_t kSha256WithRSAEncryption[] = {0x30, 0x0D, 0x06, 0x09, 0x2a,
0x86, 0x48, 0x86, 0xf7, 0x0d,
0x01, 0x01, 0x0b, 0x05, 0x00};
return std::string(std::begin(kSha256WithRSAEncryption),
std::end(kSha256WithRSAEncryption));
}
std::string Sha1WithRSAEncryption() {
const uint8_t kSha1WithRSAEncryption[] = {0x30, 0x0D, 0x06, 0x09, 0x2a,
0x86, 0x48, 0x86, 0xf7, 0x0d,
0x01, 0x01, 0x05, 0x05, 0x00};
return std::string(std::begin(kSha1WithRSAEncryption),
std::end(kSha1WithRSAEncryption));
}
// Adds bytes (specified as a StringPiece) to the given CBB.
// The argument ordering follows the boringssl CBB_* api style.
bool CBBAddBytes(CBB* cbb, base::StringPiece bytes) {
return CBB_add_bytes(cbb, reinterpret_cast<const uint8_t*>(bytes.data()),
bytes.size());
}
// Adds bytes (from fixed size array) to the given CBB.
// The argument ordering follows the boringssl CBB_* api style.
template <size_t N>
bool CBBAddBytes(CBB* cbb, const uint8_t (&data)[N]) {
return CBB_add_bytes(cbb, data, N);
}
// Finalizes the CBB to a std::string.
std::string FinishCBB(CBB* cbb) {
size_t cbb_len;
uint8_t* cbb_bytes;
if (!CBB_finish(cbb, &cbb_bytes, &cbb_len)) {
ADD_FAILURE() << "CBB_finish() failed";
return std::string();
}
bssl::UniquePtr<uint8_t> delete_bytes(cbb_bytes);
return std::string(reinterpret_cast<char*>(cbb_bytes), cbb_len);
}
} // namespace
CertBuilder::CertBuilder(CRYPTO_BUFFER* orig_cert, CertBuilder* issuer)
: CertBuilder(orig_cert, issuer, /*unique_subject_key_identifier=*/true) {}
// static
std::unique_ptr<CertBuilder> CertBuilder::FromStaticCert(CRYPTO_BUFFER* cert,
EVP_PKEY* key) {
std::unique_ptr<CertBuilder> builder = base::WrapUnique(
new CertBuilder(cert, nullptr, /*unique_subject_key_identifier=*/false));
// |cert_|, |key_|, and |subject_tlv_| must be initialized for |builder| to
// function as the |issuer| of another CertBuilder.
builder->cert_ = bssl::UpRef(cert);
builder->key_ = bssl::UpRef(key);
base::StringPiece subject_tlv;
CHECK(asn1::ExtractSubjectFromDERCert(
x509_util::CryptoBufferAsStringPiece(cert), &subject_tlv));
builder->subject_tlv_ = std::string(subject_tlv);
return builder;
}
CertBuilder::~CertBuilder() = default;
// static
void CertBuilder::CreateSimpleChain(
std::unique_ptr<CertBuilder>* out_leaf,
std::unique_ptr<CertBuilder>* out_intermediate,
std::unique_ptr<CertBuilder>* out_root) {
const char kHostname[] = "www.example.com";
base::FilePath certs_dir =
GetTestNetDataDirectory()
.AppendASCII("verify_certificate_chain_unittest")
.AppendASCII("target-and-intermediate");
CertificateList orig_certs = CreateCertificateListFromFile(
certs_dir, "chain.pem", X509Certificate::FORMAT_AUTO);
ASSERT_EQ(3U, orig_certs.size());
// Build slightly modified variants of |orig_certs|.
*out_root =
std::make_unique<CertBuilder>(orig_certs[2]->cert_buffer(), nullptr);
*out_intermediate = std::make_unique<CertBuilder>(
orig_certs[1]->cert_buffer(), out_root->get());
(*out_intermediate)->EraseExtension(CrlDistributionPointsOid());
(*out_intermediate)->EraseExtension(AuthorityInfoAccessOid());
*out_leaf = std::make_unique<CertBuilder>(orig_certs[0]->cert_buffer(),
out_intermediate->get());
(*out_leaf)->SetSubjectAltName(kHostname);
(*out_leaf)->EraseExtension(CrlDistributionPointsOid());
(*out_leaf)->EraseExtension(AuthorityInfoAccessOid());
}
void CertBuilder::SetExtension(const der::Input& oid,
std::string value,
bool critical) {
auto& extension_value = extensions_[oid.AsString()];
extension_value.critical = critical;
extension_value.value = std::move(value);
Invalidate();
}
void CertBuilder::EraseExtension(const der::Input& oid) {
extensions_.erase(oid.AsString());
Invalidate();
}
void CertBuilder::SetBasicConstraints(bool is_ca, int path_len) {
// From RFC 5280:
//
// BasicConstraints ::= SEQUENCE {
// cA BOOLEAN DEFAULT FALSE,
// pathLenConstraint INTEGER (0..MAX) OPTIONAL }
bssl::ScopedCBB cbb;
CBB basic_constraints;
ASSERT_TRUE(CBB_init(cbb.get(), 64));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &basic_constraints, CBS_ASN1_SEQUENCE));
if (is_ca)
ASSERT_TRUE(CBB_add_asn1_bool(&basic_constraints, true));
if (path_len >= 0)
ASSERT_TRUE(CBB_add_asn1_uint64(&basic_constraints, path_len));
SetExtension(BasicConstraintsOid(), FinishCBB(cbb.get()), /*critical=*/true);
}
void CertBuilder::SetCaIssuersUrl(const GURL& url) {
SetCaIssuersAndOCSPUrls({url}, {});
}
void CertBuilder::SetCaIssuersAndOCSPUrls(
const std::vector<GURL>& ca_issuers_urls,
const std::vector<GURL>& ocsp_urls) {
std::vector<std::pair<der::Input, GURL>> entries;
for (const auto& url : ca_issuers_urls)
entries.emplace_back(AdCaIssuersOid(), url);
for (const auto& url : ocsp_urls)
entries.emplace_back(AdOcspOid(), url);
ASSERT_GT(entries.size(), 0U);
// From RFC 5280:
//
// AuthorityInfoAccessSyntax ::=
// SEQUENCE SIZE (1..MAX) OF AccessDescription
//
// AccessDescription ::= SEQUENCE {
// accessMethod OBJECT IDENTIFIER,
// accessLocation GeneralName }
bssl::ScopedCBB cbb;
CBB aia;
ASSERT_TRUE(CBB_init(cbb.get(), 64));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &aia, CBS_ASN1_SEQUENCE));
for (const auto& entry : entries) {
CBB access_description, access_method, access_location;
ASSERT_TRUE(CBB_add_asn1(&aia, &access_description, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(
CBB_add_asn1(&access_description, &access_method, CBS_ASN1_OBJECT));
ASSERT_TRUE(CBBAddBytes(&access_method, entry.first.AsStringPiece()));
ASSERT_TRUE(CBB_add_asn1(&access_description, &access_location,
CBS_ASN1_CONTEXT_SPECIFIC | 6));
ASSERT_TRUE(CBBAddBytes(&access_location, entry.second.spec()));
ASSERT_TRUE(CBB_flush(&aia));
}
SetExtension(AuthorityInfoAccessOid(), FinishCBB(cbb.get()));
}
void CertBuilder::SetCrlDistributionPointUrl(const GURL& url) {
SetCrlDistributionPointUrls({url});
}
void CertBuilder::SetCrlDistributionPointUrls(const std::vector<GURL>& urls) {
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init(cbb.get(), 64));
CBB dps, dp, dp_name, dp_fullname;
// CRLDistributionPoints ::= SEQUENCE SIZE (1..MAX) OF DistributionPoint
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &dps, CBS_ASN1_SEQUENCE));
// DistributionPoint ::= SEQUENCE {
// distributionPoint [0] DistributionPointName OPTIONAL,
// reasons [1] ReasonFlags OPTIONAL,
// cRLIssuer [2] GeneralNames OPTIONAL }
ASSERT_TRUE(CBB_add_asn1(&dps, &dp, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBB_add_asn1(
&dp, &dp_name, CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
// DistributionPointName ::= CHOICE {
// fullName [0] GeneralNames,
// nameRelativeToCRLIssuer [1] RelativeDistinguishedName }
ASSERT_TRUE(
CBB_add_asn1(&dp_name, &dp_fullname,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
// GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName
// GeneralName ::= CHOICE {
// uniformResourceIdentifier [6] IA5String,
for (const auto& url : urls) {
CBB dp_url;
ASSERT_TRUE(
CBB_add_asn1(&dp_fullname, &dp_url, CBS_ASN1_CONTEXT_SPECIFIC | 6));
ASSERT_TRUE(CBBAddBytes(&dp_url, url.spec()));
ASSERT_TRUE(CBB_flush(&dp_fullname));
}
SetExtension(CrlDistributionPointsOid(), FinishCBB(cbb.get()));
}
void CertBuilder::SetSubjectCommonName(const std::string common_name) {
// See RFC 4519.
static const uint8_t kCommonName[] = {0x55, 0x04, 0x03};
// See RFC 5280, section 4.1.2.4.
bssl::ScopedCBB cbb;
CBB rdns, rdn, attr, type, value;
ASSERT_TRUE(CBB_init(cbb.get(), 64));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &rdns, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBB_add_asn1(&rdns, &rdn, CBS_ASN1_SET));
ASSERT_TRUE(CBB_add_asn1(&rdn, &attr, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBB_add_asn1(&attr, &type, CBS_ASN1_OBJECT));
ASSERT_TRUE(CBBAddBytes(&type, kCommonName));
ASSERT_TRUE(CBB_add_asn1(&attr, &value, CBS_ASN1_UTF8STRING));
ASSERT_TRUE(CBBAddBytes(&value, common_name));
subject_tlv_ = FinishCBB(cbb.get());
}
void CertBuilder::SetSubjectAltName(const std::string& dns_name) {
SetSubjectAltNames({dns_name}, {});
}
void CertBuilder::SetSubjectAltNames(
const std::vector<std::string>& dns_names,
const std::vector<IPAddress>& ip_addresses) {
// From RFC 5280:
//
// SubjectAltName ::= GeneralNames
//
// GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName
//
// GeneralName ::= CHOICE {
// ...
// dNSName [2] IA5String,
// ...
// iPAddress [7] OCTET STRING,
// ... }
ASSERT_GT(dns_names.size() + ip_addresses.size(), 0U);
bssl::ScopedCBB cbb;
CBB general_names;
ASSERT_TRUE(CBB_init(cbb.get(), 64));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &general_names, CBS_ASN1_SEQUENCE));
if (!dns_names.empty()) {
for (const auto& name : dns_names) {
CBB general_name;
ASSERT_TRUE(CBB_add_asn1(&general_names, &general_name,
CBS_ASN1_CONTEXT_SPECIFIC | 2));
ASSERT_TRUE(CBBAddBytes(&general_name, name));
ASSERT_TRUE(CBB_flush(&general_names));
}
}
if (!ip_addresses.empty()) {
for (const auto& addr : ip_addresses) {
CBB general_name;
ASSERT_TRUE(CBB_add_asn1(&general_names, &general_name,
CBS_ASN1_CONTEXT_SPECIFIC | 7));
ASSERT_TRUE(
CBB_add_bytes(&general_name, addr.bytes().data(), addr.size()));
ASSERT_TRUE(CBB_flush(&general_names));
}
}
SetExtension(SubjectAltNameOid(), FinishCBB(cbb.get()));
}
void CertBuilder::SetExtendedKeyUsages(
const std::vector<der::Input>& purpose_oids) {
// From RFC 5280:
// ExtKeyUsageSyntax ::= SEQUENCE SIZE (1..MAX) OF KeyPurposeId
// KeyPurposeId ::= OBJECT IDENTIFIER
ASSERT_GT(purpose_oids.size(), 0U);
bssl::ScopedCBB cbb;
CBB eku;
ASSERT_TRUE(CBB_init(cbb.get(), 64));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &eku, CBS_ASN1_SEQUENCE));
for (const auto& oid : purpose_oids) {
CBB purpose_cbb;
ASSERT_TRUE(CBB_add_asn1(&eku, &purpose_cbb, CBS_ASN1_OBJECT));
ASSERT_TRUE(CBBAddBytes(&purpose_cbb, oid.AsStringPiece()));
ASSERT_TRUE(CBB_flush(&eku));
}
SetExtension(ExtKeyUsageOid(), FinishCBB(cbb.get()));
}
void CertBuilder::SetCertificatePolicies(
const std::vector<std::string>& policy_oids) {
// From RFC 5280:
// certificatePolicies ::= SEQUENCE SIZE (1..MAX) OF PolicyInformation
//
// PolicyInformation ::= SEQUENCE {
// policyIdentifier CertPolicyId,
// policyQualifiers SEQUENCE SIZE (1..MAX) OF
// PolicyQualifierInfo OPTIONAL }
//
// CertPolicyId ::= OBJECT IDENTIFIER
bssl::ScopedCBB cbb;
CBB certificate_policies;
ASSERT_TRUE(CBB_init(cbb.get(), 64));
ASSERT_TRUE(
CBB_add_asn1(cbb.get(), &certificate_policies, CBS_ASN1_SEQUENCE));
for (const auto& oid : policy_oids) {
CBB policy_information, policy_identifier;
ASSERT_TRUE(CBB_add_asn1(&certificate_policies, &policy_information,
CBS_ASN1_SEQUENCE));
ASSERT_TRUE(
CBB_add_asn1(&policy_information, &policy_identifier, CBS_ASN1_OBJECT));
ASSERT_TRUE(
CBB_add_asn1_oid_from_text(&policy_identifier, oid.data(), oid.size()));
ASSERT_TRUE(CBB_flush(&certificate_policies));
}
SetExtension(CertificatePoliciesOid(), FinishCBB(cbb.get()));
}
void CertBuilder::SetValidity(base::Time not_before, base::Time not_after) {
// From RFC 5280:
// Validity ::= SEQUENCE {
// notBefore Time,
// notAfter Time }
bssl::ScopedCBB cbb;
CBB validity;
ASSERT_TRUE(CBB_init(cbb.get(), 64));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &validity, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(x509_util::CBBAddTime(&validity, not_before));
ASSERT_TRUE(x509_util::CBBAddTime(&validity, not_after));
validity_tlv_ = FinishCBB(cbb.get());
}
void CertBuilder::SetSubjectKeyIdentifier(
const std::string& subject_key_identifier) {
ASSERT_FALSE(subject_key_identifier.empty());
// From RFC 5280:
// KeyIdentifier ::= OCTET STRING
// SubjectKeyIdentifier ::= KeyIdentifier
bssl::ScopedCBB cbb;
ASSERT_TRUE(CBB_init(cbb.get(), 32));
ASSERT_TRUE(CBB_add_asn1_octet_string(
cbb.get(),
reinterpret_cast<const uint8_t*>(subject_key_identifier.data()),
subject_key_identifier.size()));
// Replace the existing SKI. Note it MUST be non-critical, per RFC 5280.
SetExtension(SubjectKeyIdentifierOid(), FinishCBB(cbb.get()),
/*critical=*/false);
}
void CertBuilder::SetAuthorityKeyIdentifier(
const std::string& authority_key_identifier) {
// If an empty AKI is presented, simply erase the existing one. Creating
// an empty AKI is technically valid, but there's no use case for this.
// An empty AKI would an empty (ergo, non-unique) SKI on the issuer,
// which would violate RFC 5280, so using the empty value as a placeholder
// unless and until a use case emerges is fine.
if (authority_key_identifier.empty()) {
EraseExtension(AuthorityKeyIdentifierOid());
return;
}
// From RFC 5280:
//
// AuthorityKeyIdentifier ::= SEQUENCE {
// keyIdentifier [0] KeyIdentifier OPTIONAL,
// authorityCertIssuer [1] GeneralNames OPTIONAL,
// authorityCertSerialNumber [2] CertificateSerialNumber OPTIONAL }
//
// KeyIdentifier ::= OCTET STRING
bssl::ScopedCBB cbb;
CBB aki, aki_value;
ASSERT_TRUE(CBB_init(cbb.get(), 32));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &aki, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBB_add_asn1(&aki, &aki_value, CBS_ASN1_CONTEXT_SPECIFIC | 0));
ASSERT_TRUE(CBBAddBytes(&aki_value, authority_key_identifier));
ASSERT_TRUE(CBB_flush(&aki));
SetExtension(AuthorityKeyIdentifierOid(), FinishCBB(cbb.get()));
}
void CertBuilder::SetSignatureAlgorithmRsaPkca1(DigestAlgorithm digest) {
switch (digest) {
case DigestAlgorithm::Sha256: {
SetSignatureAlgorithm(Sha256WithRSAEncryption());
break;
}
case DigestAlgorithm::Sha1: {
SetSignatureAlgorithm(Sha1WithRSAEncryption());
break;
}
default:
ASSERT_TRUE(false);
}
}
void CertBuilder::SetSignatureAlgorithm(std::string algorithm_tlv) {
signature_algorithm_tlv_ = std::move(algorithm_tlv);
Invalidate();
}
void CertBuilder::SetRandomSerialNumber() {
serial_number_ = base::RandUint64();
Invalidate();
}
CRYPTO_BUFFER* CertBuilder::GetCertBuffer() {
if (!cert_)
GenerateCertificate();
return cert_.get();
}
bssl::UniquePtr<CRYPTO_BUFFER> CertBuilder::DupCertBuffer() {
return bssl::UpRef(GetCertBuffer());
}
const std::string& CertBuilder::GetSubject() {
if (subject_tlv_.empty())
GenerateSubject();
return subject_tlv_;
}
uint64_t CertBuilder::GetSerialNumber() {
if (!serial_number_)
serial_number_ = base::RandUint64();
return serial_number_;
}
std::string CertBuilder::GetSubjectKeyIdentifier() {
std::string ski_oid = SubjectKeyIdentifierOid().AsString();
if (extensions_.find(ski_oid) == extensions_.end()) {
// If no SKI is present, this means that the certificate was either
// created by FromStaticCert() and lacked one, or it was explicitly
// deleted as an extension.
return std::string();
}
auto& extension_value = extensions_[ski_oid];
der::Input ski_value;
if (!ParseSubjectKeyIdentifier(der::Input(&extension_value.value),
&ski_value)) {
return std::string();
}
return ski_value.AsString();
}
bool CertBuilder::GetValidity(base::Time* not_before,
base::Time* not_after) const {
der::GeneralizedTime not_before_generalized_time;
der::GeneralizedTime not_after_generalized_time;
if (!ParseValidity(der::Input(&validity_tlv_), ¬_before_generalized_time,
¬_after_generalized_time) ||
!GeneralizedTimeToTime(not_before_generalized_time, not_before) ||
!GeneralizedTimeToTime(not_after_generalized_time, not_after)) {
return false;
}
return true;
}
EVP_PKEY* CertBuilder::GetKey() {
if (!key_)
GenerateKey();
return key_.get();
}
scoped_refptr<X509Certificate> CertBuilder::GetX509Certificate() {
return X509Certificate::CreateFromBuffer(DupCertBuffer(), {});
}
scoped_refptr<X509Certificate> CertBuilder::GetX509CertificateChain() {
std::vector<bssl::UniquePtr<CRYPTO_BUFFER>> intermediates;
// Add intermediates, not including the self-signed root.
for (CertBuilder* cert = issuer_; cert && cert != cert->issuer_;
cert = cert->issuer_) {
intermediates.push_back(cert->DupCertBuffer());
}
return X509Certificate::CreateFromBuffer(DupCertBuffer(),
std::move(intermediates));
}
std::string CertBuilder::GetDER() {
return std::string(x509_util::CryptoBufferAsStringPiece(GetCertBuffer()));
}
CertBuilder::CertBuilder(CRYPTO_BUFFER* orig_cert,
CertBuilder* issuer,
bool unique_subject_key_identifier)
: issuer_(issuer) {
if (!issuer_)
issuer_ = this;
crypto::EnsureOpenSSLInit();
if (orig_cert)
InitFromCert(der::Input(x509_util::CryptoBufferAsStringPiece(orig_cert)));
if (unique_subject_key_identifier) {
GenerateSubjectKeyIdentifier();
SetAuthorityKeyIdentifier(issuer_->GetSubjectKeyIdentifier());
}
}
void CertBuilder::Invalidate() {
cert_.reset();
}
void CertBuilder::GenerateKey() {
ASSERT_FALSE(key_);
auto private_key = crypto::RSAPrivateKey::Create(2048);
key_ = bssl::UpRef(private_key->key());
}
void CertBuilder::GenerateSubjectKeyIdentifier() {
// 20 bytes are chosen here for no other reason than it's compatible with
// systems that assume the SKI is SHA-1(SPKI), which RFC 5280 notes as one
// mechanism for generating an SKI, while also noting that random/unique
// SKIs are also fine.
std::string random_ski = base::RandBytesAsString(20);
SetSubjectKeyIdentifier(random_ski);
}
void CertBuilder::GenerateSubject() {
ASSERT_TRUE(subject_tlv_.empty());
// Use a random common name comprised of 12 bytes in hex.
std::string common_name = MakeRandomHexString(12);
SetSubjectCommonName(common_name);
}
void CertBuilder::InitFromCert(const der::Input& cert) {
extensions_.clear();
Invalidate();
// From RFC 5280, section 4.1
// Certificate ::= SEQUENCE {
// tbsCertificate TBSCertificate,
// signatureAlgorithm AlgorithmIdentifier,
// signatureValue BIT STRING }
// TBSCertificate ::= SEQUENCE {
// version [0] EXPLICIT Version DEFAULT v1,
// serialNumber CertificateSerialNumber,
// signature AlgorithmIdentifier,
// issuer Name,
// validity Validity,
// subject Name,
// subjectPublicKeyInfo SubjectPublicKeyInfo,
// issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,
// -- If present, version MUST be v2 or v3
// subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,
// -- If present, version MUST be v2 or v3
// extensions [3] EXPLICIT Extensions OPTIONAL
// -- If present, version MUST be v3
// }
der::Parser parser(cert);
der::Parser certificate;
der::Parser tbs_certificate;
ASSERT_TRUE(parser.ReadSequence(&certificate));
ASSERT_TRUE(certificate.ReadSequence(&tbs_certificate));
// version
bool unused;
ASSERT_TRUE(tbs_certificate.SkipOptionalTag(
der::kTagConstructed | der::kTagContextSpecific | 0, &unused));
// serialNumber
ASSERT_TRUE(tbs_certificate.SkipTag(der::kInteger));
// signature
der::Input signature_algorithm_tlv;
ASSERT_TRUE(tbs_certificate.ReadRawTLV(&signature_algorithm_tlv));
signature_algorithm_tlv_ = signature_algorithm_tlv.AsString();
// issuer
ASSERT_TRUE(tbs_certificate.SkipTag(der::kSequence));
// validity
der::Input validity_tlv;
ASSERT_TRUE(tbs_certificate.ReadRawTLV(&validity_tlv));
validity_tlv_ = validity_tlv.AsString();
// subject
ASSERT_TRUE(tbs_certificate.SkipTag(der::kSequence));
// subjectPublicKeyInfo
ASSERT_TRUE(tbs_certificate.SkipTag(der::kSequence));
// issuerUniqueID
ASSERT_TRUE(tbs_certificate.SkipOptionalTag(der::ContextSpecificPrimitive(1),
&unused));
// subjectUniqueID
ASSERT_TRUE(tbs_certificate.SkipOptionalTag(der::ContextSpecificPrimitive(2),
&unused));
// extensions
bool has_extensions = false;
der::Input extensions_tlv;
ASSERT_TRUE(tbs_certificate.ReadOptionalTag(
der::ContextSpecificConstructed(3), &extensions_tlv, &has_extensions));
if (has_extensions) {
std::map<der::Input, ParsedExtension> parsed_extensions;
ASSERT_TRUE(ParseExtensions(extensions_tlv, &parsed_extensions));
for (const auto& parsed_extension : parsed_extensions) {
SetExtension(parsed_extension.second.oid,
parsed_extension.second.value.AsString(),
parsed_extension.second.critical);
}
}
}
void CertBuilder::BuildTBSCertificate(std::string* out) {
bssl::ScopedCBB cbb;
CBB tbs_cert, version, extensions_context, extensions;
ASSERT_TRUE(CBB_init(cbb.get(), 64));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &tbs_cert, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(
CBB_add_asn1(&tbs_cert, &version,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0));
// Always use v3 certificates.
ASSERT_TRUE(CBB_add_asn1_uint64(&version, 2));
ASSERT_TRUE(CBB_add_asn1_uint64(&tbs_cert, GetSerialNumber()));
ASSERT_TRUE(AddSignatureAlgorithm(&tbs_cert));
ASSERT_TRUE(CBBAddBytes(&tbs_cert, issuer_->GetSubject()));
ASSERT_TRUE(CBBAddBytes(&tbs_cert, validity_tlv_));
ASSERT_TRUE(CBBAddBytes(&tbs_cert, GetSubject()));
ASSERT_TRUE(EVP_marshal_public_key(&tbs_cert, GetKey()));
// Serialize all the extensions.
if (!extensions_.empty()) {
ASSERT_TRUE(
CBB_add_asn1(&tbs_cert, &extensions_context,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 3));
ASSERT_TRUE(
CBB_add_asn1(&extensions_context, &extensions, CBS_ASN1_SEQUENCE));
// Extension ::= SEQUENCE {
// extnID OBJECT IDENTIFIER,
// critical BOOLEAN DEFAULT FALSE,
// extnValue OCTET STRING
// -- contains the DER encoding of an ASN.1 value
// -- corresponding to the extension type identified
// -- by extnID
// }
for (const auto& extension_it : extensions_) {
CBB extension_seq, oid, extn_value;
ASSERT_TRUE(CBB_add_asn1(&extensions, &extension_seq, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBB_add_asn1(&extension_seq, &oid, CBS_ASN1_OBJECT));
ASSERT_TRUE(CBBAddBytes(&oid, extension_it.first));
if (extension_it.second.critical) {
ASSERT_TRUE(CBB_add_asn1_bool(&extension_seq, true));
}
ASSERT_TRUE(
CBB_add_asn1(&extension_seq, &extn_value, CBS_ASN1_OCTETSTRING));
ASSERT_TRUE(CBBAddBytes(&extn_value, extension_it.second.value));
ASSERT_TRUE(CBB_flush(&extensions));
}
}
*out = FinishCBB(cbb.get());
}
bool CertBuilder::AddSignatureAlgorithm(CBB* cbb) {
return CBBAddBytes(cbb, signature_algorithm_tlv_);
}
void CertBuilder::GenerateCertificate() {
ASSERT_FALSE(cert_);
std::string tbs_cert;
BuildTBSCertificate(&tbs_cert);
const uint8_t* tbs_cert_bytes =
reinterpret_cast<const uint8_t*>(tbs_cert.data());
// Determine the correct digest algorithm to use (assumes RSA PKCS#1
// signatures).
auto signature_algorithm = SignatureAlgorithm::Create(
der::Input(&signature_algorithm_tlv_), nullptr);
ASSERT_TRUE(signature_algorithm);
ASSERT_EQ(SignatureAlgorithmId::RsaPkcs1, signature_algorithm->algorithm());
const EVP_MD* md = nullptr;
switch (signature_algorithm->digest()) {
case DigestAlgorithm::Sha256:
md = EVP_sha256();
break;
case DigestAlgorithm::Sha1:
md = EVP_sha1();
break;
default:
ASSERT_TRUE(false) << "Only rsaEncryptionWithSha256 or "
"rsaEnryptionWithSha1 are supported";
break;
}
// Sign the TBSCertificate and write the entire certificate.
bssl::ScopedCBB cbb;
CBB cert, signature;
bssl::ScopedEVP_MD_CTX ctx;
uint8_t* sig_out;
size_t sig_len;
ASSERT_TRUE(CBB_init(cbb.get(), tbs_cert.size()));
ASSERT_TRUE(CBB_add_asn1(cbb.get(), &cert, CBS_ASN1_SEQUENCE));
ASSERT_TRUE(CBBAddBytes(&cert, tbs_cert));
ASSERT_TRUE(AddSignatureAlgorithm(&cert));
ASSERT_TRUE(CBB_add_asn1(&cert, &signature, CBS_ASN1_BITSTRING));
ASSERT_TRUE(CBB_add_u8(&signature, 0 /* no unused bits */));
ASSERT_TRUE(
EVP_DigestSignInit(ctx.get(), nullptr, md, nullptr, issuer_->GetKey()));
ASSERT_TRUE(EVP_DigestSign(ctx.get(), nullptr, &sig_len, tbs_cert_bytes,
tbs_cert.size()));
ASSERT_TRUE(CBB_reserve(&signature, &sig_out, sig_len));
ASSERT_TRUE(EVP_DigestSign(ctx.get(), sig_out, &sig_len, tbs_cert_bytes,
tbs_cert.size()));
ASSERT_TRUE(CBB_did_write(&signature, sig_len));
auto cert_der = FinishCBB(cbb.get());
cert_ = x509_util::CreateCryptoBuffer(
reinterpret_cast<const uint8_t*>(cert_der.data()), cert_der.size());
}
} // namespace net
|