summaryrefslogtreecommitdiff
path: root/chromium/media/base/audio_converter.cc
blob: ac54e86ed353e8b35dfdded11ca8ab8f7c43fd9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// AudioConverter implementation.  Uses MultiChannelSincResampler for resampling
// audio, ChannelMixer for channel mixing, and AudioPullFifo for buffering.
//
// Delay estimates are provided to InputCallbacks based on the frame delay
// information reported via the resampler and FIFO units.

#include "media/base/audio_converter.h"

#include <algorithm>
#include <memory>

#include "base/bind.h"
#include "base/callback_helpers.h"
#include "base/logging.h"
#include "base/trace_event/trace_event.h"
#include "media/base/audio_bus.h"
#include "media/base/audio_pull_fifo.h"
#include "media/base/channel_mixer.h"
#include "media/base/multi_channel_resampler.h"
#include "media/base/vector_math.h"

namespace media {

AudioConverter::AudioConverter(const AudioParameters& input_params,
                               const AudioParameters& output_params,
                               bool disable_fifo)
    : chunk_size_(input_params.frames_per_buffer()),
      downmix_early_(false),
      initial_frames_delayed_(0),
      resampler_frames_delayed_(0),
      io_sample_rate_ratio_(input_params.sample_rate() /
                            static_cast<double>(output_params.sample_rate())),
      input_channel_count_(input_params.channels()) {
  CHECK(input_params.IsValid());
  CHECK(output_params.IsValid());

  // Handle different input and output channel layouts.
  if (input_params.channel_layout() != output_params.channel_layout() ||
      input_params.channels() != output_params.channels()) {
    DVLOG(1) << "Remixing channel layout from " << input_params.channel_layout()
             << " to " << output_params.channel_layout() << "; from "
             << input_params.channels() << " channels to "
             << output_params.channels() << " channels.";
    channel_mixer_ =
        std::make_unique<ChannelMixer>(input_params, output_params);

    // Pare off data as early as we can for efficiency.
    downmix_early_ = input_params.channels() > output_params.channels();
  }

  // Only resample if necessary since it's expensive.
  if (input_params.sample_rate() != output_params.sample_rate()) {
    DVLOG(1) << "Resampling from " << input_params.sample_rate() << " to "
             << output_params.sample_rate();
    const int request_size = disable_fifo ? SincResampler::kDefaultRequestSize :
        input_params.frames_per_buffer();
    resampler_ = std::make_unique<MultiChannelResampler>(
        downmix_early_ ? output_params.channels() : input_params.channels(),
        io_sample_rate_ratio_, request_size,
        base::BindRepeating(&AudioConverter::ProvideInput,
                            base::Unretained(this)));
  }

  // The resampler can be configured to work with a specific request size, so a
  // FIFO is not necessary when resampling.
  if (disable_fifo || resampler_)
    return;

  // Since the output device may want a different buffer size than the caller
  // asked for, we need to use a FIFO to ensure that both sides read in chunk
  // sizes they're configured for.
  if (input_params.frames_per_buffer() != output_params.frames_per_buffer()) {
    DVLOG(1) << "Rebuffering from " << input_params.frames_per_buffer()
             << " to " << output_params.frames_per_buffer();
    chunk_size_ = input_params.frames_per_buffer();
    audio_fifo_ = std::make_unique<AudioPullFifo>(
        downmix_early_ ? output_params.channels() : input_params.channels(),
        chunk_size_,
        base::BindRepeating(&AudioConverter::SourceCallback,
                            base::Unretained(this)));
  }
}

AudioConverter::~AudioConverter() = default;

void AudioConverter::AddInput(InputCallback* input) {
  DCHECK(std::find(transform_inputs_.begin(), transform_inputs_.end(), input) ==
         transform_inputs_.end());
  transform_inputs_.push_back(input);
}

void AudioConverter::RemoveInput(InputCallback* input) {
  DCHECK(std::find(transform_inputs_.begin(), transform_inputs_.end(), input) !=
         transform_inputs_.end());
  transform_inputs_.remove(input);

  if (transform_inputs_.empty())
    Reset();
}

void AudioConverter::Reset() {
  if (audio_fifo_)
    audio_fifo_->Clear();
  if (resampler_)
    resampler_->Flush();
}

int AudioConverter::ChunkSize() const {
  if (!resampler_)
    return chunk_size_;
  return resampler_->ChunkSize();
}

void AudioConverter::PrimeWithSilence() {
  if (resampler_) {
    resampler_->PrimeWithSilence();
  }
}

int AudioConverter::GetMaxInputFramesRequested(int output_frames_requested) {
  return resampler_
             ? resampler_->GetMaxInputFramesRequested(output_frames_requested)
             : output_frames_requested;
}

void AudioConverter::ConvertWithDelay(uint32_t initial_frames_delayed,
                                      AudioBus* dest) {
  initial_frames_delayed_ = initial_frames_delayed;

  if (transform_inputs_.empty()) {
    dest->Zero();
    return;
  }

  // Determine if channel mixing should be done and if it should be done before
  // or after resampling.  If it's possible to reduce the channel count prior to
  // resampling we can save a lot of processing time.  Vice versa, we don't want
  // to increase the channel count prior to resampling for the same reason.
  bool needs_mixing = channel_mixer_ && !downmix_early_;

  if (needs_mixing)
    CreateUnmixedAudioIfNecessary(dest->frames());

  AudioBus* temp_dest = needs_mixing ? unmixed_audio_.get() : dest;
  DCHECK(temp_dest);

  // Figure out which method to call based on whether we're resampling and
  // rebuffering, just resampling, or just mixing.  We want to avoid any extra
  // steps when possible since we may be converting audio data in real time.
  if (!resampler_ && !audio_fifo_) {
    SourceCallback(0, temp_dest);
  } else {
    if (resampler_)
      resampler_->Resample(temp_dest->frames(), temp_dest);
    else
      ProvideInput(0, temp_dest);
  }

  // Finally upmix the channels if we didn't do so earlier.
  if (needs_mixing) {
    DCHECK_EQ(temp_dest->frames(), dest->frames());
    channel_mixer_->Transform(temp_dest, dest);
  }
}

void AudioConverter::Convert(AudioBus* dest) {
  TRACE_EVENT1("audio", "AudioConverter::Convert", "sample rate ratio",
               io_sample_rate_ratio_);
  ConvertWithDelay(0, dest);
}

void AudioConverter::SourceCallback(int fifo_frame_delay, AudioBus* dest) {
  TRACE_EVENT1("audio", "AudioConverter::SourceCallback", "fifo frame delay",
               fifo_frame_delay);
  const bool needs_downmix = channel_mixer_ && downmix_early_;

  if (!mixer_input_audio_bus_ ||
      mixer_input_audio_bus_->frames() != dest->frames()) {
    mixer_input_audio_bus_ =
        AudioBus::Create(input_channel_count_, dest->frames());
  }

  // If we're downmixing early we need a temporary AudioBus which matches
  // the the input channel count and input frame size since we're passing
  // |unmixed_audio_| directly to the |source_callback_|.
  if (needs_downmix)
    CreateUnmixedAudioIfNecessary(dest->frames());

  AudioBus* const temp_dest = needs_downmix ? unmixed_audio_.get() : dest;

  // Sanity check our inputs.
  DCHECK_EQ(temp_dest->frames(), mixer_input_audio_bus_->frames());
  DCHECK_EQ(temp_dest->channels(), mixer_input_audio_bus_->channels());

  // |total_frames_delayed| is reported to the *input* source in terms of the
  // *input* sample rate. |initial_frames_delayed_| is given in terms of the
  // output sample rate, so we scale by sample rate ratio (in/out).
  uint32_t total_frames_delayed =
      std::round(initial_frames_delayed_ * io_sample_rate_ratio_);
  if (resampler_) {
    // |resampler_frames_delayed_| tallies frames queued up inside the resampler
    // that are already converted to the output format. Scale by ratio to get
    // delay in terms of input sample rate.
    total_frames_delayed +=
        std::round(resampler_frames_delayed_ * io_sample_rate_ratio_);
  }
  if (audio_fifo_) {
    total_frames_delayed += fifo_frame_delay;
  }

  // If we only have a single input, avoid an extra copy.
  AudioBus* const provide_input_dest =
      transform_inputs_.size() == 1 ? temp_dest : mixer_input_audio_bus_.get();

  // Have each mixer render its data into an output buffer then mix the result.
  for (auto* input : transform_inputs_) {
    const float volume =
        input->ProvideInput(provide_input_dest, total_frames_delayed);
    // Optimize the most common single input, full volume case.
    if (input == transform_inputs_.front()) {
      if (volume == 1.0f) {
        if (temp_dest != provide_input_dest)
          provide_input_dest->CopyTo(temp_dest);
      } else if (volume > 0) {
        for (int i = 0; i < provide_input_dest->channels(); ++i) {
          vector_math::FMUL(
              provide_input_dest->channel(i), volume,
              provide_input_dest->frames(), temp_dest->channel(i));
        }
      } else {
        // Zero |temp_dest| otherwise, so we're mixing into a clean buffer.
        temp_dest->Zero();
      }

      continue;
    }

    // Volume adjust and mix each mixer input into |temp_dest| after rendering.
    if (volume > 0) {
      for (int i = 0; i < mixer_input_audio_bus_->channels(); ++i) {
        vector_math::FMAC(
            mixer_input_audio_bus_->channel(i), volume,
            mixer_input_audio_bus_->frames(), temp_dest->channel(i));
      }
    }
  }

  if (needs_downmix) {
    DCHECK_EQ(temp_dest->frames(), dest->frames());
    channel_mixer_->Transform(temp_dest, dest);
  }
}

void AudioConverter::ProvideInput(int resampler_frame_delay, AudioBus* dest) {
  TRACE_EVENT1("audio", "AudioConverter::ProvideInput", "resampler frame delay",
               resampler_frame_delay);
  resampler_frames_delayed_ = resampler_frame_delay;
  if (audio_fifo_)
    audio_fifo_->Consume(dest, dest->frames());
  else
    SourceCallback(0, dest);
}

void AudioConverter::CreateUnmixedAudioIfNecessary(int frames) {
  if (!unmixed_audio_ || unmixed_audio_->frames() != frames)
    unmixed_audio_ = AudioBus::Create(input_channel_count_, frames);
}

}  // namespace media