summaryrefslogtreecommitdiff
path: root/chromium/crypto/secure_hash_unittest.cc
blob: 2b40a7da95d28b1ef3885178ecbe8f1ac875a332 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "crypto/secure_hash.h"

#include <stddef.h>
#include <stdint.h>

#include <memory>
#include <string>
#include <utility>

#include "crypto/sha2.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/boringssl/src/include/openssl/sha.h"

class SecureHashTest : public testing::Test,
                       public testing::WithParamInterface<
                           std::pair<crypto::SecureHash::Algorithm, uint64_t>> {
 public:
  SecureHashTest()
      : algorithm_(GetParam().first), hash_length_(GetParam().second) {}

 protected:
  crypto::SecureHash::Algorithm algorithm_;
  const uint64_t hash_length_;
};

TEST_P(SecureHashTest, TestUpdateSHA256) {
  std::string input3;
  std::vector<uint8_t> expected_hash_of_input_3;

  switch (algorithm_) {
    case crypto::SecureHash::SHA256:
      // Example B.3 from FIPS 180-2: long message.
      input3 = std::string(500000, 'a');  // 'a' repeated half a million times
      expected_hash_of_input_3 = {
          0xcd, 0xc7, 0x6e, 0x5c, 0x99, 0x14, 0xfb, 0x92, 0x81, 0xa1, 0xc7,
          0xe2, 0x84, 0xd7, 0x3e, 0x67, 0xf1, 0x80, 0x9a, 0x48, 0xa4, 0x97,
          0x20, 0x0e, 0x04, 0x6d, 0x39, 0xcc, 0xc7, 0x11, 0x2c, 0xd0};
      break;
    case crypto::SecureHash::SHA512:
      // Example C.3 from FIPS 180-2: long message.
      input3 = std::string(500000, 'a');  // 'a' repeated half a million times
      expected_hash_of_input_3 = {
          0xe7, 0x18, 0x48, 0x3d, 0x0c, 0xe7, 0x69, 0x64, 0x4e, 0x2e, 0x42,
          0xc7, 0xbc, 0x15, 0xb4, 0x63, 0x8e, 0x1f, 0x98, 0xb1, 0x3b, 0x20,
          0x44, 0x28, 0x56, 0x32, 0xa8, 0x03, 0xaf, 0xa9, 0x73, 0xeb, 0xde,
          0x0f, 0xf2, 0x44, 0x87, 0x7e, 0xa6, 0x0a, 0x4c, 0xb0, 0x43, 0x2c,
          0xe5, 0x77, 0xc3, 0x1b, 0xeb, 0x00, 0x9c, 0x5c, 0x2c, 0x49, 0xaa,
          0x2e, 0x4e, 0xad, 0xb2, 0x17, 0xad, 0x8c, 0xc0, 0x9b};
      break;
  }

  uint8_t output3[hash_length_];

  std::unique_ptr<crypto::SecureHash> ctx(
      crypto::SecureHash::Create(algorithm_));
  ctx->Update(input3.data(), input3.size());
  ctx->Update(input3.data(), input3.size());

  ctx->Finish(output3, sizeof(output3));
  for (size_t i = 0; i < hash_length_; i++)
    EXPECT_EQ(expected_hash_of_input_3[i], static_cast<int>(output3[i]));
}

TEST_P(SecureHashTest, TestClone) {
  std::string input1(10001, 'a');  // 'a' repeated 10001 times
  std::string input2(10001, 'd');  // 'd' repeated 10001 times

  std::vector<uint8_t> expected_hash_of_input_1;
  std::vector<uint8_t> expected_hash_of_input_1_and_2;

  switch (algorithm_) {
    case crypto::SecureHash::SHA256:
      expected_hash_of_input_1 = {
          0x0c, 0xab, 0x99, 0xa0, 0x58, 0x60, 0x0f, 0xfa, 0xad, 0x12, 0x92,
          0xd0, 0xc5, 0x3c, 0x05, 0x48, 0xeb, 0xaf, 0x88, 0xdd, 0x1d, 0x01,
          0x03, 0x03, 0x45, 0x70, 0x5f, 0x01, 0x8a, 0x81, 0x39, 0x09};
      expected_hash_of_input_1_and_2 = {
          0x4c, 0x8e, 0x26, 0x5a, 0xc3, 0x85, 0x1f, 0x1f, 0xa5, 0x04, 0x1c,
          0xc7, 0x88, 0x53, 0x1c, 0xc7, 0x80, 0x47, 0x15, 0xfb, 0x47, 0xff,
          0x72, 0xb1, 0x28, 0x37, 0xb0, 0x4d, 0x6e, 0x22, 0x2e, 0x4d};
      break;
    case crypto::SecureHash::SHA512:
      expected_hash_of_input_1 = {
          0xea, 0x03, 0xb2, 0x23, 0x32, 0x29, 0xc8, 0x87, 0x86, 0x33, 0xa3,
          0x70, 0xc7, 0xb2, 0x40, 0xea, 0xef, 0xd9, 0x55, 0xe2, 0xb3, 0x79,
          0xd6, 0xb3, 0x3f, 0x5e, 0xff, 0x89, 0xfd, 0x86, 0x7b, 0x10, 0xe2,
          0xc1, 0x3b, 0x2f, 0xf5, 0x29, 0x80, 0xa0, 0xb0, 0xf9, 0xcf, 0x47,
          0xa7, 0xff, 0x73, 0xac, 0xd2, 0x66, 0x9e, 0x53, 0x78, 0x9f, 0xc6,
          0x07, 0x7a, 0xb7, 0x09, 0x1f, 0xa4, 0x3b, 0x18, 0x00};
      expected_hash_of_input_1_and_2 = {
          0x41, 0x6d, 0x46, 0x8d, 0x8a, 0x84, 0x3d, 0xf9, 0x43, 0xac, 0xe6,
          0x4d, 0x5b, 0x60, 0xd7, 0x1a, 0xb1, 0xe6, 0x2d, 0xd3, 0xe6, 0x97,
          0xaf, 0x6f, 0x34, 0x97, 0x8f, 0x01, 0xd4, 0x15, 0x06, 0xfa, 0x69,
          0x48, 0x0e, 0x24, 0x0d, 0x98, 0x84, 0x76, 0xd2, 0x95, 0x4c, 0x16,
          0x02, 0xfd, 0x71, 0xd4, 0x25, 0xb3, 0x8f, 0xf2, 0x60, 0xa3, 0x0e,
          0xdb, 0xe9, 0x87, 0x32, 0xfc, 0xf3, 0x2d, 0x0a, 0x28};
      break;
  }

  uint8_t output1[hash_length_];
  uint8_t output2[hash_length_];
  uint8_t output3[hash_length_];

  std::unique_ptr<crypto::SecureHash> ctx1(
      crypto::SecureHash::Create(algorithm_));
  ctx1->Update(input1.data(), input1.size());

  std::unique_ptr<crypto::SecureHash> ctx2(ctx1->Clone());
  std::unique_ptr<crypto::SecureHash> ctx3(ctx2->Clone());
  // At this point, ctx1, ctx2, and ctx3 are all equivalent and represent the
  // state after hashing input1.

  // Updating ctx1 and ctx2 with input2 should produce equivalent results.
  ctx1->Update(input2.data(), input2.size());
  ctx1->Finish(output1, sizeof(output1));

  ctx2->Update(input2.data(), input2.size());
  ctx2->Finish(output2, sizeof(output2));

  EXPECT_EQ(0, memcmp(output1, output2, hash_length_));
  EXPECT_EQ(
      0, memcmp(output1, expected_hash_of_input_1_and_2.data(), hash_length_));

  // Finish() ctx3, which should produce the hash of input1.
  ctx3->Finish(&output3, sizeof(output3));
  EXPECT_EQ(0, memcmp(output3, expected_hash_of_input_1.data(), hash_length_));
}

TEST_P(SecureHashTest, TestLength) {
  std::unique_ptr<crypto::SecureHash> ctx(
      crypto::SecureHash::Create(algorithm_));
  EXPECT_EQ(hash_length_, ctx->GetHashLength());
}

TEST_P(SecureHashTest, Equality) {
  std::string input1(10001, 'a');  // 'a' repeated 10001 times
  std::string input2(10001, 'd');  // 'd' repeated 10001 times

  uint8_t output1[hash_length_];
  uint8_t output2[hash_length_];

  // Call Update() twice on input1 and input2.
  std::unique_ptr<crypto::SecureHash> ctx1(
      crypto::SecureHash::Create(algorithm_));
  ctx1->Update(input1.data(), input1.size());
  ctx1->Update(input2.data(), input2.size());
  ctx1->Finish(output1, sizeof(output1));

  // Call Update() once one input1 + input2 (concatenation).
  std::unique_ptr<crypto::SecureHash> ctx2(
      crypto::SecureHash::Create(algorithm_));
  std::string input3 = input1 + input2;
  ctx2->Update(input3.data(), input3.size());
  ctx2->Finish(output2, sizeof(output2));

  // The hash should be the same.
  EXPECT_EQ(0, memcmp(output1, output2, hash_length_));
}

INSTANTIATE_TEST_SUITE_P(
    All,
    SecureHashTest,
    testing::Values(
        std::make_pair(crypto::SecureHash::SHA256, SHA256_DIGEST_LENGTH),
        std::make_pair(crypto::SecureHash::SHA512, SHA512_DIGEST_LENGTH)));