1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/variations/entropy_provider.h"
#include <algorithm>
#include <limits>
#include "base/check_op.h"
#include "base/hash/sha1.h"
#include "base/rand_util.h"
#include "base/strings/strcat.h"
#include "base/strings/string_number_conversions.h"
#include "base/sys_byteorder.h"
#include "components/variations/variations_murmur_hash.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
namespace variations {
SHA1EntropyProvider::SHA1EntropyProvider(const std::string& entropy_source)
: entropy_source_(entropy_source) {
}
SHA1EntropyProvider::~SHA1EntropyProvider() {
}
double SHA1EntropyProvider::GetEntropyForTrial(
base::StringPiece trial_name,
uint32_t randomization_seed) const {
// Given enough input entropy, SHA-1 will produce a uniformly random spread
// in its output space. In this case, the input entropy that is used is the
// combination of the original |entropy_source_| and the |trial_name|.
//
// Note: If |entropy_source_| has very low entropy, such as 13 bits or less,
// it has been observed that this method does not result in a uniform
// distribution given the same |trial_name|. When using such a low entropy
// source, NormalizedMurmurHashEntropyProvider should be used instead.
std::string input = base::StrCat(
{entropy_source_, randomization_seed == 0
? trial_name
: base::NumberToString(randomization_seed)});
unsigned char sha1_hash[base::kSHA1Length];
base::SHA1HashBytes(reinterpret_cast<const unsigned char*>(input.c_str()),
input.size(),
sha1_hash);
uint64_t bits;
static_assert(sizeof(bits) < sizeof(sha1_hash), "more data required");
memcpy(&bits, sha1_hash, sizeof(bits));
bits = base::ByteSwapToLE64(bits);
return base::BitsToOpenEndedUnitInterval(bits);
}
NormalizedMurmurHashEntropyProvider::NormalizedMurmurHashEntropyProvider(
uint16_t entropy_value,
size_t entropy_domain)
: entropy_value_(entropy_value), entropy_domain_(entropy_domain) {
DCHECK_LT(entropy_value, entropy_domain);
DCHECK_LE(entropy_domain, std::numeric_limits<uint16_t>::max());
}
NormalizedMurmurHashEntropyProvider::~NormalizedMurmurHashEntropyProvider() {}
double NormalizedMurmurHashEntropyProvider::GetEntropyForTrial(
base::StringPiece trial_name,
uint32_t randomization_seed) const {
if (randomization_seed == 0) {
randomization_seed = internal::VariationsMurmurHash::Hash(
internal::VariationsMurmurHash::StringToLE32(trial_name),
trial_name.length());
}
uint32_t x = internal::VariationsMurmurHash::Hash16(randomization_seed,
entropy_value_);
int x_ordinal = 0;
for (uint32_t i = 0; i < entropy_domain_; i++) {
uint32_t y = internal::VariationsMurmurHash::Hash16(randomization_seed, i);
x_ordinal += (y < x);
}
DCHECK_GE(x_ordinal, 0);
// There must have been at least one iteration where |x| == |y|, because
// |i| == |entropy_value_|, and |x_ordinal| was not incremented in that
// iteration, so |x_ordinal| < |entropy_domain_|.
DCHECK_LT(static_cast<size_t>(x_ordinal), entropy_domain_);
return static_cast<double>(x_ordinal) / entropy_domain_;
}
EntropyProviders::EntropyProviders(const std::string& high_entropy_value,
uint16_t low_entropy_value,
size_t low_entropy_domain)
: low_entropy_(low_entropy_value, low_entropy_domain) {
if (!high_entropy_value.empty()) {
high_entropy_.emplace(high_entropy_value);
}
}
EntropyProviders::~EntropyProviders() = default;
const base::FieldTrial::EntropyProvider& EntropyProviders::default_entropy()
const {
if (high_entropy_.has_value())
return high_entropy_.value();
return low_entropy_;
}
const base::FieldTrial::EntropyProvider& EntropyProviders::low_entropy() const {
return low_entropy_;
}
} // namespace variations
|