summaryrefslogtreecommitdiff
path: root/chromium/cc/layers/picture_layer_impl.cc
blob: 0f030bd4ff3c053808ef7d15ccc39053ca6e6135 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "cc/layers/picture_layer_impl.h"

#include <stddef.h>
#include <stdint.h>

#include <algorithm>
#include <cmath>
#include <limits>
#include <set>

#include "base/metrics/histogram_macros.h"
#include "base/no_destructor.h"
#include "base/numerics/ranges.h"
#include "base/time/time.h"
#include "base/trace_event/traced_value.h"
#include "build/build_config.h"
#include "cc/base/math_util.h"
#include "cc/benchmarks/micro_benchmark_impl.h"
#include "cc/debug/debug_colors.h"
#include "cc/layers/append_quads_data.h"
#include "cc/layers/solid_color_layer_impl.h"
#include "cc/paint/display_item_list.h"
#include "cc/tiles/tile_manager.h"
#include "cc/tiles/tiling_set_raster_queue_all.h"
#include "cc/trees/effect_node.h"
#include "cc/trees/layer_tree_impl.h"
#include "cc/trees/occlusion.h"
#include "cc/trees/transform_node.h"
#include "components/viz/common/frame_sinks/begin_frame_args.h"
#include "components/viz/common/quads/debug_border_draw_quad.h"
#include "components/viz/common/quads/picture_draw_quad.h"
#include "components/viz/common/quads/solid_color_draw_quad.h"
#include "components/viz/common/quads/tile_draw_quad.h"
#include "components/viz/common/traced_value.h"
#include "ui/gfx/geometry/quad_f.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/size_conversions.h"

namespace cc {
namespace {
// This must be > 1 as we multiply or divide by this to find a new raster
// scale during pinch.
const float kMaxScaleRatioDuringPinch = 2.0f;

// When creating a new tiling during pinch, snap to an existing
// tiling's scale if the desired scale is within this ratio.
const float kSnapToExistingTilingRatio = 1.2f;

// Large contents scale can cause overflow issues. Cap the ideal contents scale
// by this constant, since scales larger than this are usually not correct or
// their scale doesn't matter as long as it's large. Content scales usually
// closely match the default device-scale factor (so it's usually <= 5). See
// Renderer4.IdealContentsScale UMA (deprecated) for distribution of content
// scales.
const float kMaxIdealContentsScale = 10000.f;

// Intersect rects which may have right() and bottom() that overflow integer
// boundaries. This code is similar to gfx::Rect::Intersect with the exception
// that the types are promoted to int64_t when there is a chance of overflow.
gfx::Rect SafeIntersectRects(const gfx::Rect& one, const gfx::Rect& two) {
  if (one.IsEmpty() || two.IsEmpty())
    return gfx::Rect();

  int rx = std::max(one.x(), two.x());
  int ry = std::max(one.y(), two.y());
  int64_t rr = std::min(static_cast<int64_t>(one.x()) + one.width(),
                        static_cast<int64_t>(two.x()) + two.width());
  int64_t rb = std::min(static_cast<int64_t>(one.y()) + one.height(),
                        static_cast<int64_t>(two.y()) + two.height());
  if (rx > rr || ry > rb)
    return gfx::Rect();
  return gfx::Rect(rx, ry, static_cast<int>(rr - rx),
                   static_cast<int>(rb - ry));
}

}  // namespace

PictureLayerImpl::PictureLayerImpl(LayerTreeImpl* tree_impl, int id)
    : LayerImpl(tree_impl, id, /*will_always_push_properties=*/true),
      twin_layer_(nullptr),
      tilings_(CreatePictureLayerTilingSet()),
      ideal_page_scale_(0.f),
      ideal_device_scale_(0.f),
      ideal_source_scale_(0.f),
      ideal_contents_scale_(0.f),
      raster_page_scale_(0.f),
      raster_device_scale_(0.f),
      raster_source_scale_(0.f),
      raster_contents_scale_(0.f),
      low_res_raster_contents_scale_(0.f),
      is_backdrop_filter_mask_(false),
      was_screen_space_transform_animating_(false),
      only_used_low_res_last_append_quads_(false),
      nearest_neighbor_(false),
      use_transformed_rasterization_(false),
      lcd_text_disallowed_reason_(LCDTextDisallowedReason::kNone),
      directly_composited_image_size_(base::nullopt),
      directly_composited_image_initial_raster_scale_(0.f),
      tile_size_calculator_(this) {
  layer_tree_impl()->RegisterPictureLayerImpl(this);
}

PictureLayerImpl::~PictureLayerImpl() {
  if (twin_layer_)
    twin_layer_->twin_layer_ = nullptr;

  // We only track PaintWorklet-containing PictureLayerImpls on the pending
  // tree. However this deletion may happen outside the commit flow when we are
  // on the recycle tree instead, so just check !IsActiveTree().
  if (!paint_worklet_records_.empty() && !layer_tree_impl()->IsActiveTree())
    layer_tree_impl()->NotifyLayerHasPaintWorkletsChanged(this, false);

  // Similarly, AnimatedPaintWorkletTracker is only valid on the pending tree.
  if (!layer_tree_impl()->IsActiveTree()) {
    layer_tree_impl()
        ->paint_worklet_tracker()
        .UpdatePaintWorkletInputProperties({}, this);
  }

  layer_tree_impl()->UnregisterPictureLayerImpl(this);

  // Unregister for all images on the current raster source.
  UnregisterAnimatedImages();
}

const char* PictureLayerImpl::LayerTypeAsString() const {
  return "cc::PictureLayerImpl";
}

std::unique_ptr<LayerImpl> PictureLayerImpl::CreateLayerImpl(
    LayerTreeImpl* tree_impl) {
  return PictureLayerImpl::Create(tree_impl, id());
}

void PictureLayerImpl::PushPropertiesTo(LayerImpl* base_layer) {
  PictureLayerImpl* layer_impl = static_cast<PictureLayerImpl*>(base_layer);


  LayerImpl::PushPropertiesTo(base_layer);

  // Twin relationships should never change once established.
  DCHECK(!twin_layer_ || twin_layer_ == layer_impl);
  DCHECK(!twin_layer_ || layer_impl->twin_layer_ == this);
  // The twin relationship does not need to exist before the first
  // PushPropertiesTo from pending to active layer since before that the active
  // layer can not have a pile or tilings, it has only been created and inserted
  // into the tree at that point.
  twin_layer_ = layer_impl;
  layer_impl->twin_layer_ = this;

  layer_impl->SetNearestNeighbor(nearest_neighbor_);
  layer_impl->SetUseTransformedRasterization(use_transformed_rasterization_);
  layer_impl->SetDirectlyCompositedImageSize(directly_composited_image_size_);
  layer_impl->SetIsBackdropFilterMask(is_backdrop_filter_mask_);

  // Solid color layers have no tilings.
  DCHECK(!raster_source_->IsSolidColor() || tilings_->num_tilings() == 0);
  // The pending tree should only have a high res (and possibly low res) tiling.
  DCHECK_LE(tilings_->num_tilings(),
            layer_tree_impl()->create_low_res_tiling() ? 2u : 1u);

  layer_impl->set_gpu_raster_max_texture_size(gpu_raster_max_texture_size_);
  layer_impl->UpdateRasterSource(raster_source_, &invalidation_, tilings_.get(),
                                 &paint_worklet_records_);
  DCHECK(invalidation_.IsEmpty());

  // After syncing a solid color layer, the active layer has no tilings.
  DCHECK(!raster_source_->IsSolidColor() ||
         layer_impl->tilings_->num_tilings() == 0);

  layer_impl->raster_page_scale_ = raster_page_scale_;
  layer_impl->raster_device_scale_ = raster_device_scale_;
  layer_impl->raster_source_scale_ = raster_source_scale_;
  layer_impl->raster_contents_scale_ = raster_contents_scale_;
  layer_impl->low_res_raster_contents_scale_ = low_res_raster_contents_scale_;
  layer_impl->directly_composited_image_initial_raster_scale_ =
      directly_composited_image_initial_raster_scale_;
  // Simply push the value to the active tree without any extra invalidations,
  // since the pending tree tiles would have this handled. This is here to
  // ensure the state is consistent for future raster.
  layer_impl->lcd_text_disallowed_reason_ = lcd_text_disallowed_reason_;

  layer_impl->SanityCheckTilingState();
}

void PictureLayerImpl::AppendQuads(viz::RenderPass* render_pass,
                                   AppendQuadsData* append_quads_data) {
  // RenderSurfaceImpl::AppendQuads sets mask properties in the DrawQuad for
  // the masked surface, which will apply to both the backdrop filter and the
  // contents of the masked surface, so we should not append quads of the mask
  // layer in DstIn blend mode which would apply the mask in another codepath.
  if (is_backdrop_filter_mask_)
    return;

  // The bounds and the pile size may differ if the pile wasn't updated (ie.
  // PictureLayer::Update didn't happen). In that case the pile will be empty.
  DCHECK(raster_source_->GetSize().IsEmpty() ||
         bounds() == raster_source_->GetSize())
      << " bounds " << bounds().ToString() << " pile "
      << raster_source_->GetSize().ToString();

  viz::SharedQuadState* shared_quad_state =
      render_pass->CreateAndAppendSharedQuadState();

  if (raster_source_->IsSolidColor()) {
    // TODO(979672): This is still hard-coded at 1.0. This has some history:
    //  - for crbug.com/769319, the contents scale was allowed to change, to
    //    avoid blurring on high-dpi screens.
    //  - for crbug.com/796558, the max device scale was hard-coded back to 1.0
    //    for single-tile masks, to avoid problems with transforms.
    // To avoid those transform/scale bugs, this is currently left at 1.0. See
    // crbug.com/979672 for more context and test links.
    float max_contents_scale = 1;

    // The downstream CA layers use shared_quad_state to generate resources of
    // the right size even if it is a solid color picture layer.
    PopulateScaledSharedQuadState(shared_quad_state, max_contents_scale,
                                  contents_opaque());

    AppendDebugBorderQuad(render_pass, gfx::Rect(bounds()), shared_quad_state,
                          append_quads_data);

    gfx::Rect scaled_visible_layer_rect =
        shared_quad_state->visible_quad_layer_rect;
    Occlusion occlusion = draw_properties().occlusion_in_content_space;

    EffectNode* effect_node = GetEffectTree().Node(effect_tree_index());
    SolidColorLayerImpl::AppendSolidQuads(
        render_pass, occlusion, shared_quad_state, scaled_visible_layer_rect,
        raster_source_->GetSolidColor(),
        !layer_tree_impl()->settings().enable_edge_anti_aliasing,
        effect_node->blend_mode, append_quads_data);
    return;
  }

  float device_scale_factor = layer_tree_impl()->device_scale_factor();
  // If we don't have tilings, we're likely going to append a checkerboard quad
  // the size of the layer. In that case, use scale 1 for more stable
  // to-screen-space mapping.
  float max_contents_scale =
      tilings_->num_tilings() ? MaximumTilingContentsScale() : 1.f;
  PopulateScaledSharedQuadState(shared_quad_state, max_contents_scale,
                                contents_opaque());

  if (directly_composited_image_size_) {
    // Directly composited images should be clipped to the layer's content rect.
    // When a PictureLayerTiling is created for a directly composited image, the
    // layer bounds are multiplied by the raster scale in order to compute the
    // tile size. If the aspect ratio of the layer doesn't match that of the
    // image, it's possible that one of the dimensions of the resulting size
    // (layer bounds * raster scale) is a fractional number, as raster scale
    // does not scale x and y independently.
    // When this happens, the ToEnclosingRect() operation in
    // |PictureLayerTiling::EnclosingContentsRectFromLayer()| will
    // create a tiling that, when scaled by |max_contents_scale| above, is
    // larger than the layer bounds by a fraction of a pixel.
    gfx::Rect bounds_in_target_space = MathUtil::MapEnclosingClippedRect(
        draw_properties().target_space_transform, gfx::Rect(bounds()));
    if (is_clipped())
      bounds_in_target_space.Intersect(draw_properties().clip_rect);

    if (shared_quad_state->is_clipped)
      bounds_in_target_space.Intersect(shared_quad_state->clip_rect);

    shared_quad_state->is_clipped = true;
    shared_quad_state->clip_rect = bounds_in_target_space;

#if DCHECK_IS_ON()
    // Validate that the tile and bounds size are always within one pixel.
    PictureLayerTiling* high_res =
        tilings_->FindTilingWithResolution(HIGH_RESOLUTION);
    if (high_res) {
      const float epsilon = 1.f;
      gfx::SizeF scaled_tiling_size(high_res->tiling_size());
      scaled_tiling_size.Scale(1 / raster_contents_scale_);
      DCHECK(std::abs(bounds().width() - scaled_tiling_size.width()) < epsilon);
      DCHECK(std::abs(bounds().height() - scaled_tiling_size.height()) <
             epsilon);
    }
#endif
  }

  Occlusion scaled_occlusion =
      draw_properties()
          .occlusion_in_content_space.GetOcclusionWithGivenDrawTransform(
              shared_quad_state->quad_to_target_transform);

  if (current_draw_mode_ == DRAW_MODE_RESOURCELESS_SOFTWARE) {
    DCHECK(shared_quad_state->quad_layer_rect.origin() == gfx::Point(0, 0));
    AppendDebugBorderQuad(
        render_pass, shared_quad_state->quad_layer_rect, shared_quad_state,
        append_quads_data, DebugColors::DirectPictureBorderColor(),
        DebugColors::DirectPictureBorderWidth(device_scale_factor));

    gfx::Rect geometry_rect = shared_quad_state->visible_quad_layer_rect;
    gfx::Rect visible_geometry_rect =
        scaled_occlusion.GetUnoccludedContentRect(geometry_rect);
    bool needs_blending = !contents_opaque();

    // The raster source may not be valid over the entire visible rect,
    // and rastering outside of that may cause incorrect pixels.
    gfx::Rect scaled_recorded_viewport = gfx::ScaleToEnclosingRect(
        raster_source_->RecordedViewport(), max_contents_scale);
    geometry_rect.Intersect(scaled_recorded_viewport);
    visible_geometry_rect.Intersect(scaled_recorded_viewport);

    if (visible_geometry_rect.IsEmpty())
      return;

    DCHECK(raster_source_->HasRecordings());
    gfx::Rect quad_content_rect = shared_quad_state->visible_quad_layer_rect;
    gfx::Size texture_size = quad_content_rect.size();
    gfx::RectF texture_rect = gfx::RectF(gfx::SizeF(texture_size));

    viz::PictureDrawQuad::ImageAnimationMap image_animation_map;
    const auto* controller = layer_tree_impl()->image_animation_controller();
    WhichTree tree = layer_tree_impl()->IsPendingTree()
                         ? WhichTree::PENDING_TREE
                         : WhichTree::ACTIVE_TREE;
    for (const auto& image_data : raster_source_->GetDisplayItemList()
                                      ->discardable_image_map()
                                      .animated_images_metadata()) {
      image_animation_map[image_data.paint_image_id] =
          controller->GetFrameIndexForImage(image_data.paint_image_id, tree);
    }

    auto* quad = render_pass->CreateAndAppendDrawQuad<viz::PictureDrawQuad>();
    quad->SetNew(shared_quad_state, geometry_rect, visible_geometry_rect,
                 needs_blending, texture_rect, texture_size, nearest_neighbor_,
                 viz::RGBA_8888, quad_content_rect, max_contents_scale,
                 std::move(image_animation_map),
                 raster_source_->GetDisplayItemList());
    ValidateQuadResources(quad);
    return;
  }

  // If we're doing a regular AppendQuads (ie, not solid color or resourceless
  // software draw, and if the visible rect is scrolled far enough away, then we
  // may run into a floating point precision in AA calculations in the renderer.
  // See crbug.com/765297. In order to avoid this, we shift the quads up from
  // where they logically reside and adjust the shared_quad_state's transform
  // instead. We only do this in a scale/translate matrices to ensure the math
  // is correct.
  gfx::Vector2d quad_offset;
  if (shared_quad_state->quad_to_target_transform.IsScaleOrTranslation()) {
    const auto& visible_rect = shared_quad_state->visible_quad_layer_rect;
    quad_offset = gfx::Vector2d(-visible_rect.x(), -visible_rect.y());
  }

  gfx::Rect debug_border_rect(shared_quad_state->quad_layer_rect);
  debug_border_rect.Offset(quad_offset);
  AppendDebugBorderQuad(render_pass, debug_border_rect, shared_quad_state,
                        append_quads_data);

  if (ShowDebugBorders(DebugBorderType::LAYER)) {
    for (PictureLayerTilingSet::CoverageIterator iter(
             tilings_.get(), max_contents_scale,
             shared_quad_state->visible_quad_layer_rect, ideal_contents_scale_);
         iter; ++iter) {
      SkColor color;
      float width;
      if (*iter && iter->draw_info().IsReadyToDraw()) {
        TileDrawInfo::Mode mode = iter->draw_info().mode();
        if (mode == TileDrawInfo::SOLID_COLOR_MODE) {
          color = DebugColors::SolidColorTileBorderColor();
          width = DebugColors::SolidColorTileBorderWidth(device_scale_factor);
        } else if (mode == TileDrawInfo::OOM_MODE) {
          color = DebugColors::OOMTileBorderColor();
          width = DebugColors::OOMTileBorderWidth(device_scale_factor);
        } else if (iter.resolution() == HIGH_RESOLUTION) {
          color = DebugColors::HighResTileBorderColor();
          width = DebugColors::HighResTileBorderWidth(device_scale_factor);
        } else if (iter.resolution() == LOW_RESOLUTION) {
          color = DebugColors::LowResTileBorderColor();
          width = DebugColors::LowResTileBorderWidth(device_scale_factor);
        } else if (iter->contents_scale_key() > max_contents_scale) {
          color = DebugColors::ExtraHighResTileBorderColor();
          width = DebugColors::ExtraHighResTileBorderWidth(device_scale_factor);
        } else {
          color = DebugColors::ExtraLowResTileBorderColor();
          width = DebugColors::ExtraLowResTileBorderWidth(device_scale_factor);
        }
      } else {
        color = DebugColors::MissingTileBorderColor();
        width = DebugColors::MissingTileBorderWidth(device_scale_factor);
      }

      auto* debug_border_quad =
          render_pass->CreateAndAppendDrawQuad<viz::DebugBorderDrawQuad>();
      gfx::Rect geometry_rect = iter.geometry_rect();
      geometry_rect.Offset(quad_offset);
      gfx::Rect visible_geometry_rect = geometry_rect;
      debug_border_quad->SetNew(shared_quad_state,
                                geometry_rect,
                                visible_geometry_rect,
                                color,
                                width);
    }
  }

  if (layer_tree_impl()->debug_state().highlight_non_lcd_text_layers) {
    SkColor color =
        DebugColors::NonLCDTextHighlightColor(lcd_text_disallowed_reason());
    if (color != SK_ColorTRANSPARENT &&
        GetRasterSource()->GetDisplayItemList()->AreaOfDrawText(
            gfx::Rect(bounds()))) {
      render_pass->CreateAndAppendDrawQuad<viz::SolidColorDrawQuad>()->SetNew(
          shared_quad_state, debug_border_rect, debug_border_rect, color,
          append_quads_data);
    }
  }

  // Keep track of the tilings that were used so that tilings that are
  // unused can be considered for removal.
  last_append_quads_tilings_.clear();

  // Ignore missing tiles outside of viewport for tile priority. This is
  // normally the same as draw viewport but can be independently overridden by
  // embedders like Android WebView with SetExternalTilePriorityConstraints.
  gfx::Rect scaled_viewport_for_tile_priority = gfx::ScaleToEnclosingRect(
      viewport_rect_for_tile_priority_in_content_space_, max_contents_scale);

  size_t missing_tile_count = 0u;
  size_t on_demand_missing_tile_count = 0u;
  only_used_low_res_last_append_quads_ = true;
  gfx::Rect scaled_recorded_viewport = gfx::ScaleToEnclosingRect(
      raster_source_->RecordedViewport(), max_contents_scale);
  for (PictureLayerTilingSet::CoverageIterator iter(
           tilings_.get(), max_contents_scale,
           shared_quad_state->visible_quad_layer_rect, ideal_contents_scale_);
       iter; ++iter) {
    gfx::Rect geometry_rect = iter.geometry_rect();
    gfx::Rect visible_geometry_rect =
        scaled_occlusion.GetUnoccludedContentRect(geometry_rect);

    gfx::Rect offset_geometry_rect = geometry_rect;
    offset_geometry_rect.Offset(quad_offset);
    gfx::Rect offset_visible_geometry_rect = visible_geometry_rect;
    offset_visible_geometry_rect.Offset(quad_offset);

    bool needs_blending = !contents_opaque();
    if (visible_geometry_rect.IsEmpty())
      continue;

    int64_t visible_geometry_area =
        static_cast<int64_t>(visible_geometry_rect.width()) *
        visible_geometry_rect.height();
    append_quads_data->visible_layer_area += visible_geometry_area;

    bool has_draw_quad = false;
    if (*iter && iter->draw_info().IsReadyToDraw()) {
      const TileDrawInfo& draw_info = iter->draw_info();

      switch (draw_info.mode()) {
        case TileDrawInfo::RESOURCE_MODE: {
          gfx::RectF texture_rect = iter.texture_rect();

          // The raster_contents_scale_ is the best scale that the layer is
          // trying to produce, even though it may not be ideal. Since that's
          // the best the layer can promise in the future, consider those as
          // complete. But if a tile is ideal scale, we don't want to consider
          // it incomplete and trying to replace it with a tile at a worse
          // scale.
          if (iter->contents_scale_key() != raster_contents_scale_ &&
              iter->contents_scale_key() != ideal_contents_scale_ &&
              geometry_rect.Intersects(scaled_viewport_for_tile_priority)) {
            append_quads_data->num_incomplete_tiles++;
          }

          auto* quad =
              render_pass->CreateAndAppendDrawQuad<viz::TileDrawQuad>();
          quad->SetNew(
              shared_quad_state, offset_geometry_rect,
              offset_visible_geometry_rect, needs_blending,
              draw_info.resource_id_for_export(), texture_rect,
              draw_info.resource_size(), draw_info.is_premultiplied(),
              nearest_neighbor_,
              !layer_tree_impl()->settings().enable_edge_anti_aliasing);
          ValidateQuadResources(quad);
          has_draw_quad = true;
          break;
        }
        case TileDrawInfo::SOLID_COLOR_MODE: {
          float alpha =
              (SkColorGetA(draw_info.solid_color()) * (1.0f / 255.0f)) *
              shared_quad_state->opacity;
          if (alpha >= std::numeric_limits<float>::epsilon()) {
            auto* quad =
                render_pass->CreateAndAppendDrawQuad<viz::SolidColorDrawQuad>();
            quad->SetNew(
                shared_quad_state, offset_geometry_rect,
                offset_visible_geometry_rect, draw_info.solid_color(),
                !layer_tree_impl()->settings().enable_edge_anti_aliasing);
            ValidateQuadResources(quad);
          }
          has_draw_quad = true;
          break;
        }
        case TileDrawInfo::OOM_MODE:
          break;  // Checkerboard.
      }
    }

    if (!has_draw_quad) {
      // Checkerboard.
      SkColor color = SafeOpaqueBackgroundColor();
      if (ShowDebugBorders(DebugBorderType::LAYER)) {
        // Fill the whole tile with the missing tile color.
        color = DebugColors::DefaultCheckerboardColor();
      }
      auto* quad =
          render_pass->CreateAndAppendDrawQuad<viz::SolidColorDrawQuad>();
      quad->SetNew(shared_quad_state, offset_geometry_rect,
                   offset_visible_geometry_rect, color, false);
      ValidateQuadResources(quad);

      if (geometry_rect.Intersects(scaled_viewport_for_tile_priority)) {
        append_quads_data->num_missing_tiles++;
        ++missing_tile_count;
      }
      append_quads_data->checkerboarded_visible_content_area +=
          visible_geometry_area;
      // Intersect checkerboard rect with interest rect to generate rect where
      // we checkerboarded and has recording. The area where we don't have
      // recording is not necessarily a Rect, and its area is calculated using
      // subtraction.
      gfx::Rect visible_rect_has_recording = visible_geometry_rect;
      visible_rect_has_recording.Intersect(scaled_recorded_viewport);
      int64_t checkerboarded_has_recording_area =
          static_cast<int64_t>(visible_rect_has_recording.width()) *
          visible_rect_has_recording.height();
      append_quads_data->checkerboarded_needs_raster_content_area +=
          checkerboarded_has_recording_area;
      append_quads_data->checkerboarded_no_recording_content_area +=
          visible_geometry_area - checkerboarded_has_recording_area;
      continue;
    }

    if (iter.resolution() != HIGH_RESOLUTION) {
      append_quads_data->approximated_visible_content_area +=
          visible_geometry_area;
    }

    // If we have a draw quad, but it's not low resolution, then
    // mark that we've used something other than low res to draw.
    if (iter.resolution() != LOW_RESOLUTION)
      only_used_low_res_last_append_quads_ = false;

    if (last_append_quads_tilings_.empty() ||
        last_append_quads_tilings_.back() != iter.CurrentTiling()) {
      last_append_quads_tilings_.push_back(iter.CurrentTiling());
    }
  }

  // Adjust shared_quad_state with the quad_offset, since we've adjusted each
  // quad we've appended by it.
  shared_quad_state->quad_to_target_transform.Translate(-quad_offset);
  shared_quad_state->quad_layer_rect.Offset(quad_offset);
  shared_quad_state->visible_quad_layer_rect.Offset(quad_offset);

  if (missing_tile_count) {
    TRACE_EVENT_INSTANT2("cc",
                         "PictureLayerImpl::AppendQuads checkerboard",
                         TRACE_EVENT_SCOPE_THREAD,
                         "missing_tile_count",
                         missing_tile_count,
                         "on_demand_missing_tile_count",
                         on_demand_missing_tile_count);
  }

  // Aggressively remove any tilings that are not seen to save memory. Note
  // that this is at the expense of doing cause more frequent re-painting. A
  // better scheme would be to maintain a tighter visible_layer_rect for the
  // finer tilings.
  CleanUpTilingsOnActiveLayer(last_append_quads_tilings_);
}

bool PictureLayerImpl::UpdateTiles() {
  if (!CanHaveTilings()) {
    ideal_page_scale_ = 0.f;
    ideal_device_scale_ = 0.f;
    ideal_contents_scale_ = 0.f;
    ideal_source_scale_ = 0.f;
    SanityCheckTilingState();
    return false;
  }

  // Remove any non-ideal tilings that were not used last time we generated
  // quads to save memory and processing time. Note that pending tree should
  // only have one or two tilings (high and low res), so only clean up the
  // active layer. This cleans it up here in case AppendQuads didn't run.
  // If it did run, this would not remove any additional tilings.
  if (layer_tree_impl()->IsActiveTree())
    CleanUpTilingsOnActiveLayer(last_append_quads_tilings_);

  const float old_ideal_contents_scale = ideal_contents_scale_;
  UpdateIdealScales();

  const bool ideal_contents_scale_changed =
      old_ideal_contents_scale != 0 &&
      old_ideal_contents_scale != ideal_contents_scale_;
  if (!raster_contents_scale_ ||
      ShouldAdjustRasterScale(ideal_contents_scale_changed)) {
    RecalculateRasterScales();
    AddTilingsForRasterScale();
  }

  if (layer_tree_impl()->IsActiveTree())
    AddLowResolutionTilingIfNeeded();

  DCHECK(raster_page_scale_);
  DCHECK(raster_device_scale_);
  DCHECK(raster_source_scale_);
  DCHECK(raster_contents_scale_);
  DCHECK(low_res_raster_contents_scale_);

  was_screen_space_transform_animating_ =
      draw_properties().screen_space_transform_is_animating;

  double current_frame_time_in_seconds =
      (layer_tree_impl()->CurrentBeginFrameArgs().frame_time -
       base::TimeTicks()).InSecondsF();
  UpdateViewportRectForTilePriorityInContentSpace();

  // The tiling set can require tiles for activation any of the following
  // conditions are true:
  // - This layer produced a high-res or non-ideal-res tile last frame.
  // - We're in requires high res to draw mode.
  // - We're not in smoothness takes priority mode.
  // To put different, the tiling set can't require tiles for activation if
  // we're in smoothness mode and only used low-res or checkerboard to draw last
  // frame and we don't need high res to draw.
  //
  // The reason for this is that we should be able to activate sooner and get a
  // more up to date recording, so we don't run out of recording on the active
  // tree.
  // A layer must be a drawing layer for it to require tiles for activation.
  bool can_require_tiles_for_activation = false;
  if (contributes_to_drawn_render_surface()) {
    can_require_tiles_for_activation =
        !only_used_low_res_last_append_quads_ || RequiresHighResToDraw() ||
        !layer_tree_impl()->SmoothnessTakesPriority();
  }

  static const base::NoDestructor<Occlusion> kEmptyOcclusion;
  const Occlusion& occlusion_in_content_space =
      layer_tree_impl()->settings().use_occlusion_for_tile_prioritization
          ? draw_properties().occlusion_in_content_space
          : *kEmptyOcclusion;

  // Pass |occlusion_in_content_space| for |occlusion_in_layer_space| since
  // they are the same space in picture layer, as contents scale is always 1.
  bool updated = tilings_->UpdateTilePriorities(
      viewport_rect_for_tile_priority_in_content_space_, ideal_contents_scale_,
      current_frame_time_in_seconds, occlusion_in_content_space,
      can_require_tiles_for_activation);
  return updated;
}

void PictureLayerImpl::UpdateViewportRectForTilePriorityInContentSpace() {
  // If visible_layer_rect() is empty or viewport_rect_for_tile_priority is
  // set to be different from the device viewport, try to inverse project the
  // viewport into layer space and use that. Otherwise just use
  // visible_layer_rect().
  gfx::Rect visible_rect_in_content_space = visible_layer_rect();
  gfx::Rect viewport_rect_for_tile_priority =
      layer_tree_impl()->ViewportRectForTilePriority();
  if (visible_rect_in_content_space.IsEmpty() ||
      layer_tree_impl()->GetDeviceViewport() !=
          viewport_rect_for_tile_priority) {
    gfx::Transform view_to_layer(gfx::Transform::kSkipInitialization);
    if (ScreenSpaceTransform().GetInverse(&view_to_layer)) {
      // Transform from view space to content space.
      visible_rect_in_content_space = MathUtil::ProjectEnclosingClippedRect(
          view_to_layer, viewport_rect_for_tile_priority);

      // We have to allow for a viewport that is outside of the layer bounds in
      // order to compute tile priorities correctly for offscreen content that
      // is going to make it on screen. However, we also have to limit the
      // viewport since it can be very large due to screen_space_transforms. As
      // a heuristic, we clip to bounds padded by skewport_extrapolation_limit *
      // maximum tiling scale, since this should allow sufficient room for
      // skewport calculations.
      gfx::Rect padded_bounds(bounds());
      int padding_amount = layer_tree_impl()
                               ->settings()
                               .skewport_extrapolation_limit_in_screen_pixels *
                           MaximumTilingContentsScale();
      padded_bounds.Inset(-padding_amount, -padding_amount);
      visible_rect_in_content_space =
          SafeIntersectRects(visible_rect_in_content_space, padded_bounds);
    }
  }
  viewport_rect_for_tile_priority_in_content_space_ =
      visible_rect_in_content_space;
}

PictureLayerImpl* PictureLayerImpl::GetPendingOrActiveTwinLayer() const {
  if (!twin_layer_ || !twin_layer_->IsOnActiveOrPendingTree())
    return nullptr;
  return twin_layer_;
}

void PictureLayerImpl::UpdateRasterSource(
    scoped_refptr<RasterSource> raster_source,
    Region* new_invalidation,
    const PictureLayerTilingSet* pending_set,
    const PaintWorkletRecordMap* pending_paint_worklet_records) {
  // The bounds and the pile size may differ if the pile wasn't updated (ie.
  // PictureLayer::Update didn't happen). In that case the pile will be empty.
  DCHECK(raster_source->GetSize().IsEmpty() ||
         bounds() == raster_source->GetSize())
      << " bounds " << bounds().ToString() << " pile "
      << raster_source->GetSize().ToString();

  // We have an updated recording if the DisplayItemList in the new RasterSource
  // is different.
  const bool recording_updated =
      !raster_source_ || raster_source_->GetDisplayItemList() !=
                             raster_source->GetDisplayItemList();

  // Unregister for all images on the current raster source, if the recording
  // was updated.
  if (recording_updated) {
    UnregisterAnimatedImages();

    // When the display list changes, the set of PaintWorklets may also change.
    if (pending_paint_worklet_records) {
      paint_worklet_records_ = *pending_paint_worklet_records;
    } else {
      if (raster_source->GetDisplayItemList()) {
        SetPaintWorkletInputs(raster_source->GetDisplayItemList()
                                  ->discardable_image_map()
                                  .paint_worklet_inputs());
      } else {
        SetPaintWorkletInputs({});
      }
    }

    // If the MSAA sample count has changed, we need to re-raster the complete
    // layer.
    if (raster_source_) {
      const auto& current_display_item_list =
          raster_source_->GetDisplayItemList();
      const auto& new_display_item_list = raster_source->GetDisplayItemList();
      if (current_display_item_list && new_display_item_list) {
        bool needs_full_invalidation =
            layer_tree_impl()->GetMSAASampleCountForRaster(
                current_display_item_list) !=
            layer_tree_impl()->GetMSAASampleCountForRaster(
                new_display_item_list);
        needs_full_invalidation |=
            current_display_item_list->discardable_image_map()
                .contains_only_srgb_images() !=
            new_display_item_list->discardable_image_map()
                .contains_only_srgb_images();
        if (needs_full_invalidation)
          new_invalidation->Union(gfx::Rect(raster_source->GetSize()));
      }
    }
  }

  // The |raster_source_| is initially null, so have to check for that for the
  // first frame.
  bool could_have_tilings = CanHaveTilings();
  raster_source_.swap(raster_source);

  // Register images from the new raster source, if the recording was updated.
  // TODO(khushalsagar): UMA the number of animated images in layer?
  if (recording_updated)
    RegisterAnimatedImages();

  // The |new_invalidation| must be cleared before updating tilings since they
  // access the invalidation through the PictureLayerTilingClient interface.
  invalidation_.Clear();
  invalidation_.Swap(new_invalidation);

  bool can_have_tilings = CanHaveTilings();
  DCHECK(!pending_set ||
         can_have_tilings == GetPendingOrActiveTwinLayer()->CanHaveTilings());

  // Need to call UpdateTiles again if CanHaveTilings changed.
  if (could_have_tilings != can_have_tilings)
    layer_tree_impl()->set_needs_update_draw_properties();

  if (!can_have_tilings) {
    RemoveAllTilings();
    return;
  }

  // We could do this after doing UpdateTiles, which would avoid doing this for
  // tilings that are going to disappear on the pending tree (if scale changed).
  // But that would also be more complicated, so we just do it here for now.
  //
  // TODO(crbug.com/843787): If the LayerTreeFrameSink is lost, and we activate,
  // this ends up running with the old LayerTreeFrameSink, or possibly with a
  // null LayerTreeFrameSink, which can give incorrect results or maybe crash.
  if (pending_set) {
    tilings_->UpdateTilingsToCurrentRasterSourceForActivation(
        raster_source_, pending_set, invalidation_, MinimumContentsScale(),
        MaximumContentsScale());
  } else {
    tilings_->UpdateTilingsToCurrentRasterSourceForCommit(
        raster_source_, invalidation_, MinimumContentsScale(),
        MaximumContentsScale());
    // We're in a commit, make sure to update the state of the checker image
    // tracker with the new async attribute data.
    layer_tree_impl()->UpdateImageDecodingHints(
        raster_source_->TakeDecodingModeMap());
  }
}

bool PictureLayerImpl::UpdateCanUseLCDTextAfterCommit() {
  DCHECK(layer_tree_impl()->IsSyncTree());

  // Once we disable lcd text, we don't re-enable it.
  if (!can_use_lcd_text())
    return false;

  auto new_lcd_text_disallowed_reason = ComputeLCDTextDisallowedReason();
  if (lcd_text_disallowed_reason_ == new_lcd_text_disallowed_reason)
    return false;

  lcd_text_disallowed_reason_ = new_lcd_text_disallowed_reason;
  // Synthetically invalidate everything.
  gfx::Rect bounds_rect(bounds());
  invalidation_ = Region(bounds_rect);
  tilings_->Invalidate(invalidation_);
  UnionUpdateRect(bounds_rect);
  return true;
}

LCDTextDisallowedReason PictureLayerImpl::ComputeLCDTextDisallowedReason()
    const {
  if (layer_tree_impl()->settings().layers_always_allowed_lcd_text)
    return LCDTextDisallowedReason::kNone;
  if (!layer_tree_impl()->settings().can_use_lcd_text)
    return LCDTextDisallowedReason::kSetting;
  if (!contents_opaque_for_text()) {
    if (SkColorGetA(background_color()) != SK_AlphaOPAQUE)
      return LCDTextDisallowedReason::kBackgroundColorNotOpaque;
    return LCDTextDisallowedReason::kContentsNotOpaque;
  }

  if (!use_transformed_rasterization_) {
    if (!GetTransformTree()
             .Node(transform_tree_index())
             ->node_and_ancestors_have_only_integer_translation)
      return LCDTextDisallowedReason::kNonIntegralTranslation;
    if (static_cast<int>(offset_to_transform_parent().x()) !=
        offset_to_transform_parent().x())
      return LCDTextDisallowedReason::kNonIntegralXOffset;
    if (static_cast<int>(offset_to_transform_parent().y()) !=
        offset_to_transform_parent().y())
      return LCDTextDisallowedReason::kNonIntegralYOffset;
  }

  if (has_will_change_transform_hint())
    return LCDTextDisallowedReason::kWillChangeTransform;

  return LCDTextDisallowedReason::kNone;
}

void PictureLayerImpl::NotifyTileStateChanged(const Tile* tile) {
  if (layer_tree_impl()->IsActiveTree())
    damage_rect_.Union(tile->enclosing_layer_rect());
  if (tile->draw_info().NeedsRaster()) {
    PictureLayerTiling* tiling =
        tilings_->FindTilingWithScaleKey(tile->contents_scale_key());
    if (tiling)
      tiling->set_all_tiles_done(false);
  }
}

gfx::Rect PictureLayerImpl::GetDamageRect() const {
  return damage_rect_;
}

void PictureLayerImpl::ResetChangeTracking() {
  LayerImpl::ResetChangeTracking();
  damage_rect_.SetRect(0, 0, 0, 0);
}

void PictureLayerImpl::DidBeginTracing() {
  raster_source_->DidBeginTracing();
}

void PictureLayerImpl::ReleaseResources() {
  tilings_->ReleaseAllResources();
  ResetRasterScale();
}

void PictureLayerImpl::ReleaseTileResources() {
  // All resources are tile resources.
  ReleaseResources();
}

void PictureLayerImpl::RecreateTileResources() {
  // Recreate tilings with new settings, since some of those might change when
  // we release resources.
  tilings_ = CreatePictureLayerTilingSet();
}

Region PictureLayerImpl::GetInvalidationRegionForDebugging() {
  // |invalidation_| gives the invalidation contained in the source frame, but
  // is not cleared after drawing from the layer. However, update_rect() is
  // cleared once the invalidation is drawn, which is useful for debugging
  // visualizations. This method intersects the two to give a more exact
  // representation of what was invalidated that is cleared after drawing.
  return IntersectRegions(invalidation_, update_rect());
}

std::unique_ptr<Tile> PictureLayerImpl::CreateTile(
    const Tile::CreateInfo& info) {
  int flags = 0;

  // We don't handle solid color single texture masks for backdrop filters,
  // so we shouldn't bother analyzing those.
  // Otherwise, always analyze to maximize memory savings.
  if (!is_backdrop_filter_mask_)
    flags = Tile::USE_PICTURE_ANALYSIS;

  if (contents_opaque())
    flags |= Tile::IS_OPAQUE;

  return layer_tree_impl()->tile_manager()->CreateTile(
      info, id(), layer_tree_impl()->source_frame_number(), flags,
      can_use_lcd_text());
}

const Region* PictureLayerImpl::GetPendingInvalidation() {
  if (layer_tree_impl()->IsPendingTree())
    return &invalidation_;
  if (layer_tree_impl()->IsRecycleTree())
    return nullptr;
  DCHECK(layer_tree_impl()->IsActiveTree());
  if (PictureLayerImpl* twin_layer = GetPendingOrActiveTwinLayer())
    return &twin_layer->invalidation_;
  return nullptr;
}

const PictureLayerTiling* PictureLayerImpl::GetPendingOrActiveTwinTiling(
    const PictureLayerTiling* tiling) const {
  PictureLayerImpl* twin_layer = GetPendingOrActiveTwinLayer();
  if (!twin_layer)
    return nullptr;
  const PictureLayerTiling* twin_tiling =
      twin_layer->tilings_->FindTilingWithScaleKey(
          tiling->contents_scale_key());
  if (twin_tiling &&
      twin_tiling->raster_transform() == tiling->raster_transform())
    return twin_tiling;
  return nullptr;
}

bool PictureLayerImpl::RequiresHighResToDraw() const {
  return layer_tree_impl()->RequiresHighResToDraw();
}

const PaintWorkletRecordMap& PictureLayerImpl::GetPaintWorkletRecords() const {
  return paint_worklet_records_;
}

gfx::Rect PictureLayerImpl::GetEnclosingRectInTargetSpace() const {
  return GetScaledEnclosingRectInTargetSpace(MaximumTilingContentsScale());
}

bool PictureLayerImpl::ShouldAnimate(PaintImage::Id paint_image_id) const {
  // If we are registered with the animation controller, which queries whether
  // the image should be animated, then we must have recordings with this image.
  DCHECK(raster_source_);
  DCHECK(raster_source_->GetDisplayItemList());
  DCHECK(
      !raster_source_->GetDisplayItemList()->discardable_image_map().empty());

  // Only animate images for layers which HasValidTilePriorities. This check is
  // important for 2 reasons:
  // 1) It avoids doing additional work for layers we don't plan to rasterize
  //    and/or draw. The updated state will be pulled by the animation system
  //    if the draw properties change.
  // 2) It eliminates considering layers on the recycle tree. Once the pending
  //    tree is activated, the layers on the recycle tree remain registered as
  //    animation drivers, but should not drive animations since they don't have
  //    updated draw properties.
  //
  //  Additionally only animate images which are on-screen, animations are
  //  paused once they are not visible.
  if (!HasValidTilePriorities())
    return false;

  const auto& rects = raster_source_->GetDisplayItemList()
                          ->discardable_image_map()
                          .GetRectsForImage(paint_image_id);
  for (const auto& r : rects.container()) {
    if (r.Intersects(visible_layer_rect()))
      return true;
  }
  return false;
}

gfx::Size PictureLayerImpl::CalculateTileSize(const gfx::Size& content_bounds) {
  content_bounds_ = content_bounds;
  return tile_size_calculator_.CalculateTileSize();
}

void PictureLayerImpl::GetContentsResourceId(
    viz::ResourceId* resource_id,
    gfx::Size* resource_size,
    gfx::SizeF* resource_uv_size) const {
  // We need contents resource for backdrop filter masks only.
  if (!is_backdrop_filter_mask()) {
    *resource_id = 0;
    return;
  }

  // The bounds and the pile size may differ if the pile wasn't updated (ie.
  // PictureLayer::Update didn't happen). In that case the pile will be empty.
  DCHECK(raster_source_->GetSize().IsEmpty() ||
         bounds() == raster_source_->GetSize())
      << " bounds " << bounds().ToString() << " pile "
      << raster_source_->GetSize().ToString();
  float dest_scale = MaximumTilingContentsScale();
  gfx::Rect content_rect =
      gfx::ScaleToEnclosingRect(gfx::Rect(bounds()), dest_scale);
  PictureLayerTilingSet::CoverageIterator iter(
      tilings_.get(), dest_scale, content_rect, ideal_contents_scale_);

  // Mask resource not ready yet.
  if (!iter || !*iter) {
    *resource_id = 0;
    return;
  }

  // Masks only supported if they fit on exactly one tile.
  DCHECK(iter.geometry_rect() == content_rect)
      << "iter rect " << iter.geometry_rect().ToString() << " content rect "
      << content_rect.ToString();

  const TileDrawInfo& draw_info = iter->draw_info();
  if (!draw_info.IsReadyToDraw() ||
      draw_info.mode() != TileDrawInfo::RESOURCE_MODE) {
    *resource_id = 0;
    return;
  }

  *resource_id = draw_info.resource_id_for_export();
  *resource_size = draw_info.resource_size();
  // |resource_uv_size| represents the range of UV coordinates that map to the
  // content being drawn. Typically, we draw to the entire texture, so these
  // coordinates are (1.0f, 1.0f). However, if we are rasterizing to an
  // over-large texture, this size will be smaller, mapping to the subset of the
  // texture being used.
  gfx::SizeF requested_tile_size =
      gfx::SizeF(iter->tiling()->tiling_data()->tiling_size());
  DCHECK_LE(requested_tile_size.width(), draw_info.resource_size().width());
  DCHECK_LE(requested_tile_size.height(), draw_info.resource_size().height());
  *resource_uv_size = gfx::SizeF(
      requested_tile_size.width() / draw_info.resource_size().width(),
      requested_tile_size.height() / draw_info.resource_size().height());
}

void PictureLayerImpl::SetNearestNeighbor(bool nearest_neighbor) {
  if (nearest_neighbor_ == nearest_neighbor)
    return;

  nearest_neighbor_ = nearest_neighbor;
  NoteLayerPropertyChanged();
}

void PictureLayerImpl::SetUseTransformedRasterization(bool use) {
  // With transformed rasterization, the pixels along the edge of the layer may
  // become translucent, so clear contents_opaque.
  if (use)
    SetContentsOpaque(false);

  if (use_transformed_rasterization_ == use)
    return;

  use_transformed_rasterization_ = use;
  NoteLayerPropertyChanged();
}

void PictureLayerImpl::SetDirectlyCompositedImageSize(
    base::Optional<gfx::Size> size) {
  if (directly_composited_image_size_ == size)
    return;

  directly_composited_image_size_ = size;
  NoteLayerPropertyChanged();
}

bool PictureLayerImpl::ShouldDirectlyCompositeImage(float raster_scale) const {
  // If the results of scaling the bounds by the expected raster scale
  // would end up with a content rect whose width/height are more than one
  // pixel different from the layer bounds, don't directly composite the image
  // to avoid incorrect rendering.
  gfx::SizeF layer_bounds(bounds());
  gfx::RectF scaled_bounds_rect(layer_bounds);
  scaled_bounds_rect.Scale(raster_scale);

  // Take the scaled bounds, get the enclosing rect then scale it back down -
  // this is the same set of operations that will happen when using the tiling
  // at that raster scale.
  gfx::RectF content_rect(gfx::ToEnclosingRect(scaled_bounds_rect));
  content_rect.Scale(1 / raster_scale);

  return std::abs(layer_bounds.width() - content_rect.width()) < 1.f &&
         std::abs(layer_bounds.height() - content_rect.height()) < 1.f;
}

float PictureLayerImpl::GetDefaultDirectlyCompositedImageRasterScale() const {
  DCHECK(directly_composited_image_size_.has_value());
  float x = static_cast<float>(directly_composited_image_size_->width()) /
            bounds().width();
  float y = static_cast<float>(directly_composited_image_size_->height()) /
            bounds().height();
  return GetPreferredRasterScale(gfx::Vector2dF(x, y));
}

float PictureLayerImpl::CalculateDirectlyCompositedImageRasterScale() const {
  float default_raster_scale = GetDefaultDirectlyCompositedImageRasterScale();
  bool default_raster_scale_changed =
      default_raster_scale != directly_composited_image_initial_raster_scale_;

  // If the default raster scale didn't change, we will calculate based on the
  // previous raster source scale. The calculation may change based on updated
  // ideal source scale.
  float adjusted_raster_scale = default_raster_scale_changed
                                    ? default_raster_scale
                                    : raster_source_scale_;

  // We never want a raster scale larger than the default, since that uses more
  // memory but can't result it better quality (upscaling will happen in the
  // display compositor instead).
  float max_scale = std::max(default_raster_scale, MinimumContentsScale());
  float min_scale = MinimumContentsScale();

  float clamped_ideal_source_scale =
      base::ClampToRange(ideal_source_scale_, min_scale, max_scale);
  while (adjusted_raster_scale < clamped_ideal_source_scale)
    adjusted_raster_scale *= 2.f;
  while (adjusted_raster_scale > 4 * clamped_ideal_source_scale)
    adjusted_raster_scale /= 2.f;

  adjusted_raster_scale =
      base::ClampToRange(adjusted_raster_scale, min_scale, max_scale);
  return adjusted_raster_scale;
}

// Log either the tile area saved or added due to directly compositing an
// image. This is logged every time we choose a raster source scale for a
// directly composited image.
void PictureLayerImpl::LogDirectlyCompositedImageRasterScaleUMAs() const {
  base::CheckedNumeric<int> actual_area =
      ScaleToCeiledSize(bounds(), raster_source_scale_).GetCheckedArea();
  base::CheckedNumeric<int> ideal_area =
      ScaleToCeiledSize(bounds(), ideal_source_scale_).GetCheckedArea();
  if (actual_area.IsValid() && ideal_area.IsValid()) {
    int area_difference =
        std::abs(static_cast<int>((actual_area - ideal_area).ValueOrDie()));
    bool raster_area_matches = raster_source_scale_ == ideal_source_scale_;
    UMA_HISTOGRAM_BOOLEAN(
        "Compositing.Renderer.DirectlyCompositedImage.TileAreaMatches",
        raster_area_matches);
    if (raster_source_scale_ < ideal_source_scale_) {
      UMA_HISTOGRAM_COUNTS_10M(
          "Compositing.Renderer.DirectlyCompositedImage.TileAreaSaved",
          area_difference);
    } else if (raster_source_scale_ > ideal_source_scale_) {
      UMA_HISTOGRAM_COUNTS_10M(
          "Compositing.Renderer.DirectlyCompositedImage.TileAreaAdded",
          area_difference);
    }
  }
}

PictureLayerTiling* PictureLayerImpl::AddTiling(
    const gfx::AxisTransform2d& contents_transform) {
  DCHECK(CanHaveTilings());
  DCHECK_GE(contents_transform.scale(), MinimumContentsScale());
  DCHECK_LE(contents_transform.scale(), MaximumContentsScale());
  DCHECK(raster_source_->HasRecordings());
  return tilings_->AddTiling(contents_transform, raster_source_);
}

void PictureLayerImpl::RemoveAllTilings() {
  tilings_->RemoveAllTilings();
  // If there are no tilings, then raster scales are no longer meaningful.
  ResetRasterScale();
}

void PictureLayerImpl::AddTilingsForRasterScale() {
  // Reset all resolution enums on tilings, we'll be setting new values in this
  // function.
  tilings_->MarkAllTilingsNonIdeal();

  PictureLayerTiling* high_res =
      tilings_->FindTilingWithScaleKey(raster_contents_scale_);
  // Note: This function is always invoked when raster scale is recomputed,
  // but not necessarily changed. This means raster translation update is also
  // always done when there are significant changes that triggered raster scale
  // recomputation.
  gfx::Vector2dF raster_translation =
      CalculateRasterTranslation(raster_contents_scale_);
  if (high_res &&
      high_res->raster_transform().translation() != raster_translation) {
    tilings_->Remove(high_res);
    high_res = nullptr;
  }
  if (!high_res) {
    // We always need a high res tiling, so create one if it doesn't exist.
    high_res = AddTiling(
        gfx::AxisTransform2d(raster_contents_scale_, raster_translation));
  } else if (high_res->may_contain_low_resolution_tiles()) {
    // If the tiling we find here was LOW_RESOLUTION previously, it may not be
    // fully rastered, so destroy the old tiles.
    high_res->Reset();
    // Reset the flag now that we'll make it high res, it will have fully
    // rastered content.
    high_res->reset_may_contain_low_resolution_tiles();
  }
  high_res->set_resolution(HIGH_RESOLUTION);

  if (layer_tree_impl()->IsPendingTree() ||
      (layer_tree_impl()->settings().commit_to_active_tree &&
       directly_composited_image_size_.has_value())) {
    // On the pending tree, drop any tilings that are non-ideal since we don't
    // need them to activate anyway.

    // For DirectlyCompositedImages, if we recomputed a new raster scale, we
    // should drop the non-ideal ones if we're committing to the active tree.
    // Otherwise a non-ideal scale that is _larger_ than the HIGH_RESOLUTION
    // tile will be used as the coverage scale, and we'll produce a slightly
    // different rendering. We don't drop the tilings on the active tree if
    // we're not committing to the active tree to prevent checkerboarding.
    tilings_->RemoveNonIdealTilings();
  }

  SanityCheckTilingState();
}

bool PictureLayerImpl::ShouldAdjustRasterScale(
    bool ideal_contents_scale_changed) const {
  if (directly_composited_image_size_) {
    // If we have a directly composited image size, but previous raster scale
    // calculations did not set an initial raster scale, we must recalcluate.
    if (directly_composited_image_initial_raster_scale_ == 0)
      return true;

    float default_raster_scale = GetDefaultDirectlyCompositedImageRasterScale();

    // First check to see if we need to adjust based on ideal_source_scale_
    // changing (i.e. scale transform has been modified). These limits exist
    // so that we don't raster at the intrinsic image size if the layer will
    // be scaled down more than 4x ideal. This saves memory without sacrificing
    // noticeable quality. We'll also bump the scale back up in the case where
    // the ideal scale is increased.
    float max_scale = std::max(default_raster_scale, MinimumContentsScale());
    if (raster_source_scale_ < std::min(ideal_source_scale_, max_scale))
      return true;
    if (raster_source_scale_ > 4 * ideal_source_scale_)
      return true;

    // If the default raster scale changed, that means the bounds or image size
    // changed. We should recalculate in order to raster at the intrinsic image
    // size. Note that this is not a comparison of the used raster_source_scale_
    // and desired because of the adjustments in RecalculateRasterScales.
    bool default_raster_scale_changed =
        default_raster_scale != directly_composited_image_initial_raster_scale_;
    if (ideal_contents_scale_changed && !default_raster_scale_changed) {
      // Log a histogram to indicate that we most likely saved raster costs,
      // if the ideal contents scale changed but we did not need to recalculate
      // raster scales because this layer is a directly composited image.
      bool transform_trigger =
          draw_properties().screen_space_transform_is_animating ||
          has_will_change_transform_hint();
      UMA_HISTOGRAM_BOOLEAN(
          "Compositing.Renderer.DirectlyCompositedImage."
          "AvoidRasterAdjustmentWithTransformTrigger",
          transform_trigger);
    }
    return default_raster_scale_changed;
  }

  if (was_screen_space_transform_animating_ !=
      draw_properties().screen_space_transform_is_animating) {
    // Skip adjusting raster scale when animations finish if we have a
    // will-change: transform hint to preserve maximum resolution tiles
    // needed.
    if (draw_properties().screen_space_transform_is_animating ||
        !has_will_change_transform_hint())
      return true;
  }

  bool is_pinching = layer_tree_impl()->PinchGestureActive();
  if (is_pinching && raster_page_scale_) {
    // We change our raster scale when it is:
    // - Higher than ideal (need a lower-res tiling available)
    // - Too far from ideal (need a higher-res tiling available)
    float ratio = ideal_page_scale_ / raster_page_scale_;
    if (raster_page_scale_ > ideal_page_scale_ ||
        ratio > kMaxScaleRatioDuringPinch)
      return true;
  }

  if (!is_pinching) {
    // When not pinching, match the ideal page scale factor.
    if (raster_page_scale_ != ideal_page_scale_)
      return true;
  }

  // Always match the ideal device scale factor.
  if (raster_device_scale_ != ideal_device_scale_)
    return true;

  if (raster_contents_scale_ > MaximumContentsScale())
    return true;
  if (raster_contents_scale_ < MinimumContentsScale())
    return true;

  // Don't change the raster scale if any of the following are true:
  //  - We have an animating transform.
  //  - The raster scale is already ideal.
  if (draw_properties().screen_space_transform_is_animating ||
      raster_source_scale_ == ideal_source_scale_) {
    return false;
  }

  // Don't update will-change: transform layers if the raster contents scale is
  // at least the native scale (otherwise, we'd need to clamp it).
  if (has_will_change_transform_hint() &&
      raster_contents_scale_ >= raster_page_scale_ * raster_device_scale_) {
    return false;
  }

  // Match the raster scale in all other cases.
  return true;
}

void PictureLayerImpl::AddLowResolutionTilingIfNeeded() {
  DCHECK(layer_tree_impl()->IsActiveTree());

  if (!layer_tree_impl()->create_low_res_tiling())
    return;

  // We should have a high resolution tiling at raster_contents_scale, so if the
  // low res one is the same then we shouldn't try to override this tiling by
  // marking it as a low res.
  if (raster_contents_scale_ == low_res_raster_contents_scale_)
    return;

  PictureLayerTiling* low_res =
      tilings_->FindTilingWithScaleKey(low_res_raster_contents_scale_);
  DCHECK(!low_res || low_res->resolution() != HIGH_RESOLUTION);

  // Only create new low res tilings when the transform is static.  This
  // prevents wastefully creating a paired low res tiling for every new high
  // res tiling during a pinch or a CSS animation.
  bool is_pinching = layer_tree_impl()->PinchGestureActive();
  bool is_animating = draw_properties().screen_space_transform_is_animating;
  if (!is_pinching && !is_animating) {
    if (!low_res)
      low_res = AddTiling(gfx::AxisTransform2d(low_res_raster_contents_scale_,
                                               gfx::Vector2dF()));
    low_res->set_resolution(LOW_RESOLUTION);
  }
}

void PictureLayerImpl::RecalculateRasterScales() {
  if (directly_composited_image_size_) {
    float used_raster_scale = CalculateDirectlyCompositedImageRasterScale();
    const bool should_directly_composite =
        ShouldDirectlyCompositeImage(used_raster_scale);

    UMA_HISTOGRAM_BOOLEAN(
        "Compositing.Renderer.DirectlyCompositedImage."
        "RasterScaleDirectlyComposited",
        should_directly_composite);
    if (should_directly_composite) {
      directly_composited_image_initial_raster_scale_ =
          GetDefaultDirectlyCompositedImageRasterScale();
      raster_source_scale_ = used_raster_scale;
      raster_page_scale_ = 1.f;
      raster_device_scale_ = 1.f;
      raster_contents_scale_ = raster_source_scale_;
      low_res_raster_contents_scale_ = raster_contents_scale_;

      LogDirectlyCompositedImageRasterScaleUMAs();
      return;
    }

    // If we should not directly composite this image, reset values and fall
    // back to normal raster scale calculations below.
    directly_composited_image_size_ = base::nullopt;
    directly_composited_image_initial_raster_scale_ = 0.f;
  }

  float old_raster_contents_scale = raster_contents_scale_;
  float old_raster_page_scale = raster_page_scale_;

  // The raster scale if previous tilings should be preserved.
  float preserved_raster_contents_scale = old_raster_contents_scale;

  raster_device_scale_ = ideal_device_scale_;
  raster_page_scale_ = ideal_page_scale_;
  raster_source_scale_ = ideal_source_scale_;
  raster_contents_scale_ = ideal_contents_scale_;

  // During pinch we completely ignore the current ideal scale, and just use
  // a multiple of the previous scale.
  bool is_pinching = layer_tree_impl()->PinchGestureActive();
  if (is_pinching && old_raster_contents_scale) {
    // See ShouldAdjustRasterScale:
    // - When zooming out, preemptively create new tiling at lower resolution.
    // - When zooming in, approximate ideal using multiple of kMaxScaleRatio.
    bool zooming_out = old_raster_page_scale > ideal_page_scale_;
    float desired_contents_scale = old_raster_contents_scale;
    if (zooming_out) {
      while (desired_contents_scale > ideal_contents_scale_)
        desired_contents_scale /= kMaxScaleRatioDuringPinch;
    } else {
      while (desired_contents_scale < ideal_contents_scale_)
        desired_contents_scale *= kMaxScaleRatioDuringPinch;
    }
    raster_contents_scale_ = preserved_raster_contents_scale =
        tilings_->GetSnappedContentsScaleKey(desired_contents_scale,
                                             kSnapToExistingTilingRatio);
    raster_page_scale_ =
        raster_contents_scale_ / raster_device_scale_ / raster_source_scale_;
  }

  // We rasterize at the maximum scale that will occur during the animation, if
  // the maximum scale is known. However we want to avoid excessive memory use.
  // If the scale is smaller than what we would choose otherwise, then it's
  // always better off for us memory-wise. But otherwise, we don't choose a
  // scale at which this layer's rastered content would become larger than the
  // viewport.
  if (draw_properties().screen_space_transform_is_animating) {
    bool can_raster_at_maximum_scale = false;
    bool should_raster_at_starting_scale = false;
    CombinedAnimationScale animation_scales =
        layer_tree_impl()->property_trees()->GetAnimationScales(
            transform_tree_index(), layer_tree_impl());
    float maximum_scale = animation_scales.maximum_animation_scale;
    float starting_scale = animation_scales.starting_animation_scale;
    if (maximum_scale != kNotScaled) {
      gfx::Size bounds_at_maximum_scale =
          gfx::ScaleToCeiledSize(raster_source_->GetSize(), maximum_scale);
      int64_t maximum_area =
          static_cast<int64_t>(bounds_at_maximum_scale.width()) *
          static_cast<int64_t>(bounds_at_maximum_scale.height());
      gfx::Size viewport = layer_tree_impl()->GetDeviceViewport().size();

      // Use the square of the maximum viewport dimension direction, to
      // compensate for viewports with different aspect ratios.
      int64_t max_viewport_dimension =
          std::max(static_cast<int64_t>(viewport.width()),
                   static_cast<int64_t>(viewport.height()));
      int64_t squared_viewport_area =
          max_viewport_dimension * max_viewport_dimension;

      if (maximum_area <= squared_viewport_area)
        can_raster_at_maximum_scale = true;
    }
    if (starting_scale != kNotScaled && starting_scale > maximum_scale) {
      gfx::Size bounds_at_starting_scale =
          gfx::ScaleToCeiledSize(raster_source_->GetSize(), starting_scale);
      int64_t start_area =
          static_cast<int64_t>(bounds_at_starting_scale.width()) *
          static_cast<int64_t>(bounds_at_starting_scale.height());
      gfx::Size viewport = layer_tree_impl()->GetDeviceViewport().size();
      int64_t viewport_area = static_cast<int64_t>(viewport.width()) *
                              static_cast<int64_t>(viewport.height());
      if (start_area <= viewport_area)
        should_raster_at_starting_scale = true;
    }

    // Use the computed scales for the raster scale directly, do not try to use
    // the ideal scale here. The current ideal scale may be way too large in the
    // case of an animation with scale, and will be constantly changing.
    float animation_desired_scale;
    if (should_raster_at_starting_scale)
      animation_desired_scale = starting_scale;
    else if (can_raster_at_maximum_scale)
      animation_desired_scale = maximum_scale;
    else
      animation_desired_scale = 1.f * ideal_page_scale_ * ideal_device_scale_;

    if (has_will_change_transform_hint()) {
      // If we have a will-change: transform hint, do not shrink the content
      // raster scale, otherwise we will end up throwing away larger tiles we
      // may need again.
      raster_contents_scale_ =
          std::max(preserved_raster_contents_scale, animation_desired_scale);
    } else {
      raster_contents_scale_ = animation_desired_scale;
    }
  }

  // Clamp will-change: transform layers to be at least the native scale.
  if (has_will_change_transform_hint()) {
    float min_desired_scale = raster_device_scale_ * raster_page_scale_;
    if (raster_contents_scale_ < min_desired_scale) {
      raster_contents_scale_ = min_desired_scale;
      raster_page_scale_ = 1.f;
    }
  }

  raster_contents_scale_ =
      std::max(raster_contents_scale_, MinimumContentsScale());
  raster_contents_scale_ =
      std::min(raster_contents_scale_, MaximumContentsScale());
  DCHECK_GE(raster_contents_scale_, MinimumContentsScale());
  DCHECK_LE(raster_contents_scale_, MaximumContentsScale());

  // If this layer would create zero or one tiles at this content scale,
  // don't create a low res tiling.
  gfx::Size raster_bounds =
      gfx::ScaleToCeiledSize(raster_source_->GetSize(), raster_contents_scale_);
  gfx::Size tile_size = CalculateTileSize(raster_bounds);
  bool tile_covers_bounds = tile_size.width() >= raster_bounds.width() &&
                            tile_size.height() >= raster_bounds.height();
  if (tile_size.IsEmpty() || tile_covers_bounds) {
    low_res_raster_contents_scale_ = raster_contents_scale_;
    return;
  }

  float low_res_factor =
      layer_tree_impl()->settings().low_res_contents_scale_factor;
  low_res_raster_contents_scale_ =
      std::max(raster_contents_scale_ * low_res_factor, MinimumContentsScale());
  DCHECK_LE(low_res_raster_contents_scale_, raster_contents_scale_);
  DCHECK_GE(low_res_raster_contents_scale_, MinimumContentsScale());
  DCHECK_LE(low_res_raster_contents_scale_, MaximumContentsScale());
}

void PictureLayerImpl::CleanUpTilingsOnActiveLayer(
    const std::vector<PictureLayerTiling*>& used_tilings) {
  DCHECK(layer_tree_impl()->IsActiveTree());
  if (tilings_->num_tilings() == 0)
    return;

  float min_acceptable_high_res_scale = std::min(
      raster_contents_scale_, ideal_contents_scale_);
  float max_acceptable_high_res_scale = std::max(
      raster_contents_scale_, ideal_contents_scale_);

  PictureLayerImpl* twin = GetPendingOrActiveTwinLayer();
  if (twin && twin->CanHaveTilings()) {
    min_acceptable_high_res_scale =
        std::min({min_acceptable_high_res_scale, twin->raster_contents_scale_,
                  twin->ideal_contents_scale_});
    max_acceptable_high_res_scale =
        std::max({max_acceptable_high_res_scale, twin->raster_contents_scale_,
                  twin->ideal_contents_scale_});
  }

  PictureLayerTilingSet* twin_set = twin ? twin->tilings_.get() : nullptr;
  tilings_->CleanUpTilings(min_acceptable_high_res_scale,
                           max_acceptable_high_res_scale, used_tilings,
                           twin_set);
  DCHECK_GT(tilings_->num_tilings(), 0u);
  SanityCheckTilingState();
}

gfx::Vector2dF PictureLayerImpl::CalculateRasterTranslation(
    float raster_scale) {
  if (!use_transformed_rasterization_)
    return gfx::Vector2dF();

  DCHECK(!contents_opaque());

  gfx::Transform draw_transform = DrawTransform();
  // TODO(enne): for performance reasons, we should only have a raster
  // translation when the screen space transform is not animating.  We try to
  // avoid this elsewhere but it still happens: http://crbug.com/778440
  // TODO(enne): Also, we shouldn't ever get here if the draw transform is not
  // just a scale + translation, but we do sometimes: http://crbug.com/740113
  if (draw_properties().screen_space_transform_is_animating ||
      !draw_transform.IsScaleOrTranslation()) {
    // For now, while these problems are not well understood, avoid changing
    // the raster scale in these cases.
    return gfx::Vector2dF();
  }

  // It is only useful to align the content space to the target space if their
  // relative pixel ratio is some small rational number. Currently we only
  // align if the relative pixel ratio is 1:1.
  // Good match if the maximum alignment error on a layer of size 10000px
  // does not exceed 0.001px.
  static constexpr float kErrorThreshold = 0.0000001f;
  if (std::abs(draw_transform.matrix().getFloat(0, 0) - raster_scale) >
          kErrorThreshold ||
      std::abs(draw_transform.matrix().getFloat(1, 1) - raster_scale) >
          kErrorThreshold)
    return gfx::Vector2dF();

  // Extract the fractional part of layer origin in the target space.
  float origin_x = draw_transform.matrix().getFloat(0, 3);
  float origin_y = draw_transform.matrix().getFloat(1, 3);
  return gfx::Vector2dF(origin_x - floorf(origin_x),
                        origin_y - floorf(origin_y));
}

float PictureLayerImpl::MinimumContentsScale() const {
  float setting_min = layer_tree_impl()->settings().minimum_contents_scale;

  // If the contents scale is less than 1 / width (also for height),
  // then it will end up having less than one pixel of content in that
  // dimension.  Bump the minimum contents scale up in this case to prevent
  // this from happening.
  int min_dimension = std::min(raster_source_->GetSize().width(),
                               raster_source_->GetSize().height());
  if (!min_dimension)
    return setting_min;

  // Directly composited images may result in contents scales that are
  // less than the configured setting. We allow this lower scale so that we
  // can raster at the intrinsic image size.
  const float inverse_min_dimension = 1.f / min_dimension;
  return (directly_composited_image_size_.has_value())
             ? inverse_min_dimension
             : std::max(inverse_min_dimension, setting_min);
}

float PictureLayerImpl::MaximumContentsScale() const {
  if (bounds().IsEmpty())
    return 0;
  // When mask tiling is disabled or the mask is single textured, masks can not
  // have tilings that would become larger than the max_texture_size since they
  // use a single tile for the entire tiling. Other layers can have tilings such
  // that dimension * scale does not overflow.
  float max_dimension = static_cast<float>(
      is_backdrop_filter_mask_ ? layer_tree_impl()->max_texture_size()
                               : std::numeric_limits<int>::max());
  int higher_dimension = std::max(bounds().width(), bounds().height());
  float max_scale = max_dimension / higher_dimension;

  // We require that multiplying the layer size by the contents scale and
  // ceiling produces a value <= |max_dimension|. Because for large layer
  // sizes floating point ambiguity may crop up, making the result larger or
  // smaller than expected, we use a slightly smaller floating point value for
  // the scale, to help ensure that the resulting content bounds will never end
  // up larger than |max_dimension|.
  return nextafterf(max_scale, 0.f);
}

void PictureLayerImpl::ResetRasterScale() {
  raster_page_scale_ = 0.f;
  raster_device_scale_ = 0.f;
  raster_source_scale_ = 0.f;
  raster_contents_scale_ = 0.f;
  low_res_raster_contents_scale_ = 0.f;
  directly_composited_image_initial_raster_scale_ = 0.f;
}

bool PictureLayerImpl::CanHaveTilings() const {
  if (!raster_source_)
    return false;
  if (raster_source_->IsSolidColor())
    return false;
  if (!DrawsContent())
    return false;
  if (!raster_source_->HasRecordings())
    return false;
  // If the |raster_source_| has a recording it should have non-empty bounds.
  DCHECK(!raster_source_->GetSize().IsEmpty());
  if (MaximumContentsScale() < MinimumContentsScale())
    return false;
  return true;
}

void PictureLayerImpl::SanityCheckTilingState() const {
#if DCHECK_IS_ON()
  if (!CanHaveTilings()) {
    DCHECK_EQ(0u, tilings_->num_tilings());
    return;
  }
  if (tilings_->num_tilings() == 0)
    return;

  // We should only have one high res tiling.
  DCHECK_EQ(1, tilings_->NumHighResTilings());
#endif
}

float PictureLayerImpl::MaximumTilingContentsScale() const {
  float max_contents_scale = tilings_->GetMaximumContentsScale();
  return std::max(max_contents_scale, MinimumContentsScale());
}

std::unique_ptr<PictureLayerTilingSet>
PictureLayerImpl::CreatePictureLayerTilingSet() {
  const LayerTreeSettings& settings = layer_tree_impl()->settings();
  return PictureLayerTilingSet::Create(
      IsActive() ? ACTIVE_TREE : PENDING_TREE, this,
      settings.tiling_interest_area_padding,
      layer_tree_impl()->use_gpu_rasterization()
          ? settings.gpu_rasterization_skewport_target_time_in_seconds
          : settings.skewport_target_time_in_seconds,
      settings.skewport_extrapolation_limit_in_screen_pixels,
      settings.max_preraster_distance_in_screen_pixels);
}

void PictureLayerImpl::UpdateIdealScales() {
  DCHECK(CanHaveTilings());

  float min_contents_scale = MinimumContentsScale();
  DCHECK_GT(min_contents_scale, 0.f);

  ideal_device_scale_ = layer_tree_impl()->device_scale_factor();
  if (layer_tree_impl()->PageScaleTransformNode()) {
    ideal_page_scale_ = IsAffectedByPageScale()
                            ? layer_tree_impl()->current_page_scale_factor()
                            : 1.f;
    ideal_contents_scale_ = GetIdealContentsScale();
  } else {
    // This layer may be in a layer tree embedded in a hierarchy that has its
    // own page scale factor. We represent that here as
    // 'external_page_scale_factor', a value that affects raster scale in the
    // same way that page_scale_factor does, but doesn't affect any geometry
    // calculations.
    float external_page_scale_factor =
        layer_tree_impl() ? layer_tree_impl()->external_page_scale_factor()
                          : 1.f;
    DCHECK(!layer_tree_impl() || external_page_scale_factor == 1.f ||
           layer_tree_impl()->current_page_scale_factor() == 1.f);
    ideal_page_scale_ = external_page_scale_factor;
    ideal_contents_scale_ =
        GetIdealContentsScale() * external_page_scale_factor;
  }
  ideal_contents_scale_ = base::ClampToRange(
      ideal_contents_scale_, min_contents_scale, kMaxIdealContentsScale);
  ideal_source_scale_ =
      ideal_contents_scale_ / ideal_page_scale_ / ideal_device_scale_;
}

void PictureLayerImpl::GetDebugBorderProperties(
    SkColor* color,
    float* width) const {
  float device_scale_factor =
      layer_tree_impl() ? layer_tree_impl()->device_scale_factor() : 1;

  if (directly_composited_image_size_) {
    *color = DebugColors::ImageLayerBorderColor();
    *width = DebugColors::ImageLayerBorderWidth(device_scale_factor);
  } else {
    *color = DebugColors::TiledContentLayerBorderColor();
    *width = DebugColors::TiledContentLayerBorderWidth(device_scale_factor);
  }
}

void PictureLayerImpl::GetAllPrioritizedTilesForTracing(
    std::vector<PrioritizedTile>* prioritized_tiles) const {
  if (!tilings_)
    return;
  tilings_->GetAllPrioritizedTilesForTracing(prioritized_tiles);
}

void PictureLayerImpl::AsValueInto(
    base::trace_event::TracedValue* state) const {
  LayerImpl::AsValueInto(state);
  state->SetDouble("ideal_contents_scale", ideal_contents_scale_);
  state->SetDouble("geometry_contents_scale", MaximumTilingContentsScale());
  state->BeginArray("tilings");
  tilings_->AsValueInto(state);
  state->EndArray();

  MathUtil::AddToTracedValue("tile_priority_rect",
                             viewport_rect_for_tile_priority_in_content_space_,
                             state);
  MathUtil::AddToTracedValue("visible_rect", visible_layer_rect(), state);

  state->SetString(
      "lcd_text_disallowed_reason",
      LCDTextDisallowedReasonToString(lcd_text_disallowed_reason_));

  state->BeginArray("pictures");
  raster_source_->AsValueInto(state);
  state->EndArray();

  state->BeginArray("invalidation");
  invalidation_.AsValueInto(state);
  state->EndArray();

  state->BeginArray("coverage_tiles");
  for (PictureLayerTilingSet::CoverageIterator iter(
           tilings_.get(), MaximumTilingContentsScale(),
           gfx::Rect(raster_source_->GetSize()), ideal_contents_scale_);
       iter; ++iter) {
    state->BeginDictionary();

    MathUtil::AddToTracedValue("geometry_rect", iter.geometry_rect(), state);

    if (*iter)
      viz::TracedValue::SetIDRef(*iter, state, "tile");

    state->EndDictionary();
  }
  state->EndArray();

  state->BeginDictionary("can_have_tilings_state");
  state->SetBoolean("can_have_tilings", CanHaveTilings());
  state->SetBoolean("raster_source_solid_color",
                    raster_source_->IsSolidColor());
  state->SetBoolean("draws_content", DrawsContent());
  state->SetBoolean("raster_source_has_recordings",
                    raster_source_->HasRecordings());
  state->SetDouble("max_contents_scale", MaximumTilingContentsScale());
  state->SetDouble("min_contents_scale", MinimumContentsScale());
  state->EndDictionary();

  state->BeginDictionary("raster_scales");
  state->SetDouble("page_scale", raster_page_scale_);
  state->SetDouble("device_scale", raster_device_scale_);
  state->SetDouble("source_scale", raster_source_scale_);
  state->SetDouble("contents_scale", raster_contents_scale_);
  state->SetDouble("low_res_contents_scale", low_res_raster_contents_scale_);
  state->EndDictionary();

  state->BeginDictionary("ideal_scales");
  state->SetDouble("page_scale", ideal_page_scale_);
  state->SetDouble("device_scale", ideal_device_scale_);
  state->SetDouble("source_scale", ideal_source_scale_);
  state->SetDouble("contents_scale", ideal_contents_scale_);
  state->EndDictionary();
}

size_t PictureLayerImpl::GPUMemoryUsageInBytes() const {
  return tilings_->GPUMemoryUsageInBytes();
}

void PictureLayerImpl::RunMicroBenchmark(MicroBenchmarkImpl* benchmark) {
  benchmark->RunOnLayer(this);
}

bool PictureLayerImpl::IsOnActiveOrPendingTree() const {
  return !layer_tree_impl()->IsRecycleTree();
}

bool PictureLayerImpl::HasValidTilePriorities() const {
  return IsOnActiveOrPendingTree() &&
         (contributes_to_drawn_render_surface() || raster_even_if_not_drawn());
}

PictureLayerImpl::ImageInvalidationResult
PictureLayerImpl::InvalidateRegionForImages(
    const PaintImageIdFlatSet& images_to_invalidate) {
  if (!raster_source_ || !raster_source_->GetDisplayItemList() ||
      raster_source_->GetDisplayItemList()->discardable_image_map().empty()) {
    return ImageInvalidationResult::kNoImages;
  }

  InvalidationRegion image_invalidation;
  for (auto image_id : images_to_invalidate) {
    const auto& rects = raster_source_->GetDisplayItemList()
                            ->discardable_image_map()
                            .GetRectsForImage(image_id);
    for (const auto& r : rects.container())
      image_invalidation.Union(r);
  }
  Region invalidation;
  image_invalidation.Swap(&invalidation);

  if (invalidation.IsEmpty())
    return ImageInvalidationResult::kNoInvalidation;

  // Note: We can use a rect here since this is only used to track damage for a
  // frame and not raster invalidation.
  UnionUpdateRect(invalidation.bounds());

  invalidation_.Union(invalidation);
  tilings_->Invalidate(invalidation);
  // TODO(crbug.com/303943): SetNeedsPushProperties() would be needed here if
  // PictureLayerImpl didn't always push properties every activation.
  return ImageInvalidationResult::kInvalidated;
}

void PictureLayerImpl::SetPaintWorkletRecord(
    scoped_refptr<const PaintWorkletInput> input,
    sk_sp<PaintRecord> record) {
  DCHECK(paint_worklet_records_.find(input) != paint_worklet_records_.end());
  paint_worklet_records_[input].second = std::move(record);
}

void PictureLayerImpl::RegisterAnimatedImages() {
  if (!raster_source_ || !raster_source_->GetDisplayItemList())
    return;

  auto* controller = layer_tree_impl()->image_animation_controller();
  const auto& metadata = raster_source_->GetDisplayItemList()
                             ->discardable_image_map()
                             .animated_images_metadata();
  for (const auto& data : metadata) {
    // Only update the metadata from updated recordings received from a commit.
    if (layer_tree_impl()->IsSyncTree())
      controller->UpdateAnimatedImage(data);
    controller->RegisterAnimationDriver(data.paint_image_id, this);
  }
}

void PictureLayerImpl::UnregisterAnimatedImages() {
  if (!raster_source_ || !raster_source_->GetDisplayItemList())
    return;

  auto* controller = layer_tree_impl()->image_animation_controller();
  const auto& metadata = raster_source_->GetDisplayItemList()
                             ->discardable_image_map()
                             .animated_images_metadata();
  for (const auto& data : metadata)
    controller->UnregisterAnimationDriver(data.paint_image_id, this);
}

void PictureLayerImpl::SetPaintWorkletInputs(
    const std::vector<DiscardableImageMap::PaintWorkletInputWithImageId>&
        inputs) {
  // PaintWorklets are not supported when committing directly to the active
  // tree, so in that case the |inputs| should always be empty.
  DCHECK(layer_tree_impl()->IsPendingTree() || inputs.empty());

  bool had_paint_worklets = !paint_worklet_records_.empty();
  PaintWorkletRecordMap new_records;
  for (const auto& input_with_id : inputs) {
    const auto& input = input_with_id.first;
    const auto& paint_image_id = input_with_id.second;
    auto it = new_records.find(input);
    // We should never have multiple PaintImages sharing the same paint worklet.
    DCHECK(it == new_records.end() || it->second.first == paint_image_id);
    // Attempt to re-use an existing PaintRecord if possible.
    new_records[input] = std::make_pair(
        paint_image_id, std::move(paint_worklet_records_[input].second));
  }
  paint_worklet_records_.swap(new_records);

  // The pending tree tracks which PictureLayerImpls have PaintWorkletInputs as
  // an optimization to avoid walking all picture layers.
  bool has_paint_worklets = !paint_worklet_records_.empty();
  if ((has_paint_worklets != had_paint_worklets) &&
      layer_tree_impl()->IsPendingTree()) {
    // TODO(xidachen): We don't need additional tracking on LayerTreeImpl. The
    // tracking in AnimatedPaintWorkletTracker should be enough.
    layer_tree_impl()->NotifyLayerHasPaintWorkletsChanged(this,
                                                          has_paint_worklets);
  }
  if (layer_tree_impl()->IsPendingTree()) {
    layer_tree_impl()
        ->paint_worklet_tracker()
        .UpdatePaintWorkletInputProperties(inputs, this);
  }
}

void PictureLayerImpl::InvalidatePaintWorklets(
    const PaintWorkletInput::PropertyKey& key) {
  for (auto& entry : paint_worklet_records_) {
    const std::vector<PaintWorkletInput::PropertyKey>& prop_ids =
        entry.first->GetPropertyKeys();
    // If the PaintWorklet depends on the property whose value was changed by
    // the animation system, then invalidate its associated PaintRecord so that
    // we can repaint the PaintWorklet during impl side invalidation.
    if (base::Contains(prop_ids, key))
      entry.second.second = nullptr;
  }
}

gfx::ContentColorUsage PictureLayerImpl::GetContentColorUsage() const {
  auto display_item_list = raster_source_->GetDisplayItemList();
  bool contains_only_srgb_images = true;
  if (display_item_list) {
    contains_only_srgb_images =
        display_item_list->discardable_image_map().contains_only_srgb_images();
  }

  if (contains_only_srgb_images)
    return gfx::ContentColorUsage::kSRGB;

  // TODO(cblume) This assumes only wide color gamut and not HDR
  return gfx::ContentColorUsage::kWideColorGamut;
}

}  // namespace cc