summaryrefslogtreecommitdiff
path: root/chromium/base/stl_util.h
blob: 6d8526b01d56050719ff9dd6c7441ef99a470d8f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Derived from google3/util/gtl/stl_util.h

#ifndef BASE_STL_UTIL_H_
#define BASE_STL_UTIL_H_

#include <algorithm>
#include <forward_list>
#include <iterator>
#include <tuple>
#include <type_traits>
#include <utility>

#include "base/check.h"
#include "base/ranges/algorithm.h"
#include "third_party/abseil-cpp/absl/types/optional.h"

namespace base {

namespace internal {

template <typename Iter>
constexpr bool IsRandomAccessIter =
    std::is_same<typename std::iterator_traits<Iter>::iterator_category,
                 std::random_access_iterator_tag>::value;

}  // namespace internal

// Implementation of C++23's std::to_underlying.
//
// Note: This has an additional `std::is_enum<EnumT>` requirement to be SFINAE
// friendly prior to C++20.
//
// Reference: https://en.cppreference.com/w/cpp/utility/to_underlying
template <typename EnumT, typename = std::enable_if_t<std::is_enum<EnumT>{}>>
constexpr std::underlying_type_t<EnumT> to_underlying(EnumT e) noexcept {
  return static_cast<std::underlying_type_t<EnumT>>(e);
}

// Returns a const reference to the underlying container of a container adapter.
// Works for std::priority_queue, std::queue, and std::stack.
template <class A>
const typename A::container_type& GetUnderlyingContainer(const A& adapter) {
  struct ExposedAdapter : A {
    using A::c;
  };
  return adapter.*&ExposedAdapter::c;
}

// Clears internal memory of an STL object.
// STL clear()/reserve(0) does not always free internal memory allocated
// This function uses swap/destructor to ensure the internal memory is freed.
template<class T>
void STLClearObject(T* obj) {
  T tmp;
  tmp.swap(*obj);
  // Sometimes "T tmp" allocates objects with memory (arena implementation?).
  // Hence using additional reserve(0) even if it doesn't always work.
  obj->reserve(0);
}

// Counts the number of instances of val in a container.
template <typename Container, typename T>
typename std::iterator_traits<
    typename Container::const_iterator>::difference_type
STLCount(const Container& container, const T& val) {
  return std::count(container.begin(), container.end(), val);
}

// O(1) implementation of const casting an iterator for any sequence,
// associative or unordered associative container in the STL.
//
// Reference: https://stackoverflow.com/a/10669041
template <typename Container,
          typename ConstIter,
          std::enable_if_t<!internal::IsRandomAccessIter<ConstIter>>* = nullptr>
constexpr auto ConstCastIterator(Container& c, ConstIter it) {
  return c.erase(it, it);
}

// Explicit overload for std::forward_list where erase() is named erase_after().
template <typename T, typename Allocator>
constexpr auto ConstCastIterator(
    std::forward_list<T, Allocator>& c,
    typename std::forward_list<T, Allocator>::const_iterator it) {
// The erase_after(it, it) trick used below does not work for libstdc++ [1],
// thus we need a different way.
// TODO(crbug.com/972541): Remove this workaround once libstdc++ is fixed on all
// platforms.
//
// [1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90857
#if defined(__GLIBCXX__)
  return c.insert_after(it, {});
#else
  return c.erase_after(it, it);
#endif
}

// Specialized O(1) const casting for random access iterators. This is
// necessary, because erase() is either not available (e.g. array-like
// containers), or has O(n) complexity (e.g. std::deque or std::vector).
template <typename Container,
          typename ConstIter,
          std::enable_if_t<internal::IsRandomAccessIter<ConstIter>>* = nullptr>
constexpr auto ConstCastIterator(Container& c, ConstIter it) {
  using std::begin;
  using std::cbegin;
  return begin(c) + (it - cbegin(c));
}

namespace internal {

template <typename Map, typename Key, typename Value>
std::pair<typename Map::iterator, bool> InsertOrAssignImpl(Map& map,
                                                           Key&& key,
                                                           Value&& value) {
  auto lower = map.lower_bound(key);
  if (lower != map.end() && !map.key_comp()(key, lower->first)) {
    // key already exists, perform assignment.
    lower->second = std::forward<Value>(value);
    return {lower, false};
  }

  // key did not yet exist, insert it.
  return {map.emplace_hint(lower, std::forward<Key>(key),
                           std::forward<Value>(value)),
          true};
}

template <typename Map, typename Key, typename Value>
typename Map::iterator InsertOrAssignImpl(Map& map,
                                          typename Map::const_iterator hint,
                                          Key&& key,
                                          Value&& value) {
  auto&& key_comp = map.key_comp();
  if ((hint == map.begin() || key_comp(std::prev(hint)->first, key))) {
    if (hint == map.end() || key_comp(key, hint->first)) {
      // *(hint - 1) < key < *hint => key did not exist and hint is correct.
      return map.emplace_hint(hint, std::forward<Key>(key),
                              std::forward<Value>(value));
    }

    if (!key_comp(hint->first, key)) {
      // key == *hint => key already exists and hint is correct.
      auto mutable_hint = ConstCastIterator(map, hint);
      mutable_hint->second = std::forward<Value>(value);
      return mutable_hint;
    }
  }

  // hint was not helpful, dispatch to hintless version.
  return InsertOrAssignImpl(map, std::forward<Key>(key),
                            std::forward<Value>(value))
      .first;
}

template <typename Map, typename Key, typename... Args>
std::pair<typename Map::iterator, bool> TryEmplaceImpl(Map& map,
                                                       Key&& key,
                                                       Args&&... args) {
  auto lower = map.lower_bound(key);
  if (lower != map.end() && !map.key_comp()(key, lower->first)) {
    // key already exists, do nothing.
    return {lower, false};
  }

  // key did not yet exist, insert it.
  return {map.emplace_hint(lower, std::piecewise_construct,
                           std::forward_as_tuple(std::forward<Key>(key)),
                           std::forward_as_tuple(std::forward<Args>(args)...)),
          true};
}

template <typename Map, typename Key, typename... Args>
typename Map::iterator TryEmplaceImpl(Map& map,
                                      typename Map::const_iterator hint,
                                      Key&& key,
                                      Args&&... args) {
  auto&& key_comp = map.key_comp();
  if ((hint == map.begin() || key_comp(std::prev(hint)->first, key))) {
    if (hint == map.end() || key_comp(key, hint->first)) {
      // *(hint - 1) < key < *hint => key did not exist and hint is correct.
      return map.emplace_hint(
          hint, std::piecewise_construct,
          std::forward_as_tuple(std::forward<Key>(key)),
          std::forward_as_tuple(std::forward<Args>(args)...));
    }

    if (!key_comp(hint->first, key)) {
      // key == *hint => no-op, return correct hint.
      return ConstCastIterator(map, hint);
    }
  }

  // hint was not helpful, dispatch to hintless version.
  return TryEmplaceImpl(map, std::forward<Key>(key),
                        std::forward<Args>(args)...)
      .first;
}

}  // namespace internal

// Implementation of C++17's std::map::insert_or_assign as a free function.
template <typename Map, typename Value>
std::pair<typename Map::iterator, bool>
InsertOrAssign(Map& map, const typename Map::key_type& key, Value&& value) {
  return internal::InsertOrAssignImpl(map, key, std::forward<Value>(value));
}

template <typename Map, typename Value>
std::pair<typename Map::iterator, bool>
InsertOrAssign(Map& map, typename Map::key_type&& key, Value&& value) {
  return internal::InsertOrAssignImpl(map, std::move(key),
                                      std::forward<Value>(value));
}

// Implementation of C++17's std::map::insert_or_assign with hint as a free
// function.
template <typename Map, typename Value>
typename Map::iterator InsertOrAssign(Map& map,
                                      typename Map::const_iterator hint,
                                      const typename Map::key_type& key,
                                      Value&& value) {
  return internal::InsertOrAssignImpl(map, hint, key,
                                      std::forward<Value>(value));
}

template <typename Map, typename Value>
typename Map::iterator InsertOrAssign(Map& map,
                                      typename Map::const_iterator hint,
                                      typename Map::key_type&& key,
                                      Value&& value) {
  return internal::InsertOrAssignImpl(map, hint, std::move(key),
                                      std::forward<Value>(value));
}

// Implementation of C++17's std::map::try_emplace as a free function.
template <typename Map, typename... Args>
std::pair<typename Map::iterator, bool>
TryEmplace(Map& map, const typename Map::key_type& key, Args&&... args) {
  return internal::TryEmplaceImpl(map, key, std::forward<Args>(args)...);
}

template <typename Map, typename... Args>
std::pair<typename Map::iterator, bool> TryEmplace(Map& map,
                                                   typename Map::key_type&& key,
                                                   Args&&... args) {
  return internal::TryEmplaceImpl(map, std::move(key),
                                  std::forward<Args>(args)...);
}

// Implementation of C++17's std::map::try_emplace with hint as a free
// function.
template <typename Map, typename... Args>
typename Map::iterator TryEmplace(Map& map,
                                  typename Map::const_iterator hint,
                                  const typename Map::key_type& key,
                                  Args&&... args) {
  return internal::TryEmplaceImpl(map, hint, key, std::forward<Args>(args)...);
}

template <typename Map, typename... Args>
typename Map::iterator TryEmplace(Map& map,
                                  typename Map::const_iterator hint,
                                  typename Map::key_type&& key,
                                  Args&&... args) {
  return internal::TryEmplaceImpl(map, hint, std::move(key),
                                  std::forward<Args>(args)...);
}

// Returns a new ResultType containing the difference of two sorted containers.
template <typename ResultType, typename Arg1, typename Arg2>
ResultType STLSetDifference(const Arg1& a1, const Arg2& a2) {
  DCHECK(ranges::is_sorted(a1));
  DCHECK(ranges::is_sorted(a2));
  ResultType difference;
  std::set_difference(a1.begin(), a1.end(),
                      a2.begin(), a2.end(),
                      std::inserter(difference, difference.end()));
  return difference;
}

// Returns a new ResultType containing the union of two sorted containers.
template <typename ResultType, typename Arg1, typename Arg2>
ResultType STLSetUnion(const Arg1& a1, const Arg2& a2) {
  DCHECK(ranges::is_sorted(a1));
  DCHECK(ranges::is_sorted(a2));
  ResultType result;
  std::set_union(a1.begin(), a1.end(),
                 a2.begin(), a2.end(),
                 std::inserter(result, result.end()));
  return result;
}

// Returns a new ResultType containing the intersection of two sorted
// containers.
template <typename ResultType, typename Arg1, typename Arg2>
ResultType STLSetIntersection(const Arg1& a1, const Arg2& a2) {
  DCHECK(ranges::is_sorted(a1));
  DCHECK(ranges::is_sorted(a2));
  ResultType result;
  std::set_intersection(a1.begin(), a1.end(),
                        a2.begin(), a2.end(),
                        std::inserter(result, result.end()));
  return result;
}

// A helper class to be used as the predicate with |EraseIf| to implement
// in-place set intersection. Helps implement the algorithm of going through
// each container an element at a time, erasing elements from the first
// container if they aren't in the second container. Requires each container be
// sorted. Note that the logic below appears inverted since it is returning
// whether an element should be erased.
template <class Collection>
class IsNotIn {
 public:
  explicit IsNotIn(const Collection& collection)
      : i_(collection.begin()), end_(collection.end()) {}

  bool operator()(const typename Collection::value_type& x) {
    while (i_ != end_ && *i_ < x)
      ++i_;
    if (i_ == end_)
      return true;
    if (*i_ == x) {
      ++i_;
      return false;
    }
    return true;
  }

 private:
  typename Collection::const_iterator i_;
  const typename Collection::const_iterator end_;
};

// Helper for returning the optional value's address, or nullptr.
template <class T>
T* OptionalOrNullptr(absl::optional<T>& optional) {
  return optional.has_value() ? &optional.value() : nullptr;
}

template <class T>
const T* OptionalOrNullptr(const absl::optional<T>& optional) {
  return optional.has_value() ? &optional.value() : nullptr;
}

// Helper for creating an optional<T> from a potentially nullptr T*.
template <class T>
absl::optional<T> OptionalFromPtr(const T* value) {
  if (value)
    return absl::optional<T>(*value);
  return absl::nullopt;
}

}  // namespace base

#endif  // BASE_STL_UTIL_H_