1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
// Copyright 2019 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/immediate_crash.h"
#include <stdint.h>
#include "base/base_paths.h"
#include "base/clang_profiling_buildflags.h"
#include "base/containers/span.h"
#include "base/files/file_path.h"
#include "base/path_service.h"
#include "base/ranges/algorithm.h"
#include "base/scoped_native_library.h"
#include "base/strings/string_number_conversions.h"
#include "build/build_config.h"
#include "build/buildflag.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
namespace base {
namespace {
// If IMMEDIATE_CRASH() is not treated as noreturn by the compiler, the compiler
// will complain that not all paths through this function return a value.
[[maybe_unused]] int TestImmediateCrashTreatedAsNoReturn() {
IMMEDIATE_CRASH();
}
#if defined(ARCH_CPU_X86_FAMILY)
// This is tricksy and false, since x86 instructions are not all one byte long,
// but there is no better alternative short of implementing an x86 instruction
// decoder.
using Instruction = uint8_t;
// https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-sdm-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4
// Look for RET opcode (0xc3). Note that 0xC3 is a substring of several
// other opcodes (VMRESUME, MOVNTI), and can also be encoded as part of an
// argument to another opcode. None of these other cases are expected to be
// present, so a simple byte scan should be Good Enoughâ„¢.
constexpr Instruction kRet = 0xc3;
// INT3 ; UD2
constexpr Instruction kRequiredBody[] = {0xcc, 0x0f, 0x0b};
constexpr Instruction kOptionalFooter[] = {};
#elif defined(ARCH_CPU_ARMEL)
using Instruction = uint16_t;
// T32 opcode reference: https://developer.arm.com/docs/ddi0487/latest
// Actually BX LR, canonical encoding:
constexpr Instruction kRet = 0x4770;
// BKPT #0; UDF #0
constexpr Instruction kRequiredBody[] = {0xbe00, 0xde00};
constexpr Instruction kOptionalFooter[] = {};
#elif defined(ARCH_CPU_ARM64)
using Instruction = uint32_t;
// A64 opcode reference: https://developer.arm.com/docs/ddi0487/latest
// Use an enum here rather than separate constexpr vars because otherwise some
// of the vars will end up unused on each platform, upsetting
// -Wunused-const-variable.
enum : Instruction {
// There are multiple valid encodings of return (which is really a special
// form of branch). This is the one clang seems to use:
kRet = 0xd65f03c0,
kBrk0 = 0xd4200000,
kBrk1 = 0xd4200020,
kBrkF000 = 0xd43e0000,
kHlt0 = 0xd4400000,
};
#if BUILDFLAG(IS_WIN)
constexpr Instruction kRequiredBody[] = {kBrkF000, kBrk1};
constexpr Instruction kOptionalFooter[] = {};
#elif BUILDFLAG(IS_MAC)
constexpr Instruction kRequiredBody[] = {kBrk0, kHlt0};
// Some clangs emit a BRK #1 for __builtin_unreachable(), but some do not, so
// it is allowed but not required to occur.
constexpr Instruction kOptionalFooter[] = {kBrk1};
#else
constexpr Instruction kRequiredBody[] = {kBrk0, kHlt0};
constexpr Instruction kOptionalFooter[] = {};
#endif
#endif
// This function loads a shared library that defines two functions,
// TestFunction1 and TestFunction2. It then returns the bytes of the body of
// whichever of those functions happens to come first in the library.
void GetTestFunctionInstructions(std::vector<Instruction>* body) {
FilePath helper_library_path;
#if !BUILDFLAG(IS_ANDROID) && !BUILDFLAG(IS_FUCHSIA)
// On Android M, DIR_EXE == /system/bin when running base_unittests.
// On Fuchsia, NativeLibrary understands the native convention that libraries
// are not colocated with the binary.
ASSERT_TRUE(PathService::Get(DIR_EXE, &helper_library_path));
#endif
helper_library_path = helper_library_path.AppendASCII(
GetNativeLibraryName("immediate_crash_test_helper"));
#if BUILDFLAG(IS_ANDROID) && defined(COMPONENT_BUILD)
helper_library_path = helper_library_path.ReplaceExtension(".cr.so");
#endif
ScopedNativeLibrary helper_library(helper_library_path);
ASSERT_TRUE(helper_library.is_valid())
<< "shared library load failed: "
<< helper_library.GetError()->ToString();
void* a = helper_library.GetFunctionPointer("TestFunction1");
ASSERT_TRUE(a);
void* b = helper_library.GetFunctionPointer("TestFunction2");
ASSERT_TRUE(b);
#if defined(ARCH_CPU_ARMEL)
// Routines loaded from a shared library will have the LSB in the pointer set
// if encoded as T32 instructions. The rest of this test assumes T32.
ASSERT_TRUE(reinterpret_cast<uintptr_t>(a) & 0x1)
<< "Expected T32 opcodes but found A32 opcodes instead.";
ASSERT_TRUE(reinterpret_cast<uintptr_t>(b) & 0x1)
<< "Expected T32 opcodes but found A32 opcodes instead.";
// Mask off the lowest bit.
a = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(a) & ~uintptr_t{0x1});
b = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(b) & ~uintptr_t{0x1});
#endif
// There are two identical test functions starting at a and b, which may
// occur in the library in either order. Grab whichever one comes first,
// and use the address of the other to figure out where it ends.
const Instruction* const start = static_cast<Instruction*>(std::min(a, b));
const Instruction* const end = static_cast<Instruction*>(std::max(a, b));
for (const Instruction& instruction : make_span(start, end))
body->push_back(instruction);
}
absl::optional<std::vector<Instruction>> ExpectImmediateCrashInvocation(
std::vector<Instruction> instructions) {
auto iter = instructions.begin();
for (const auto inst : kRequiredBody) {
if (iter == instructions.end())
return absl::nullopt;
EXPECT_EQ(inst, *iter);
iter++;
}
return absl::make_optional(
std::vector<Instruction>(iter, instructions.end()));
}
std::vector<Instruction> MaybeSkipOptionalFooter(
std::vector<Instruction> instructions) {
auto iter = instructions.begin();
for (const auto inst : kOptionalFooter) {
if (iter == instructions.end() || *iter != inst)
break;
iter++;
}
return std::vector<Instruction>(iter, instructions.end());
}
#if BUILDFLAG(USE_CLANG_COVERAGE) || BUILDFLAG(CLANG_PROFILING)
bool MatchPrefix(const std::vector<Instruction>& haystack,
const base::span<const Instruction>& needle) {
for (size_t i = 0; i < needle.size(); i++) {
if (i >= haystack.size() || needle[i] != haystack[i])
return false;
}
return true;
}
std::vector<Instruction> DropUntilMatch(
std::vector<Instruction> haystack,
const base::span<const Instruction>& needle) {
while (!haystack.empty() && !MatchPrefix(haystack, needle))
haystack.erase(haystack.begin());
return haystack;
}
#endif // USE_CLANG_COVERAGE || BUILDFLAG(CLANG_PROFILING)
std::vector<Instruction> MaybeSkipCoverageHook(
std::vector<Instruction> instructions) {
#if BUILDFLAG(USE_CLANG_COVERAGE) || BUILDFLAG(CLANG_PROFILING)
// Warning: it is not illegal for the entirety of the expected crash sequence
// to appear as a subsequence of the coverage hook code. If that happens, this
// code will falsely exit early, having not found the real expected crash
// sequence, so this may not adequately ensure that the immediate crash
// sequence is present. We do check when not under coverage, at least.
return DropUntilMatch(instructions, base::make_span(kRequiredBody));
#else
return instructions;
#endif // USE_CLANG_COVERAGE || BUILDFLAG(CLANG_PROFILING)
}
} // namespace
// Attempts to verify the actual instructions emitted by IMMEDIATE_CRASH().
// While the test results are highly implementation-specific, this allows macro
// changes (e.g. CLs like https://crrev.com/671123) to be verified using the
// trybots/waterfall, without having to build and disassemble Chrome on
// multiple platforms. This makes it easier to evaluate changes to
// IMMEDIATE_CRASH() against its requirements (e.g. size of emitted sequence,
// whether or not multiple IMMEDIATE_CRASH sequences can be folded together, et
// cetera). Please see immediate_crash.h for more details about the
// requirements.
//
// Note that C++ provides no way to get the size of a function. Instead, the
// test relies on a shared library which defines only two functions and assumes
// the two functions will be laid out contiguously as a heuristic for finding
// the size of the function.
TEST(ImmediateCrashTest, ExpectedOpcodeSequence) {
std::vector<Instruction> body;
ASSERT_NO_FATAL_FAILURE(GetTestFunctionInstructions(&body));
SCOPED_TRACE(HexEncode(body.data(), body.size() * sizeof(Instruction)));
auto it = ranges::find(body, kRet);
ASSERT_NE(body.end(), it) << "Failed to find return opcode";
it++;
body = std::vector<Instruction>(it, body.end());
absl::optional<std::vector<Instruction>> result = MaybeSkipCoverageHook(body);
result = ExpectImmediateCrashInvocation(result.value());
result = MaybeSkipOptionalFooter(result.value());
result = MaybeSkipCoverageHook(result.value());
result = ExpectImmediateCrashInvocation(result.value());
ASSERT_TRUE(result);
}
} // namespace base
|