1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
|
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/cpu.h"
#include <inttypes.h>
#include <limits.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <sstream>
#include <utility>
#include "base/cxx17_backports.h"
#if defined(OS_LINUX) || defined(OS_CHROMEOS) || defined(OS_ANDROID) || \
defined(OS_AIX)
#include "base/containers/flat_set.h"
#include "base/files/file_util.h"
#include "base/no_destructor.h"
#include "base/notreached.h"
#include "base/process/internal_linux.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/system/sys_info.h"
#include "base/threading/thread_restrictions.h"
#endif
#if defined(ARCH_CPU_ARM_FAMILY) && \
(defined(OS_ANDROID) || defined(OS_LINUX) || defined(OS_CHROMEOS))
#include <asm/hwcap.h>
#include <sys/auxv.h>
#include "base/files/file_util.h"
#include "base/numerics/checked_math.h"
#include "base/ranges/algorithm.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
// Temporary definitions until a new hwcap.h is pulled in.
#define HWCAP2_MTE (1 << 18)
#define HWCAP2_BTI (1 << 17)
struct ProcCpuInfo {
std::string brand;
uint8_t implementer = 0;
uint32_t part_number = 0;
};
#endif
#if defined(ARCH_CPU_X86_FAMILY)
#if defined(COMPILER_MSVC)
#include <intrin.h>
#include <immintrin.h> // For _xgetbv()
#endif
#endif
namespace base {
#if defined(ARCH_CPU_X86_FAMILY)
namespace internal {
X86ModelInfo ComputeX86FamilyAndModel(const std::string& vendor,
int signature) {
X86ModelInfo results;
results.family = (signature >> 8) & 0xf;
results.model = (signature >> 4) & 0xf;
results.ext_family = 0;
results.ext_model = 0;
// The "Intel 64 and IA-32 Architectures Developer's Manual: Vol. 2A"
// specifies the Extended Model is defined only when the Base Family is
// 06h or 0Fh.
// The "AMD CPUID Specification" specifies that the Extended Model is
// defined only when Base Family is 0Fh.
// Both manuals define the display model as
// {ExtendedModel[3:0],BaseModel[3:0]} in that case.
if (results.family == 0xf ||
(results.family == 0x6 && vendor == "GenuineIntel")) {
results.ext_model = (signature >> 16) & 0xf;
results.model += results.ext_model << 4;
}
// Both the "Intel 64 and IA-32 Architectures Developer's Manual: Vol. 2A"
// and the "AMD CPUID Specification" specify that the Extended Family is
// defined only when the Base Family is 0Fh.
// Both manuals define the display family as {0000b,BaseFamily[3:0]} +
// ExtendedFamily[7:0] in that case.
if (results.family == 0xf) {
results.ext_family = (signature >> 20) & 0xff;
results.family += results.ext_family;
}
return results;
}
} // namespace internal
#endif // defined(ARCH_CPU_X86_FAMILY)
CPU::CPU(bool require_branding) {
Initialize(require_branding);
}
CPU::CPU() : CPU(true) {}
CPU::CPU(CPU&&) = default;
namespace {
#if defined(ARCH_CPU_X86_FAMILY)
#if !defined(COMPILER_MSVC)
#if defined(__pic__) && defined(__i386__)
void __cpuid(int cpu_info[4], int info_type) {
__asm__ volatile(
"mov %%ebx, %%edi\n"
"cpuid\n"
"xchg %%edi, %%ebx\n"
: "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]),
"=d"(cpu_info[3])
: "a"(info_type), "c"(0));
}
#else
void __cpuid(int cpu_info[4], int info_type) {
__asm__ volatile("cpuid\n"
: "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]),
"=d"(cpu_info[3])
: "a"(info_type), "c"(0));
}
#endif
#endif // !defined(COMPILER_MSVC)
// xgetbv returns the value of an Intel Extended Control Register (XCR).
// Currently only XCR0 is defined by Intel so |xcr| should always be zero.
uint64_t xgetbv(uint32_t xcr) {
#if defined(COMPILER_MSVC)
return _xgetbv(xcr);
#else
uint32_t eax, edx;
__asm__ volatile (
"xgetbv" : "=a"(eax), "=d"(edx) : "c"(xcr));
return (static_cast<uint64_t>(edx) << 32) | eax;
#endif // defined(COMPILER_MSVC)
}
#endif // ARCH_CPU_X86_FAMILY
#if defined(ARCH_CPU_ARM_FAMILY) && \
(defined(OS_ANDROID) || defined(OS_LINUX) || defined(OS_CHROMEOS))
StringPairs::const_iterator FindFirstProcCpuKey(const StringPairs& pairs,
StringPiece key) {
return ranges::find_if(pairs, [key](const StringPairs::value_type& pair) {
return TrimWhitespaceASCII(pair.first, base::TRIM_ALL) == key;
});
}
// Parses information about the ARM processor. Note that depending on the CPU
// package, processor configuration, and/or kernel version, this may only
// report information about the processor on which this thread is running. This
// can happen on heterogeneous-processor SoCs like Snapdragon 808, which has 4
// Cortex-A53 and 2 Cortex-A57. Unfortunately there is not a universally
// reliable way to examine the CPU part information for all cores.
const ProcCpuInfo& ParseProcCpu() {
static const NoDestructor<ProcCpuInfo> info([]() {
// This function finds the value from /proc/cpuinfo under the key "model
// name" or "Processor". "model name" is used in Linux 3.8 and later (3.7
// and later for arm64) and is shown once per CPU. "Processor" is used in
// earler versions and is shown only once at the top of /proc/cpuinfo
// regardless of the number CPUs.
const char kModelNamePrefix[] = "model name";
const char kProcessorPrefix[] = "Processor";
std::string cpuinfo;
ReadFileToString(FilePath("/proc/cpuinfo"), &cpuinfo);
DCHECK(!cpuinfo.empty());
ProcCpuInfo info;
StringPairs pairs;
if (!SplitStringIntoKeyValuePairs(cpuinfo, ':', '\n', &pairs)) {
NOTREACHED();
return info;
}
auto model_name = FindFirstProcCpuKey(pairs, kModelNamePrefix);
if (model_name == pairs.end())
model_name = FindFirstProcCpuKey(pairs, kProcessorPrefix);
if (model_name != pairs.end()) {
info.brand =
std::string(TrimWhitespaceASCII(model_name->second, TRIM_ALL));
}
auto implementer_string = FindFirstProcCpuKey(pairs, "CPU implementer");
if (implementer_string != pairs.end()) {
// HexStringToUInt() handles the leading whitespace on the value.
uint32_t implementer;
HexStringToUInt(implementer_string->second, &implementer);
if (!CheckedNumeric<uint32_t>(implementer)
.AssignIfValid(&info.implementer)) {
info.implementer = 0;
}
}
auto part_number_string = FindFirstProcCpuKey(pairs, "CPU part");
if (part_number_string != pairs.end())
HexStringToUInt(part_number_string->second, &info.part_number);
return info;
}());
return *info;
}
#endif // defined(ARCH_CPU_ARM_FAMILY) && (defined(OS_ANDROID) ||
// defined(OS_LINUX) || defined(OS_CHROMEOS))
} // namespace
void CPU::Initialize(bool require_branding) {
#if defined(ARCH_CPU_X86_FAMILY)
int cpu_info[4] = {-1};
// This array is used to temporarily hold the vendor name and then the brand
// name. Thus it has to be big enough for both use cases. There are
// static_asserts below for each of the use cases to make sure this array is
// big enough.
char cpu_string[sizeof(cpu_info) * 3 + 1];
// __cpuid with an InfoType argument of 0 returns the number of
// valid Ids in CPUInfo[0] and the CPU identification string in
// the other three array elements. The CPU identification string is
// not in linear order. The code below arranges the information
// in a human readable form. The human readable order is CPUInfo[1] |
// CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
// before using memcpy() to copy these three array elements to |cpu_string|.
__cpuid(cpu_info, 0);
int num_ids = cpu_info[0];
std::swap(cpu_info[2], cpu_info[3]);
static constexpr size_t kVendorNameSize = 3 * sizeof(cpu_info[1]);
static_assert(kVendorNameSize < base::size(cpu_string),
"cpu_string too small");
memcpy(cpu_string, &cpu_info[1], kVendorNameSize);
cpu_string[kVendorNameSize] = '\0';
cpu_vendor_ = cpu_string;
// Interpret CPU feature information.
if (num_ids > 0) {
int cpu_info7[4] = {0};
__cpuid(cpu_info, 1);
if (num_ids >= 7) {
__cpuid(cpu_info7, 7);
}
signature_ = cpu_info[0];
stepping_ = cpu_info[0] & 0xf;
type_ = (cpu_info[0] >> 12) & 0x3;
internal::X86ModelInfo results =
internal::ComputeX86FamilyAndModel(cpu_vendor_, signature_);
family_ = results.family;
model_ = results.model;
ext_family_ = results.ext_family;
ext_model_ = results.ext_model;
has_mmx_ = (cpu_info[3] & 0x00800000) != 0;
has_sse_ = (cpu_info[3] & 0x02000000) != 0;
has_sse2_ = (cpu_info[3] & 0x04000000) != 0;
has_sse3_ = (cpu_info[2] & 0x00000001) != 0;
has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
has_popcnt_ = (cpu_info[2] & 0x00800000) != 0;
// "Hypervisor Present Bit: Bit 31 of ECX of CPUID leaf 0x1."
// See https://lwn.net/Articles/301888/
// This is checking for any hypervisor. Hypervisors may choose not to
// announce themselves. Hypervisors trap CPUID and sometimes return
// different results to underlying hardware.
is_running_in_vm_ = (cpu_info[2] & 0x80000000) != 0;
// AVX instructions will generate an illegal instruction exception unless
// a) they are supported by the CPU,
// b) XSAVE is supported by the CPU and
// c) XSAVE is enabled by the kernel.
// See http://software.intel.com/en-us/blogs/2011/04/14/is-avx-enabled
//
// In addition, we have observed some crashes with the xgetbv instruction
// even after following Intel's example code. (See crbug.com/375968.)
// Because of that, we also test the XSAVE bit because its description in
// the CPUID documentation suggests that it signals xgetbv support.
has_avx_ =
(cpu_info[2] & 0x10000000) != 0 &&
(cpu_info[2] & 0x04000000) != 0 /* XSAVE */ &&
(cpu_info[2] & 0x08000000) != 0 /* OSXSAVE */ &&
(xgetbv(0) & 6) == 6 /* XSAVE enabled by kernel */;
has_aesni_ = (cpu_info[2] & 0x02000000) != 0;
has_avx2_ = has_avx_ && (cpu_info7[1] & 0x00000020) != 0;
}
// Get the brand string of the cpu.
__cpuid(cpu_info, 0x80000000);
const int max_parameter = cpu_info[0];
static constexpr int kParameterStart = 0x80000002;
static constexpr int kParameterEnd = 0x80000004;
static constexpr int kParameterSize = kParameterEnd - kParameterStart + 1;
static_assert(kParameterSize * sizeof(cpu_info) + 1 == base::size(cpu_string),
"cpu_string has wrong size");
if (max_parameter >= kParameterEnd) {
size_t i = 0;
for (int parameter = kParameterStart; parameter <= kParameterEnd;
++parameter) {
__cpuid(cpu_info, parameter);
memcpy(&cpu_string[i], cpu_info, sizeof(cpu_info));
i += sizeof(cpu_info);
}
cpu_string[i] = '\0';
cpu_brand_ = cpu_string;
}
static constexpr int kParameterContainingNonStopTimeStampCounter = 0x80000007;
if (max_parameter >= kParameterContainingNonStopTimeStampCounter) {
__cpuid(cpu_info, kParameterContainingNonStopTimeStampCounter);
has_non_stop_time_stamp_counter_ = (cpu_info[3] & (1 << 8)) != 0;
}
if (!has_non_stop_time_stamp_counter_ && is_running_in_vm_) {
int cpu_info_hv[4] = {};
__cpuid(cpu_info_hv, 0x40000000);
if (cpu_info_hv[1] == 0x7263694D && // Micr
cpu_info_hv[2] == 0x666F736F && // osof
cpu_info_hv[3] == 0x76482074) { // t Hv
// If CPUID says we have a variant TSC and a hypervisor has identified
// itself and the hypervisor says it is Microsoft Hyper-V, then treat
// TSC as invariant.
//
// Microsoft Hyper-V hypervisor reports variant TSC as there are some
// scenarios (eg. VM live migration) where the TSC is variant, but for
// our purposes we can treat it as invariant.
has_non_stop_time_stamp_counter_ = true;
}
}
#elif defined(ARCH_CPU_ARM_FAMILY)
#if defined(OS_ANDROID) || defined(OS_LINUX) || defined(OS_CHROMEOS)
if (require_branding) {
const ProcCpuInfo& info = ParseProcCpu();
cpu_brand_ = info.brand;
implementer_ = info.implementer;
part_number_ = info.part_number;
}
#if defined(ARCH_CPU_ARM64)
// Check for Armv8.5-A BTI/MTE support, exposed via HWCAP2
unsigned long hwcap2 = getauxval(AT_HWCAP2);
has_mte_ = hwcap2 & HWCAP2_MTE;
has_bti_ = hwcap2 & HWCAP2_BTI;
#endif
#elif defined(OS_WIN)
// Windows makes high-resolution thread timing information available in
// user-space.
has_non_stop_time_stamp_counter_ = true;
#endif
#endif
}
CPU::IntelMicroArchitecture CPU::GetIntelMicroArchitecture() const {
if (has_avx2()) return AVX2;
if (has_avx()) return AVX;
if (has_sse42()) return SSE42;
if (has_sse41()) return SSE41;
if (has_ssse3()) return SSSE3;
if (has_sse3()) return SSE3;
if (has_sse2()) return SSE2;
if (has_sse()) return SSE;
return PENTIUM;
}
#if defined(OS_LINUX) || defined(OS_CHROMEOS) || defined(OS_ANDROID) || \
defined(OS_AIX)
namespace {
constexpr char kTimeInStatePath[] =
"/sys/devices/system/cpu/cpu%d/cpufreq/stats/time_in_state";
constexpr char kPhysicalPackageIdPath[] =
"/sys/devices/system/cpu/cpu%d/topology/physical_package_id";
constexpr char kCoreIdleStateTimePath[] =
"/sys/devices/system/cpu/cpu%d/cpuidle/state%d/time";
bool SupportsTimeInState() {
// Reading from time_in_state doesn't block (it amounts to reading a struct
// from the cpufreq-stats kernel driver).
ThreadRestrictions::ScopedAllowIO allow_io;
// Check if the time_in_state path for the first core is readable.
FilePath time_in_state_path(StringPrintf(kTimeInStatePath, /*core_index=*/0));
ScopedFILE file_stream(OpenFile(time_in_state_path, "rb"));
return static_cast<bool>(file_stream);
}
bool ParseTimeInState(const std::string& content,
CPU::CoreType core_type,
uint32_t core_index,
CPU::TimeInState& time_in_state) {
const char* begin = content.data();
size_t max_pos = content.size() - 1;
// Example time_in_state content:
// ---
// 300000 1
// 403200 0
// 499200 15
// ---
// Iterate over the individual lines.
for (size_t pos = 0; pos <= max_pos;) {
int num_chars = 0;
// Each line should have two integer fields, frequency (kHz) and time (in
// jiffies), separated by a space, e.g. "2419200 132".
uint64_t frequency;
uint64_t time;
int matches = sscanf(begin + pos, "%" PRIu64 " %" PRIu64 "\n%n", &frequency,
&time, &num_chars);
if (matches != 2)
return false;
// Skip zero-valued entries in the output list (no time spent at this
// frequency).
if (time > 0) {
time_in_state.push_back({core_type, core_index, frequency,
internal::ClockTicksToTimeDelta(time)});
}
// Advance line.
DCHECK_GT(num_chars, 0);
pos += num_chars;
}
return true;
}
bool SupportsCoreIdleTimes() {
// Reading from the cpuidle driver doesn't block.
ThreadRestrictions::ScopedAllowIO allow_io;
// Check if the path for the idle time in state 0 for core 0 is readable.
FilePath idle_state0_path(
StringPrintf(kCoreIdleStateTimePath, /*core_index=*/0, /*idle_state=*/0));
ScopedFILE file_stream(OpenFile(idle_state0_path, "rb"));
return static_cast<bool>(file_stream);
}
std::vector<CPU::CoreType> GuessCoreTypes() {
// Try to guess the CPU architecture and cores of each cluster by comparing
// the maximum frequencies of the available (online and offline) cores.
const char kCPUMaxFreqPath[] =
"/sys/devices/system/cpu/cpu%d/cpufreq/cpuinfo_max_freq";
int num_cpus = SysInfo::NumberOfProcessors();
std::vector<CPU::CoreType> core_index_to_type(num_cpus,
CPU::CoreType::kUnknown);
std::vector<uint32_t> max_core_frequencies_mhz(num_cpus, 0);
flat_set<uint32_t> frequencies_mhz;
{
// Reading from cpuinfo_max_freq doesn't block (it amounts to reading a
// struct field from the cpufreq kernel driver).
ThreadRestrictions::ScopedAllowIO allow_io;
for (int core_index = 0; core_index < num_cpus; ++core_index) {
std::string content;
uint32_t frequency_khz = 0;
auto path = StringPrintf(kCPUMaxFreqPath, core_index);
if (ReadFileToString(FilePath(path), &content))
StringToUint(content, &frequency_khz);
uint32_t frequency_mhz = frequency_khz / 1000;
max_core_frequencies_mhz[core_index] = frequency_mhz;
if (frequency_mhz > 0)
frequencies_mhz.insert(frequency_mhz);
}
}
size_t num_frequencies = frequencies_mhz.size();
for (int core_index = 0; core_index < num_cpus; ++core_index) {
uint32_t core_frequency_mhz = max_core_frequencies_mhz[core_index];
CPU::CoreType core_type = CPU::CoreType::kOther;
if (num_frequencies == 1u) {
core_type = CPU::CoreType::kSymmetric;
} else if (num_frequencies == 2u || num_frequencies == 3u) {
auto it = frequencies_mhz.find(core_frequency_mhz);
if (it != frequencies_mhz.end()) {
// flat_set is sorted.
size_t frequency_index = it - frequencies_mhz.begin();
switch (frequency_index) {
case 0:
core_type = num_frequencies == 2u
? CPU::CoreType::kBigLittle_Little
: CPU::CoreType::kBigLittleBigger_Little;
break;
case 1:
core_type = num_frequencies == 2u
? CPU::CoreType::kBigLittle_Big
: CPU::CoreType::kBigLittleBigger_Big;
break;
case 2:
DCHECK_EQ(num_frequencies, 3u);
core_type = CPU::CoreType::kBigLittleBigger_Bigger;
break;
default:
NOTREACHED();
break;
}
}
}
core_index_to_type[core_index] = core_type;
}
return core_index_to_type;
}
} // namespace
// static
const std::vector<CPU::CoreType>& CPU::GetGuessedCoreTypes() {
static NoDestructor<std::vector<CoreType>> kCoreTypes(GuessCoreTypes());
return *kCoreTypes.get();
}
// static
bool CPU::GetTimeInState(TimeInState& time_in_state) {
time_in_state.clear();
// The kernel may not support the cpufreq-stats driver.
static const bool kSupportsTimeInState = SupportsTimeInState();
if (!kSupportsTimeInState)
return false;
static const std::vector<CoreType>& kCoreTypes = GetGuessedCoreTypes();
// time_in_state is reported per cluster. Identify the first cores of each
// cluster.
static NoDestructor<std::vector<int>> kFirstCoresIndexes([]() {
std::vector<int> first_cores;
int last_core_package_id = 0;
for (int core_index = 0; core_index < SysInfo::NumberOfProcessors();
core_index++) {
// Reading from physical_package_id doesn't block (it amounts to reading a
// struct field from the kernel).
ThreadRestrictions::ScopedAllowIO allow_io;
FilePath package_id_path(
StringPrintf(kPhysicalPackageIdPath, core_index));
std::string package_id_str;
if (!ReadFileToString(package_id_path, &package_id_str))
return std::vector<int>();
int package_id;
base::StringPiece trimmed = base::TrimWhitespaceASCII(
package_id_str, base::TrimPositions::TRIM_ALL);
if (!base::StringToInt(trimmed, &package_id))
return std::vector<int>();
if (last_core_package_id != package_id || core_index == 0)
first_cores.push_back(core_index);
last_core_package_id = package_id;
}
return first_cores;
}());
if (kFirstCoresIndexes->empty())
return false;
// Reading from time_in_state doesn't block (it amounts to reading a struct
// from the cpufreq-stats kernel driver).
ThreadRestrictions::ScopedAllowIO allow_io;
// Read the time_in_state for each cluster from the /sys directory of the
// cluster's first core.
for (int cluster_core_index : *kFirstCoresIndexes) {
FilePath time_in_state_path(
StringPrintf(kTimeInStatePath, cluster_core_index));
std::string buffer;
if (!ReadFileToString(time_in_state_path, &buffer))
return false;
if (!ParseTimeInState(buffer, kCoreTypes[cluster_core_index],
cluster_core_index, time_in_state)) {
return false;
}
}
return true;
}
// static
bool CPU::GetCumulativeCoreIdleTimes(CoreIdleTimes& idle_times) {
idle_times.clear();
// The kernel may not support the cpufreq-stats driver.
static const bool kSupportsIdleTimes = SupportsCoreIdleTimes();
if (!kSupportsIdleTimes)
return false;
// Reading from the cpuidle driver doesn't block.
ThreadRestrictions::ScopedAllowIO allow_io;
int num_cpus = SysInfo::NumberOfProcessors();
bool success = false;
for (int core_index = 0; core_index < num_cpus; ++core_index) {
std::string content;
TimeDelta idle_time;
// The number of idle states is system/CPU dependent, so we increment and
// try to read each state until we fail.
for (int state_index = 0;; ++state_index) {
auto path = StringPrintf(kCoreIdleStateTimePath, core_index, state_index);
uint64_t idle_state_time = 0;
if (!ReadFileToString(FilePath(path), &content))
break;
StringToUint64(content, &idle_state_time);
idle_time += TimeDelta::FromMicroseconds(idle_state_time);
}
idle_times.push_back(idle_time);
// At least one of the cores should have some idle time, otherwise we report
// a failure.
success |= idle_time > base::TimeDelta();
}
return success;
}
#endif // defined(OS_LINUX) || defined(OS_CHROMEOS) || defined(OS_ANDROID) ||
// defined(OS_AIX)
} // namespace base
|