summaryrefslogtreecommitdiff
path: root/chromium/v8/src/codegen/loong64/macro-assembler-loong64.cc
diff options
context:
space:
mode:
Diffstat (limited to 'chromium/v8/src/codegen/loong64/macro-assembler-loong64.cc')
-rw-r--r--chromium/v8/src/codegen/loong64/macro-assembler-loong64.cc4108
1 files changed, 4108 insertions, 0 deletions
diff --git a/chromium/v8/src/codegen/loong64/macro-assembler-loong64.cc b/chromium/v8/src/codegen/loong64/macro-assembler-loong64.cc
new file mode 100644
index 00000000000..6c1fa8e7298
--- /dev/null
+++ b/chromium/v8/src/codegen/loong64/macro-assembler-loong64.cc
@@ -0,0 +1,4108 @@
+// Copyright 2021 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <limits.h> // For LONG_MIN, LONG_MAX.
+
+#if V8_TARGET_ARCH_LOONG64
+
+#include "src/base/bits.h"
+#include "src/base/division-by-constant.h"
+#include "src/codegen/assembler-inl.h"
+#include "src/codegen/callable.h"
+#include "src/codegen/code-factory.h"
+#include "src/codegen/external-reference-table.h"
+#include "src/codegen/interface-descriptors-inl.h"
+#include "src/codegen/macro-assembler.h"
+#include "src/codegen/register-configuration.h"
+#include "src/debug/debug.h"
+#include "src/deoptimizer/deoptimizer.h"
+#include "src/execution/frames-inl.h"
+#include "src/heap/memory-chunk.h"
+#include "src/init/bootstrapper.h"
+#include "src/logging/counters.h"
+#include "src/objects/heap-number.h"
+#include "src/runtime/runtime.h"
+#include "src/snapshot/snapshot.h"
+
+#if V8_ENABLE_WEBASSEMBLY
+#include "src/wasm/wasm-code-manager.h"
+#endif // V8_ENABLE_WEBASSEMBLY
+
+// Satisfy cpplint check, but don't include platform-specific header. It is
+// included recursively via macro-assembler.h.
+#if 0
+#include "src/codegen/loong64/macro-assembler-loong64.h"
+#endif
+
+namespace v8 {
+namespace internal {
+
+static inline bool IsZero(const Operand& rk) {
+ if (rk.is_reg()) {
+ return rk.rm() == zero_reg;
+ } else {
+ return rk.immediate() == 0;
+ }
+}
+
+int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode,
+ Register exclusion1,
+ Register exclusion2,
+ Register exclusion3) const {
+ int bytes = 0;
+ RegList exclusions = 0;
+ if (exclusion1 != no_reg) {
+ exclusions |= exclusion1.bit();
+ if (exclusion2 != no_reg) {
+ exclusions |= exclusion2.bit();
+ if (exclusion3 != no_reg) {
+ exclusions |= exclusion3.bit();
+ }
+ }
+ }
+
+ RegList list = kJSCallerSaved & ~exclusions;
+ bytes += NumRegs(list) * kPointerSize;
+
+ if (fp_mode == SaveFPRegsMode::kSave) {
+ bytes += NumRegs(kCallerSavedFPU) * kDoubleSize;
+ }
+
+ return bytes;
+}
+
+int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1,
+ Register exclusion2, Register exclusion3) {
+ int bytes = 0;
+ RegList exclusions = 0;
+ if (exclusion1 != no_reg) {
+ exclusions |= exclusion1.bit();
+ if (exclusion2 != no_reg) {
+ exclusions |= exclusion2.bit();
+ if (exclusion3 != no_reg) {
+ exclusions |= exclusion3.bit();
+ }
+ }
+ }
+
+ RegList list = kJSCallerSaved & ~exclusions;
+ MultiPush(list);
+ bytes += NumRegs(list) * kPointerSize;
+
+ if (fp_mode == SaveFPRegsMode::kSave) {
+ MultiPushFPU(kCallerSavedFPU);
+ bytes += NumRegs(kCallerSavedFPU) * kDoubleSize;
+ }
+
+ return bytes;
+}
+
+int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1,
+ Register exclusion2, Register exclusion3) {
+ int bytes = 0;
+ if (fp_mode == SaveFPRegsMode::kSave) {
+ MultiPopFPU(kCallerSavedFPU);
+ bytes += NumRegs(kCallerSavedFPU) * kDoubleSize;
+ }
+
+ RegList exclusions = 0;
+ if (exclusion1 != no_reg) {
+ exclusions |= exclusion1.bit();
+ if (exclusion2 != no_reg) {
+ exclusions |= exclusion2.bit();
+ if (exclusion3 != no_reg) {
+ exclusions |= exclusion3.bit();
+ }
+ }
+ }
+
+ RegList list = kJSCallerSaved & ~exclusions;
+ MultiPop(list);
+ bytes += NumRegs(list) * kPointerSize;
+
+ return bytes;
+}
+
+void TurboAssembler::LoadRoot(Register destination, RootIndex index) {
+ Ld_d(destination, MemOperand(s6, RootRegisterOffsetForRootIndex(index)));
+}
+
+void TurboAssembler::PushCommonFrame(Register marker_reg) {
+ if (marker_reg.is_valid()) {
+ Push(ra, fp, marker_reg);
+ Add_d(fp, sp, Operand(kPointerSize));
+ } else {
+ Push(ra, fp);
+ mov(fp, sp);
+ }
+}
+
+void TurboAssembler::PushStandardFrame(Register function_reg) {
+ int offset = -StandardFrameConstants::kContextOffset;
+ if (function_reg.is_valid()) {
+ Push(ra, fp, cp, function_reg, kJavaScriptCallArgCountRegister);
+ offset += 2 * kPointerSize;
+ } else {
+ Push(ra, fp, cp, kJavaScriptCallArgCountRegister);
+ offset += kPointerSize;
+ }
+ Add_d(fp, sp, Operand(offset));
+}
+
+// Clobbers object, dst, value, and ra, if (ra_status == kRAHasBeenSaved)
+// The register 'object' contains a heap object pointer. The heap object
+// tag is shifted away.
+void MacroAssembler::RecordWriteField(Register object, int offset,
+ Register value, RAStatus ra_status,
+ SaveFPRegsMode save_fp,
+ RememberedSetAction remembered_set_action,
+ SmiCheck smi_check) {
+ // First, check if a write barrier is even needed. The tests below
+ // catch stores of Smis.
+ Label done;
+
+ // Skip barrier if writing a smi.
+ if (smi_check == SmiCheck::kInline) {
+ JumpIfSmi(value, &done);
+ }
+
+ // Although the object register is tagged, the offset is relative to the start
+ // of the object, so so offset must be a multiple of kPointerSize.
+ DCHECK(IsAligned(offset, kPointerSize));
+
+ if (FLAG_debug_code) {
+ Label ok;
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ Add_d(scratch, object, offset - kHeapObjectTag);
+ And(scratch, scratch, Operand(kPointerSize - 1));
+ Branch(&ok, eq, scratch, Operand(zero_reg));
+ Abort(AbortReason::kUnalignedCellInWriteBarrier);
+ bind(&ok);
+ }
+
+ RecordWrite(object, Operand(offset - kHeapObjectTag), value, ra_status,
+ save_fp, remembered_set_action, SmiCheck::kOmit);
+
+ bind(&done);
+}
+
+void TurboAssembler::MaybeSaveRegisters(RegList registers) {
+ if (registers == 0) return;
+ RegList regs = 0;
+ for (int i = 0; i < Register::kNumRegisters; ++i) {
+ if ((registers >> i) & 1u) {
+ regs |= Register::from_code(i).bit();
+ }
+ }
+ MultiPush(regs);
+}
+
+void TurboAssembler::MaybeRestoreRegisters(RegList registers) {
+ if (registers == 0) return;
+ RegList regs = 0;
+ for (int i = 0; i < Register::kNumRegisters; ++i) {
+ if ((registers >> i) & 1u) {
+ regs |= Register::from_code(i).bit();
+ }
+ }
+ MultiPop(regs);
+}
+
+void TurboAssembler::CallEphemeronKeyBarrier(Register object, Operand offset,
+ SaveFPRegsMode fp_mode) {
+ RegList registers = WriteBarrierDescriptor::ComputeSavedRegisters(object);
+ MaybeSaveRegisters(registers);
+
+ Register object_parameter = WriteBarrierDescriptor::ObjectRegister();
+ Register slot_address_parameter =
+ WriteBarrierDescriptor::SlotAddressRegister();
+
+ MoveObjectAndSlot(object_parameter, slot_address_parameter, object, offset);
+
+ Call(isolate()->builtins()->code_handle(
+ Builtins::GetEphemeronKeyBarrierStub(fp_mode)),
+ RelocInfo::CODE_TARGET);
+ MaybeRestoreRegisters(registers);
+}
+
+void TurboAssembler::CallRecordWriteStubSaveRegisters(
+ Register object, Operand offset, RememberedSetAction remembered_set_action,
+ SaveFPRegsMode fp_mode, StubCallMode mode) {
+ ASM_CODE_COMMENT(this);
+ RegList registers = WriteBarrierDescriptor::ComputeSavedRegisters(object);
+ MaybeSaveRegisters(registers);
+
+ Register object_parameter = WriteBarrierDescriptor::ObjectRegister();
+ Register slot_address_parameter =
+ WriteBarrierDescriptor::SlotAddressRegister();
+
+ MoveObjectAndSlot(object_parameter, slot_address_parameter, object, offset);
+
+ CallRecordWriteStub(object_parameter, slot_address_parameter,
+ remembered_set_action, fp_mode, mode);
+
+ MaybeRestoreRegisters(registers);
+}
+
+void TurboAssembler::CallRecordWriteStub(
+ Register object, Register slot_address,
+ RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode,
+ StubCallMode mode) {
+ // Use CallRecordWriteStubSaveRegisters if the object and slot registers
+ // need to be caller saved.
+ DCHECK_EQ(WriteBarrierDescriptor::ObjectRegister(), object);
+ DCHECK_EQ(WriteBarrierDescriptor::SlotAddressRegister(), slot_address);
+#if V8_ENABLE_WEBASSEMBLY
+ if (mode == StubCallMode::kCallWasmRuntimeStub) {
+ auto wasm_target =
+ wasm::WasmCode::GetRecordWriteStub(remembered_set_action, fp_mode);
+ Call(wasm_target, RelocInfo::WASM_STUB_CALL);
+#else
+ if (false) {
+#endif
+ } else {
+ auto builtin = Builtins::GetRecordWriteStub(remembered_set_action, fp_mode);
+ if (options().inline_offheap_trampolines) {
+ // Inline the trampoline.
+ RecordCommentForOffHeapTrampoline(builtin);
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, Operand(BuiltinEntry(builtin), RelocInfo::OFF_HEAP_TARGET));
+ Call(scratch);
+ } else {
+ Handle<Code> code_target = isolate()->builtins()->code_handle(builtin);
+ Call(code_target, RelocInfo::CODE_TARGET);
+ }
+ }
+}
+
+void TurboAssembler::MoveObjectAndSlot(Register dst_object, Register dst_slot,
+ Register object, Operand offset) {
+ DCHECK_NE(dst_object, dst_slot);
+ // If `offset` is a register, it cannot overlap with `object`.
+ DCHECK_IMPLIES(!offset.IsImmediate(), offset.rm() != object);
+
+ // If the slot register does not overlap with the object register, we can
+ // overwrite it.
+ if (dst_slot != object) {
+ Add_d(dst_slot, object, offset);
+ mov(dst_object, object);
+ return;
+ }
+
+ DCHECK_EQ(dst_slot, object);
+
+ // If the destination object register does not overlap with the offset
+ // register, we can overwrite it.
+ if (offset.IsImmediate() || (offset.rm() != dst_object)) {
+ mov(dst_object, dst_slot);
+ Add_d(dst_slot, dst_slot, offset);
+ return;
+ }
+
+ DCHECK_EQ(dst_object, offset.rm());
+
+ // We only have `dst_slot` and `dst_object` left as distinct registers so we
+ // have to swap them. We write this as a add+sub sequence to avoid using a
+ // scratch register.
+ Add_d(dst_slot, dst_slot, dst_object);
+ Sub_d(dst_object, dst_slot, dst_object);
+}
+
+// If lr_status is kLRHasBeenSaved, lr will be clobbered.
+// TODO(LOONG_dev): LOONG64 Check this comment
+// Clobbers object, address, value, and ra, if (ra_status == kRAHasBeenSaved)
+// The register 'object' contains a heap object pointer. The heap object
+// tag is shifted away.
+void MacroAssembler::RecordWrite(Register object, Operand offset,
+ Register value, RAStatus ra_status,
+ SaveFPRegsMode fp_mode,
+ RememberedSetAction remembered_set_action,
+ SmiCheck smi_check) {
+ DCHECK(!AreAliased(object, value));
+
+ if (FLAG_debug_code) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ Add_d(scratch, object, offset);
+ Ld_d(scratch, MemOperand(scratch, 0));
+ Assert(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite, scratch,
+ Operand(value));
+ }
+
+ if ((remembered_set_action == RememberedSetAction::kOmit &&
+ !FLAG_incremental_marking) ||
+ FLAG_disable_write_barriers) {
+ return;
+ }
+
+ // First, check if a write barrier is even needed. The tests below
+ // catch stores of smis and stores into the young generation.
+ Label done;
+
+ if (smi_check == SmiCheck::kInline) {
+ DCHECK_EQ(0, kSmiTag);
+ JumpIfSmi(value, &done);
+ }
+
+ CheckPageFlag(value, MemoryChunk::kPointersToHereAreInterestingMask, eq,
+ &done);
+
+ CheckPageFlag(object, MemoryChunk::kPointersFromHereAreInterestingMask, eq,
+ &done);
+
+ // Record the actual write.
+ if (ra_status == kRAHasNotBeenSaved) {
+ Push(ra);
+ }
+
+ Register slot_address = WriteBarrierDescriptor::SlotAddressRegister();
+ DCHECK(!AreAliased(object, slot_address, value));
+ DCHECK(offset.IsImmediate());
+ Add_d(slot_address, object, offset);
+ CallRecordWriteStub(object, slot_address, remembered_set_action, fp_mode);
+ if (ra_status == kRAHasNotBeenSaved) {
+ Pop(ra);
+ }
+
+ bind(&done);
+}
+
+// ---------------------------------------------------------------------------
+// Instruction macros.
+
+void TurboAssembler::Add_w(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ add_w(rd, rj, rk.rm());
+ } else {
+ if (is_int12(rk.immediate()) && !MustUseReg(rk.rmode())) {
+ addi_w(rd, rj, static_cast<int32_t>(rk.immediate()));
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ add_w(rd, rj, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Add_d(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ add_d(rd, rj, rk.rm());
+ } else {
+ if (is_int12(rk.immediate()) && !MustUseReg(rk.rmode())) {
+ addi_d(rd, rj, static_cast<int32_t>(rk.immediate()));
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ add_d(rd, rj, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Sub_w(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ sub_w(rd, rj, rk.rm());
+ } else {
+ DCHECK(is_int32(rk.immediate()));
+ if (is_int12(-rk.immediate()) && !MustUseReg(rk.rmode())) {
+ // No subi_w instr, use addi_w(x, y, -imm).
+ addi_w(rd, rj, static_cast<int32_t>(-rk.immediate()));
+ } else {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ if (-rk.immediate() >> 12 == 0 && !MustUseReg(rk.rmode())) {
+ // Use load -imm and addu when loading -imm generates one instruction.
+ li(scratch, -rk.immediate());
+ add_w(rd, rj, scratch);
+ } else {
+ // li handles the relocation.
+ li(scratch, rk);
+ sub_w(rd, rj, scratch);
+ }
+ }
+ }
+}
+
+void TurboAssembler::Sub_d(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ sub_d(rd, rj, rk.rm());
+ } else if (is_int12(-rk.immediate()) && !MustUseReg(rk.rmode())) {
+ // No subi_d instr, use addi_d(x, y, -imm).
+ addi_d(rd, rj, static_cast<int32_t>(-rk.immediate()));
+ } else {
+ DCHECK(rj != t7);
+ int li_count = InstrCountForLi64Bit(rk.immediate());
+ int li_neg_count = InstrCountForLi64Bit(-rk.immediate());
+ if (li_neg_count < li_count && !MustUseReg(rk.rmode())) {
+ // Use load -imm and add_d when loading -imm generates one instruction.
+ DCHECK(rk.immediate() != std::numeric_limits<int32_t>::min());
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, Operand(-rk.immediate()));
+ add_d(rd, rj, scratch);
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, rk);
+ sub_d(rd, rj, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Mul_w(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ mul_w(rd, rj, rk.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ mul_w(rd, rj, scratch);
+ }
+}
+
+void TurboAssembler::Mulh_w(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ mulh_w(rd, rj, rk.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ mulh_w(rd, rj, scratch);
+ }
+}
+
+void TurboAssembler::Mulh_wu(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ mulh_wu(rd, rj, rk.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ mulh_wu(rd, rj, scratch);
+ }
+}
+
+void TurboAssembler::Mul_d(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ mul_d(rd, rj, rk.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ mul_d(rd, rj, scratch);
+ }
+}
+
+void TurboAssembler::Mulh_d(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ mulh_d(rd, rj, rk.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ mulh_d(rd, rj, scratch);
+ }
+}
+
+void TurboAssembler::Div_w(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ div_w(rd, rj, rk.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ div_w(rd, rj, scratch);
+ }
+}
+
+void TurboAssembler::Mod_w(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ mod_w(rd, rj, rk.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ mod_w(rd, rj, scratch);
+ }
+}
+
+void TurboAssembler::Mod_wu(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ mod_wu(rd, rj, rk.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ mod_wu(rd, rj, scratch);
+ }
+}
+
+void TurboAssembler::Div_d(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ div_d(rd, rj, rk.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ div_d(rd, rj, scratch);
+ }
+}
+
+void TurboAssembler::Div_wu(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ div_wu(rd, rj, rk.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ div_wu(rd, rj, scratch);
+ }
+}
+
+void TurboAssembler::Div_du(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ div_du(rd, rj, rk.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ div_du(rd, rj, scratch);
+ }
+}
+
+void TurboAssembler::Mod_d(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ mod_d(rd, rj, rk.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ mod_d(rd, rj, scratch);
+ }
+}
+
+void TurboAssembler::Mod_du(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ mod_du(rd, rj, rk.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ mod_du(rd, rj, scratch);
+ }
+}
+
+void TurboAssembler::And(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ and_(rd, rj, rk.rm());
+ } else {
+ if (is_uint12(rk.immediate()) && !MustUseReg(rk.rmode())) {
+ andi(rd, rj, static_cast<int32_t>(rk.immediate()));
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ and_(rd, rj, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Or(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ or_(rd, rj, rk.rm());
+ } else {
+ if (is_uint12(rk.immediate()) && !MustUseReg(rk.rmode())) {
+ ori(rd, rj, static_cast<int32_t>(rk.immediate()));
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ or_(rd, rj, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Xor(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ xor_(rd, rj, rk.rm());
+ } else {
+ if (is_uint12(rk.immediate()) && !MustUseReg(rk.rmode())) {
+ xori(rd, rj, static_cast<int32_t>(rk.immediate()));
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ xor_(rd, rj, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Nor(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ nor(rd, rj, rk.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ nor(rd, rj, scratch);
+ }
+}
+
+void TurboAssembler::Andn(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ andn(rd, rj, rk.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ andn(rd, rj, scratch);
+ }
+}
+
+void TurboAssembler::Orn(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ orn(rd, rj, rk.rm());
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ orn(rd, rj, scratch);
+ }
+}
+
+void TurboAssembler::Neg(Register rj, const Operand& rk) {
+ DCHECK(rk.is_reg());
+ sub_d(rj, zero_reg, rk.rm());
+}
+
+void TurboAssembler::Slt(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ slt(rd, rj, rk.rm());
+ } else {
+ if (is_int12(rk.immediate()) && !MustUseReg(rk.rmode())) {
+ slti(rd, rj, static_cast<int32_t>(rk.immediate()));
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ slt(rd, rj, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Sltu(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ sltu(rd, rj, rk.rm());
+ } else {
+ if (is_int12(rk.immediate()) && !MustUseReg(rk.rmode())) {
+ sltui(rd, rj, static_cast<int32_t>(rk.immediate()));
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ sltu(rd, rj, scratch);
+ }
+ }
+}
+
+void TurboAssembler::Sle(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ slt(rd, rk.rm(), rj);
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ slt(rd, scratch, rj);
+ }
+ xori(rd, rd, 1);
+}
+
+void TurboAssembler::Sleu(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ sltu(rd, rk.rm(), rj);
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ sltu(rd, scratch, rj);
+ }
+ xori(rd, rd, 1);
+}
+
+void TurboAssembler::Sge(Register rd, Register rj, const Operand& rk) {
+ Slt(rd, rj, rk);
+ xori(rd, rd, 1);
+}
+
+void TurboAssembler::Sgeu(Register rd, Register rj, const Operand& rk) {
+ Sltu(rd, rj, rk);
+ xori(rd, rd, 1);
+}
+
+void TurboAssembler::Sgt(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ slt(rd, rk.rm(), rj);
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ slt(rd, scratch, rj);
+ }
+}
+
+void TurboAssembler::Sgtu(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ sltu(rd, rk.rm(), rj);
+ } else {
+ // li handles the relocation.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ DCHECK(rj != scratch);
+ li(scratch, rk);
+ sltu(rd, scratch, rj);
+ }
+}
+
+void TurboAssembler::Rotr_w(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ rotr_w(rd, rj, rk.rm());
+ } else {
+ int64_t ror_value = rk.immediate() % 32;
+ if (ror_value < 0) {
+ ror_value += 32;
+ }
+ rotri_w(rd, rj, ror_value);
+ }
+}
+
+void TurboAssembler::Rotr_d(Register rd, Register rj, const Operand& rk) {
+ if (rk.is_reg()) {
+ rotr_d(rd, rj, rk.rm());
+ } else {
+ int64_t dror_value = rk.immediate() % 64;
+ if (dror_value < 0) dror_value += 64;
+ rotri_d(rd, rj, dror_value);
+ }
+}
+
+void TurboAssembler::Alsl_w(Register rd, Register rj, Register rk, uint8_t sa,
+ Register scratch) {
+ DCHECK(sa >= 1 && sa <= 31);
+ if (sa <= 4) {
+ alsl_w(rd, rj, rk, sa);
+ } else {
+ Register tmp = rd == rk ? scratch : rd;
+ DCHECK(tmp != rk);
+ slli_w(tmp, rj, sa);
+ add_w(rd, rk, tmp);
+ }
+}
+
+void TurboAssembler::Alsl_d(Register rd, Register rj, Register rk, uint8_t sa,
+ Register scratch) {
+ DCHECK(sa >= 1 && sa <= 31);
+ if (sa <= 4) {
+ alsl_d(rd, rj, rk, sa);
+ } else {
+ Register tmp = rd == rk ? scratch : rd;
+ DCHECK(tmp != rk);
+ slli_d(tmp, rj, sa);
+ add_d(rd, rk, tmp);
+ }
+}
+
+// ------------Pseudo-instructions-------------
+
+// Change endianness
+void TurboAssembler::ByteSwapSigned(Register dest, Register src,
+ int operand_size) {
+ DCHECK(operand_size == 2 || operand_size == 4 || operand_size == 8);
+ if (operand_size == 2) {
+ revb_2h(dest, src);
+ ext_w_h(dest, dest);
+ } else if (operand_size == 4) {
+ revb_2w(dest, src);
+ slli_w(dest, dest, 0);
+ } else {
+ revb_d(dest, dest);
+ }
+}
+
+void TurboAssembler::ByteSwapUnsigned(Register dest, Register src,
+ int operand_size) {
+ DCHECK(operand_size == 2 || operand_size == 4);
+ if (operand_size == 2) {
+ revb_2h(dest, src);
+ bstrins_d(dest, zero_reg, 63, 16);
+ } else {
+ revb_2w(dest, src);
+ bstrins_d(dest, zero_reg, 63, 32);
+ }
+}
+
+void TurboAssembler::Ld_b(Register rd, const MemOperand& rj) {
+ MemOperand source = rj;
+ AdjustBaseAndOffset(&source);
+ if (source.hasIndexReg()) {
+ ldx_b(rd, source.base(), source.index());
+ } else {
+ ld_b(rd, source.base(), source.offset());
+ }
+}
+
+void TurboAssembler::Ld_bu(Register rd, const MemOperand& rj) {
+ MemOperand source = rj;
+ AdjustBaseAndOffset(&source);
+ if (source.hasIndexReg()) {
+ ldx_bu(rd, source.base(), source.index());
+ } else {
+ ld_bu(rd, source.base(), source.offset());
+ }
+}
+
+void TurboAssembler::St_b(Register rd, const MemOperand& rj) {
+ MemOperand source = rj;
+ AdjustBaseAndOffset(&source);
+ if (source.hasIndexReg()) {
+ stx_b(rd, source.base(), source.index());
+ } else {
+ st_b(rd, source.base(), source.offset());
+ }
+}
+
+void TurboAssembler::Ld_h(Register rd, const MemOperand& rj) {
+ MemOperand source = rj;
+ AdjustBaseAndOffset(&source);
+ if (source.hasIndexReg()) {
+ ldx_h(rd, source.base(), source.index());
+ } else {
+ ld_h(rd, source.base(), source.offset());
+ }
+}
+
+void TurboAssembler::Ld_hu(Register rd, const MemOperand& rj) {
+ MemOperand source = rj;
+ AdjustBaseAndOffset(&source);
+ if (source.hasIndexReg()) {
+ ldx_hu(rd, source.base(), source.index());
+ } else {
+ ld_hu(rd, source.base(), source.offset());
+ }
+}
+
+void TurboAssembler::St_h(Register rd, const MemOperand& rj) {
+ MemOperand source = rj;
+ AdjustBaseAndOffset(&source);
+ if (source.hasIndexReg()) {
+ stx_h(rd, source.base(), source.index());
+ } else {
+ st_h(rd, source.base(), source.offset());
+ }
+}
+
+void TurboAssembler::Ld_w(Register rd, const MemOperand& rj) {
+ MemOperand source = rj;
+
+ if (!(source.hasIndexReg()) && is_int16(source.offset()) &&
+ (source.offset() & 0b11) == 0) {
+ ldptr_w(rd, source.base(), source.offset());
+ return;
+ }
+
+ AdjustBaseAndOffset(&source);
+ if (source.hasIndexReg()) {
+ ldx_w(rd, source.base(), source.index());
+ } else {
+ ld_w(rd, source.base(), source.offset());
+ }
+}
+
+void TurboAssembler::Ld_wu(Register rd, const MemOperand& rj) {
+ MemOperand source = rj;
+ AdjustBaseAndOffset(&source);
+ if (source.hasIndexReg()) {
+ ldx_wu(rd, source.base(), source.index());
+ } else {
+ ld_wu(rd, source.base(), source.offset());
+ }
+}
+
+void TurboAssembler::St_w(Register rd, const MemOperand& rj) {
+ MemOperand source = rj;
+
+ if (!(source.hasIndexReg()) && is_int16(source.offset()) &&
+ (source.offset() & 0b11) == 0) {
+ stptr_w(rd, source.base(), source.offset());
+ return;
+ }
+
+ AdjustBaseAndOffset(&source);
+ if (source.hasIndexReg()) {
+ stx_w(rd, source.base(), source.index());
+ } else {
+ st_w(rd, source.base(), source.offset());
+ }
+}
+
+void TurboAssembler::Ld_d(Register rd, const MemOperand& rj) {
+ MemOperand source = rj;
+
+ if (!(source.hasIndexReg()) && is_int16(source.offset()) &&
+ (source.offset() & 0b11) == 0) {
+ ldptr_d(rd, source.base(), source.offset());
+ return;
+ }
+
+ AdjustBaseAndOffset(&source);
+ if (source.hasIndexReg()) {
+ ldx_d(rd, source.base(), source.index());
+ } else {
+ ld_d(rd, source.base(), source.offset());
+ }
+}
+
+void TurboAssembler::St_d(Register rd, const MemOperand& rj) {
+ MemOperand source = rj;
+
+ if (!(source.hasIndexReg()) && is_int16(source.offset()) &&
+ (source.offset() & 0b11) == 0) {
+ stptr_d(rd, source.base(), source.offset());
+ return;
+ }
+
+ AdjustBaseAndOffset(&source);
+ if (source.hasIndexReg()) {
+ stx_d(rd, source.base(), source.index());
+ } else {
+ st_d(rd, source.base(), source.offset());
+ }
+}
+
+void TurboAssembler::Fld_s(FPURegister fd, const MemOperand& src) {
+ MemOperand tmp = src;
+ AdjustBaseAndOffset(&tmp);
+ if (tmp.hasIndexReg()) {
+ fldx_s(fd, tmp.base(), tmp.index());
+ } else {
+ fld_s(fd, tmp.base(), tmp.offset());
+ }
+}
+
+void TurboAssembler::Fst_s(FPURegister fs, const MemOperand& src) {
+ MemOperand tmp = src;
+ AdjustBaseAndOffset(&tmp);
+ if (tmp.hasIndexReg()) {
+ fstx_s(fs, tmp.base(), tmp.index());
+ } else {
+ fst_s(fs, tmp.base(), tmp.offset());
+ }
+}
+
+void TurboAssembler::Fld_d(FPURegister fd, const MemOperand& src) {
+ MemOperand tmp = src;
+ AdjustBaseAndOffset(&tmp);
+ if (tmp.hasIndexReg()) {
+ fldx_d(fd, tmp.base(), tmp.index());
+ } else {
+ fld_d(fd, tmp.base(), tmp.offset());
+ }
+}
+
+void TurboAssembler::Fst_d(FPURegister fs, const MemOperand& src) {
+ MemOperand tmp = src;
+ AdjustBaseAndOffset(&tmp);
+ if (tmp.hasIndexReg()) {
+ fstx_d(fs, tmp.base(), tmp.index());
+ } else {
+ fst_d(fs, tmp.base(), tmp.offset());
+ }
+}
+
+void TurboAssembler::Ll_w(Register rd, const MemOperand& rj) {
+ DCHECK(!rj.hasIndexReg());
+ bool is_one_instruction = is_int14(rj.offset());
+ if (is_one_instruction) {
+ ll_w(rd, rj.base(), rj.offset());
+ } else {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, rj.offset());
+ add_d(scratch, scratch, rj.base());
+ ll_w(rd, scratch, 0);
+ }
+}
+
+void TurboAssembler::Ll_d(Register rd, const MemOperand& rj) {
+ DCHECK(!rj.hasIndexReg());
+ bool is_one_instruction = is_int14(rj.offset());
+ if (is_one_instruction) {
+ ll_d(rd, rj.base(), rj.offset());
+ } else {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, rj.offset());
+ add_d(scratch, scratch, rj.base());
+ ll_d(rd, scratch, 0);
+ }
+}
+
+void TurboAssembler::Sc_w(Register rd, const MemOperand& rj) {
+ DCHECK(!rj.hasIndexReg());
+ bool is_one_instruction = is_int14(rj.offset());
+ if (is_one_instruction) {
+ sc_w(rd, rj.base(), rj.offset());
+ } else {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, rj.offset());
+ add_d(scratch, scratch, rj.base());
+ sc_w(rd, scratch, 0);
+ }
+}
+
+void TurboAssembler::Sc_d(Register rd, const MemOperand& rj) {
+ DCHECK(!rj.hasIndexReg());
+ bool is_one_instruction = is_int14(rj.offset());
+ if (is_one_instruction) {
+ sc_d(rd, rj.base(), rj.offset());
+ } else {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, rj.offset());
+ add_d(scratch, scratch, rj.base());
+ sc_d(rd, scratch, 0);
+ }
+}
+
+void TurboAssembler::li(Register dst, Handle<HeapObject> value, LiFlags mode) {
+ // TODO(jgruber,v8:8887): Also consider a root-relative load when generating
+ // non-isolate-independent code. In many cases it might be cheaper than
+ // embedding the relocatable value.
+ if (root_array_available_ && options().isolate_independent_code) {
+ IndirectLoadConstant(dst, value);
+ return;
+ }
+ li(dst, Operand(value), mode);
+}
+
+void TurboAssembler::li(Register dst, ExternalReference value, LiFlags mode) {
+ // TODO(jgruber,v8:8887): Also consider a root-relative load when generating
+ // non-isolate-independent code. In many cases it might be cheaper than
+ // embedding the relocatable value.
+ if (root_array_available_ && options().isolate_independent_code) {
+ IndirectLoadExternalReference(dst, value);
+ return;
+ }
+ li(dst, Operand(value), mode);
+}
+
+void TurboAssembler::li(Register dst, const StringConstantBase* string,
+ LiFlags mode) {
+ li(dst, Operand::EmbeddedStringConstant(string), mode);
+}
+
+static inline int InstrCountForLiLower32Bit(int64_t value) {
+ if (is_int12(static_cast<int32_t>(value)) ||
+ is_uint12(static_cast<int32_t>(value)) || !(value & kImm12Mask)) {
+ return 1;
+ } else {
+ return 2;
+ }
+}
+
+void TurboAssembler::LiLower32BitHelper(Register rd, Operand j) {
+ if (is_int12(static_cast<int32_t>(j.immediate()))) {
+ addi_d(rd, zero_reg, j.immediate());
+ } else if (is_uint12(static_cast<int32_t>(j.immediate()))) {
+ ori(rd, zero_reg, j.immediate() & kImm12Mask);
+ } else {
+ lu12i_w(rd, j.immediate() >> 12 & 0xfffff);
+ if (j.immediate() & kImm12Mask) {
+ ori(rd, rd, j.immediate() & kImm12Mask);
+ }
+ }
+}
+
+int TurboAssembler::InstrCountForLi64Bit(int64_t value) {
+ if (is_int32(value)) {
+ return InstrCountForLiLower32Bit(value);
+ } else if (is_int52(value)) {
+ return InstrCountForLiLower32Bit(value) + 1;
+ } else if ((value & 0xffffffffL) == 0) {
+ // 32 LSBs (Least Significant Bits) all set to zero.
+ uint8_t tzc = base::bits::CountTrailingZeros32(value >> 32);
+ uint8_t lzc = base::bits::CountLeadingZeros32(value >> 32);
+ if (tzc >= 20) {
+ return 1;
+ } else if (tzc + lzc > 12) {
+ return 2;
+ } else {
+ return 3;
+ }
+ } else {
+ int64_t imm21 = (value >> 31) & 0x1fffffL;
+ if (imm21 != 0x1fffffL && imm21 != 0) {
+ return InstrCountForLiLower32Bit(value) + 2;
+ } else {
+ return InstrCountForLiLower32Bit(value) + 1;
+ }
+ }
+ UNREACHABLE();
+ return INT_MAX;
+}
+
+// All changes to if...else conditions here must be added to
+// InstrCountForLi64Bit as well.
+void TurboAssembler::li_optimized(Register rd, Operand j, LiFlags mode) {
+ DCHECK(!j.is_reg());
+ DCHECK(!MustUseReg(j.rmode()));
+ DCHECK(mode == OPTIMIZE_SIZE);
+ int64_t imm = j.immediate();
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ // Normal load of an immediate value which does not need Relocation Info.
+ if (is_int32(imm)) {
+ LiLower32BitHelper(rd, j);
+ } else if (is_int52(imm)) {
+ LiLower32BitHelper(rd, j);
+ lu32i_d(rd, imm >> 32 & 0xfffff);
+ } else if ((imm & 0xffffffffL) == 0) {
+ // 32 LSBs (Least Significant Bits) all set to zero.
+ uint8_t tzc = base::bits::CountTrailingZeros32(imm >> 32);
+ uint8_t lzc = base::bits::CountLeadingZeros32(imm >> 32);
+ if (tzc >= 20) {
+ lu52i_d(rd, zero_reg, imm >> 52 & kImm12Mask);
+ } else if (tzc + lzc > 12) {
+ int32_t mask = (1 << (32 - tzc)) - 1;
+ lu12i_w(rd, imm >> (tzc + 32) & mask);
+ slli_d(rd, rd, tzc + 20);
+ } else {
+ xor_(rd, rd, rd);
+ lu32i_d(rd, imm >> 32 & 0xfffff);
+ lu52i_d(rd, rd, imm >> 52 & kImm12Mask);
+ }
+ } else {
+ int64_t imm21 = (imm >> 31) & 0x1fffffL;
+ LiLower32BitHelper(rd, j);
+ if (imm21 != 0x1fffffL && imm21 != 0) lu32i_d(rd, imm >> 32 & 0xfffff);
+ lu52i_d(rd, rd, imm >> 52 & kImm12Mask);
+ }
+}
+
+void TurboAssembler::li(Register rd, Operand j, LiFlags mode) {
+ DCHECK(!j.is_reg());
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ if (!MustUseReg(j.rmode()) && mode == OPTIMIZE_SIZE) {
+ li_optimized(rd, j, mode);
+ } else if (IsOnHeap() && RelocInfo::IsEmbeddedObjectMode(j.rmode())) {
+ BlockGrowBufferScope block_growbuffer(this);
+ int offset = pc_offset();
+ Address address = j.immediate();
+ saved_handles_for_raw_object_ptr_.push_back(
+ std::make_pair(offset, address));
+ Handle<HeapObject> object(reinterpret_cast<Address*>(address));
+ int64_t immediate = object->ptr();
+ RecordRelocInfo(j.rmode(), immediate);
+ lu12i_w(rd, immediate >> 12 & 0xfffff);
+ ori(rd, rd, immediate & kImm12Mask);
+ lu32i_d(rd, immediate >> 32 & 0xfffff);
+ } else if (MustUseReg(j.rmode())) {
+ int64_t immediate;
+ if (j.IsHeapObjectRequest()) {
+ RequestHeapObject(j.heap_object_request());
+ immediate = 0;
+ } else {
+ immediate = j.immediate();
+ }
+
+ RecordRelocInfo(j.rmode(), immediate);
+ lu12i_w(rd, immediate >> 12 & 0xfffff);
+ ori(rd, rd, immediate & kImm12Mask);
+ lu32i_d(rd, immediate >> 32 & 0xfffff);
+ } else if (mode == ADDRESS_LOAD) {
+ // We always need the same number of instructions as we may need to patch
+ // this code to load another value which may need all 3 instructions.
+ lu12i_w(rd, j.immediate() >> 12 & 0xfffff);
+ ori(rd, rd, j.immediate() & kImm12Mask);
+ lu32i_d(rd, j.immediate() >> 32 & 0xfffff);
+ } else { // mode == CONSTANT_SIZE - always emit the same instruction
+ // sequence.
+ lu12i_w(rd, j.immediate() >> 12 & 0xfffff);
+ ori(rd, rd, j.immediate() & kImm12Mask);
+ lu32i_d(rd, j.immediate() >> 32 & 0xfffff);
+ lu52i_d(rd, rd, j.immediate() >> 52 & kImm12Mask);
+ }
+}
+
+void TurboAssembler::MultiPush(RegList regs) {
+ int16_t stack_offset = 0;
+
+ for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
+ if ((regs & (1 << i)) != 0) {
+ stack_offset -= kPointerSize;
+ St_d(ToRegister(i), MemOperand(sp, stack_offset));
+ }
+ }
+ addi_d(sp, sp, stack_offset);
+}
+
+void TurboAssembler::MultiPush(RegList regs1, RegList regs2) {
+ DCHECK_EQ(regs1 & regs2, 0);
+ int16_t stack_offset = 0;
+
+ for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
+ if ((regs1 & (1 << i)) != 0) {
+ stack_offset -= kPointerSize;
+ St_d(ToRegister(i), MemOperand(sp, stack_offset));
+ }
+ }
+ for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
+ if ((regs2 & (1 << i)) != 0) {
+ stack_offset -= kPointerSize;
+ St_d(ToRegister(i), MemOperand(sp, stack_offset));
+ }
+ }
+ addi_d(sp, sp, stack_offset);
+}
+
+void TurboAssembler::MultiPush(RegList regs1, RegList regs2, RegList regs3) {
+ DCHECK_EQ(regs1 & regs2, 0);
+ DCHECK_EQ(regs1 & regs3, 0);
+ DCHECK_EQ(regs2 & regs3, 0);
+ int16_t stack_offset = 0;
+
+ for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
+ if ((regs1 & (1 << i)) != 0) {
+ stack_offset -= kPointerSize;
+ St_d(ToRegister(i), MemOperand(sp, stack_offset));
+ }
+ }
+ for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
+ if ((regs2 & (1 << i)) != 0) {
+ stack_offset -= kPointerSize;
+ St_d(ToRegister(i), MemOperand(sp, stack_offset));
+ }
+ }
+ for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
+ if ((regs3 & (1 << i)) != 0) {
+ stack_offset -= kPointerSize;
+ St_d(ToRegister(i), MemOperand(sp, stack_offset));
+ }
+ }
+ addi_d(sp, sp, stack_offset);
+}
+
+void TurboAssembler::MultiPop(RegList regs) {
+ int16_t stack_offset = 0;
+
+ for (int16_t i = 0; i < kNumRegisters; i++) {
+ if ((regs & (1 << i)) != 0) {
+ Ld_d(ToRegister(i), MemOperand(sp, stack_offset));
+ stack_offset += kPointerSize;
+ }
+ }
+ addi_d(sp, sp, stack_offset);
+}
+
+void TurboAssembler::MultiPop(RegList regs1, RegList regs2) {
+ DCHECK_EQ(regs1 & regs2, 0);
+ int16_t stack_offset = 0;
+
+ for (int16_t i = 0; i < kNumRegisters; i++) {
+ if ((regs2 & (1 << i)) != 0) {
+ Ld_d(ToRegister(i), MemOperand(sp, stack_offset));
+ stack_offset += kPointerSize;
+ }
+ }
+ for (int16_t i = 0; i < kNumRegisters; i++) {
+ if ((regs1 & (1 << i)) != 0) {
+ Ld_d(ToRegister(i), MemOperand(sp, stack_offset));
+ stack_offset += kPointerSize;
+ }
+ }
+ addi_d(sp, sp, stack_offset);
+}
+
+void TurboAssembler::MultiPop(RegList regs1, RegList regs2, RegList regs3) {
+ DCHECK_EQ(regs1 & regs2, 0);
+ DCHECK_EQ(regs1 & regs3, 0);
+ DCHECK_EQ(regs2 & regs3, 0);
+ int16_t stack_offset = 0;
+
+ for (int16_t i = 0; i < kNumRegisters; i++) {
+ if ((regs3 & (1 << i)) != 0) {
+ Ld_d(ToRegister(i), MemOperand(sp, stack_offset));
+ stack_offset += kPointerSize;
+ }
+ }
+ for (int16_t i = 0; i < kNumRegisters; i++) {
+ if ((regs2 & (1 << i)) != 0) {
+ Ld_d(ToRegister(i), MemOperand(sp, stack_offset));
+ stack_offset += kPointerSize;
+ }
+ }
+ for (int16_t i = 0; i < kNumRegisters; i++) {
+ if ((regs1 & (1 << i)) != 0) {
+ Ld_d(ToRegister(i), MemOperand(sp, stack_offset));
+ stack_offset += kPointerSize;
+ }
+ }
+ addi_d(sp, sp, stack_offset);
+}
+
+void TurboAssembler::MultiPushFPU(RegList regs) {
+ int16_t num_to_push = base::bits::CountPopulation(regs);
+ int16_t stack_offset = num_to_push * kDoubleSize;
+
+ Sub_d(sp, sp, Operand(stack_offset));
+ for (int16_t i = kNumRegisters - 1; i >= 0; i--) {
+ if ((regs & (1 << i)) != 0) {
+ stack_offset -= kDoubleSize;
+ Fst_d(FPURegister::from_code(i), MemOperand(sp, stack_offset));
+ }
+ }
+}
+
+void TurboAssembler::MultiPopFPU(RegList regs) {
+ int16_t stack_offset = 0;
+
+ for (int16_t i = 0; i < kNumRegisters; i++) {
+ if ((regs & (1 << i)) != 0) {
+ Fld_d(FPURegister::from_code(i), MemOperand(sp, stack_offset));
+ stack_offset += kDoubleSize;
+ }
+ }
+ addi_d(sp, sp, stack_offset);
+}
+
+void TurboAssembler::Bstrpick_w(Register rk, Register rj, uint16_t msbw,
+ uint16_t lsbw) {
+ DCHECK_LT(lsbw, msbw);
+ DCHECK_LT(lsbw, 32);
+ DCHECK_LT(msbw, 32);
+ bstrpick_w(rk, rj, msbw, lsbw);
+}
+
+void TurboAssembler::Bstrpick_d(Register rk, Register rj, uint16_t msbw,
+ uint16_t lsbw) {
+ DCHECK_LT(lsbw, msbw);
+ DCHECK_LT(lsbw, 64);
+ DCHECK_LT(msbw, 64);
+ bstrpick_d(rk, rj, msbw, lsbw);
+}
+
+void TurboAssembler::Neg_s(FPURegister fd, FPURegister fj) { fneg_s(fd, fj); }
+
+void TurboAssembler::Neg_d(FPURegister fd, FPURegister fj) { fneg_d(fd, fj); }
+
+void TurboAssembler::Ffint_d_uw(FPURegister fd, FPURegister fj) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ movfr2gr_s(t8, fj);
+ Ffint_d_uw(fd, t8);
+}
+
+void TurboAssembler::Ffint_d_uw(FPURegister fd, Register rj) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ DCHECK(rj != t7);
+
+ Bstrpick_d(t7, rj, 31, 0);
+ movgr2fr_d(fd, t7);
+ ffint_d_l(fd, fd);
+}
+
+void TurboAssembler::Ffint_d_ul(FPURegister fd, FPURegister fj) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ movfr2gr_d(t8, fj);
+ Ffint_d_ul(fd, t8);
+}
+
+void TurboAssembler::Ffint_d_ul(FPURegister fd, Register rj) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ DCHECK(rj != t7);
+
+ Label msb_clear, conversion_done;
+
+ Branch(&msb_clear, ge, rj, Operand(zero_reg));
+
+ // Rj >= 2^63
+ andi(t7, rj, 1);
+ srli_d(rj, rj, 1);
+ or_(t7, t7, rj);
+ movgr2fr_d(fd, t7);
+ ffint_d_l(fd, fd);
+ fadd_d(fd, fd, fd);
+ Branch(&conversion_done);
+
+ bind(&msb_clear);
+ // Rs < 2^63, we can do simple conversion.
+ movgr2fr_d(fd, rj);
+ ffint_d_l(fd, fd);
+
+ bind(&conversion_done);
+}
+
+void TurboAssembler::Ffint_s_uw(FPURegister fd, FPURegister fj) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ movfr2gr_d(t8, fj);
+ Ffint_s_uw(fd, t8);
+}
+
+void TurboAssembler::Ffint_s_uw(FPURegister fd, Register rj) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ DCHECK(rj != t7);
+
+ bstrpick_d(t7, rj, 31, 0);
+ movgr2fr_d(fd, t7);
+ ffint_s_l(fd, fd);
+}
+
+void TurboAssembler::Ffint_s_ul(FPURegister fd, FPURegister fj) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ movfr2gr_d(t8, fj);
+ Ffint_s_ul(fd, t8);
+}
+
+void TurboAssembler::Ffint_s_ul(FPURegister fd, Register rj) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ DCHECK(rj != t7);
+
+ Label positive, conversion_done;
+
+ Branch(&positive, ge, rj, Operand(zero_reg));
+
+ // Rs >= 2^31.
+ andi(t7, rj, 1);
+ srli_d(rj, rj, 1);
+ or_(t7, t7, rj);
+ movgr2fr_d(fd, t7);
+ ffint_s_l(fd, fd);
+ fadd_s(fd, fd, fd);
+ Branch(&conversion_done);
+
+ bind(&positive);
+ // Rs < 2^31, we can do simple conversion.
+ movgr2fr_d(fd, rj);
+ ffint_s_l(fd, fd);
+
+ bind(&conversion_done);
+}
+
+void MacroAssembler::Ftintrne_l_d(FPURegister fd, FPURegister fj) {
+ ftintrne_l_d(fd, fj);
+}
+
+void MacroAssembler::Ftintrm_l_d(FPURegister fd, FPURegister fj) {
+ ftintrm_l_d(fd, fj);
+}
+
+void MacroAssembler::Ftintrp_l_d(FPURegister fd, FPURegister fj) {
+ ftintrp_l_d(fd, fj);
+}
+
+void MacroAssembler::Ftintrz_l_d(FPURegister fd, FPURegister fj) {
+ ftintrz_l_d(fd, fj);
+}
+
+void MacroAssembler::Ftintrz_l_ud(FPURegister fd, FPURegister fj,
+ FPURegister scratch) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ // Load to GPR.
+ movfr2gr_d(t8, fj);
+ // Reset sign bit.
+ {
+ UseScratchRegisterScope temps(this);
+ Register scratch1 = temps.Acquire();
+ li(scratch1, 0x7FFFFFFFFFFFFFFFl);
+ and_(t8, t8, scratch1);
+ }
+ movgr2fr_d(scratch, t8);
+ Ftintrz_l_d(fd, scratch);
+}
+
+void TurboAssembler::Ftintrz_uw_d(FPURegister fd, FPURegister fj,
+ FPURegister scratch) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Ftintrz_uw_d(t8, fj, scratch);
+ movgr2fr_w(fd, t8);
+}
+
+void TurboAssembler::Ftintrz_uw_s(FPURegister fd, FPURegister fj,
+ FPURegister scratch) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Ftintrz_uw_s(t8, fj, scratch);
+ movgr2fr_w(fd, t8);
+}
+
+void TurboAssembler::Ftintrz_ul_d(FPURegister fd, FPURegister fj,
+ FPURegister scratch, Register result) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Ftintrz_ul_d(t8, fj, scratch, result);
+ movgr2fr_d(fd, t8);
+}
+
+void TurboAssembler::Ftintrz_ul_s(FPURegister fd, FPURegister fj,
+ FPURegister scratch, Register result) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Ftintrz_ul_s(t8, fj, scratch, result);
+ movgr2fr_d(fd, t8);
+}
+
+void MacroAssembler::Ftintrz_w_d(FPURegister fd, FPURegister fj) {
+ ftintrz_w_d(fd, fj);
+}
+
+void MacroAssembler::Ftintrne_w_d(FPURegister fd, FPURegister fj) {
+ ftintrne_w_d(fd, fj);
+}
+
+void MacroAssembler::Ftintrm_w_d(FPURegister fd, FPURegister fj) {
+ ftintrm_w_d(fd, fj);
+}
+
+void MacroAssembler::Ftintrp_w_d(FPURegister fd, FPURegister fj) {
+ ftintrp_w_d(fd, fj);
+}
+
+void TurboAssembler::Ftintrz_uw_d(Register rd, FPURegister fj,
+ FPURegister scratch) {
+ DCHECK(fj != scratch);
+ DCHECK(rd != t7);
+
+ {
+ // Load 2^31 into scratch as its float representation.
+ UseScratchRegisterScope temps(this);
+ Register scratch1 = temps.Acquire();
+ li(scratch1, 0x41E00000);
+ movgr2fr_w(scratch, zero_reg);
+ movgr2frh_w(scratch, scratch1);
+ }
+ // Test if scratch > fd.
+ // If fd < 2^31 we can convert it normally.
+ Label simple_convert;
+ CompareF64(fj, scratch, CLT);
+ BranchTrueShortF(&simple_convert);
+
+ // First we subtract 2^31 from fd, then trunc it to rs
+ // and add 2^31 to rj.
+ fsub_d(scratch, fj, scratch);
+ ftintrz_w_d(scratch, scratch);
+ movfr2gr_s(rd, scratch);
+ Or(rd, rd, 1 << 31);
+
+ Label done;
+ Branch(&done);
+ // Simple conversion.
+ bind(&simple_convert);
+ ftintrz_w_d(scratch, fj);
+ movfr2gr_s(rd, scratch);
+
+ bind(&done);
+}
+
+void TurboAssembler::Ftintrz_uw_s(Register rd, FPURegister fj,
+ FPURegister scratch) {
+ DCHECK(fj != scratch);
+ DCHECK(rd != t7);
+ {
+ // Load 2^31 into scratch as its float representation.
+ UseScratchRegisterScope temps(this);
+ Register scratch1 = temps.Acquire();
+ li(scratch1, 0x4F000000);
+ movgr2fr_w(scratch, scratch1);
+ }
+ // Test if scratch > fs.
+ // If fs < 2^31 we can convert it normally.
+ Label simple_convert;
+ CompareF32(fj, scratch, CLT);
+ BranchTrueShortF(&simple_convert);
+
+ // First we subtract 2^31 from fs, then trunc it to rd
+ // and add 2^31 to rd.
+ fsub_s(scratch, fj, scratch);
+ ftintrz_w_s(scratch, scratch);
+ movfr2gr_s(rd, scratch);
+ Or(rd, rd, 1 << 31);
+
+ Label done;
+ Branch(&done);
+ // Simple conversion.
+ bind(&simple_convert);
+ ftintrz_w_s(scratch, fj);
+ movfr2gr_s(rd, scratch);
+
+ bind(&done);
+}
+
+void TurboAssembler::Ftintrz_ul_d(Register rd, FPURegister fj,
+ FPURegister scratch, Register result) {
+ DCHECK(fj != scratch);
+ DCHECK(result.is_valid() ? !AreAliased(rd, result, t7) : !AreAliased(rd, t7));
+
+ Label simple_convert, done, fail;
+ if (result.is_valid()) {
+ mov(result, zero_reg);
+ Move(scratch, -1.0);
+ // If fd =< -1 or unordered, then the conversion fails.
+ CompareF64(fj, scratch, CLE);
+ BranchTrueShortF(&fail);
+ CompareIsNanF64(fj, scratch);
+ BranchTrueShortF(&fail);
+ }
+
+ // Load 2^63 into scratch as its double representation.
+ li(t7, 0x43E0000000000000);
+ movgr2fr_d(scratch, t7);
+
+ // Test if scratch > fs.
+ // If fs < 2^63 we can convert it normally.
+ CompareF64(fj, scratch, CLT);
+ BranchTrueShortF(&simple_convert);
+
+ // First we subtract 2^63 from fs, then trunc it to rd
+ // and add 2^63 to rd.
+ fsub_d(scratch, fj, scratch);
+ ftintrz_l_d(scratch, scratch);
+ movfr2gr_d(rd, scratch);
+ Or(rd, rd, Operand(1UL << 63));
+ Branch(&done);
+
+ // Simple conversion.
+ bind(&simple_convert);
+ ftintrz_l_d(scratch, fj);
+ movfr2gr_d(rd, scratch);
+
+ bind(&done);
+ if (result.is_valid()) {
+ // Conversion is failed if the result is negative.
+ {
+ UseScratchRegisterScope temps(this);
+ Register scratch1 = temps.Acquire();
+ addi_d(scratch1, zero_reg, -1);
+ srli_d(scratch1, scratch1, 1); // Load 2^62.
+ movfr2gr_d(result, scratch);
+ xor_(result, result, scratch1);
+ }
+ Slt(result, zero_reg, result);
+ }
+
+ bind(&fail);
+}
+
+void TurboAssembler::Ftintrz_ul_s(Register rd, FPURegister fj,
+ FPURegister scratch, Register result) {
+ DCHECK(fj != scratch);
+ DCHECK(result.is_valid() ? !AreAliased(rd, result, t7) : !AreAliased(rd, t7));
+
+ Label simple_convert, done, fail;
+ if (result.is_valid()) {
+ mov(result, zero_reg);
+ Move(scratch, -1.0f);
+ // If fd =< -1 or unordered, then the conversion fails.
+ CompareF32(fj, scratch, CLE);
+ BranchTrueShortF(&fail);
+ CompareIsNanF32(fj, scratch);
+ BranchTrueShortF(&fail);
+ }
+
+ {
+ // Load 2^63 into scratch as its float representation.
+ UseScratchRegisterScope temps(this);
+ Register scratch1 = temps.Acquire();
+ li(scratch1, 0x5F000000);
+ movgr2fr_w(scratch, scratch1);
+ }
+
+ // Test if scratch > fs.
+ // If fs < 2^63 we can convert it normally.
+ CompareF32(fj, scratch, CLT);
+ BranchTrueShortF(&simple_convert);
+
+ // First we subtract 2^63 from fs, then trunc it to rd
+ // and add 2^63 to rd.
+ fsub_s(scratch, fj, scratch);
+ ftintrz_l_s(scratch, scratch);
+ movfr2gr_d(rd, scratch);
+ Or(rd, rd, Operand(1UL << 63));
+ Branch(&done);
+
+ // Simple conversion.
+ bind(&simple_convert);
+ ftintrz_l_s(scratch, fj);
+ movfr2gr_d(rd, scratch);
+
+ bind(&done);
+ if (result.is_valid()) {
+ // Conversion is failed if the result is negative or unordered.
+ {
+ UseScratchRegisterScope temps(this);
+ Register scratch1 = temps.Acquire();
+ addi_d(scratch1, zero_reg, -1);
+ srli_d(scratch1, scratch1, 1); // Load 2^62.
+ movfr2gr_d(result, scratch);
+ xor_(result, result, scratch1);
+ }
+ Slt(result, zero_reg, result);
+ }
+
+ bind(&fail);
+}
+
+void TurboAssembler::RoundDouble(FPURegister dst, FPURegister src,
+ FPURoundingMode mode) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register scratch = t8;
+ movfcsr2gr(scratch);
+ li(t7, Operand(mode));
+ movgr2fcsr(t7);
+ frint_d(dst, src);
+ movgr2fcsr(scratch);
+}
+
+void TurboAssembler::Floor_d(FPURegister dst, FPURegister src) {
+ RoundDouble(dst, src, mode_floor);
+}
+
+void TurboAssembler::Ceil_d(FPURegister dst, FPURegister src) {
+ RoundDouble(dst, src, mode_ceil);
+}
+
+void TurboAssembler::Trunc_d(FPURegister dst, FPURegister src) {
+ RoundDouble(dst, src, mode_trunc);
+}
+
+void TurboAssembler::Round_d(FPURegister dst, FPURegister src) {
+ RoundDouble(dst, src, mode_round);
+}
+
+void TurboAssembler::RoundFloat(FPURegister dst, FPURegister src,
+ FPURoundingMode mode) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register scratch = t8;
+ movfcsr2gr(scratch);
+ li(t7, Operand(mode));
+ movgr2fcsr(t7);
+ frint_s(dst, src);
+ movgr2fcsr(scratch);
+}
+
+void TurboAssembler::Floor_s(FPURegister dst, FPURegister src) {
+ RoundFloat(dst, src, mode_floor);
+}
+
+void TurboAssembler::Ceil_s(FPURegister dst, FPURegister src) {
+ RoundFloat(dst, src, mode_ceil);
+}
+
+void TurboAssembler::Trunc_s(FPURegister dst, FPURegister src) {
+ RoundFloat(dst, src, mode_trunc);
+}
+
+void TurboAssembler::Round_s(FPURegister dst, FPURegister src) {
+ RoundFloat(dst, src, mode_round);
+}
+
+void TurboAssembler::CompareF(FPURegister cmp1, FPURegister cmp2,
+ FPUCondition cc, CFRegister cd, bool f32) {
+ if (f32) {
+ fcmp_cond_s(cc, cmp1, cmp2, cd);
+ } else {
+ fcmp_cond_d(cc, cmp1, cmp2, cd);
+ }
+}
+
+void TurboAssembler::CompareIsNanF(FPURegister cmp1, FPURegister cmp2,
+ CFRegister cd, bool f32) {
+ CompareF(cmp1, cmp2, CUN, cd, f32);
+}
+
+void TurboAssembler::BranchTrueShortF(Label* target, CFRegister cj) {
+ bcnez(cj, target);
+}
+
+void TurboAssembler::BranchFalseShortF(Label* target, CFRegister cj) {
+ bceqz(cj, target);
+}
+
+void TurboAssembler::BranchTrueF(Label* target, CFRegister cj) {
+ // TODO(yuyin): can be optimzed
+ bool long_branch = target->is_bound()
+ ? !is_near(target, OffsetSize::kOffset21)
+ : is_trampoline_emitted();
+ if (long_branch) {
+ Label skip;
+ BranchFalseShortF(&skip, cj);
+ Branch(target);
+ bind(&skip);
+ } else {
+ BranchTrueShortF(target, cj);
+ }
+}
+
+void TurboAssembler::BranchFalseF(Label* target, CFRegister cj) {
+ bool long_branch = target->is_bound()
+ ? !is_near(target, OffsetSize::kOffset21)
+ : is_trampoline_emitted();
+ if (long_branch) {
+ Label skip;
+ BranchTrueShortF(&skip, cj);
+ Branch(target);
+ bind(&skip);
+ } else {
+ BranchFalseShortF(target, cj);
+ }
+}
+
+void TurboAssembler::FmoveLow(FPURegister dst, Register src_low) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ DCHECK(src_low != scratch);
+ movfrh2gr_s(scratch, dst);
+ movgr2fr_w(dst, src_low);
+ movgr2frh_w(dst, scratch);
+}
+
+void TurboAssembler::Move(FPURegister dst, uint32_t src) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, Operand(static_cast<int32_t>(src)));
+ movgr2fr_w(dst, scratch);
+}
+
+void TurboAssembler::Move(FPURegister dst, uint64_t src) {
+ // Handle special values first.
+ if (src == bit_cast<uint64_t>(0.0) && has_double_zero_reg_set_) {
+ fmov_d(dst, kDoubleRegZero);
+ } else if (src == bit_cast<uint64_t>(-0.0) && has_double_zero_reg_set_) {
+ Neg_d(dst, kDoubleRegZero);
+ } else {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, Operand(static_cast<int64_t>(src)));
+ movgr2fr_d(dst, scratch);
+ if (dst == kDoubleRegZero) has_double_zero_reg_set_ = true;
+ }
+}
+
+void TurboAssembler::Movz(Register rd, Register rj, Register rk) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ maskeqz(scratch, rj, rk);
+ masknez(rd, rd, rk);
+ or_(rd, rd, scratch);
+}
+
+void TurboAssembler::Movn(Register rd, Register rj, Register rk) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ masknez(scratch, rj, rk);
+ maskeqz(rd, rd, rk);
+ or_(rd, rd, scratch);
+}
+
+void TurboAssembler::LoadZeroOnCondition(Register rd, Register rj,
+ const Operand& rk, Condition cond) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ switch (cond) {
+ case cc_always:
+ mov(rd, zero_reg);
+ break;
+ case eq:
+ if (rj == zero_reg) {
+ if (rk.is_reg()) {
+ LoadZeroIfConditionZero(rd, rk.rm());
+ } else if (rk.immediate() == 0) {
+ mov(rd, zero_reg);
+ }
+ } else if (IsZero(rk)) {
+ LoadZeroIfConditionZero(rd, rj);
+ } else {
+ Sub_d(t7, rj, rk);
+ LoadZeroIfConditionZero(rd, t7);
+ }
+ break;
+ case ne:
+ if (rj == zero_reg) {
+ if (rk.is_reg()) {
+ LoadZeroIfConditionNotZero(rd, rk.rm());
+ } else if (rk.immediate() != 0) {
+ mov(rd, zero_reg);
+ }
+ } else if (IsZero(rk)) {
+ LoadZeroIfConditionNotZero(rd, rj);
+ } else {
+ Sub_d(t7, rj, rk);
+ LoadZeroIfConditionNotZero(rd, t7);
+ }
+ break;
+
+ // Signed comparison.
+ case greater:
+ Sgt(t7, rj, rk);
+ LoadZeroIfConditionNotZero(rd, t7);
+ break;
+ case greater_equal:
+ Sge(t7, rj, rk);
+ LoadZeroIfConditionNotZero(rd, t7);
+ // rj >= rk
+ break;
+ case less:
+ Slt(t7, rj, rk);
+ LoadZeroIfConditionNotZero(rd, t7);
+ // rj < rk
+ break;
+ case less_equal:
+ Sle(t7, rj, rk);
+ LoadZeroIfConditionNotZero(rd, t7);
+ // rj <= rk
+ break;
+
+ // Unsigned comparison.
+ case Ugreater:
+ Sgtu(t7, rj, rk);
+ LoadZeroIfConditionNotZero(rd, t7);
+ // rj > rk
+ break;
+
+ case Ugreater_equal:
+ Sgeu(t7, rj, rk);
+ LoadZeroIfConditionNotZero(rd, t7);
+ // rj >= rk
+ break;
+ case Uless:
+ Sltu(t7, rj, rk);
+ LoadZeroIfConditionNotZero(rd, t7);
+ // rj < rk
+ break;
+ case Uless_equal:
+ Sleu(t7, rj, rk);
+ LoadZeroIfConditionNotZero(rd, t7);
+ // rj <= rk
+ break;
+ default:
+ UNREACHABLE();
+ } // namespace internal
+} // namespace internal
+
+void TurboAssembler::LoadZeroIfConditionNotZero(Register dest,
+ Register condition) {
+ maskeqz(dest, dest, condition);
+}
+
+void TurboAssembler::LoadZeroIfConditionZero(Register dest,
+ Register condition) {
+ masknez(dest, dest, condition);
+}
+
+void TurboAssembler::LoadZeroIfFPUCondition(Register dest, CFRegister cc) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ movcf2gr(scratch, cc);
+ LoadZeroIfConditionNotZero(dest, scratch);
+}
+
+void TurboAssembler::LoadZeroIfNotFPUCondition(Register dest, CFRegister cc) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ movcf2gr(scratch, cc);
+ LoadZeroIfConditionZero(dest, scratch);
+}
+
+void TurboAssembler::Clz_w(Register rd, Register rj) { clz_w(rd, rj); }
+
+void TurboAssembler::Clz_d(Register rd, Register rj) { clz_d(rd, rj); }
+
+void TurboAssembler::Ctz_w(Register rd, Register rj) { ctz_w(rd, rj); }
+
+void TurboAssembler::Ctz_d(Register rd, Register rj) { ctz_d(rd, rj); }
+
+// TODO(LOONG_dev): Optimize like arm64, use simd instruction
+void TurboAssembler::Popcnt_w(Register rd, Register rj) {
+ // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
+ //
+ // A generalization of the best bit counting method to integers of
+ // bit-widths up to 128 (parameterized by type T) is this:
+ //
+ // v = v - ((v >> 1) & (T)~(T)0/3); // temp
+ // v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3); // temp
+ // v = (v + (v >> 4)) & (T)~(T)0/255*15; // temp
+ // c = (T)(v * ((T)~(T)0/255)) >> (sizeof(T) - 1) * BITS_PER_BYTE; //count
+ //
+ // There are algorithms which are faster in the cases where very few
+ // bits are set but the algorithm here attempts to minimize the total
+ // number of instructions executed even when a large number of bits
+ // are set.
+ int32_t B0 = 0x55555555; // (T)~(T)0/3
+ int32_t B1 = 0x33333333; // (T)~(T)0/15*3
+ int32_t B2 = 0x0F0F0F0F; // (T)~(T)0/255*15
+ int32_t value = 0x01010101; // (T)~(T)0/255
+ uint32_t shift = 24; // (sizeof(T) - 1) * BITS_PER_BYTE
+
+ UseScratchRegisterScope temps(this);
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register scratch = temps.Acquire();
+ Register scratch2 = t8;
+ srli_w(scratch, rj, 1);
+ li(scratch2, B0);
+ And(scratch, scratch, scratch2);
+ Sub_w(scratch, rj, scratch);
+ li(scratch2, B1);
+ And(rd, scratch, scratch2);
+ srli_w(scratch, scratch, 2);
+ And(scratch, scratch, scratch2);
+ Add_w(scratch, rd, scratch);
+ srli_w(rd, scratch, 4);
+ Add_w(rd, rd, scratch);
+ li(scratch2, B2);
+ And(rd, rd, scratch2);
+ li(scratch, value);
+ Mul_w(rd, rd, scratch);
+ srli_w(rd, rd, shift);
+}
+
+void TurboAssembler::Popcnt_d(Register rd, Register rj) {
+ int64_t B0 = 0x5555555555555555l; // (T)~(T)0/3
+ int64_t B1 = 0x3333333333333333l; // (T)~(T)0/15*3
+ int64_t B2 = 0x0F0F0F0F0F0F0F0Fl; // (T)~(T)0/255*15
+ int64_t value = 0x0101010101010101l; // (T)~(T)0/255
+ uint32_t shift = 56; // (sizeof(T) - 1) * BITS_PER_BYTE
+
+ UseScratchRegisterScope temps(this);
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register scratch = temps.Acquire();
+ Register scratch2 = t8;
+ srli_d(scratch, rj, 1);
+ li(scratch2, B0);
+ And(scratch, scratch, scratch2);
+ Sub_d(scratch, rj, scratch);
+ li(scratch2, B1);
+ And(rd, scratch, scratch2);
+ srli_d(scratch, scratch, 2);
+ And(scratch, scratch, scratch2);
+ Add_d(scratch, rd, scratch);
+ srli_d(rd, scratch, 4);
+ Add_d(rd, rd, scratch);
+ li(scratch2, B2);
+ And(rd, rd, scratch2);
+ li(scratch, value);
+ Mul_d(rd, rd, scratch);
+ srli_d(rd, rd, shift);
+}
+
+void TurboAssembler::ExtractBits(Register dest, Register source, Register pos,
+ int size, bool sign_extend) {
+ sra_d(dest, source, pos);
+ bstrpick_d(dest, dest, size - 1, 0);
+ if (sign_extend) {
+ switch (size) {
+ case 8:
+ ext_w_b(dest, dest);
+ break;
+ case 16:
+ ext_w_h(dest, dest);
+ break;
+ case 32:
+ // sign-extend word
+ slli_w(dest, dest, 0);
+ break;
+ default:
+ UNREACHABLE();
+ }
+ }
+}
+
+void TurboAssembler::InsertBits(Register dest, Register source, Register pos,
+ int size) {
+ Rotr_d(dest, dest, pos);
+ bstrins_d(dest, source, size - 1, 0);
+ {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ Sub_d(scratch, zero_reg, pos);
+ Rotr_d(dest, dest, scratch);
+ }
+}
+
+void TurboAssembler::TryInlineTruncateDoubleToI(Register result,
+ DoubleRegister double_input,
+ Label* done) {
+ DoubleRegister single_scratch = kScratchDoubleReg.low();
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ Register scratch2 = temps.Acquire();
+
+ ftintrz_l_d(single_scratch, double_input);
+ movfr2gr_d(scratch2, single_scratch);
+ li(scratch, 1L << 63);
+ Xor(scratch, scratch, scratch2);
+ rotri_d(scratch2, scratch, 1);
+ movfr2gr_s(result, single_scratch);
+ Branch(done, ne, scratch, Operand(scratch2));
+
+ // Truncate NaN to zero.
+ CompareIsNanF64(double_input, double_input);
+ Move(result, zero_reg);
+ bcnez(FCC0, done);
+}
+
+void TurboAssembler::TruncateDoubleToI(Isolate* isolate, Zone* zone,
+ Register result,
+ DoubleRegister double_input,
+ StubCallMode stub_mode) {
+ Label done;
+
+ TryInlineTruncateDoubleToI(result, double_input, &done);
+
+ // If we fell through then inline version didn't succeed - call stub instead.
+ Sub_d(sp, sp,
+ Operand(kDoubleSize + kSystemPointerSize)); // Put input on stack.
+ St_d(ra, MemOperand(sp, kSystemPointerSize));
+ Fst_d(double_input, MemOperand(sp, 0));
+
+#if V8_ENABLE_WEBASSEMBLY
+ if (stub_mode == StubCallMode::kCallWasmRuntimeStub) {
+ Call(wasm::WasmCode::kDoubleToI, RelocInfo::WASM_STUB_CALL);
+#else
+ // For balance.
+ if (false) {
+#endif // V8_ENABLE_WEBASSEMBLY
+ } else {
+ Call(BUILTIN_CODE(isolate, DoubleToI), RelocInfo::CODE_TARGET);
+ }
+
+ Pop(ra, result);
+ bind(&done);
+}
+
+// BRANCH_ARGS_CHECK checks that conditional jump arguments are correct.
+#define BRANCH_ARGS_CHECK(cond, rj, rk) \
+ DCHECK((cond == cc_always && rj == zero_reg && rk.rm() == zero_reg) || \
+ (cond != cc_always && (rj != zero_reg || rk.rm() != zero_reg)))
+
+void TurboAssembler::Branch(Label* L, bool need_link) {
+ int offset = GetOffset(L, OffsetSize::kOffset26);
+ if (need_link) {
+ bl(offset);
+ } else {
+ b(offset);
+ }
+}
+
+void TurboAssembler::Branch(Label* L, Condition cond, Register rj,
+ const Operand& rk, bool need_link) {
+ if (L->is_bound()) {
+ BRANCH_ARGS_CHECK(cond, rj, rk);
+ if (!BranchShortOrFallback(L, cond, rj, rk, need_link)) {
+ if (cond != cc_always) {
+ Label skip;
+ Condition neg_cond = NegateCondition(cond);
+ BranchShort(&skip, neg_cond, rj, rk, need_link);
+ Branch(L, need_link);
+ bind(&skip);
+ } else {
+ Branch(L);
+ }
+ }
+ } else {
+ if (is_trampoline_emitted()) {
+ if (cond != cc_always) {
+ Label skip;
+ Condition neg_cond = NegateCondition(cond);
+ BranchShort(&skip, neg_cond, rj, rk, need_link);
+ Branch(L, need_link);
+ bind(&skip);
+ } else {
+ Branch(L);
+ }
+ } else {
+ BranchShort(L, cond, rj, rk, need_link);
+ }
+ }
+}
+
+void TurboAssembler::Branch(Label* L, Condition cond, Register rj,
+ RootIndex index) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ LoadRoot(scratch, index);
+ Branch(L, cond, rj, Operand(scratch));
+}
+
+int32_t TurboAssembler::GetOffset(Label* L, OffsetSize bits) {
+ return branch_offset_helper(L, bits) >> 2;
+}
+
+Register TurboAssembler::GetRkAsRegisterHelper(const Operand& rk,
+ Register scratch) {
+ Register r2 = no_reg;
+ if (rk.is_reg()) {
+ r2 = rk.rm();
+ } else {
+ r2 = scratch;
+ li(r2, rk);
+ }
+
+ return r2;
+}
+
+bool TurboAssembler::BranchShortOrFallback(Label* L, Condition cond,
+ Register rj, const Operand& rk,
+ bool need_link) {
+ UseScratchRegisterScope temps(this);
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Register scratch = temps.hasAvailable() ? temps.Acquire() : t8;
+ DCHECK_NE(rj, zero_reg);
+
+ // Be careful to always use shifted_branch_offset only just before the
+ // branch instruction, as the location will be remember for patching the
+ // target.
+ {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ int offset = 0;
+ switch (cond) {
+ case cc_always:
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false;
+ offset = GetOffset(L, OffsetSize::kOffset26);
+ if (need_link) {
+ bl(offset);
+ } else {
+ b(offset);
+ }
+ break;
+ case eq:
+ if (rk.is_reg() && rj.code() == rk.rm().code()) {
+ // beq is used here to make the code patchable. Otherwise b should
+ // be used which has no condition field so is not patchable.
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false;
+ if (need_link) pcaddi(ra, 2);
+ offset = GetOffset(L, OffsetSize::kOffset16);
+ beq(rj, rj, offset);
+ } else if (IsZero(rk)) {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset21)) return false;
+ if (need_link) pcaddi(ra, 2);
+ offset = GetOffset(L, OffsetSize::kOffset21);
+ beqz(rj, offset);
+ } else {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false;
+ if (need_link) pcaddi(ra, 2);
+ // We don't want any other register but scratch clobbered.
+ Register sc = GetRkAsRegisterHelper(rk, scratch);
+ offset = GetOffset(L, OffsetSize::kOffset16);
+ beq(rj, sc, offset);
+ }
+ break;
+ case ne:
+ if (rk.is_reg() && rj.code() == rk.rm().code()) {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false;
+ if (need_link) pcaddi(ra, 2);
+ // bne is used here to make the code patchable. Otherwise we
+ // should not generate any instruction.
+ offset = GetOffset(L, OffsetSize::kOffset16);
+ bne(rj, rj, offset);
+ } else if (IsZero(rk)) {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset21)) return false;
+ if (need_link) pcaddi(ra, 2);
+ offset = GetOffset(L, OffsetSize::kOffset21);
+ bnez(rj, offset);
+ } else {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false;
+ if (need_link) pcaddi(ra, 2);
+ // We don't want any other register but scratch clobbered.
+ Register sc = GetRkAsRegisterHelper(rk, scratch);
+ offset = GetOffset(L, OffsetSize::kOffset16);
+ bne(rj, sc, offset);
+ }
+ break;
+
+ // Signed comparison.
+ case greater:
+ // rj > rk
+ if (rk.is_reg() && rj.code() == rk.rm().code()) {
+ // No code needs to be emitted.
+ } else if (IsZero(rk)) {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false;
+ if (need_link) pcaddi(ra, 2);
+ offset = GetOffset(L, OffsetSize::kOffset16);
+ blt(zero_reg, rj, offset);
+ } else {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false;
+ if (need_link) pcaddi(ra, 2);
+ Register sc = GetRkAsRegisterHelper(rk, scratch);
+ DCHECK(rj != sc);
+ offset = GetOffset(L, OffsetSize::kOffset16);
+ blt(sc, rj, offset);
+ }
+ break;
+ case greater_equal:
+ // rj >= rk
+ if (rk.is_reg() && rj.code() == rk.rm().code()) {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false;
+ if (need_link) pcaddi(ra, 2);
+ offset = GetOffset(L, OffsetSize::kOffset26);
+ b(offset);
+ } else if (IsZero(rk)) {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false;
+ if (need_link) pcaddi(ra, 2);
+ offset = GetOffset(L, OffsetSize::kOffset16);
+ bge(rj, zero_reg, offset);
+ } else {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false;
+ if (need_link) pcaddi(ra, 2);
+ Register sc = GetRkAsRegisterHelper(rk, scratch);
+ DCHECK(rj != sc);
+ offset = GetOffset(L, OffsetSize::kOffset16);
+ bge(rj, sc, offset);
+ }
+ break;
+ case less:
+ // rj < rk
+ if (rk.is_reg() && rj.code() == rk.rm().code()) {
+ // No code needs to be emitted.
+ } else if (IsZero(rk)) {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false;
+ if (need_link) pcaddi(ra, 2);
+ offset = GetOffset(L, OffsetSize::kOffset16);
+ blt(rj, zero_reg, offset);
+ } else {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false;
+ if (need_link) pcaddi(ra, 2);
+ Register sc = GetRkAsRegisterHelper(rk, scratch);
+ DCHECK(rj != sc);
+ offset = GetOffset(L, OffsetSize::kOffset16);
+ blt(rj, sc, offset);
+ }
+ break;
+ case less_equal:
+ // rj <= rk
+ if (rk.is_reg() && rj.code() == rk.rm().code()) {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false;
+ if (need_link) pcaddi(ra, 2);
+ offset = GetOffset(L, OffsetSize::kOffset26);
+ b(offset);
+ } else if (IsZero(rk)) {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false;
+ if (need_link) pcaddi(ra, 2);
+ offset = GetOffset(L, OffsetSize::kOffset16);
+ bge(zero_reg, rj, offset);
+ } else {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false;
+ if (need_link) pcaddi(ra, 2);
+ Register sc = GetRkAsRegisterHelper(rk, scratch);
+ DCHECK(rj != sc);
+ offset = GetOffset(L, OffsetSize::kOffset16);
+ bge(sc, rj, offset);
+ }
+ break;
+
+ // Unsigned comparison.
+ case Ugreater:
+ // rj > rk
+ if (rk.is_reg() && rj.code() == rk.rm().code()) {
+ // No code needs to be emitted.
+ } else if (IsZero(rk)) {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false;
+ if (need_link) pcaddi(ra, 2);
+ offset = GetOffset(L, OffsetSize::kOffset26);
+ bnez(rj, offset);
+ } else {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false;
+ if (need_link) pcaddi(ra, 2);
+ Register sc = GetRkAsRegisterHelper(rk, scratch);
+ DCHECK(rj != sc);
+ offset = GetOffset(L, OffsetSize::kOffset16);
+ bltu(sc, rj, offset);
+ }
+ break;
+ case Ugreater_equal:
+ // rj >= rk
+ if (rk.is_reg() && rj.code() == rk.rm().code()) {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false;
+ if (need_link) pcaddi(ra, 2);
+ offset = GetOffset(L, OffsetSize::kOffset26);
+ b(offset);
+ } else if (IsZero(rk)) {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false;
+ if (need_link) pcaddi(ra, 2);
+ offset = GetOffset(L, OffsetSize::kOffset26);
+ b(offset);
+ } else {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false;
+ if (need_link) pcaddi(ra, 2);
+ Register sc = GetRkAsRegisterHelper(rk, scratch);
+ DCHECK(rj != sc);
+ offset = GetOffset(L, OffsetSize::kOffset16);
+ bgeu(rj, sc, offset);
+ }
+ break;
+ case Uless:
+ // rj < rk
+ if (rk.is_reg() && rj.code() == rk.rm().code()) {
+ // No code needs to be emitted.
+ } else if (IsZero(rk)) {
+ // No code needs to be emitted.
+ } else {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false;
+ if (need_link) pcaddi(ra, 2);
+ Register sc = GetRkAsRegisterHelper(rk, scratch);
+ DCHECK(rj != sc);
+ offset = GetOffset(L, OffsetSize::kOffset16);
+ bltu(rj, sc, offset);
+ }
+ break;
+ case Uless_equal:
+ // rj <= rk
+ if (rk.is_reg() && rj.code() == rk.rm().code()) {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false;
+ if (need_link) pcaddi(ra, 2);
+ offset = GetOffset(L, OffsetSize::kOffset26);
+ b(offset);
+ } else if (IsZero(rk)) {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset21)) return false;
+ if (need_link) pcaddi(ra, 2);
+ beqz(rj, L);
+ } else {
+ if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false;
+ if (need_link) pcaddi(ra, 2);
+ Register sc = GetRkAsRegisterHelper(rk, scratch);
+ DCHECK(rj != sc);
+ offset = GetOffset(L, OffsetSize::kOffset16);
+ bgeu(sc, rj, offset);
+ }
+ break;
+ default:
+ UNREACHABLE();
+ }
+ }
+ return true;
+}
+
+void TurboAssembler::BranchShort(Label* L, Condition cond, Register rj,
+ const Operand& rk, bool need_link) {
+ BRANCH_ARGS_CHECK(cond, rj, rk);
+ bool result = BranchShortOrFallback(L, cond, rj, rk, need_link);
+ DCHECK(result);
+ USE(result);
+}
+
+void TurboAssembler::LoadFromConstantsTable(Register destination,
+ int constant_index) {
+ DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kBuiltinsConstantsTable));
+ LoadRoot(destination, RootIndex::kBuiltinsConstantsTable);
+ Ld_d(destination,
+ FieldMemOperand(destination, FixedArray::kHeaderSize +
+ constant_index * kPointerSize));
+}
+
+void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) {
+ Ld_d(destination, MemOperand(kRootRegister, offset));
+}
+
+void TurboAssembler::LoadRootRegisterOffset(Register destination,
+ intptr_t offset) {
+ if (offset == 0) {
+ Move(destination, kRootRegister);
+ } else {
+ Add_d(destination, kRootRegister, Operand(offset));
+ }
+}
+
+void TurboAssembler::Jump(Register target, Condition cond, Register rj,
+ const Operand& rk) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ if (cond == cc_always) {
+ jirl(zero_reg, target, 0);
+ } else {
+ BRANCH_ARGS_CHECK(cond, rj, rk);
+ Label skip;
+ Branch(&skip, NegateCondition(cond), rj, rk);
+ jirl(zero_reg, target, 0);
+ bind(&skip);
+ }
+}
+
+void TurboAssembler::Jump(intptr_t target, RelocInfo::Mode rmode,
+ Condition cond, Register rj, const Operand& rk) {
+ Label skip;
+ if (cond != cc_always) {
+ Branch(&skip, NegateCondition(cond), rj, rk);
+ }
+ {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ li(t7, Operand(target, rmode));
+ jirl(zero_reg, t7, 0);
+ bind(&skip);
+ }
+}
+
+void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond,
+ Register rj, const Operand& rk) {
+ DCHECK(!RelocInfo::IsCodeTarget(rmode));
+ Jump(static_cast<intptr_t>(target), rmode, cond, rj, rk);
+}
+
+void TurboAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode,
+ Condition cond, Register rj, const Operand& rk) {
+ DCHECK(RelocInfo::IsCodeTarget(rmode));
+
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Label skip;
+ if (cond != cc_always) {
+ BranchShort(&skip, NegateCondition(cond), rj, rk);
+ }
+
+ Builtin builtin = Builtin::kNoBuiltinId;
+ bool target_is_isolate_independent_builtin =
+ isolate()->builtins()->IsBuiltinHandle(code, &builtin) &&
+ Builtins::IsIsolateIndependent(builtin);
+ if (target_is_isolate_independent_builtin &&
+ options().use_pc_relative_calls_and_jumps) {
+ int32_t code_target_index = AddCodeTarget(code);
+ RecordRelocInfo(RelocInfo::RELATIVE_CODE_TARGET);
+ b(code_target_index);
+ bind(&skip);
+ return;
+ } else if (root_array_available_ && options().isolate_independent_code) {
+ UNREACHABLE();
+ /*int offset = code->builtin_index() * kSystemPointerSize +
+ IsolateData::builtin_entry_table_offset();
+ Ld_d(t7, MemOperand(kRootRegister, offset));
+ Jump(t7, cc_always, rj, rk);
+ bind(&skip);
+ return;*/
+ } else if (options().inline_offheap_trampolines &&
+ target_is_isolate_independent_builtin) {
+ // Inline the trampoline.
+ RecordCommentForOffHeapTrampoline(builtin);
+ li(t7, Operand(BuiltinEntry(builtin), RelocInfo::OFF_HEAP_TARGET));
+ Jump(t7, cc_always, rj, rk);
+ bind(&skip);
+ return;
+ }
+
+ Jump(static_cast<intptr_t>(code.address()), rmode, cc_always, rj, rk);
+ bind(&skip);
+}
+
+void TurboAssembler::Jump(const ExternalReference& reference) {
+ li(t7, reference);
+ Jump(t7);
+}
+
+// Note: To call gcc-compiled C code on loonarch, you must call through t[0-8].
+void TurboAssembler::Call(Register target, Condition cond, Register rj,
+ const Operand& rk) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ if (cond == cc_always) {
+ jirl(ra, target, 0);
+ } else {
+ BRANCH_ARGS_CHECK(cond, rj, rk);
+ Label skip;
+ Branch(&skip, NegateCondition(cond), rj, rk);
+ jirl(ra, target, 0);
+ bind(&skip);
+ }
+ set_last_call_pc_(pc_);
+}
+
+void MacroAssembler::JumpIfIsInRange(Register value, unsigned lower_limit,
+ unsigned higher_limit,
+ Label* on_in_range) {
+ if (lower_limit != 0) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ Sub_d(scratch, value, Operand(lower_limit));
+ Branch(on_in_range, ls, scratch, Operand(higher_limit - lower_limit));
+ } else {
+ Branch(on_in_range, ls, value, Operand(higher_limit - lower_limit));
+ }
+}
+
+void TurboAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond,
+ Register rj, const Operand& rk) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Label skip;
+ if (cond != cc_always) {
+ BranchShort(&skip, NegateCondition(cond), rj, rk);
+ }
+ intptr_t offset_diff = target - pc_offset();
+ if (RelocInfo::IsNone(rmode) && is_int28(offset_diff)) {
+ bl(offset_diff >> 2);
+ } else if (RelocInfo::IsNone(rmode) && is_int38(offset_diff)) {
+ pcaddu18i(t7, static_cast<int32_t>(offset_diff) >> 18);
+ jirl(ra, t7, (offset_diff & 0x3ffff) >> 2);
+ } else {
+ li(t7, Operand(static_cast<int64_t>(target), rmode), ADDRESS_LOAD);
+ Call(t7, cc_always, rj, rk);
+ }
+ bind(&skip);
+}
+
+void TurboAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode,
+ Condition cond, Register rj, const Operand& rk) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Label skip;
+ if (cond != cc_always) {
+ BranchShort(&skip, NegateCondition(cond), rj, rk);
+ }
+
+ Builtin builtin = Builtin::kNoBuiltinId;
+ bool target_is_isolate_independent_builtin =
+ isolate()->builtins()->IsBuiltinHandle(code, &builtin) &&
+ Builtins::IsIsolateIndependent(builtin);
+
+ if (target_is_isolate_independent_builtin &&
+ options().use_pc_relative_calls_and_jumps) {
+ int32_t code_target_index = AddCodeTarget(code);
+ RecordCommentForOffHeapTrampoline(builtin);
+ RecordRelocInfo(RelocInfo::RELATIVE_CODE_TARGET);
+ bl(code_target_index);
+ set_last_call_pc_(pc_);
+ bind(&skip);
+ RecordComment("]");
+ return;
+ } else if (root_array_available_ && options().isolate_independent_code) {
+ UNREACHABLE();
+ /*int offset = code->builtin_index() * kSystemPointerSize +
+ IsolateData::builtin_entry_table_offset();
+ LoadRootRelative(t7, offset);
+ Call(t7, cond, rj, rk);
+ bind(&skip);
+ return;*/
+ } else if (options().inline_offheap_trampolines &&
+ target_is_isolate_independent_builtin) {
+ // Inline the trampoline.
+ RecordCommentForOffHeapTrampoline(builtin);
+ li(t7, Operand(BuiltinEntry(builtin), RelocInfo::OFF_HEAP_TARGET));
+ Call(t7, cond, rj, rk);
+ bind(&skip);
+ return;
+ }
+
+ DCHECK(RelocInfo::IsCodeTarget(rmode));
+ DCHECK(code->IsExecutable());
+ Call(code.address(), rmode, cc_always, rj, rk);
+ bind(&skip);
+}
+
+void TurboAssembler::LoadEntryFromBuiltinIndex(Register builtin_index) {
+ STATIC_ASSERT(kSystemPointerSize == 8);
+ STATIC_ASSERT(kSmiTagSize == 1);
+ STATIC_ASSERT(kSmiTag == 0);
+
+ // The builtin_index register contains the builtin index as a Smi.
+ SmiUntag(builtin_index, builtin_index);
+ Alsl_d(builtin_index, builtin_index, kRootRegister, kSystemPointerSizeLog2,
+ t7);
+ Ld_d(builtin_index,
+ MemOperand(builtin_index, IsolateData::builtin_entry_table_offset()));
+}
+
+void TurboAssembler::LoadEntryFromBuiltin(Builtin builtin,
+ Register destination) {
+ Ld_d(destination, EntryFromBuiltinAsOperand(builtin));
+}
+MemOperand TurboAssembler::EntryFromBuiltinAsOperand(Builtin builtin) {
+ DCHECK(root_array_available());
+ return MemOperand(kRootRegister,
+ IsolateData::BuiltinEntrySlotOffset(builtin));
+}
+
+void TurboAssembler::CallBuiltinByIndex(Register builtin_index) {
+ LoadEntryFromBuiltinIndex(builtin_index);
+ Call(builtin_index);
+}
+void TurboAssembler::CallBuiltin(Builtin builtin) {
+ RecordCommentForOffHeapTrampoline(builtin);
+ Call(BuiltinEntry(builtin), RelocInfo::OFF_HEAP_TARGET);
+ if (FLAG_code_comments) RecordComment("]");
+}
+
+void TurboAssembler::PatchAndJump(Address target) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ pcaddi(scratch, 4);
+ Ld_d(t7, MemOperand(scratch, 0));
+ jirl(zero_reg, t7, 0);
+ nop();
+ DCHECK_EQ(reinterpret_cast<uint64_t>(pc_) % 8, 0);
+ *reinterpret_cast<uint64_t*>(pc_) = target; // pc_ should be align.
+ pc_ += sizeof(uint64_t);
+}
+
+void TurboAssembler::StoreReturnAddressAndCall(Register target) {
+ // This generates the final instruction sequence for calls to C functions
+ // once an exit frame has been constructed.
+ //
+ // Note that this assumes the caller code (i.e. the Code object currently
+ // being generated) is immovable or that the callee function cannot trigger
+ // GC, since the callee function will return to it.
+
+ Assembler::BlockTrampolinePoolScope block_trampoline_pool(this);
+ static constexpr int kNumInstructionsToJump = 2;
+ Label find_ra;
+ // Adjust the value in ra to point to the correct return location, 2nd
+ // instruction past the real call into C code (the jirl)), and push it.
+ // This is the return address of the exit frame.
+ pcaddi(ra, kNumInstructionsToJump + 1);
+ bind(&find_ra);
+
+ // This spot was reserved in EnterExitFrame.
+ St_d(ra, MemOperand(sp, 0));
+ // Stack is still aligned.
+
+ // TODO(LOONG_dev): can be jirl target? a0 -- a7?
+ jirl(zero_reg, target, 0);
+ // Make sure the stored 'ra' points to this position.
+ DCHECK_EQ(kNumInstructionsToJump, InstructionsGeneratedSince(&find_ra));
+}
+
+void TurboAssembler::Ret(Condition cond, Register rj, const Operand& rk) {
+ Jump(ra, cond, rj, rk);
+}
+
+void TurboAssembler::Drop(int count, Condition cond, Register reg,
+ const Operand& op) {
+ if (count <= 0) {
+ return;
+ }
+
+ Label skip;
+
+ if (cond != al) {
+ Branch(&skip, NegateCondition(cond), reg, op);
+ }
+
+ Add_d(sp, sp, Operand(count * kPointerSize));
+
+ if (cond != al) {
+ bind(&skip);
+ }
+}
+
+void MacroAssembler::Swap(Register reg1, Register reg2, Register scratch) {
+ if (scratch == no_reg) {
+ Xor(reg1, reg1, Operand(reg2));
+ Xor(reg2, reg2, Operand(reg1));
+ Xor(reg1, reg1, Operand(reg2));
+ } else {
+ mov(scratch, reg1);
+ mov(reg1, reg2);
+ mov(reg2, scratch);
+ }
+}
+
+void TurboAssembler::Call(Label* target) { Branch(target, true); }
+
+void TurboAssembler::Push(Smi smi) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, Operand(smi));
+ Push(scratch);
+}
+
+void TurboAssembler::Push(Handle<HeapObject> handle) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, Operand(handle));
+ Push(scratch);
+}
+
+void TurboAssembler::PushArray(Register array, Register size, Register scratch,
+ Register scratch2, PushArrayOrder order) {
+ DCHECK(!AreAliased(array, size, scratch, scratch2));
+ Label loop, entry;
+ if (order == PushArrayOrder::kReverse) {
+ mov(scratch, zero_reg);
+ jmp(&entry);
+ bind(&loop);
+ Alsl_d(scratch2, scratch, array, kPointerSizeLog2, t7);
+ Ld_d(scratch2, MemOperand(scratch2, 0));
+ Push(scratch2);
+ Add_d(scratch, scratch, Operand(1));
+ bind(&entry);
+ Branch(&loop, less, scratch, Operand(size));
+ } else {
+ mov(scratch, size);
+ jmp(&entry);
+ bind(&loop);
+ Alsl_d(scratch2, scratch, array, kPointerSizeLog2, t7);
+ Ld_d(scratch2, MemOperand(scratch2, 0));
+ Push(scratch2);
+ bind(&entry);
+ Add_d(scratch, scratch, Operand(-1));
+ Branch(&loop, greater_equal, scratch, Operand(zero_reg));
+ }
+}
+
+// ---------------------------------------------------------------------------
+// Exception handling.
+
+void MacroAssembler::PushStackHandler() {
+ // Adjust this code if not the case.
+ STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kPointerSize);
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
+
+ Push(Smi::zero()); // Padding.
+
+ // Link the current handler as the next handler.
+ li(t2,
+ ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate()));
+ Ld_d(t1, MemOperand(t2, 0));
+ Push(t1);
+
+ // Set this new handler as the current one.
+ St_d(sp, MemOperand(t2, 0));
+}
+
+void MacroAssembler::PopStackHandler() {
+ STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
+ Pop(a1);
+ Add_d(sp, sp,
+ Operand(
+ static_cast<int64_t>(StackHandlerConstants::kSize - kPointerSize)));
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch,
+ ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate()));
+ St_d(a1, MemOperand(scratch, 0));
+}
+
+void TurboAssembler::FPUCanonicalizeNaN(const DoubleRegister dst,
+ const DoubleRegister src) {
+ fsub_d(dst, src, kDoubleRegZero);
+}
+
+// -----------------------------------------------------------------------------
+// JavaScript invokes.
+
+void MacroAssembler::LoadStackLimit(Register destination, StackLimitKind kind) {
+ DCHECK(root_array_available());
+ Isolate* isolate = this->isolate();
+ ExternalReference limit =
+ kind == StackLimitKind::kRealStackLimit
+ ? ExternalReference::address_of_real_jslimit(isolate)
+ : ExternalReference::address_of_jslimit(isolate);
+ DCHECK(TurboAssembler::IsAddressableThroughRootRegister(isolate, limit));
+
+ intptr_t offset =
+ TurboAssembler::RootRegisterOffsetForExternalReference(isolate, limit);
+ CHECK(is_int32(offset));
+ Ld_d(destination, MemOperand(kRootRegister, static_cast<int32_t>(offset)));
+}
+
+void MacroAssembler::StackOverflowCheck(Register num_args, Register scratch1,
+ Register scratch2,
+ Label* stack_overflow) {
+ // Check the stack for overflow. We are not trying to catch
+ // interruptions (e.g. debug break and preemption) here, so the "real stack
+ // limit" is checked.
+
+ LoadStackLimit(scratch1, StackLimitKind::kRealStackLimit);
+ // Make scratch1 the space we have left. The stack might already be overflowed
+ // here which will cause scratch1 to become negative.
+ sub_d(scratch1, sp, scratch1);
+ // Check if the arguments will overflow the stack.
+ slli_d(scratch2, num_args, kPointerSizeLog2);
+ // Signed comparison.
+ Branch(stack_overflow, le, scratch1, Operand(scratch2));
+}
+
+void MacroAssembler::InvokePrologue(Register expected_parameter_count,
+ Register actual_parameter_count,
+ Label* done, InvokeType type) {
+ Label regular_invoke;
+
+ // a0: actual arguments count
+ // a1: function (passed through to callee)
+ // a2: expected arguments count
+
+ DCHECK_EQ(actual_parameter_count, a0);
+ DCHECK_EQ(expected_parameter_count, a2);
+
+ // If the expected parameter count is equal to the adaptor sentinel, no need
+ // to push undefined value as arguments.
+ Branch(&regular_invoke, eq, expected_parameter_count,
+ Operand(kDontAdaptArgumentsSentinel));
+
+ // If overapplication or if the actual argument count is equal to the
+ // formal parameter count, no need to push extra undefined values.
+ sub_d(expected_parameter_count, expected_parameter_count,
+ actual_parameter_count);
+ Branch(&regular_invoke, le, expected_parameter_count, Operand(zero_reg));
+
+ Label stack_overflow;
+ StackOverflowCheck(expected_parameter_count, t0, t1, &stack_overflow);
+ // Underapplication. Move the arguments already in the stack, including the
+ // receiver and the return address.
+ {
+ Label copy;
+ Register src = a6, dest = a7;
+ mov(src, sp);
+ slli_d(t0, expected_parameter_count, kSystemPointerSizeLog2);
+ Sub_d(sp, sp, Operand(t0));
+ // Update stack pointer.
+ mov(dest, sp);
+ mov(t0, actual_parameter_count);
+ bind(&copy);
+ Ld_d(t1, MemOperand(src, 0));
+ St_d(t1, MemOperand(dest, 0));
+ Sub_d(t0, t0, Operand(1));
+ Add_d(src, src, Operand(kSystemPointerSize));
+ Add_d(dest, dest, Operand(kSystemPointerSize));
+ Branch(&copy, ge, t0, Operand(zero_reg));
+ }
+
+ // Fill remaining expected arguments with undefined values.
+ LoadRoot(t0, RootIndex::kUndefinedValue);
+ {
+ Label loop;
+ bind(&loop);
+ St_d(t0, MemOperand(a7, 0));
+ Sub_d(expected_parameter_count, expected_parameter_count, Operand(1));
+ Add_d(a7, a7, Operand(kSystemPointerSize));
+ Branch(&loop, gt, expected_parameter_count, Operand(zero_reg));
+ }
+ b(&regular_invoke);
+
+ bind(&stack_overflow);
+ {
+ FrameScope frame(
+ this, has_frame() ? StackFrame::NO_FRAME_TYPE : StackFrame::INTERNAL);
+ CallRuntime(Runtime::kThrowStackOverflow);
+ break_(0xCC);
+ }
+
+ bind(&regular_invoke);
+}
+
+void MacroAssembler::CallDebugOnFunctionCall(Register fun, Register new_target,
+ Register expected_parameter_count,
+ Register actual_parameter_count) {
+ // Load receiver to pass it later to DebugOnFunctionCall hook.
+ LoadReceiver(t0, actual_parameter_count);
+ FrameScope frame(
+ this, has_frame() ? StackFrame::NO_FRAME_TYPE : StackFrame::INTERNAL);
+
+ SmiTag(expected_parameter_count);
+ Push(expected_parameter_count);
+
+ SmiTag(actual_parameter_count);
+ Push(actual_parameter_count);
+
+ if (new_target.is_valid()) {
+ Push(new_target);
+ }
+ // TODO(LOONG_dev): MultiPush/Pop
+ Push(fun);
+ Push(fun);
+ Push(t0);
+ CallRuntime(Runtime::kDebugOnFunctionCall);
+ Pop(fun);
+ if (new_target.is_valid()) {
+ Pop(new_target);
+ }
+
+ Pop(actual_parameter_count);
+ SmiUntag(actual_parameter_count);
+
+ Pop(expected_parameter_count);
+ SmiUntag(expected_parameter_count);
+}
+
+void MacroAssembler::InvokeFunctionCode(Register function, Register new_target,
+ Register expected_parameter_count,
+ Register actual_parameter_count,
+ InvokeType type) {
+ // You can't call a function without a valid frame.
+ DCHECK_IMPLIES(type == InvokeType::kCall, has_frame());
+ DCHECK_EQ(function, a1);
+ DCHECK_IMPLIES(new_target.is_valid(), new_target == a3);
+
+ // On function call, call into the debugger if necessary.
+ Label debug_hook, continue_after_hook;
+ {
+ li(t0, ExternalReference::debug_hook_on_function_call_address(isolate()));
+ Ld_b(t0, MemOperand(t0, 0));
+ BranchShort(&debug_hook, ne, t0, Operand(zero_reg));
+ }
+ bind(&continue_after_hook);
+
+ // Clear the new.target register if not given.
+ if (!new_target.is_valid()) {
+ LoadRoot(a3, RootIndex::kUndefinedValue);
+ }
+
+ Label done;
+ InvokePrologue(expected_parameter_count, actual_parameter_count, &done, type);
+ // We call indirectly through the code field in the function to
+ // allow recompilation to take effect without changing any of the
+ // call sites.
+ Register code = kJavaScriptCallCodeStartRegister;
+ Ld_d(code, FieldMemOperand(function, JSFunction::kCodeOffset));
+ switch (type) {
+ case InvokeType::kCall:
+ CallCodeObject(code);
+ break;
+ case InvokeType::kJump:
+ JumpCodeObject(code);
+ break;
+ }
+
+ Branch(&done);
+
+ // Deferred debug hook.
+ bind(&debug_hook);
+ CallDebugOnFunctionCall(function, new_target, expected_parameter_count,
+ actual_parameter_count);
+ Branch(&continue_after_hook);
+
+ // Continue here if InvokePrologue does handle the invocation due to
+ // mismatched parameter counts.
+ bind(&done);
+}
+
+void MacroAssembler::InvokeFunctionWithNewTarget(
+ Register function, Register new_target, Register actual_parameter_count,
+ InvokeType type) {
+ // You can't call a function without a valid frame.
+ DCHECK_IMPLIES(type == InvokeType::kCall, has_frame());
+
+ // Contract with called JS functions requires that function is passed in a1.
+ DCHECK_EQ(function, a1);
+ Register expected_parameter_count = a2;
+ Register temp_reg = t0;
+ Ld_d(temp_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
+ Ld_d(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
+ // The argument count is stored as uint16_t
+ Ld_hu(expected_parameter_count,
+ FieldMemOperand(temp_reg,
+ SharedFunctionInfo::kFormalParameterCountOffset));
+
+ InvokeFunctionCode(a1, new_target, expected_parameter_count,
+ actual_parameter_count, type);
+}
+
+void MacroAssembler::InvokeFunction(Register function,
+ Register expected_parameter_count,
+ Register actual_parameter_count,
+ InvokeType type) {
+ // You can't call a function without a valid frame.
+ DCHECK_IMPLIES(type == InvokeType::kCall, has_frame());
+
+ // Contract with called JS functions requires that function is passed in a1.
+ DCHECK_EQ(function, a1);
+
+ // Get the function and setup the context.
+ Ld_d(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
+
+ InvokeFunctionCode(a1, no_reg, expected_parameter_count,
+ actual_parameter_count, type);
+}
+
+// ---------------------------------------------------------------------------
+// Support functions.
+
+void MacroAssembler::GetObjectType(Register object, Register map,
+ Register type_reg) {
+ LoadMap(map, object);
+ Ld_hu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
+}
+
+void MacroAssembler::GetInstanceTypeRange(Register map, Register type_reg,
+ InstanceType lower_limit,
+ Register range) {
+ Ld_hu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
+ Sub_d(range, type_reg, Operand(lower_limit));
+}
+
+// -----------------------------------------------------------------------------
+// Runtime calls.
+
+void TurboAssembler::AddOverflow_d(Register dst, Register left,
+ const Operand& right, Register overflow) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ Register scratch2 = temps.Acquire();
+ Register right_reg = no_reg;
+ if (!right.is_reg()) {
+ li(scratch, Operand(right));
+ right_reg = scratch;
+ } else {
+ right_reg = right.rm();
+ }
+
+ DCHECK(left != scratch2 && right_reg != scratch2 && dst != scratch2 &&
+ overflow != scratch2);
+ DCHECK(overflow != left && overflow != right_reg);
+
+ if (dst == left || dst == right_reg) {
+ add_d(scratch2, left, right_reg);
+ xor_(overflow, scratch2, left);
+ xor_(scratch, scratch2, right_reg);
+ and_(overflow, overflow, scratch);
+ mov(dst, scratch2);
+ } else {
+ add_d(dst, left, right_reg);
+ xor_(overflow, dst, left);
+ xor_(scratch, dst, right_reg);
+ and_(overflow, overflow, scratch);
+ }
+}
+
+void TurboAssembler::SubOverflow_d(Register dst, Register left,
+ const Operand& right, Register overflow) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ Register scratch2 = temps.Acquire();
+ Register right_reg = no_reg;
+ if (!right.is_reg()) {
+ li(scratch, Operand(right));
+ right_reg = scratch;
+ } else {
+ right_reg = right.rm();
+ }
+
+ DCHECK(left != scratch2 && right_reg != scratch2 && dst != scratch2 &&
+ overflow != scratch2);
+ DCHECK(overflow != left && overflow != right_reg);
+
+ if (dst == left || dst == right_reg) {
+ Sub_d(scratch2, left, right_reg);
+ xor_(overflow, left, scratch2);
+ xor_(scratch, left, right_reg);
+ and_(overflow, overflow, scratch);
+ mov(dst, scratch2);
+ } else {
+ sub_d(dst, left, right_reg);
+ xor_(overflow, left, dst);
+ xor_(scratch, left, right_reg);
+ and_(overflow, overflow, scratch);
+ }
+}
+
+void TurboAssembler::MulOverflow_w(Register dst, Register left,
+ const Operand& right, Register overflow) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ Register scratch2 = temps.Acquire();
+ Register right_reg = no_reg;
+ if (!right.is_reg()) {
+ li(scratch, Operand(right));
+ right_reg = scratch;
+ } else {
+ right_reg = right.rm();
+ }
+
+ DCHECK(left != scratch2 && right_reg != scratch2 && dst != scratch2 &&
+ overflow != scratch2);
+ DCHECK(overflow != left && overflow != right_reg);
+
+ if (dst == left || dst == right_reg) {
+ Mul_w(scratch2, left, right_reg);
+ Mulh_w(overflow, left, right_reg);
+ mov(dst, scratch2);
+ } else {
+ Mul_w(dst, left, right_reg);
+ Mulh_w(overflow, left, right_reg);
+ }
+
+ srai_d(scratch2, dst, 32);
+ xor_(overflow, overflow, scratch2);
+}
+
+void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments,
+ SaveFPRegsMode save_doubles) {
+ // All parameters are on the stack. v0 has the return value after call.
+
+ // If the expected number of arguments of the runtime function is
+ // constant, we check that the actual number of arguments match the
+ // expectation.
+ CHECK(f->nargs < 0 || f->nargs == num_arguments);
+
+ // TODO(1236192): Most runtime routines don't need the number of
+ // arguments passed in because it is constant. At some point we
+ // should remove this need and make the runtime routine entry code
+ // smarter.
+ PrepareCEntryArgs(num_arguments);
+ PrepareCEntryFunction(ExternalReference::Create(f));
+ Handle<Code> code =
+ CodeFactory::CEntry(isolate(), f->result_size, save_doubles);
+ Call(code, RelocInfo::CODE_TARGET);
+}
+
+void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) {
+ const Runtime::Function* function = Runtime::FunctionForId(fid);
+ DCHECK_EQ(1, function->result_size);
+ if (function->nargs >= 0) {
+ PrepareCEntryArgs(function->nargs);
+ }
+ JumpToExternalReference(ExternalReference::Create(fid));
+}
+
+void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin,
+ bool builtin_exit_frame) {
+ PrepareCEntryFunction(builtin);
+ Handle<Code> code = CodeFactory::CEntry(isolate(), 1, SaveFPRegsMode::kIgnore,
+ ArgvMode::kStack, builtin_exit_frame);
+ Jump(code, RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg));
+}
+
+void MacroAssembler::JumpToInstructionStream(Address entry) {
+ li(kOffHeapTrampolineRegister, Operand(entry, RelocInfo::OFF_HEAP_TARGET));
+ Jump(kOffHeapTrampolineRegister);
+}
+
+void MacroAssembler::LoadWeakValue(Register out, Register in,
+ Label* target_if_cleared) {
+ Branch(target_if_cleared, eq, in, Operand(kClearedWeakHeapObjectLower32));
+
+ And(out, in, Operand(~kWeakHeapObjectMask));
+}
+
+void MacroAssembler::EmitIncrementCounter(StatsCounter* counter, int value,
+ Register scratch1,
+ Register scratch2) {
+ DCHECK_GT(value, 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ // This operation has to be exactly 32-bit wide in case the external
+ // reference table redirects the counter to a uint32_t dummy_stats_counter_
+ // field.
+ li(scratch2, ExternalReference::Create(counter));
+ Ld_w(scratch1, MemOperand(scratch2, 0));
+ Add_w(scratch1, scratch1, Operand(value));
+ St_w(scratch1, MemOperand(scratch2, 0));
+ }
+}
+
+void MacroAssembler::EmitDecrementCounter(StatsCounter* counter, int value,
+ Register scratch1,
+ Register scratch2) {
+ DCHECK_GT(value, 0);
+ if (FLAG_native_code_counters && counter->Enabled()) {
+ // This operation has to be exactly 32-bit wide in case the external
+ // reference table redirects the counter to a uint32_t dummy_stats_counter_
+ // field.
+ li(scratch2, ExternalReference::Create(counter));
+ Ld_w(scratch1, MemOperand(scratch2, 0));
+ Sub_w(scratch1, scratch1, Operand(value));
+ St_w(scratch1, MemOperand(scratch2, 0));
+ }
+}
+
+// -----------------------------------------------------------------------------
+// Debugging.
+
+void TurboAssembler::Trap() { stop(); }
+void TurboAssembler::DebugBreak() { stop(); }
+
+void TurboAssembler::Assert(Condition cc, AbortReason reason, Register rs,
+ Operand rk) {
+ if (FLAG_debug_code) Check(cc, reason, rs, rk);
+}
+
+void TurboAssembler::Check(Condition cc, AbortReason reason, Register rj,
+ Operand rk) {
+ Label L;
+ Branch(&L, cc, rj, rk);
+ Abort(reason);
+ // Will not return here.
+ bind(&L);
+}
+
+void TurboAssembler::Abort(AbortReason reason) {
+ Label abort_start;
+ bind(&abort_start);
+ if (FLAG_code_comments) {
+ const char* msg = GetAbortReason(reason);
+ RecordComment("Abort message: ");
+ RecordComment(msg);
+ }
+
+ // Avoid emitting call to builtin if requested.
+ if (trap_on_abort()) {
+ stop();
+ return;
+ }
+
+ if (should_abort_hard()) {
+ // We don't care if we constructed a frame. Just pretend we did.
+ FrameScope assume_frame(this, StackFrame::NO_FRAME_TYPE);
+ PrepareCallCFunction(0, a0);
+ li(a0, Operand(static_cast<int>(reason)));
+ CallCFunction(ExternalReference::abort_with_reason(), 1);
+ return;
+ }
+
+ Move(a0, Smi::FromInt(static_cast<int>(reason)));
+
+ // Disable stub call restrictions to always allow calls to abort.
+ if (!has_frame()) {
+ // We don't actually want to generate a pile of code for this, so just
+ // claim there is a stack frame, without generating one.
+ FrameScope scope(this, StackFrame::NO_FRAME_TYPE);
+ Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET);
+ } else {
+ Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET);
+ }
+ // Will not return here.
+ if (is_trampoline_pool_blocked()) {
+ // If the calling code cares about the exact number of
+ // instructions generated, we insert padding here to keep the size
+ // of the Abort macro constant.
+ // Currently in debug mode with debug_code enabled the number of
+ // generated instructions is 10, so we use this as a maximum value.
+ static const int kExpectedAbortInstructions = 10;
+ int abort_instructions = InstructionsGeneratedSince(&abort_start);
+ DCHECK_LE(abort_instructions, kExpectedAbortInstructions);
+ while (abort_instructions++ < kExpectedAbortInstructions) {
+ nop();
+ }
+ }
+}
+
+void TurboAssembler::LoadMap(Register destination, Register object) {
+ Ld_d(destination, FieldMemOperand(object, HeapObject::kMapOffset));
+}
+
+void MacroAssembler::LoadNativeContextSlot(Register dst, int index) {
+ LoadMap(dst, cp);
+ Ld_d(dst, FieldMemOperand(
+ dst, Map::kConstructorOrBackPointerOrNativeContextOffset));
+ Ld_d(dst, MemOperand(dst, Context::SlotOffset(index)));
+}
+
+void TurboAssembler::StubPrologue(StackFrame::Type type) {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, Operand(StackFrame::TypeToMarker(type)));
+ PushCommonFrame(scratch);
+}
+
+void TurboAssembler::Prologue() { PushStandardFrame(a1); }
+
+void TurboAssembler::EnterFrame(StackFrame::Type type) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Push(ra, fp);
+ Move(fp, sp);
+ if (!StackFrame::IsJavaScript(type)) {
+ li(kScratchReg, Operand(StackFrame::TypeToMarker(type)));
+ Push(kScratchReg);
+ }
+#if V8_ENABLE_WEBASSEMBLY
+ if (type == StackFrame::WASM) Push(kWasmInstanceRegister);
+#endif // V8_ENABLE_WEBASSEMBLY
+}
+
+void TurboAssembler::LeaveFrame(StackFrame::Type type) {
+ addi_d(sp, fp, 2 * kPointerSize);
+ Ld_d(ra, MemOperand(fp, 1 * kPointerSize));
+ Ld_d(fp, MemOperand(fp, 0 * kPointerSize));
+}
+
+void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space,
+ StackFrame::Type frame_type) {
+ DCHECK(frame_type == StackFrame::EXIT ||
+ frame_type == StackFrame::BUILTIN_EXIT);
+
+ // Set up the frame structure on the stack.
+ STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement);
+ STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset);
+ STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset);
+
+ // This is how the stack will look:
+ // fp + 2 (==kCallerSPDisplacement) - old stack's end
+ // [fp + 1 (==kCallerPCOffset)] - saved old ra
+ // [fp + 0 (==kCallerFPOffset)] - saved old fp
+ // [fp - 1 StackFrame::EXIT Smi
+ // [fp - 2 (==kSPOffset)] - sp of the called function
+ // fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the
+ // new stack (will contain saved ra)
+
+ // Save registers and reserve room for saved entry sp.
+ addi_d(sp, sp, -2 * kPointerSize - ExitFrameConstants::kFixedFrameSizeFromFp);
+ St_d(ra, MemOperand(sp, 3 * kPointerSize));
+ St_d(fp, MemOperand(sp, 2 * kPointerSize));
+ {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ li(scratch, Operand(StackFrame::TypeToMarker(frame_type)));
+ St_d(scratch, MemOperand(sp, 1 * kPointerSize));
+ }
+ // Set up new frame pointer.
+ addi_d(fp, sp, ExitFrameConstants::kFixedFrameSizeFromFp);
+
+ if (FLAG_debug_code) {
+ St_d(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset));
+ }
+
+ {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ // Save the frame pointer and the context in top.
+ li(t8, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
+ isolate()));
+ St_d(fp, MemOperand(t8, 0));
+ li(t8,
+ ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()));
+ St_d(cp, MemOperand(t8, 0));
+ }
+
+ const int frame_alignment = MacroAssembler::ActivationFrameAlignment();
+ if (save_doubles) {
+ // The stack is already aligned to 0 modulo 8 for stores with sdc1.
+ int kNumOfSavedRegisters = FPURegister::kNumRegisters / 2;
+ int space = kNumOfSavedRegisters * kDoubleSize;
+ Sub_d(sp, sp, Operand(space));
+ // Remember: we only need to save every 2nd double FPU value.
+ for (int i = 0; i < kNumOfSavedRegisters; i++) {
+ FPURegister reg = FPURegister::from_code(2 * i);
+ Fst_d(reg, MemOperand(sp, i * kDoubleSize));
+ }
+ }
+
+ // Reserve place for the return address, stack space and an optional slot
+ // (used by DirectCEntry to hold the return value if a struct is
+ // returned) and align the frame preparing for calling the runtime function.
+ DCHECK_GE(stack_space, 0);
+ Sub_d(sp, sp, Operand((stack_space + 2) * kPointerSize));
+ if (frame_alignment > 0) {
+ DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
+ And(sp, sp, Operand(-frame_alignment)); // Align stack.
+ }
+
+ // Set the exit frame sp value to point just before the return address
+ // location.
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ addi_d(scratch, sp, kPointerSize);
+ St_d(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
+}
+
+void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count,
+ bool do_return,
+ bool argument_count_is_length) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ // Optionally restore all double registers.
+ if (save_doubles) {
+ // Remember: we only need to restore every 2nd double FPU value.
+ int kNumOfSavedRegisters = FPURegister::kNumRegisters / 2;
+ Sub_d(t8, fp,
+ Operand(ExitFrameConstants::kFixedFrameSizeFromFp +
+ kNumOfSavedRegisters * kDoubleSize));
+ for (int i = 0; i < kNumOfSavedRegisters; i++) {
+ FPURegister reg = FPURegister::from_code(2 * i);
+ Fld_d(reg, MemOperand(t8, i * kDoubleSize));
+ }
+ }
+
+ // Clear top frame.
+ li(t8,
+ ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate()));
+ St_d(zero_reg, MemOperand(t8, 0));
+
+ // Restore current context from top and clear it in debug mode.
+ li(t8,
+ ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()));
+ Ld_d(cp, MemOperand(t8, 0));
+
+ if (FLAG_debug_code) {
+ UseScratchRegisterScope temp(this);
+ Register scratch = temp.Acquire();
+ li(scratch, Operand(Context::kInvalidContext));
+ St_d(scratch, MemOperand(t8, 0));
+ }
+
+ // Pop the arguments, restore registers, and return.
+ mov(sp, fp); // Respect ABI stack constraint.
+ Ld_d(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset));
+ Ld_d(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset));
+
+ if (argument_count.is_valid()) {
+ if (argument_count_is_length) {
+ add_d(sp, sp, argument_count);
+ } else {
+ Alsl_d(sp, argument_count, sp, kPointerSizeLog2, t8);
+ }
+ }
+
+ addi_d(sp, sp, 2 * kPointerSize);
+ if (do_return) {
+ Ret();
+ }
+}
+
+int TurboAssembler::ActivationFrameAlignment() {
+#if V8_HOST_ARCH_LOONG64
+ // Running on the real platform. Use the alignment as mandated by the local
+ // environment.
+ // Note: This will break if we ever start generating snapshots on one LOONG64
+ // platform for another LOONG64 platform with a different alignment.
+ return base::OS::ActivationFrameAlignment();
+#else // V8_HOST_ARCH_LOONG64
+ // If we are using the simulator then we should always align to the expected
+ // alignment. As the simulator is used to generate snapshots we do not know
+ // if the target platform will need alignment, so this is controlled from a
+ // flag.
+ return FLAG_sim_stack_alignment;
+#endif // V8_HOST_ARCH_LOONG64
+}
+
+void MacroAssembler::AssertStackIsAligned() {
+ if (FLAG_debug_code) {
+ const int frame_alignment = ActivationFrameAlignment();
+ const int frame_alignment_mask = frame_alignment - 1;
+
+ if (frame_alignment > kPointerSize) {
+ Label alignment_as_expected;
+ DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
+ {
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ andi(scratch, sp, frame_alignment_mask);
+ Branch(&alignment_as_expected, eq, scratch, Operand(zero_reg));
+ }
+ // Don't use Check here, as it will call Runtime_Abort re-entering here.
+ stop();
+ bind(&alignment_as_expected);
+ }
+ }
+}
+
+void TurboAssembler::SmiUntag(Register dst, const MemOperand& src) {
+ if (SmiValuesAre32Bits()) {
+ Ld_w(dst, MemOperand(src.base(), SmiWordOffset(src.offset())));
+ } else {
+ DCHECK(SmiValuesAre31Bits());
+ Ld_w(dst, src);
+ SmiUntag(dst);
+ }
+}
+
+void TurboAssembler::JumpIfSmi(Register value, Label* smi_label) {
+ DCHECK_EQ(0, kSmiTag);
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ andi(scratch, value, kSmiTagMask);
+ Branch(smi_label, eq, scratch, Operand(zero_reg));
+}
+
+void MacroAssembler::JumpIfNotSmi(Register value, Label* not_smi_label) {
+ DCHECK_EQ(0, kSmiTag);
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ andi(scratch, value, kSmiTagMask);
+ Branch(not_smi_label, ne, scratch, Operand(zero_reg));
+}
+
+void TurboAssembler::AssertNotSmi(Register object) {
+ if (FLAG_debug_code) {
+ STATIC_ASSERT(kSmiTag == 0);
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ andi(scratch, object, kSmiTagMask);
+ Check(ne, AbortReason::kOperandIsASmi, scratch, Operand(zero_reg));
+ }
+}
+
+void TurboAssembler::AssertSmi(Register object) {
+ if (FLAG_debug_code) {
+ STATIC_ASSERT(kSmiTag == 0);
+ UseScratchRegisterScope temps(this);
+ Register scratch = temps.Acquire();
+ andi(scratch, object, kSmiTagMask);
+ Check(eq, AbortReason::kOperandIsASmi, scratch, Operand(zero_reg));
+ }
+}
+
+void MacroAssembler::AssertConstructor(Register object) {
+ if (FLAG_debug_code) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ STATIC_ASSERT(kSmiTag == 0);
+ SmiTst(object, t8);
+ Check(ne, AbortReason::kOperandIsASmiAndNotAConstructor, t8,
+ Operand(zero_reg));
+
+ LoadMap(t8, object);
+ Ld_bu(t8, FieldMemOperand(t8, Map::kBitFieldOffset));
+ And(t8, t8, Operand(Map::Bits1::IsConstructorBit::kMask));
+ Check(ne, AbortReason::kOperandIsNotAConstructor, t8, Operand(zero_reg));
+ }
+}
+
+void MacroAssembler::AssertFunction(Register object) {
+ if (FLAG_debug_code) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ STATIC_ASSERT(kSmiTag == 0);
+ SmiTst(object, t8);
+ Check(ne, AbortReason::kOperandIsASmiAndNotAFunction, t8,
+ Operand(zero_reg));
+ Push(object);
+ LoadMap(object, object);
+ GetInstanceTypeRange(object, object, FIRST_JS_FUNCTION_TYPE, t8);
+ Check(ls, AbortReason::kOperandIsNotAFunction, t8,
+ Operand(LAST_JS_FUNCTION_TYPE - FIRST_JS_FUNCTION_TYPE));
+ Pop(object);
+ }
+}
+
+void MacroAssembler::AssertBoundFunction(Register object) {
+ if (FLAG_debug_code) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ STATIC_ASSERT(kSmiTag == 0);
+ SmiTst(object, t8);
+ Check(ne, AbortReason::kOperandIsASmiAndNotABoundFunction, t8,
+ Operand(zero_reg));
+ GetObjectType(object, t8, t8);
+ Check(eq, AbortReason::kOperandIsNotABoundFunction, t8,
+ Operand(JS_BOUND_FUNCTION_TYPE));
+ }
+}
+
+void MacroAssembler::AssertGeneratorObject(Register object) {
+ if (!FLAG_debug_code) return;
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ STATIC_ASSERT(kSmiTag == 0);
+ SmiTst(object, t8);
+ Check(ne, AbortReason::kOperandIsASmiAndNotAGeneratorObject, t8,
+ Operand(zero_reg));
+
+ GetObjectType(object, t8, t8);
+
+ Label done;
+
+ // Check if JSGeneratorObject
+ Branch(&done, eq, t8, Operand(JS_GENERATOR_OBJECT_TYPE));
+
+ // Check if JSAsyncFunctionObject (See MacroAssembler::CompareInstanceType)
+ Branch(&done, eq, t8, Operand(JS_ASYNC_FUNCTION_OBJECT_TYPE));
+
+ // Check if JSAsyncGeneratorObject
+ Branch(&done, eq, t8, Operand(JS_ASYNC_GENERATOR_OBJECT_TYPE));
+
+ Abort(AbortReason::kOperandIsNotAGeneratorObject);
+
+ bind(&done);
+}
+
+void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
+ Register scratch) {
+ if (FLAG_debug_code) {
+ Label done_checking;
+ AssertNotSmi(object);
+ LoadRoot(scratch, RootIndex::kUndefinedValue);
+ Branch(&done_checking, eq, object, Operand(scratch));
+ GetObjectType(object, scratch, scratch);
+ Assert(eq, AbortReason::kExpectedUndefinedOrCell, scratch,
+ Operand(ALLOCATION_SITE_TYPE));
+ bind(&done_checking);
+ }
+}
+
+void TurboAssembler::Float32Max(FPURegister dst, FPURegister src1,
+ FPURegister src2, Label* out_of_line) {
+ if (src1 == src2) {
+ Move_s(dst, src1);
+ return;
+ }
+
+ // Check if one of operands is NaN.
+ CompareIsNanF32(src1, src2);
+ BranchTrueF(out_of_line);
+
+ fmax_s(dst, src1, src2);
+}
+
+void TurboAssembler::Float32MaxOutOfLine(FPURegister dst, FPURegister src1,
+ FPURegister src2) {
+ fadd_s(dst, src1, src2);
+}
+
+void TurboAssembler::Float32Min(FPURegister dst, FPURegister src1,
+ FPURegister src2, Label* out_of_line) {
+ if (src1 == src2) {
+ Move_s(dst, src1);
+ return;
+ }
+
+ // Check if one of operands is NaN.
+ CompareIsNanF32(src1, src2);
+ BranchTrueF(out_of_line);
+
+ fmin_s(dst, src1, src2);
+}
+
+void TurboAssembler::Float32MinOutOfLine(FPURegister dst, FPURegister src1,
+ FPURegister src2) {
+ fadd_s(dst, src1, src2);
+}
+
+void TurboAssembler::Float64Max(FPURegister dst, FPURegister src1,
+ FPURegister src2, Label* out_of_line) {
+ if (src1 == src2) {
+ Move_d(dst, src1);
+ return;
+ }
+
+ // Check if one of operands is NaN.
+ CompareIsNanF64(src1, src2);
+ BranchTrueF(out_of_line);
+
+ fmax_d(dst, src1, src2);
+}
+
+void TurboAssembler::Float64MaxOutOfLine(FPURegister dst, FPURegister src1,
+ FPURegister src2) {
+ fadd_d(dst, src1, src2);
+}
+
+void TurboAssembler::Float64Min(FPURegister dst, FPURegister src1,
+ FPURegister src2, Label* out_of_line) {
+ if (src1 == src2) {
+ Move_d(dst, src1);
+ return;
+ }
+
+ // Check if one of operands is NaN.
+ CompareIsNanF64(src1, src2);
+ BranchTrueF(out_of_line);
+
+ fmin_d(dst, src1, src2);
+}
+
+void TurboAssembler::Float64MinOutOfLine(FPURegister dst, FPURegister src1,
+ FPURegister src2) {
+ fadd_d(dst, src1, src2);
+}
+
+static const int kRegisterPassedArguments = 8;
+
+int TurboAssembler::CalculateStackPassedWords(int num_reg_arguments,
+ int num_double_arguments) {
+ int stack_passed_words = 0;
+ num_reg_arguments += 2 * num_double_arguments;
+
+ // Up to eight simple arguments are passed in registers a0..a7.
+ if (num_reg_arguments > kRegisterPassedArguments) {
+ stack_passed_words += num_reg_arguments - kRegisterPassedArguments;
+ }
+ return stack_passed_words;
+}
+
+void TurboAssembler::PrepareCallCFunction(int num_reg_arguments,
+ int num_double_arguments,
+ Register scratch) {
+ int frame_alignment = ActivationFrameAlignment();
+
+ // Up to eight simple arguments in a0..a3, a4..a7, No argument slots.
+ // Remaining arguments are pushed on the stack.
+ int stack_passed_arguments =
+ CalculateStackPassedWords(num_reg_arguments, num_double_arguments);
+ if (frame_alignment > kPointerSize) {
+ // Make stack end at alignment and make room for num_arguments - 4 words
+ // and the original value of sp.
+ mov(scratch, sp);
+ Sub_d(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
+ DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
+ bstrins_d(sp, zero_reg, std::log2(frame_alignment) - 1, 0);
+ St_d(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
+ } else {
+ Sub_d(sp, sp, Operand(stack_passed_arguments * kPointerSize));
+ }
+}
+
+void TurboAssembler::PrepareCallCFunction(int num_reg_arguments,
+ Register scratch) {
+ PrepareCallCFunction(num_reg_arguments, 0, scratch);
+}
+
+void TurboAssembler::CallCFunction(ExternalReference function,
+ int num_reg_arguments,
+ int num_double_arguments) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ li(t7, function);
+ CallCFunctionHelper(t7, num_reg_arguments, num_double_arguments);
+}
+
+void TurboAssembler::CallCFunction(Register function, int num_reg_arguments,
+ int num_double_arguments) {
+ CallCFunctionHelper(function, num_reg_arguments, num_double_arguments);
+}
+
+void TurboAssembler::CallCFunction(ExternalReference function,
+ int num_arguments) {
+ CallCFunction(function, num_arguments, 0);
+}
+
+void TurboAssembler::CallCFunction(Register function, int num_arguments) {
+ CallCFunction(function, num_arguments, 0);
+}
+
+void TurboAssembler::CallCFunctionHelper(Register function,
+ int num_reg_arguments,
+ int num_double_arguments) {
+ DCHECK_LE(num_reg_arguments + num_double_arguments, kMaxCParameters);
+ DCHECK(has_frame());
+ // Make sure that the stack is aligned before calling a C function unless
+ // running in the simulator. The simulator has its own alignment check which
+ // provides more information.
+
+#if V8_HOST_ARCH_LOONG64
+ if (FLAG_debug_code) {
+ int frame_alignment = base::OS::ActivationFrameAlignment();
+ int frame_alignment_mask = frame_alignment - 1;
+ if (frame_alignment > kPointerSize) {
+ DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
+ Label alignment_as_expected;
+ {
+ Register scratch = t8;
+ And(scratch, sp, Operand(frame_alignment_mask));
+ Branch(&alignment_as_expected, eq, scratch, Operand(zero_reg));
+ }
+ // Don't use Check here, as it will call Runtime_Abort possibly
+ // re-entering here.
+ stop();
+ bind(&alignment_as_expected);
+ }
+ }
+#endif // V8_HOST_ARCH_LOONG64
+
+ // Just call directly. The function called cannot cause a GC, or
+ // allow preemption, so the return address in the link register
+ // stays correct.
+ {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ if (function != t7) {
+ mov(t7, function);
+ function = t7;
+ }
+
+ // Save the frame pointer and PC so that the stack layout remains iterable,
+ // even without an ExitFrame which normally exists between JS and C frames.
+ // 't' registers are caller-saved so this is safe as a scratch register.
+ Register pc_scratch = t1;
+ Register scratch = t2;
+ DCHECK(!AreAliased(pc_scratch, scratch, function));
+
+ pcaddi(pc_scratch, 1);
+
+ // See x64 code for reasoning about how to address the isolate data fields.
+ if (root_array_available()) {
+ St_d(pc_scratch, MemOperand(kRootRegister,
+ IsolateData::fast_c_call_caller_pc_offset()));
+ St_d(fp, MemOperand(kRootRegister,
+ IsolateData::fast_c_call_caller_fp_offset()));
+ } else {
+ DCHECK_NOT_NULL(isolate());
+ li(scratch, ExternalReference::fast_c_call_caller_pc_address(isolate()));
+ St_d(pc_scratch, MemOperand(scratch, 0));
+ li(scratch, ExternalReference::fast_c_call_caller_fp_address(isolate()));
+ St_d(fp, MemOperand(scratch, 0));
+ }
+
+ Call(function);
+
+ // We don't unset the PC; the FP is the source of truth.
+ if (root_array_available()) {
+ St_d(zero_reg, MemOperand(kRootRegister,
+ IsolateData::fast_c_call_caller_fp_offset()));
+ } else {
+ DCHECK_NOT_NULL(isolate());
+ li(scratch, ExternalReference::fast_c_call_caller_fp_address(isolate()));
+ St_d(zero_reg, MemOperand(scratch, 0));
+ }
+ }
+
+ int stack_passed_arguments =
+ CalculateStackPassedWords(num_reg_arguments, num_double_arguments);
+
+ if (base::OS::ActivationFrameAlignment() > kPointerSize) {
+ Ld_d(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
+ } else {
+ Add_d(sp, sp, Operand(stack_passed_arguments * kPointerSize));
+ }
+}
+
+#undef BRANCH_ARGS_CHECK
+
+void TurboAssembler::CheckPageFlag(const Register& object, int mask,
+ Condition cc, Label* condition_met) {
+ UseScratchRegisterScope temps(this);
+ temps.Include(t8);
+ Register scratch = temps.Acquire();
+ And(scratch, object, Operand(~kPageAlignmentMask));
+ Ld_d(scratch, MemOperand(scratch, BasicMemoryChunk::kFlagsOffset));
+ And(scratch, scratch, Operand(mask));
+ Branch(condition_met, cc, scratch, Operand(zero_reg));
+}
+
+Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3,
+ Register reg4, Register reg5,
+ Register reg6) {
+ RegList regs = 0;
+ if (reg1.is_valid()) regs |= reg1.bit();
+ if (reg2.is_valid()) regs |= reg2.bit();
+ if (reg3.is_valid()) regs |= reg3.bit();
+ if (reg4.is_valid()) regs |= reg4.bit();
+ if (reg5.is_valid()) regs |= reg5.bit();
+ if (reg6.is_valid()) regs |= reg6.bit();
+
+ const RegisterConfiguration* config = RegisterConfiguration::Default();
+ for (int i = 0; i < config->num_allocatable_general_registers(); ++i) {
+ int code = config->GetAllocatableGeneralCode(i);
+ Register candidate = Register::from_code(code);
+ if (regs & candidate.bit()) continue;
+ return candidate;
+ }
+ UNREACHABLE();
+}
+
+void TurboAssembler::ComputeCodeStartAddress(Register dst) {
+ // TODO(LOONG_dev): range check, add Pcadd macro function?
+ pcaddi(dst, -pc_offset() >> 2);
+}
+
+void TurboAssembler::CallForDeoptimization(Builtin target, int, Label* exit,
+ DeoptimizeKind kind, Label* ret,
+ Label*) {
+ BlockTrampolinePoolScope block_trampoline_pool(this);
+ Ld_d(t7,
+ MemOperand(kRootRegister, IsolateData::BuiltinEntrySlotOffset(target)));
+ Call(t7);
+ DCHECK_EQ(SizeOfCodeGeneratedSince(exit),
+ (kind == DeoptimizeKind::kLazy)
+ ? Deoptimizer::kLazyDeoptExitSize
+ : Deoptimizer::kNonLazyDeoptExitSize);
+
+ if (kind == DeoptimizeKind::kEagerWithResume) {
+ Branch(ret);
+ DCHECK_EQ(SizeOfCodeGeneratedSince(exit),
+ Deoptimizer::kEagerWithResumeBeforeArgsSize);
+ }
+}
+
+void TurboAssembler::LoadCodeObjectEntry(Register destination,
+ Register code_object) {
+ // Code objects are called differently depending on whether we are generating
+ // builtin code (which will later be embedded into the binary) or compiling
+ // user JS code at runtime.
+ // * Builtin code runs in --jitless mode and thus must not call into on-heap
+ // Code targets. Instead, we dispatch through the builtins entry table.
+ // * Codegen at runtime does not have this restriction and we can use the
+ // shorter, branchless instruction sequence. The assumption here is that
+ // targets are usually generated code and not builtin Code objects.
+ if (options().isolate_independent_code) {
+ DCHECK(root_array_available());
+ Label if_code_is_off_heap, out;
+ Register scratch = t8;
+
+ DCHECK(!AreAliased(destination, scratch));
+ DCHECK(!AreAliased(code_object, scratch));
+
+ // Check whether the Code object is an off-heap trampoline. If so, call its
+ // (off-heap) entry point directly without going through the (on-heap)
+ // trampoline. Otherwise, just call the Code object as always.
+ Ld_w(scratch, FieldMemOperand(code_object, Code::kFlagsOffset));
+ And(scratch, scratch, Operand(Code::IsOffHeapTrampoline::kMask));
+ BranchShort(&if_code_is_off_heap, ne, scratch, Operand(zero_reg));
+ // Not an off-heap trampoline object, the entry point is at
+ // Code::raw_instruction_start().
+ Add_d(destination, code_object, Code::kHeaderSize - kHeapObjectTag);
+ Branch(&out);
+
+ // An off-heap trampoline, the entry point is loaded from the builtin entry
+ // table.
+ bind(&if_code_is_off_heap);
+ Ld_w(scratch, FieldMemOperand(code_object, Code::kBuiltinIndexOffset));
+ // TODO(liuyu): don't use scratch_reg in Alsl_d;
+ Alsl_d(destination, scratch, kRootRegister, kSystemPointerSizeLog2,
+ zero_reg);
+ Ld_d(destination,
+ MemOperand(destination, IsolateData::builtin_entry_table_offset()));
+
+ bind(&out);
+ } else {
+ Add_d(destination, code_object, Code::kHeaderSize - kHeapObjectTag);
+ }
+}
+
+void TurboAssembler::CallCodeObject(Register code_object) {
+ LoadCodeObjectEntry(code_object, code_object);
+ Call(code_object);
+}
+
+void TurboAssembler::JumpCodeObject(Register code_object, JumpMode jump_mode) {
+ DCHECK_EQ(JumpMode::kJump, jump_mode);
+ LoadCodeObjectEntry(code_object, code_object);
+ Jump(code_object);
+}
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_LOONG64