1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
|
#include <mbgl/util/tile_cover_impl.hpp>
#include <mbgl/util/tile_coordinate.hpp>
#include <functional>
#include <cmath>
#include <cassert>
#include <climits>
#include <algorithm>
namespace mbgl {
namespace util {
using PointList = std::vector<Point<double>>;
struct TileSpan {
int32_t xmin, xmax;
bool winding;
};
// Reorder a ring of points such that it starts at a point with a local minimum y-coordinate
void start_list_on_local_minimum(PointList& points) {
auto prev_pt = std::prev(points.end(), 2);
auto pt = points.begin();
auto next_pt = std::next(pt);
while (pt != points.end()) {
if ((pt->y <= prev_pt->y) &&
(pt->y < next_pt->y)) {
break;
}
prev_pt = pt;
pt++;
next_pt++;
if (next_pt == points.end()) { next_pt = std::next(points.begin()); }
}
if (pt == points.end())
return;
//Re-close linear rings with first_pt = last_pt
if (points.back() == points.front()) {
points.pop_back();
}
std::rotate(points.begin(), pt, points.end());
points.push_back(*points.begin());
}
//Create a bound towards a local maximum point, starting from pt.
// Traverse from current pt until the next pt changes y-direction, and copy
// all points from start to end (inclusive) into a Bound.
Bound create_bound_towards_maximum(PointList& points, PointList::iterator& pt) {
if (std::distance(pt, points.end()) < 2) { return {}; }
const auto begin = pt;
auto next_pt = std::next(begin);
while (pt->y <= next_pt->y) {
pt++;
next_pt++;
if (next_pt == points.end()) { pt++; break; }
}
const auto pt_distance = std::distance(begin, next_pt);
if (pt_distance < 2) {
return {};
}
Bound bnd;
bnd.points.reserve(static_cast<std::size_t>(std::distance(begin, next_pt)));
std::copy(begin, next_pt, std::back_inserter(bnd.points));
bnd.winding = true;
return bnd;
}
//Create a bound towards a local minimum point, starting from pt.
// Traverse from current pt until the next pt changes y-direction, and copy
// all points from start to end (inclusive) into a Bound.
Bound create_bound_towards_minimum(PointList& points, PointList::iterator& pt) {
if (std::distance(pt, points.end()) < 2) { return {}; }
auto begin = pt;
auto next_pt = std::next(begin);
while (pt->y > next_pt->y) {
pt++;
next_pt++;
if (next_pt == points.end()) { pt++; break; }
}
const auto pt_distance = std::distance(begin, next_pt);
if (pt_distance < 2) {
return {};
}
Bound bnd;
bnd.points.reserve(static_cast<std::size_t>(std::distance(begin, next_pt)));
//For bounds that start at a max, reverse copy so that all bounds start at a min
std::reverse_copy(begin, next_pt, std::back_inserter(bnd.points));
bnd.winding = false;
return bnd;
}
// Given a set of points (ring or list) representing a shape, compute a set of
// Bounds, where each Bound represents edges going from a local minima to a local
// maxima point. The BoundsMap is an edge table indexed on the starting Y-tile
// of each Bound.
void build_bounds_map(PointList& points, uint32_t maxTile, BoundsMap& et, bool closed = false) {
if (points.size() < 2) return;
//While traversing closed rings, start the bounds at a local minimum.
// (For linestrings the starting point is always a local maxima/minima)
if (closed) {
start_list_on_local_minimum(points);
}
auto pointsIter = points.begin();
while (pointsIter != points.end()) {
Bound to_max = create_bound_towards_maximum(points, pointsIter);
Bound to_min = create_bound_towards_minimum(points, pointsIter);
if (to_max.points.size() >= 2) {
// Projections may result in values beyond the bounds, clamp to max tile coordinates
const auto y = static_cast<uint32_t>(std::floor(clamp(to_max.points.front().y, 0.0, (double)maxTile)));
et[y].push_back(to_max);
}
if (to_min.points.size() >= 2) {
const auto y = static_cast<uint32_t>(std::floor(clamp(to_min.points.front().y, 0.0, (double)maxTile)));
et[y].push_back(to_min);
}
}
assert(pointsIter == points.end());
}
void update_span(TileSpan& xp, double x) {
xp.xmin = std::min(xp.xmin, static_cast<int32_t>(std::floor(x)));
xp.xmax = std::max(xp.xmax, static_cast<int32_t>(std::ceil(x)));
}
// Use the active bounds, an accumulation of all bounds that enter the y tile row,
// or start in that row.
// Iterate all points of a bound until it exits the row (or ends) and compute the
// set of X tiles it spans across. The winding direction of the bound is also
// captured for each span to later fill tiles between bounds for polygons
std::vector<TileSpan> scan_row(uint32_t y, Bounds& activeBounds) {
std::vector<TileSpan> tile_range;
tile_range.reserve(activeBounds.size());
for(Bound& b: activeBounds) {
TileSpan xp = { INT_MAX, 0, b.winding };
double x;
const auto numEdges = b.points.size() - 1;
while (b.currentPoint < numEdges) {
x = b.interpolate(y);
update_span(xp, x);
// If this edge ends beyond the current row, find the x-intercept where
// it exits the row
auto& p1 = b.points[b.currentPoint + 1];
if (p1.y > y+1) {
x = b.interpolate(y+1);
update_span(xp, x);
break;
} else if (b.currentPoint == numEdges - 1) {
// For last edge, consider x-intercept at the end of the edge.
x = p1.x;
update_span(xp, x);
}
b.currentPoint++;
}
tile_range.push_back(xp);
}
// Erase bounds in the active table whose current edge ends inside this row,
// or there are no more edges
auto bound = activeBounds.begin();
while (bound != activeBounds.end()) {
if ( bound->currentPoint == bound->points.size() - 1 &&
bound->points[bound->currentPoint].y <= y+1) {
bound = activeBounds.erase(bound);
} else {
bound++;
}
}
// Sort the X-extents of each crossing bound by x_min, x_max
std::sort(tile_range.begin(), tile_range.end(), [] (TileSpan& a, TileSpan& b) {
return std::tie(a.xmin, a.xmax) < std::tie(b.xmin, b.xmax);
});
return tile_range;
}
struct BuildBoundsMap {
int32_t zoom;
bool project = false;
BuildBoundsMap(int32_t z, bool p): zoom(z), project(p) {}
void buildTable(const std::vector<Point<double>>& points, BoundsMap& et, bool closed = false) const {
PointList projectedPoints;
if (project) {
projectedPoints.reserve(points.size());
for(const auto&p : points) {
projectedPoints.push_back(
Projection::project(LatLng{ p.y, p.x }, zoom));
}
} else {
projectedPoints.insert(projectedPoints.end(), points.begin(), points.end());
}
build_bounds_map(projectedPoints, 1 << zoom, et, closed);
}
void buildPolygonTable(const Polygon<double>& polygon, BoundsMap& et) const {
for(const auto&ring : polygon) {
buildTable(ring, et, true);
}
}
BoundsMap operator()(const EmptyGeometry&) const {
return {};
}
BoundsMap operator()(const Point<double>&p) const {
Bound bnd;
auto point = p;
if (project) {
point = Projection::project(LatLng{p.y, p.x}, zoom);
}
bnd.points.insert(bnd.points.end(), 2, point);
bnd.winding = false;
BoundsMap et;
const auto y = static_cast<uint32_t>(std::floor(clamp(point.y, 0.0, (double)(1 << zoom))));
et[y].push_back(bnd);
return et;
}
BoundsMap operator()(const MultiPoint<double>& points) const {
BoundsMap et;
for (const Point<double>& p: points) {
Bound bnd;
auto point = p;
if (project) {
point = Projection::project(LatLng{p.y, p.x}, zoom);
}
bnd.points.insert(bnd.points.end(), 2, point);
bnd.winding = false;
const auto y = static_cast<uint32_t>(std::floor(clamp(point.y, 0.0, (double)(1 << zoom))));
et[y].push_back(bnd);
}
return et;
}
BoundsMap operator()(const LineString<double>& lines) const {
BoundsMap et;
buildTable(lines, et);
return et;
}
BoundsMap operator()(const MultiLineString<double>& lines) const {
BoundsMap et;
for(const auto&line : lines) {
buildTable(line, et);
}
return et;
}
BoundsMap operator()(const Polygon<double>& polygon) const {
BoundsMap et;
buildPolygonTable(polygon, et);
return et;
}
BoundsMap operator()(const MultiPolygon<double>& polygons) const {
BoundsMap et;
for(const auto& polygon: polygons) {
buildPolygonTable(polygon, et);
}
return et;
}
BoundsMap operator()(const mapbox::geometry::geometry_collection<double>&) const {
return {};
}
};
TileCover::Impl::Impl(int32_t z, const Geometry<double>& geom, bool project)
: zoom(z) {
ToFeatureType toFeatureType;
isClosed = apply_visitor(toFeatureType, geom) == FeatureType::Polygon;
BuildBoundsMap toBoundsMap(z, project);
boundsMap = apply_visitor(toBoundsMap, geom);
if (boundsMap.size() == 0) return;
//Iniitalize the active edge table, and current row span
currentBounds = boundsMap.begin();
tileY = 0;
nextRow();
if (tileXSpans.empty()) return;
tileX = tileXSpans.front().first;
}
// Aggregate all Bounds that start in or enter into the next tileY row. Multi-geoms
// may have discontinuity in the BoundMap, so skip forward to the next tileY row
// when the current/next row has no more bounds in it.
// Use scan_row to generate the tileX spans. Merge spans to avoid duplicate tiles
// in TileCoverImpl::next(). For closed geometry, use the non-zero rule to expand
// (fill) tiles between pairs of spans.
void TileCover::Impl::nextRow() {
// Update activeBounds for next row
if (currentBounds != boundsMap.end()) {
if (activeBounds.size() == 0 && currentBounds->first > tileY) {
//For multi-geoms: use the next row with an edge table starting point
tileY = currentBounds->first;
}
if (tileY == currentBounds->first) {
std::move(currentBounds->second.begin(), currentBounds->second.end(),
std::back_inserter(activeBounds));
currentBounds++;
}
}
//Scan the active bounds and update currentRange with x_min, x_max pairs
auto xps = util::scan_row(tileY, activeBounds);
if (xps.size() == 0) {
return;
}
auto x_min = xps[0].xmin;
auto x_max = xps[0].xmax;
int32_t nzRule = xps[0].winding ? 1 : -1;
for (size_t i = 1; i < xps.size(); i++) {
auto xp = xps[i];
if (!(isClosed && nzRule != 0)) {
if (xp.xmin > x_max && xp.xmax >= x_max) {
tileXSpans.emplace(x_min, x_max);
x_min = xp.xmin;
}
}
nzRule += xp.winding ? 1 : -1;
x_max = std::max(x_min, xp.xmax);
}
tileXSpans.emplace(x_min, x_max);
}
bool TileCover::Impl::hasNext() const {
return (!tileXSpans.empty()
&& tileX < tileXSpans.front().second
&& tileY < (1u << zoom));
}
optional<UnwrappedTileID> TileCover::Impl::next() {
if (!hasNext()) return {};
const auto x = tileX;
const auto y = tileY;
tileX++;
if (tileX >= tileXSpans.front().second) {
tileXSpans.pop();
if (tileXSpans.empty()) {
tileY++;
nextRow();
}
if (!tileXSpans.empty()) {
tileX = tileXSpans.front().first;
}
}
return UnwrappedTileID(zoom, x, y);
}
} // namespace util
} // namespace mbgl
|