1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
#include <mbgl/style/expression/interpolate.hpp>
#include <mbgl/util/string.hpp>
namespace mbgl {
namespace style {
namespace expression {
using Interpolator = variant<ExponentialInterpolator,
CubicBezierInterpolator>;
using namespace mbgl::style::conversion;
ParseResult parseInterpolate(const Convertible& value, ParsingContext& ctx) {
assert(isArray(value));
auto length = arrayLength(value);
if (length < 2) {
ctx.error("Expected an interpolation type expression.");
return ParseResult();
}
const Convertible& interp = arrayMember(value, 1);
if (!isArray(interp) || arrayLength(interp) == 0) {
ctx.error("Expected an interpolation type expression.");
return ParseResult();
}
optional<Interpolator> interpolator;
const optional<std::string> interpName = toString(arrayMember(interp, 0));
if (interpName && *interpName == "linear") {
interpolator = {ExponentialInterpolator(1.0)};
} else if (interpName && *interpName == "exponential") {
optional<double> base;
if (arrayLength(interp) == 2) {
base = toDouble(arrayMember(interp, 1));
}
if (!base) {
ctx.error("Exponential interpolation requires a numeric base.", 1, 1);
return ParseResult();
}
interpolator = {ExponentialInterpolator(*base)};
} else if (interpName && *interpName == "cubic-bezier") {
optional<double> x1;
optional<double> y1;
optional<double> x2;
optional<double> y2;
if (arrayLength(interp) == 5) {
x1 = toDouble(arrayMember(interp, 1));
y1 = toDouble(arrayMember(interp, 2));
x2 = toDouble(arrayMember(interp, 3));
y2 = toDouble(arrayMember(interp, 4));
}
if (
!x1 || !y1 || !x2 || !y2 ||
*x1 < 0 || *x1 > 1 ||
*y1 < 0 || *y1 > 1 ||
*x2 < 0 || *x2 > 1 ||
*y2 < 0 || *y2 > 1
) {
ctx.error("Cubic bezier interpolation requires four numeric arguments with values between 0 and 1.", 1);
return ParseResult();
}
interpolator = {CubicBezierInterpolator(*x1, *y1, *x2, *y2)};
}
if (!interpolator) {
ctx.error("Unknown interpolation type " + (interpName ? *interpName : ""), 1, 0);
return ParseResult();
}
std::size_t minArgs = 4;
if (length - 1 < minArgs) {
ctx.error("Expected at least 4 arguments, but found only " + util::toString(length - 1) + ".");
return ParseResult();
}
// [interpolation, interp_type, input, 2 * (n pairs)...]
if ((length - 1) % 2 != 0) {
ctx.error("Expected an even number of arguments.");
return ParseResult();
}
ParseResult input = ctx.parse(arrayMember(value, 2), 2, {type::Number});
if (!input) {
return input;
}
std::map<double, std::unique_ptr<Expression>> stops;
optional<type::Type> outputType;
if (ctx.getExpected() && *ctx.getExpected() != type::Value) {
outputType = ctx.getExpected();
}
double previous = - std::numeric_limits<double>::infinity();
for (std::size_t i = 3; i + 1 < length; i += 2) {
const optional<mbgl::Value> labelValue = toValue(arrayMember(value, i));
optional<double> label;
optional<std::string> labelError;
if (labelValue) {
labelValue->match(
[&](uint64_t n) {
if (n > std::numeric_limits<double>::max()) {
label = {std::numeric_limits<double>::infinity()};
} else {
label = {static_cast<double>(n)};
}
},
[&](int64_t n) {
if (n > std::numeric_limits<double>::max()) {
label = {std::numeric_limits<double>::infinity()};
} else {
label = {static_cast<double>(n)};
}
},
[&](double n) {
if (n > std::numeric_limits<double>::max()) {
label = {std::numeric_limits<double>::infinity()};
} else {
label = {static_cast<double>(n)};
}
},
[&](const auto&) {}
);
}
if (!label) {
ctx.error(labelError ? *labelError :
R"(Input/output pairs for "interpolate" expressions must be defined using literal numeric values (not computed expressions) for the input values.)",
i);
return ParseResult();
}
if (*label <= previous) {
ctx.error(
R"(Input/output pairs for "interpolate" expressions must be arranged with input values in strictly ascending order.)",
i
);
return ParseResult();
}
previous = *label;
auto output = ctx.parse(arrayMember(value, i + 1), i + 1, outputType);
if (!output) {
return ParseResult();
}
if (!outputType) {
outputType = (*output)->getType();
}
stops.emplace(*label, std::move(*output));
}
assert(outputType);
if (
*outputType != type::Number &&
*outputType != type::Color &&
!(
outputType->is<type::Array>() &&
outputType->get<type::Array>().itemType == type::Number &&
outputType->get<type::Array>().N
)
)
{
ctx.error("Type " + toString(*outputType) + " is not interpolatable.");
return ParseResult();
}
return outputType->match(
[&](const type::NumberType&) -> ParseResult {
return interpolator->match([&](const auto& interpolator_) {
return ParseResult(std::make_unique<Interpolate<double>>(
*outputType, interpolator_, std::move(*input), std::move(stops)
));
});
},
[&](const type::ColorType&) -> ParseResult {
return interpolator->match([&](const auto& interpolator_) {
return ParseResult(std::make_unique<Interpolate<Color>>(
*outputType, interpolator_, std::move(*input), std::move(stops)
));
});
},
[&](const type::Array& arrayType) -> ParseResult {
return interpolator->match(
[&](const auto& continuousInterpolator) {
if (arrayType.itemType != type::Number || !arrayType.N) {
assert(false); // interpolability already checked above.
return ParseResult();
}
return ParseResult(std::make_unique<Interpolate<std::vector<Value>>>(
*outputType, continuousInterpolator, std::move(*input), std::move(stops)
));
}
);
},
[&](const auto&) {
// unreachable: Null, Boolean, String, Object, Value output types
// are not interpolatable, and interpolability was already checked above
assert(false);
return ParseResult();
}
);
}
std::vector<optional<Value>> InterpolateBase::possibleOutputs() const {
std::vector<optional<Value>> result;
for (const auto& stop : stops) {
for (auto& output : stop.second->possibleOutputs()) {
result.push_back(std::move(output));
}
}
return result;
}
template <typename T>
mbgl::Value Interpolate<T>::serialize() const {
std::vector<mbgl::Value> serialized;
serialized.emplace_back(getOperator());
interpolator.match(
[&](const ExponentialInterpolator& exponential) {
serialized.emplace_back(std::vector<mbgl::Value>{{ std::string("exponential"), exponential.base }});
},
[&](const CubicBezierInterpolator& cubicBezier) {
static const std::string cubicBezierTag("cubic-bezier");
auto p1 = cubicBezier.ub.getP1();
auto p2 = cubicBezier.ub.getP2();
serialized.emplace_back(std::vector<mbgl::Value>{{ cubicBezierTag, p1.first, p1.second, p2.first, p2.second }});
}
);
serialized.emplace_back(input->serialize());
for (auto& entry : stops) {
serialized.emplace_back(entry.first);
serialized.emplace_back(entry.second->serialize());
};
return serialized;
}
} // namespace expression
} // namespace style
} // namespace mbgl
|