1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
|
#include <mbgl/renderer/painter.hpp>
#include <mbgl/map/source.hpp>
#include <mbgl/map/tile.hpp>
#include <mbgl/map/map_context.hpp>
#include <mbgl/map/map_data.hpp>
#include <mbgl/platform/log.hpp>
#include <mbgl/gl/debugging.hpp>
#include <mbgl/style/style.hpp>
#include <mbgl/style/style_layer.hpp>
#include <mbgl/style/style_bucket.hpp>
#include <mbgl/geometry/sprite_atlas.hpp>
#include <mbgl/geometry/line_atlas.hpp>
#include <mbgl/geometry/glyph_atlas.hpp>
#include <mbgl/shader/pattern_shader.hpp>
#include <mbgl/shader/plain_shader.hpp>
#include <mbgl/shader/outline_shader.hpp>
#include <mbgl/shader/line_shader.hpp>
#include <mbgl/shader/linesdf_shader.hpp>
#include <mbgl/shader/linepattern_shader.hpp>
#include <mbgl/shader/icon_shader.hpp>
#include <mbgl/shader/raster_shader.hpp>
#include <mbgl/shader/sdf_shader.hpp>
#include <mbgl/shader/dot_shader.hpp>
#include <mbgl/shader/gaussian_shader.hpp>
#include <mbgl/shader/box_shader.hpp>
#include <mbgl/util/constants.hpp>
#include <mbgl/util/mat3.hpp>
#if defined(DEBUG)
#include <mbgl/util/stopwatch.hpp>
#endif
#include <cassert>
#include <algorithm>
#include <iostream>
using namespace mbgl;
Painter::Painter(MapData& data_) : data(data_) {
}
Painter::~Painter() {
}
bool Painter::needsAnimation() const {
return frameHistory.needsAnimation(data.getDefaultFadeDuration()) || state.isChanging();
}
void Painter::setup() {
gl::debugging::enable();
setupShaders();
assert(iconShader);
assert(plainShader);
assert(outlineShader);
assert(lineShader);
assert(linepatternShader);
assert(patternShader);
assert(rasterShader);
assert(sdfGlyphShader);
assert(sdfIconShader);
assert(dotShader);
assert(gaussianShader);
// Blending
// We are blending new pixels on top of old pixels. Since we have depth testing
// and are drawing opaque fragments first front-to-back, then translucent
// fragments back-to-front, this shades the fewest fragments possible.
config.blend = true;
MBGL_CHECK_ERROR(glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA));
// Set clear values
config.clearColor = { 0.0f, 0.0f, 0.0f, 0.0f };
config.clearDepth = 1.0f;
config.clearStencil = 0x0;
// Stencil test
MBGL_CHECK_ERROR(glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE));
// Depth test
glDepthFunc(GL_LEQUAL);
}
void Painter::setupShaders() {
if (!plainShader) plainShader = std::make_unique<PlainShader>();
if (!outlineShader) outlineShader = std::make_unique<OutlineShader>();
if (!lineShader) lineShader = std::make_unique<LineShader>();
if (!linesdfShader) linesdfShader = std::make_unique<LineSDFShader>();
if (!linepatternShader) linepatternShader = std::make_unique<LinepatternShader>();
if (!patternShader) patternShader = std::make_unique<PatternShader>();
if (!iconShader) iconShader = std::make_unique<IconShader>();
if (!rasterShader) rasterShader = std::make_unique<RasterShader>();
if (!sdfGlyphShader) sdfGlyphShader = std::make_unique<SDFGlyphShader>();
if (!sdfIconShader) sdfIconShader = std::make_unique<SDFIconShader>();
if (!dotShader) dotShader = std::make_unique<DotShader>();
if (!gaussianShader) gaussianShader = std::make_unique<GaussianShader>();
if (!collisionBoxShader) collisionBoxShader = std::make_unique<CollisionBoxShader>();
}
void Painter::resize() {
if (gl_viewport != frame.framebufferSize) {
gl_viewport = frame.framebufferSize;
assert(gl_viewport[0] > 0 && gl_viewport[1] > 0);
MBGL_CHECK_ERROR(glViewport(0, 0, gl_viewport[0], gl_viewport[1]));
}
}
void Painter::setDebug(bool enabled) {
debug = enabled;
}
void Painter::useProgram(uint32_t program) {
if (gl_program != program) {
MBGL_CHECK_ERROR(glUseProgram(program));
gl_program = program;
}
}
void Painter::lineWidth(float line_width) {
if (gl_lineWidth != line_width) {
MBGL_CHECK_ERROR(glLineWidth(line_width));
gl_lineWidth = line_width;
}
}
void Painter::changeMatrix() {
// Initialize projection matrix
matrix::ortho(projMatrix, 0, state.getWidth(), state.getHeight(), 0, 0, 1);
// The extrusion matrix.
matrix::identity(extrudeMatrix);
matrix::multiply(extrudeMatrix, projMatrix, extrudeMatrix);
matrix::rotate_z(extrudeMatrix, extrudeMatrix, state.getAngle());
// The native matrix is a 1:1 matrix that paints the coordinates at the
// same screen position as the vertex specifies.
matrix::identity(nativeMatrix);
matrix::multiply(nativeMatrix, projMatrix, nativeMatrix);
}
void Painter::clear() {
gl::debugging::group group("clear");
config.stencilTest = true;
config.stencilMask = 0xFF;
config.depthTest = false;
config.depthMask = GL_TRUE;
config.clearColor = { 0.0f, 0.0f, 0.0f, 0.0f };
MBGL_CHECK_ERROR(glClear(GL_COLOR_BUFFER_BIT | GL_STENCIL_BUFFER_BIT | GL_DEPTH_BUFFER_BIT));
}
void Painter::setStrata(float value) {
strata = value;
}
void Painter::prepareTile(const Tile& tile) {
const GLint ref = (GLint)tile.clip.reference.to_ulong();
const GLuint mask = (GLuint)tile.clip.mask.to_ulong();
config.stencilFunc = { GL_EQUAL, ref, mask };
}
void Painter::render(const Style& style, TransformState state_, const FrameData& frame_, const TimePoint& time) {
state = state_;
frame = frame_;
glyphAtlas = style.glyphAtlas.get();
spriteAtlas = style.spriteAtlas.get();
lineAtlas = style.lineAtlas.get();
std::set<Source*> sources;
for (const auto& source : style.sources) {
if (source->enabled) {
sources.insert(source.get());
}
}
resize();
changeMatrix();
// Figure out what buckets we have to draw and what order we have to draw them in.
const auto order = determineRenderOrder(style);
// - UPLOAD PASS -------------------------------------------------------------------------------
// Uploads all required buffers and images before we do any actual rendering.
{
const gl::debugging::group upload("upload");
tileStencilBuffer.upload();
tileBorderBuffer.upload();
spriteAtlas->upload();
lineAtlas->upload();
glyphAtlas->upload();
for (const auto& item : order) {
if (item.bucket && item.bucket->needsUpload()) {
item.bucket->upload();
}
}
}
// - CLIPPING MASKS ----------------------------------------------------------------------------
// Draws the clipping masks to the stencil buffer.
{
const gl::debugging::group clip("clip");
// Update all clipping IDs.
ClipIDGenerator generator;
for (const auto& source : sources) {
generator.update(source->getLoadedTiles());
source->updateMatrices(projMatrix, state);
}
clear();
drawClippingMasks(sources);
}
frameHistory.record(time, state.getNormalizedZoom());
// Actually render the layers
if (debug::renderTree) { Log::Info(Event::Render, "{"); indent++; }
// TODO: Correctly compute the number of layers recursively beforehand.
const float strataThickness = 1.0f / (order.size() + 1);
// - OPAQUE PASS -------------------------------------------------------------------------------
// Render everything top-to-bottom by using reverse iterators. Render opaque objects first.
renderPass(RenderPass::Opaque,
order.rbegin(), order.rend(),
0, 1, strataThickness);
// - TRANSLUCENT PASS --------------------------------------------------------------------------
// Make a second pass, rendering translucent objects. This time, we render bottom-to-top.
renderPass(RenderPass::Translucent,
order.begin(), order.end(),
order.size() - 1, -1, strataThickness);
if (debug::renderTree) { Log::Info(Event::Render, "}"); indent--; }
// - DEBUG PASS --------------------------------------------------------------------------------
// Renders debug overlays.
{
const gl::debugging::group _("debug");
// Finalize the rendering, e.g. by calling debug render calls per tile.
// This guarantees that we have at least one function per tile called.
// When only rendering layers via the stylesheet, it's possible that we don't
// ever visit a tile during rendering.
for (const auto& source : sources) {
source->finishRender(*this);
}
}
// TODO: Find a better way to unbind VAOs after we're done with them without introducing
// unnecessary bind(0)/bind(N) sequences.
{
const gl::debugging::group _("cleanup");
MBGL_CHECK_ERROR(glBindTexture(GL_TEXTURE_2D, 0));
MBGL_CHECK_ERROR(VertexArrayObject::Unbind());
}
}
template <class Iterator>
void Painter::renderPass(RenderPass pass_,
Iterator it, Iterator end,
std::size_t i, int8_t increment,
const float strataThickness) {
pass = pass_;
const char * passName = pass == RenderPass::Opaque ? "opaque" : "translucent";
const gl::debugging::group _(passName);
if (debug::renderTree) {
Log::Info(Event::Render, "%*s%s {", indent++ * 4, "", passName);
}
config.blend = pass == RenderPass::Translucent;
for (; it != end; ++it, i += increment) {
const auto& item = *it;
if (item.bucket && item.tile) {
if (item.hasRenderPass(pass)) {
const gl::debugging::group group(item.layer.id + " - " + std::string(item.tile->id));
setStrata(i * strataThickness);
prepareTile(*item.tile);
item.bucket->render(*this, item.layer, item.tile->id, item.tile->matrix);
}
} else {
const gl::debugging::group group("background");
setStrata(i * strataThickness);
renderBackground(item.layer);
}
}
if (debug::renderTree) {
Log::Info(Event::Render, "%*s%s", --indent * 4, "", "}");
}
}
std::vector<RenderItem> Painter::determineRenderOrder(const Style& style) {
std::vector<RenderItem> order;
for (const auto& layerPtr : style.layers) {
const auto& layer = *layerPtr;
if (layer.bucket->visibility == VisibilityType::None) continue;
if (layer.type == StyleLayerType::Background) {
// This layer defines a background color/image.
order.emplace_back(layer);
continue;
}
// This is a singular layer.
if (!layer.bucket) {
Log::Warning(Event::Render, "layer '%s' is missing bucket", layer.id.c_str());
continue;
}
Source* source = style.getSource(layer.bucket->source);
if (!source) {
Log::Warning(Event::Render, "can't find source for layer '%s'", layer.id.c_str());
continue;
}
// Skip this layer if it's outside the range of min/maxzoom.
// This may occur when there /is/ a bucket created for this layer, but the min/max-zoom
// is set to a fractional value, or value that is larger than the source maxzoom.
const double zoom = state.getZoom();
if (layer.bucket->min_zoom > zoom ||
layer.bucket->max_zoom <= zoom) {
continue;
}
// Don't include invisible layers.
if (!layer.isVisible()) {
continue;
}
// Determine what render passes we need for this layer.
const RenderPass passes = determineRenderPasses(layer);
const auto& tiles = source->getTiles();
for (auto tile : tiles) {
assert(tile);
if (!tile->data && !tile->data->isReady()) {
continue;
}
auto bucket = tile->data->getBucket(layer);
if (bucket) {
order.emplace_back(layer, tile, bucket, passes);
}
}
}
return order;
}
RenderPass Painter::determineRenderPasses(const StyleLayer& layer) {
RenderPass passes = RenderPass::None;
if (layer.properties.is<FillProperties>()) {
const FillProperties &properties = layer.properties.get<FillProperties>();
const float alpha = properties.fill_color[3] * properties.opacity;
if (properties.antialias) {
passes |= RenderPass::Translucent;
}
if (properties.image.from.size() || alpha < 1.0f) {
passes |= RenderPass::Translucent;
} else {
passes |= RenderPass::Opaque;
}
} else {
passes |= RenderPass::Translucent;
}
return passes;
}
void Painter::renderBackground(const StyleLayer &layer_desc) {
const BackgroundProperties& properties = layer_desc.getProperties<BackgroundProperties>();
if (properties.image.to.size()) {
if ((properties.opacity >= 1.0f) != (pass == RenderPass::Opaque))
return;
SpriteAtlasPosition imagePosA = spriteAtlas->getPosition(properties.image.from, true);
SpriteAtlasPosition imagePosB = spriteAtlas->getPosition(properties.image.to, true);
float zoomFraction = state.getZoomFraction();
useProgram(patternShader->program);
patternShader->u_matrix = identityMatrix;
patternShader->u_pattern_tl_a = imagePosA.tl;
patternShader->u_pattern_br_a = imagePosA.br;
patternShader->u_pattern_tl_b = imagePosB.tl;
patternShader->u_pattern_br_b = imagePosB.br;
patternShader->u_mix = properties.image.t;
patternShader->u_opacity = properties.opacity;
LatLng latLng = state.getLatLng();
vec2<double> center = state.pixelForLatLng(latLng);
float scale = 1 / std::pow(2, zoomFraction);
std::array<float, 2> sizeA = imagePosA.size;
mat3 matrixA;
matrix::identity(matrixA);
matrix::scale(matrixA, matrixA,
1.0f / (sizeA[0] * properties.image.fromScale),
1.0f / (sizeA[1] * properties.image.fromScale));
matrix::translate(matrixA, matrixA,
std::fmod(center.x * 512, sizeA[0] * properties.image.fromScale),
std::fmod(center.y * 512, sizeA[1] * properties.image.fromScale));
matrix::rotate(matrixA, matrixA, -state.getAngle());
matrix::scale(matrixA, matrixA,
scale * state.getWidth() / 2,
-scale * state.getHeight() / 2);
std::array<float, 2> sizeB = imagePosB.size;
mat3 matrixB;
matrix::identity(matrixB);
matrix::scale(matrixB, matrixB,
1.0f / (sizeB[0] * properties.image.toScale),
1.0f / (sizeB[1] * properties.image.toScale));
matrix::translate(matrixB, matrixB,
std::fmod(center.x * 512, sizeB[0] * properties.image.toScale),
std::fmod(center.y * 512, sizeB[1] * properties.image.toScale));
matrix::rotate(matrixB, matrixB, -state.getAngle());
matrix::scale(matrixB, matrixB,
scale * state.getWidth() / 2,
-scale * state.getHeight() / 2);
patternShader->u_patternmatrix_a = matrixA;
patternShader->u_patternmatrix_b = matrixB;
backgroundBuffer.bind();
patternShader->bind(0);
spriteAtlas->bind(true);
} else {
Color color = properties.color;
color[0] *= properties.opacity;
color[1] *= properties.opacity;
color[2] *= properties.opacity;
color[3] *= properties.opacity;
if ((color[3] >= 1.0f) != (pass == RenderPass::Opaque))
return;
useProgram(plainShader->program);
plainShader->u_matrix = identityMatrix;
plainShader->u_color = color;
backgroundArray.bind(*plainShader, backgroundBuffer, BUFFER_OFFSET(0));
}
config.stencilTest = false;
config.depthTest = true;
config.depthRange = { strata + strata_epsilon, 1.0f };
MBGL_CHECK_ERROR(glDrawArrays(GL_TRIANGLE_STRIP, 0, 4));
}
mat4 Painter::translatedMatrix(const mat4& matrix, const std::array<float, 2> &translation, const TileID &id, TranslateAnchorType anchor) {
if (translation[0] == 0 && translation[1] == 0) {
return matrix;
} else {
// TODO: Get rid of the 8 (scaling from 4096 to tile size)
const double factor = ((double)(1 << id.z)) / state.getScale() * (4096.0 / util::tileSize / id.overscaling);
mat4 vtxMatrix;
if (anchor == TranslateAnchorType::Viewport) {
const double sin_a = std::sin(-state.getAngle());
const double cos_a = std::cos(-state.getAngle());
matrix::translate(vtxMatrix, matrix,
factor * (translation[0] * cos_a - translation[1] * sin_a),
factor * (translation[0] * sin_a + translation[1] * cos_a),
0);
} else {
matrix::translate(vtxMatrix, matrix,
factor * translation[0],
factor * translation[1],
0);
}
return vtxMatrix;
}
}
|