1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
|
#include <llmr/map/transform.hpp>
#include <llmr/util/constants.hpp>
#include <llmr/util/mat4.hpp>
#include <llmr/util/std.hpp>
#include <llmr/util/math.hpp>
#include <llmr/platform/platform.hpp>
#include <cstdio>
using namespace llmr;
const double MAXEXTENT = 20037508.34;
const double D2R = M_PI / 180.0;
const double R2D = 180.0 / M_PI;
const double M2PI = 2 * M_PI;
const double A = 6378137;
Transform::Transform() {
setScale(scale);
setAngle(angle);
}
bool Transform::needsAnimation() const {
return !animations.empty();
}
void Transform::updateAnimations(double time) {
animations.remove_if([time](const std::shared_ptr<util::animation>& animation) {
return animation->update(time) == util::animation::complete;
});
}
void Transform::cancelAnimations() {
animations.clear();
}
void Transform::resize(uint16_t w, uint16_t h, float ratio, uint16_t fb_w, uint16_t fb_h) {
width = w;
height = h;
pixelRatio = ratio;
fb_width = fb_w;
fb_height = fb_h;
}
void Transform::moveBy(double dx, double dy, double duration) {
double xn = x + cos(angle) * dx + sin(angle) * dy;
double yn = y + cos(angle) * dy + sin(-angle) * dx;
if (duration == 0) {
x = xn;
y = yn;
} else {
// Use a common start time for all of the animations to avoid divergent animations.
double start = platform::elapsed();
animations.emplace_front(std::make_shared<util::ease_animation>(x, xn, x, start, duration));
animations.emplace_front(std::make_shared<util::ease_animation>(y, yn, y, start, duration));
}
}
void Transform::startPanning() {
stopPanning();
// Add a 200ms timeout for resetting this to false
panning = true;
double start = platform::elapsed();
pan_timeout = std::make_shared<util::timeout<bool>>(false, panning, start, 0.2);
animations.emplace_front(pan_timeout);
}
void Transform::stopPanning() {
panning = false;
if (pan_timeout) {
animations.remove(pan_timeout);
pan_timeout.reset();
}
}
void Transform::scaleBy(double ds, double cx, double cy, double duration) {
// clamp scale to min/max values
double new_scale = scale * ds;
if (new_scale < min_scale) {
ds = min_scale / scale;
new_scale = min_scale;
} else if (new_scale > max_scale) {
ds = max_scale / scale;
new_scale = max_scale;
}
setScale(new_scale, cx, cy, duration);
}
void Transform::startScaling() {
stopScaling();
// Add a 200ms timeout for resetting this to false
scaling = true;
double start = platform::elapsed();
scale_timeout = std::make_shared<util::timeout<bool>>(false, scaling, start, 0.2);
animations.emplace_front(scale_timeout);
}
void Transform::stopScaling() {
scaling = false;
if (scale_timeout) {
animations.remove(scale_timeout);
scale_timeout.reset();
}
}
void Transform::rotateBy(double start_x, double start_y, double end_x, double end_y, double duration) {
double center_x = width / 2, center_y = height / 2;
const double begin_center_x = start_x - center_x;
const double begin_center_y = start_y - center_y;
const double beginning_center_dist = sqrt(begin_center_x * begin_center_x + begin_center_y * begin_center_y);
// If the first click was too close to the center, move the center of rotation by 200 pixels
// in the direction of the click.
if (beginning_center_dist < 200) {
const double offset_x = -200, offset_y = 0;
const double rotate_angle = atan2(begin_center_y, begin_center_x);
const double rotate_angle_sin = sin(rotate_angle);
const double rotate_angle_cos = cos(rotate_angle);
center_x = start_x + rotate_angle_cos * offset_x - rotate_angle_sin * offset_y;
center_y = start_y + rotate_angle_sin * offset_x + rotate_angle_cos * offset_y;
}
const double first_x = start_x - center_x, first_y = start_y - center_y;
const double second_x = end_x - center_x, second_y = end_y - center_y;
const double ang = angle + util::angle_between(first_x, first_y, second_x, second_y);
setAngle(ang, duration);
}
void Transform::setAngle(double new_angle, double duration) {
while (new_angle > M_PI) new_angle -= M2PI;
while (new_angle <= -M_PI) new_angle += M2PI;
if (duration == 0) {
angle = new_angle;
} else {
double start = platform::elapsed();
animations.emplace_front(std::make_shared<util::ease_animation>(angle, new_angle, angle, start, duration));
}
}
void Transform::startRotating() {
stopRotating();
// Add a 200ms timeout for resetting this to false
rotating = true;
double start = platform::elapsed();
rotate_timeout = std::make_shared<util::timeout<bool>>(false, rotating, start, 0.2);
animations.emplace_front(rotate_timeout);
}
void Transform::stopRotating() {
rotating = false;
if (rotate_timeout) {
animations.remove(rotate_timeout);
rotate_timeout.reset();
}
}
void Transform::setScaleXY(double new_scale, double xn, double yn, double duration) {
if (duration == 0) {
scale = new_scale;
x = xn;
y = yn;
} else {
// Use a common start time for all of the animations to avoid divergent animations.
double start = platform::elapsed();
animations.emplace_front(std::make_shared<util::ease_animation>(scale, new_scale, scale, start, duration));
animations.emplace_front(std::make_shared<util::ease_animation>(x, xn, x, start, duration));
animations.emplace_front(std::make_shared<util::ease_animation>(y, yn, y, start, duration));
}
const double s = scale * util::tileSize;
zc = s / 2;
Bc = s / 360;
Cc = s / (2 * M_PI);
}
void Transform::setScale(double new_scale, double cx, double cy, double duration) {
// Ensure that we don't zoom in further than the maximum allowed.
if (new_scale < min_scale) {
new_scale = min_scale;
} else if (new_scale > max_scale) {
new_scale = max_scale;
}
// Zoom in on the center if we don't have click anchor coordinates.
if (cx < 0 || cy < 0) {
cx = width / 2;
cy = height / 2;
}
// Account for the x/y offset from the center (= where the user clicked)
const double factor = new_scale / scale;
const double dx = (cx - width / 2) * (1.0 - factor);
const double dy = (cy - height / 2) * (1.0 - factor);
// Account for angle
const double angle_sin = sin(-angle);
const double angle_cos = cos(-angle);
const double ax = angle_cos * dx - angle_sin * dy;
const double ay = angle_sin * dx + angle_cos * dy;
const double xn = x * factor + ax;
const double yn = y * factor + ay;
setScaleXY(new_scale, xn, yn, duration);
}
void Transform::setZoom(double zoom, double duration) {
setScale(pow(2.0, zoom), -1, -1, duration);
}
void Transform::setLonLat(double lon, double lat, double duration) {
const double f = fmin(fmax(sin(D2R * lat), -0.9999), 0.9999);
double xn = -round(lon * Bc);
double yn = round(0.5 * Cc * log((1 + f) / (1 - f)));
setScaleXY(scale, xn, yn, duration);
}
void Transform::setLonLatZoom(double lon, double lat, double zoom, double duration) {
double new_scale = pow(2.0, zoom);
const double s = new_scale * util::tileSize;
zc = s / 2;
Bc = s / 360;
Cc = s / (2 * M_PI);
const double f = fmin(fmax(sin(D2R * lat), -0.9999), 0.9999);
double xn = -round(lon * Bc);
double yn = round(0.5 * Cc * log((1 + f) / (1 - f)));
setScaleXY(new_scale, xn, yn, duration);
}
void Transform::getLonLat(double &lon, double &lat) const {
lon = -x / Bc;
lat = R2D * (2 * atan(exp(y / Cc)) - 0.5 * M_PI);
}
void Transform::getLonLatZoom(double& lon, double& lat, double& zoom) const {
getLonLat(lon, lat);
zoom = getZoom();
}
double Transform::pixel_x() const {
const double center = (width - scale * util::tileSize) / 2;
return center + x;
}
double Transform::pixel_y() const {
const double center = (height - scale * util::tileSize) / 2;
return center + y;
}
void Transform::matrixFor(mat4& matrix, const Tile::ID& id) const {
const double tile_scale = pow(2, id.z);
const double tile_size = scale * util::tileSize / tile_scale;
matrix::identity(matrix);
matrix::translate(matrix, matrix, 0.5f * (float)width, 0.5f * (float)height, 0);
matrix::rotate_z(matrix, matrix, angle);
matrix::translate(matrix, matrix, -0.5f * (float)width, -0.5f * (float)height, 0);
matrix::translate(matrix, matrix, pixel_x() + id.x * tile_size, pixel_y() + id.y * tile_size, 0);
// TODO: Get rid of the 8 (scaling from 4096 to tile size);
float factor = scale / tile_scale / (4096.0f / util::tileSize);
matrix::scale(matrix, matrix, factor, factor, 1);
}
float Transform::getZoom() const {
return log(scale) / M_LN2;
}
float Transform::getNormalizedZoom() const {
return log(scale * util::tileSize / 256.0f) / M_LN2;
}
int32_t Transform::getIntegerZoom() const {
return floor(log(scale) / M_LN2);
}
double Transform::getScale() const {
return scale;
}
double Transform::getAngle() const {
return angle;
}
box Transform::cornersToBox(uint32_t z) const {
const double ref_scale = pow(2, z);
const double angle_sin = sin(-angle);
const double angle_cos = cos(-angle);
const double w_2 = width / 2;
const double h_2 = height / 2;
const double ss_0 = scale * util::tileSize;
const double ss_1 = ref_scale / ss_0;
const double ss_2 = ss_0 / 2.0;
// Calculate the corners of the map view. The resulting coordinates will be
// in fractional tile coordinates.
box b;
b.tl.x = ((-w_2) * angle_cos - (-h_2) * angle_sin + ss_2 - x) * ss_1;
b.tl.y = ((-w_2) * angle_sin + (-h_2) * angle_cos + ss_2 - y) * ss_1;
b.tr.x = ((+w_2) * angle_cos - (-h_2) * angle_sin + ss_2 - x) * ss_1;
b.tr.y = ((+w_2) * angle_sin + (-h_2) * angle_cos + ss_2 - y) * ss_1;
b.bl.x = ((-w_2) * angle_cos - (+h_2) * angle_sin + ss_2 - x) * ss_1;
b.bl.y = ((-w_2) * angle_sin + (+h_2) * angle_cos + ss_2 - y) * ss_1;
b.br.x = ((+w_2) * angle_cos - (+h_2) * angle_sin + ss_2 - x) * ss_1;
b.br.y = ((+w_2) * angle_sin + (+h_2) * angle_cos + ss_2 - y) * ss_1;
b.center.x = (ss_2 - x) * ss_1;
b.center.y = (ss_2 - y) * ss_1;
return b;
}
|