summaryrefslogtreecommitdiff
path: root/src/mbgl/text/quads.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/mbgl/text/quads.cpp')
-rw-r--r--src/mbgl/text/quads.cpp320
1 files changed, 54 insertions, 266 deletions
diff --git a/src/mbgl/text/quads.cpp b/src/mbgl/text/quads.cpp
index ab10c5a6b7..0014ae8d01 100644
--- a/src/mbgl/text/quads.cpp
+++ b/src/mbgl/text/quads.cpp
@@ -13,14 +13,9 @@ namespace mbgl {
using namespace style;
-const float globalMinScale = 0.5f; // underscale by 1 zoom level
-
-SymbolQuad getIconQuad(const Anchor& anchor,
- const PositionedIcon& shapedIcon,
- const GeometryCoordinates& line,
+SymbolQuad getIconQuad(const PositionedIcon& shapedIcon,
const SymbolLayoutProperties::Evaluated& layout,
const float layoutTextSize,
- const style::SymbolPlacementType placement,
const Shaping& shapedText) {
const ImagePosition& image = shapedIcon.image();
@@ -71,18 +66,7 @@ SymbolQuad getIconQuad(const Anchor& anchor,
bl = {left, bottom};
}
- float angle = shapedIcon.angle();
- if (placement == style::SymbolPlacementType::Line) {
- assert(static_cast<unsigned int>(anchor.segment) < line.size());
- const GeometryCoordinate &prev= line[anchor.segment];
- if (anchor.point.y == prev.y && anchor.point.x == prev.x &&
- static_cast<unsigned int>(anchor.segment + 1) < line.size()) {
- const GeometryCoordinate &next= line[anchor.segment + 1];
- angle += std::atan2(anchor.point.y - next.y, anchor.point.x - next.x) + M_PI;
- } else {
- angle += std::atan2(anchor.point.y - prev.y, anchor.point.x - prev.x);
- }
- }
+ const float angle = shapedIcon.angle();
if (angle) {
// Compute the transformation matrix.
@@ -104,212 +88,19 @@ SymbolQuad getIconQuad(const Anchor& anchor,
static_cast<uint16_t>(image.textureRect.h + border * 2)
};
- return SymbolQuad { tl, tr, bl, br, textureRect, 0, 0, anchor.point, globalMinScale, std::numeric_limits<float>::infinity(), shapedText.writingMode };
-}
-
-struct GlyphInstance {
- explicit GlyphInstance(Point<float> anchorPoint_) : anchorPoint(std::move(anchorPoint_)) {}
- explicit GlyphInstance(Point<float> anchorPoint_, bool upsideDown_, float minScale_, float maxScale_,
- float angle_)
- : anchorPoint(std::move(anchorPoint_)), upsideDown(upsideDown_), minScale(minScale_), maxScale(maxScale_), angle(angle_) {}
-
- const Point<float> anchorPoint;
- const bool upsideDown = false;
- const float minScale = globalMinScale;
- const float maxScale = std::numeric_limits<float>::infinity();
- const float angle = 0.0f;
-};
-
-using GlyphInstances = std::vector<GlyphInstance>;
-
-struct VirtualSegment {
- Point<float> anchor;
- Point<float> end;
- size_t index;
- float minScale;
- float maxScale;
-};
-
-inline void insertSegmentGlyph(std::back_insert_iterator<GlyphInstances> glyphs,
- const VirtualSegment& virtualSegment,
- const bool glyphIsLogicallyForward,
- const bool upsideDown) {
- float segmentAngle = std::atan2(virtualSegment.end.y - virtualSegment.anchor.y, virtualSegment.end.x - virtualSegment.anchor.x);
- // If !glyphIsLogicallyForward, we're iterating through the segments in reverse logical order as well, so we need to flip the segment angle
- float glyphAngle = glyphIsLogicallyForward ? segmentAngle : segmentAngle + M_PI;
-
- // Insert a glyph rotated at this angle for display in the range from [scale, previous(larger) scale].
- glyphs = GlyphInstance{
- /* anchor */ virtualSegment.anchor,
- /* upsideDown */ upsideDown,
- /* minScale */ virtualSegment.minScale,
- /* maxScale */ virtualSegment.maxScale,
- /* angle */ static_cast<float>(std::fmod((glyphAngle + 2.0 * M_PI), (2.0 * M_PI)))};
-}
-
-/**
- Given the distance along the line from the label anchor to the beginning of the current segment,
- project a "virtual anchor" point at the same distance along the line extending out from this segment.
-
- B <-- beginning of current segment
-* . . . . . . . *--------* E <-- end of current segment
-VA |
- / VA = "virtual segment anchor"
- /
- ---*-----`
- A = label anchor
-
- Distance _along line_ from A to B == straight-line distance from VA to B.
- */
-inline Point<float> getVirtualSegmentAnchor(const Point<float>& segmentBegin, const Point<float>& segmentEnd, float distanceFromAnchorToSegmentBegin) {
- Point<float> segmentDirectionUnitVector = util::normal<float>(segmentBegin, segmentEnd);
- return segmentBegin - (segmentDirectionUnitVector * distanceFromAnchorToSegmentBegin);
-}
-
-/*
- Given the segment joining `segmentAnchor` and `segmentEnd` and a desired offset
- `glyphDistanceFromAnchor` at which a glyph is to be placed, calculate the minimum
- "scale" at which the glyph will fall on the segment (i.e., not past the end)
-
- "Scale" here refers to the ratio between the *rendered* zoom level and the text-layout
- zoom level, which is 1 + (source tile's zoom level). `glyphDistanceFromAnchor`, although
- passed in units consistent with the text-layout zoom level, is based on text size. So
- when the tile is being rendered at z < text-layout zoom, the glyph's actual distance from
- the anchor is larger relative to the segment's length than at layout time:
-
-
- GLYPH
- z == layout-zoom, scale == 1: segmentAnchor *--------------^-------------* segmentEnd
- z == layout-zoom - 1, scale == 0.5: segmentAnchor *--------------^* segmentEnd
-
- <-------------->
- Anchor-to-glyph distance stays visually fixed,
- so it changes relative to the segment.
-*/
-inline float getMinScaleForSegment(const float glyphDistanceFromAnchor,
- const Point<float>& segmentAnchor,
- const Point<float>& segmentEnd) {
- const auto distanceFromAnchorToEnd = util::dist<float>(segmentAnchor, segmentEnd);
- return glyphDistanceFromAnchor / distanceFromAnchorToEnd;
-}
-
-inline Point<float> getSegmentEnd(const bool glyphIsLogicallyForward,
- const GeometryCoordinates& line,
- const size_t segmentIndex) {
- return convertPoint<float>(glyphIsLogicallyForward ? line[segmentIndex+1] : line[segmentIndex]);
-}
-
-optional<VirtualSegment> getNextVirtualSegment(const VirtualSegment& previousVirtualSegment,
- const GeometryCoordinates& line,
- const float glyphDistanceFromAnchor,
- const bool glyphIsLogicallyForward) {
- auto nextSegmentBegin = previousVirtualSegment.end;
-
- auto end = nextSegmentBegin;
- size_t index = previousVirtualSegment.index;
-
- // skip duplicate nodes
- while (end == nextSegmentBegin) {
- // look ahead by 2 points in the line because the segment index refers to the beginning
- // of the segment, and we need an endpoint too
- if (glyphIsLogicallyForward && (index + 2 < line.size())) {
- index += 1;
- } else if (!glyphIsLogicallyForward && index != 0) {
- index -= 1;
- } else {
- return {};
- }
-
- end = getSegmentEnd(glyphIsLogicallyForward, line, index);
- }
-
- const auto anchor = getVirtualSegmentAnchor(nextSegmentBegin, end,
- util::dist<float>(previousVirtualSegment.anchor,
- previousVirtualSegment.end));
- return VirtualSegment {
- anchor,
- end,
- index,
- getMinScaleForSegment(glyphDistanceFromAnchor, anchor, end),
- previousVirtualSegment.minScale
- };
-}
-
-/*
- Given (1) a glyph positioned relative to an anchor point and (2) a line to follow,
- calculates which segment of the line the glyph will fall on for each possible
- scale range, and for each range produces a "virtual" anchor point and an angle that will
- place the glyph on the right segment and rotated to the correct angle.
-
- Because one glyph quad is made ahead of time for each possible orientation, the
- symbol_sdf shader can quickly handle changing layout as we zoom in and out
-
- If the "keepUpright" property is set, we call getLineGlyphs twice (once upright and
- once "upside down"). This will generate two sets of glyphs following the line in opposite
- directions. Later, SymbolLayout::place will look at the glyphs and based on the placement
- angle determine if their original anchor was "upright" or not -- based on that, it throws
- away one set of glyphs or the other (this work has to be done in the CPU, but it's just a
- filter so it's fast)
- */
-void getLineGlyphs(std::back_insert_iterator<GlyphInstances> glyphs,
- Anchor& anchor,
- float glyphHorizontalOffsetFromAnchor,
- const GeometryCoordinates& line,
- size_t anchorSegment,
- bool upsideDown) {
- assert(line.size() > anchorSegment+1);
-
- // This is true if the glyph is "logically forward" of the anchor point, based on the ordering of line segments
- // The actual angle of the line is irrelevant
- // If "upsideDown" is set, everything is flipped
- const bool glyphIsLogicallyForward = (glyphHorizontalOffsetFromAnchor >= 0) ^ upsideDown;
- const float glyphDistanceFromAnchor = std::fabs(glyphHorizontalOffsetFromAnchor);
-
- const auto initialSegmentEnd = getSegmentEnd(glyphIsLogicallyForward, line, anchorSegment);
- VirtualSegment virtualSegment = {
- anchor.point,
- initialSegmentEnd,
- anchorSegment,
- getMinScaleForSegment(glyphDistanceFromAnchor, anchor.point, initialSegmentEnd),
- std::numeric_limits<float>::infinity()
- };
-
- while (true) {
- insertSegmentGlyph(glyphs,
- virtualSegment,
- glyphIsLogicallyForward,
- upsideDown);
-
- if (virtualSegment.minScale <= anchor.scale) {
- // No need to calculate below the scale where the label starts showing
- return;
- }
-
- optional<VirtualSegment> nextVirtualSegment = getNextVirtualSegment(virtualSegment,
- line,
- glyphDistanceFromAnchor,
- glyphIsLogicallyForward);
- if (!nextVirtualSegment) {
- // There are no more segments, so we can't fit this glyph on the line at a lower scale
- // This implies we can't show the label at all at lower scale, so we update the anchor's min scale
- anchor.scale = virtualSegment.minScale;
- return;
- } else {
- virtualSegment = *nextVirtualSegment;
- }
- }
-
+ return SymbolQuad { tl, tr, bl, br, textureRect, shapedText.writingMode, { 0.0f, 0.0f } };
}
-SymbolQuads getGlyphQuads(Anchor& anchor,
- const Shaping& shapedText,
- const float boxScale,
- const GeometryCoordinates& line,
+SymbolQuads getGlyphQuads(const Shaping& shapedText,
const SymbolLayoutProperties::Evaluated& layout,
const style::SymbolPlacementType placement,
const GlyphPositionMap& positions) {
const float textRotate = layout.get<TextRotate>() * util::DEG2RAD;
- const bool keepUpright = layout.get<TextKeepUpright>();
+
+ const float oneEm = 24.0;
+ std::array<float, 2> textOffset = layout.get<TextOffset>();
+ textOffset[0] *= oneEm;
+ textOffset[1] *= oneEm;
SymbolQuads quads;
@@ -320,67 +111,64 @@ SymbolQuads getGlyphQuads(Anchor& anchor,
const GlyphPosition& glyph = positionsIt->second;
const Rect<uint16_t>& rect = glyph.rect;
- const float centerX = (positionedGlyph.x + glyph.metrics.advance / 2.0f) * boxScale;
-
- GlyphInstances glyphInstances;
- if (placement == style::SymbolPlacementType::Line) {
- getLineGlyphs(std::back_inserter(glyphInstances), anchor, centerX, line, anchor.segment, false);
- if (keepUpright)
- getLineGlyphs(std::back_inserter(glyphInstances), anchor, centerX, line, anchor.segment, true);
- } else {
- glyphInstances.emplace_back(GlyphInstance{anchor.point});
- }
// The rects have an addditional buffer that is not included in their size;
const float glyphPadding = 1.0f;
const float rectBuffer = 3.0f + glyphPadding;
- const float x1 = positionedGlyph.x + glyph.metrics.left - rectBuffer;
- const float y1 = positionedGlyph.y - glyph.metrics.top - rectBuffer;
- const float x2 = x1 + rect.w;
- const float y2 = y1 + rect.h;
+ const float halfAdvance = glyph.metrics.advance / 2.0;
+ const bool alongLine = layout.get<TextRotationAlignment>() == AlignmentType::Map && placement == SymbolPlacementType::Line;
- const Point<float> center{positionedGlyph.x, static_cast<float>(static_cast<float>(glyph.metrics.advance) / 2.0)};
+ const Point<float> glyphOffset = alongLine ?
+ Point<float>{ positionedGlyph.x + halfAdvance, positionedGlyph.y } :
+ Point<float>{ 0.0f, 0.0f };
- Point<float> otl{x1, y1};
- Point<float> otr{x2, y1};
- Point<float> obl{x1, y2};
- Point<float> obr{x2, y2};
-
- if (positionedGlyph.angle != 0) {
- otl = util::rotate(otl - center, positionedGlyph.angle) + center;
- otr = util::rotate(otr - center, positionedGlyph.angle) + center;
- obl = util::rotate(obl - center, positionedGlyph.angle) + center;
- obr = util::rotate(obr - center, positionedGlyph.angle) + center;
- }
+ const Point<float> builtInOffset = alongLine ?
+ Point<float>{ 0.0f, 0.0f } :
+ Point<float>{ positionedGlyph.x + halfAdvance + textOffset[0], positionedGlyph.y + textOffset[1] };
- for (const GlyphInstance &instance : glyphInstances) {
- Point<float> tl = otl;
- Point<float> tr = otr;
- Point<float> bl = obl;
- Point<float> br = obr;
- if (textRotate) {
- // Compute the transformation matrix.
- float angle_sin = std::sin(textRotate);
- float angle_cos = std::cos(textRotate);
- std::array<float, 4> matrix = {{angle_cos, -angle_sin, angle_sin, angle_cos}};
+ const float x1 = glyph.metrics.left - rectBuffer - halfAdvance + builtInOffset.x;
+ const float y1 = -glyph.metrics.top - rectBuffer + builtInOffset.y;
+ const float x2 = x1 + rect.w;
+ const float y2 = y1 + rect.h;
- tl = util::matrixMultiply(matrix, tl);
- tr = util::matrixMultiply(matrix, tr);
- bl = util::matrixMultiply(matrix, bl);
- br = util::matrixMultiply(matrix, br);
- }
+ Point<float> tl{x1, y1};
+ Point<float> tr{x2, y1};
+ Point<float> bl{x1, y2};
+ Point<float> br{x2, y2};
+
+ if (alongLine && positionedGlyph.vertical) {
+ // Vertical-supporting glyphs are laid out in 24x24 point boxes (1 square em)
+ // In horizontal orientation, the y values for glyphs are below the midline
+ // and we use a "yOffset" of -17 to pull them up to the middle.
+ // By rotating counter-clockwise around the point at the center of the left
+ // edge of a 24x24 layout box centered below the midline, we align the center
+ // of the glyphs with the horizontal midline, so the yOffset is no longer
+ // necessary, but we also pull the glyph to the left along the x axis
+ const Point<float> center{-halfAdvance, halfAdvance};
+ const float verticalRotation = -M_PI_2;
+ const Point<float> xOffsetCorrection{5, 0};
+
+ tl = util::rotate(tl - center, verticalRotation) + center + xOffsetCorrection;
+ tr = util::rotate(tr - center, verticalRotation) + center + xOffsetCorrection;
+ bl = util::rotate(bl - center, verticalRotation) + center + xOffsetCorrection;
+ br = util::rotate(br - center, verticalRotation) + center + xOffsetCorrection;
+ }
- // Prevent label from extending past the end of the line
- const float glyphMinScale = std::max(instance.minScale, anchor.scale);
+ if (textRotate) {
+ // Compute the transformation matrix.
+ float angle_sin = std::sin(textRotate);
+ float angle_cos = std::cos(textRotate);
+ std::array<float, 4> matrix = {{angle_cos, -angle_sin, angle_sin, angle_cos}};
- // All the glyphs for a label are tagged with either the "right side up" or "upside down" anchor angle,
- // which is used at placement time to determine which set to show
- const float anchorAngle = std::fmod((anchor.angle + (instance.upsideDown ? M_PI : 0.0) + 2 * M_PI), (2 * M_PI));
- const float glyphAngle = std::fmod((instance.angle + (instance.upsideDown ? M_PI : 0.0) + 2 * M_PI), (2 * M_PI));
- quads.emplace_back(tl, tr, bl, br, rect, anchorAngle, glyphAngle, instance.anchorPoint, glyphMinScale, instance.maxScale, shapedText.writingMode);
+ tl = util::matrixMultiply(matrix, tl);
+ tr = util::matrixMultiply(matrix, tr);
+ bl = util::matrixMultiply(matrix, bl);
+ br = util::matrixMultiply(matrix, br);
}
+
+ quads.emplace_back(tl, tr, bl, br, rect, shapedText.writingMode, glyphOffset);
}
return quads;