diff options
Diffstat (limited to 'src/3rdparty/v8/src/conversions-inl.h')
-rw-r--r-- | src/3rdparty/v8/src/conversions-inl.h | 678 |
1 files changed, 0 insertions, 678 deletions
diff --git a/src/3rdparty/v8/src/conversions-inl.h b/src/3rdparty/v8/src/conversions-inl.h deleted file mode 100644 index 7edaf22..0000000 --- a/src/3rdparty/v8/src/conversions-inl.h +++ /dev/null @@ -1,678 +0,0 @@ -// Copyright 2011 the V8 project authors. All rights reserved. -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// * Redistributions in binary form must reproduce the above -// copyright notice, this list of conditions and the following -// disclaimer in the documentation and/or other materials provided -// with the distribution. -// * Neither the name of Google Inc. nor the names of its -// contributors may be used to endorse or promote products derived -// from this software without specific prior written permission. -// -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -#ifndef V8_CONVERSIONS_INL_H_ -#define V8_CONVERSIONS_INL_H_ - -#include <limits.h> // Required for INT_MAX etc. -#include <math.h> -#include <float.h> // Required for DBL_MAX and on Win32 for finite() -#include <stdarg.h> -#include "globals.h" // Required for V8_INFINITY - -// ---------------------------------------------------------------------------- -// Extra POSIX/ANSI functions for Win32/MSVC. - -#include "conversions.h" -#include "double.h" -#include "platform.h" -#include "scanner.h" -#include "strtod.h" - -namespace v8 { -namespace internal { - -inline double JunkStringValue() { - return BitCast<double, uint64_t>(kQuietNaNMask); -} - - -inline double SignedZero(bool negative) { - return negative ? uint64_to_double(Double::kSignMask) : 0.0; -} - - -// The fast double-to-unsigned-int conversion routine does not guarantee -// rounding towards zero, or any reasonable value if the argument is larger -// than what fits in an unsigned 32-bit integer. -inline unsigned int FastD2UI(double x) { - // There is no unsigned version of lrint, so there is no fast path - // in this function as there is in FastD2I. Using lrint doesn't work - // for values of 2^31 and above. - - // Convert "small enough" doubles to uint32_t by fixing the 32 - // least significant non-fractional bits in the low 32 bits of the - // double, and reading them from there. - const double k2Pow52 = 4503599627370496.0; - bool negative = x < 0; - if (negative) { - x = -x; - } - if (x < k2Pow52) { - x += k2Pow52; - uint32_t result; - Address mantissa_ptr = reinterpret_cast<Address>(&x); - // Copy least significant 32 bits of mantissa. - memcpy(&result, mantissa_ptr, sizeof(result)); - return negative ? ~result + 1 : result; - } - // Large number (outside uint32 range), Infinity or NaN. - return 0x80000000u; // Return integer indefinite. -} - - -inline double DoubleToInteger(double x) { - if (isnan(x)) return 0; - if (!isfinite(x) || x == 0) return x; - return (x >= 0) ? floor(x) : ceil(x); -} - - -int32_t DoubleToInt32(double x) { - int32_t i = FastD2I(x); - if (FastI2D(i) == x) return i; - Double d(x); - int exponent = d.Exponent(); - if (exponent < 0) { - if (exponent <= -Double::kSignificandSize) return 0; - return d.Sign() * static_cast<int32_t>(d.Significand() >> -exponent); - } else { - if (exponent > 31) return 0; - return d.Sign() * static_cast<int32_t>(d.Significand() << exponent); - } -} - - -template <class Iterator, class EndMark> -bool SubStringEquals(Iterator* current, - EndMark end, - const char* substring) { - ASSERT(**current == *substring); - for (substring++; *substring != '\0'; substring++) { - ++*current; - if (*current == end || **current != *substring) return false; - } - ++*current; - return true; -} - - -// Returns true if a nonspace character has been found and false if the -// end was been reached before finding a nonspace character. -template <class Iterator, class EndMark> -inline bool AdvanceToNonspace(UnicodeCache* unicode_cache, - Iterator* current, - EndMark end) { - while (*current != end) { - if (!unicode_cache->IsWhiteSpace(**current)) return true; - ++*current; - } - return false; -} - - -// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end. -template <int radix_log_2, class Iterator, class EndMark> -double InternalStringToIntDouble(UnicodeCache* unicode_cache, - Iterator current, - EndMark end, - bool negative, - bool allow_trailing_junk) { - ASSERT(current != end); - - // Skip leading 0s. - while (*current == '0') { - ++current; - if (current == end) return SignedZero(negative); - } - - int64_t number = 0; - int exponent = 0; - const int radix = (1 << radix_log_2); - - do { - int digit; - if (*current >= '0' && *current <= '9' && *current < '0' + radix) { - digit = static_cast<char>(*current) - '0'; - } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) { - digit = static_cast<char>(*current) - 'a' + 10; - } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) { - digit = static_cast<char>(*current) - 'A' + 10; - } else { - if (allow_trailing_junk || - !AdvanceToNonspace(unicode_cache, ¤t, end)) { - break; - } else { - return JunkStringValue(); - } - } - - number = number * radix + digit; - int overflow = static_cast<int>(number >> 53); - if (overflow != 0) { - // Overflow occurred. Need to determine which direction to round the - // result. - int overflow_bits_count = 1; - while (overflow > 1) { - overflow_bits_count++; - overflow >>= 1; - } - - int dropped_bits_mask = ((1 << overflow_bits_count) - 1); - int dropped_bits = static_cast<int>(number) & dropped_bits_mask; - number >>= overflow_bits_count; - exponent = overflow_bits_count; - - bool zero_tail = true; - while (true) { - ++current; - if (current == end || !isDigit(*current, radix)) break; - zero_tail = zero_tail && *current == '0'; - exponent += radix_log_2; - } - - if (!allow_trailing_junk && - AdvanceToNonspace(unicode_cache, ¤t, end)) { - return JunkStringValue(); - } - - int middle_value = (1 << (overflow_bits_count - 1)); - if (dropped_bits > middle_value) { - number++; // Rounding up. - } else if (dropped_bits == middle_value) { - // Rounding to even to consistency with decimals: half-way case rounds - // up if significant part is odd and down otherwise. - if ((number & 1) != 0 || !zero_tail) { - number++; // Rounding up. - } - } - - // Rounding up may cause overflow. - if ((number & (static_cast<int64_t>(1) << 53)) != 0) { - exponent++; - number >>= 1; - } - break; - } - ++current; - } while (current != end); - - ASSERT(number < ((int64_t)1 << 53)); - ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number); - - if (exponent == 0) { - if (negative) { - if (number == 0) return -0.0; - number = -number; - } - return static_cast<double>(number); - } - - ASSERT(number != 0); - return ldexp(static_cast<double>(negative ? -number : number), exponent); -} - - -template <class Iterator, class EndMark> -double InternalStringToInt(UnicodeCache* unicode_cache, - Iterator current, - EndMark end, - int radix) { - const bool allow_trailing_junk = true; - const double empty_string_val = JunkStringValue(); - - if (!AdvanceToNonspace(unicode_cache, ¤t, end)) { - return empty_string_val; - } - - bool negative = false; - bool leading_zero = false; - - if (*current == '+') { - // Ignore leading sign; skip following spaces. - ++current; - if (current == end) { - return JunkStringValue(); - } - } else if (*current == '-') { - ++current; - if (current == end) { - return JunkStringValue(); - } - negative = true; - } - - if (radix == 0) { - // Radix detection. - radix = 10; - if (*current == '0') { - ++current; - if (current == end) return SignedZero(negative); - if (*current == 'x' || *current == 'X') { - radix = 16; - ++current; - if (current == end) return JunkStringValue(); - } else { - leading_zero = true; - } - } - } else if (radix == 16) { - if (*current == '0') { - // Allow "0x" prefix. - ++current; - if (current == end) return SignedZero(negative); - if (*current == 'x' || *current == 'X') { - ++current; - if (current == end) return JunkStringValue(); - } else { - leading_zero = true; - } - } - } - - if (radix < 2 || radix > 36) return JunkStringValue(); - - // Skip leading zeros. - while (*current == '0') { - leading_zero = true; - ++current; - if (current == end) return SignedZero(negative); - } - - if (!leading_zero && !isDigit(*current, radix)) { - return JunkStringValue(); - } - - if (IsPowerOf2(radix)) { - switch (radix) { - case 2: - return InternalStringToIntDouble<1>( - unicode_cache, current, end, negative, allow_trailing_junk); - case 4: - return InternalStringToIntDouble<2>( - unicode_cache, current, end, negative, allow_trailing_junk); - case 8: - return InternalStringToIntDouble<3>( - unicode_cache, current, end, negative, allow_trailing_junk); - - case 16: - return InternalStringToIntDouble<4>( - unicode_cache, current, end, negative, allow_trailing_junk); - - case 32: - return InternalStringToIntDouble<5>( - unicode_cache, current, end, negative, allow_trailing_junk); - default: - UNREACHABLE(); - } - } - - if (radix == 10) { - // Parsing with strtod. - const int kMaxSignificantDigits = 309; // Doubles are less than 1.8e308. - // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero - // end. - const int kBufferSize = kMaxSignificantDigits + 2; - char buffer[kBufferSize]; - int buffer_pos = 0; - while (*current >= '0' && *current <= '9') { - if (buffer_pos <= kMaxSignificantDigits) { - // If the number has more than kMaxSignificantDigits it will be parsed - // as infinity. - ASSERT(buffer_pos < kBufferSize); - buffer[buffer_pos++] = static_cast<char>(*current); - } - ++current; - if (current == end) break; - } - - if (!allow_trailing_junk && - AdvanceToNonspace(unicode_cache, ¤t, end)) { - return JunkStringValue(); - } - - ASSERT(buffer_pos < kBufferSize); - buffer[buffer_pos] = '\0'; - Vector<const char> buffer_vector(buffer, buffer_pos); - return negative ? -Strtod(buffer_vector, 0) : Strtod(buffer_vector, 0); - } - - // The following code causes accumulating rounding error for numbers greater - // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10, - // 16, or 32, then mathInt may be an implementation-dependent approximation to - // the mathematical integer value" (15.1.2.2). - - int lim_0 = '0' + (radix < 10 ? radix : 10); - int lim_a = 'a' + (radix - 10); - int lim_A = 'A' + (radix - 10); - - // NOTE: The code for computing the value may seem a bit complex at - // first glance. It is structured to use 32-bit multiply-and-add - // loops as long as possible to avoid loosing precision. - - double v = 0.0; - bool done = false; - do { - // Parse the longest part of the string starting at index j - // possible while keeping the multiplier, and thus the part - // itself, within 32 bits. - unsigned int part = 0, multiplier = 1; - while (true) { - int d; - if (*current >= '0' && *current < lim_0) { - d = *current - '0'; - } else if (*current >= 'a' && *current < lim_a) { - d = *current - 'a' + 10; - } else if (*current >= 'A' && *current < lim_A) { - d = *current - 'A' + 10; - } else { - done = true; - break; - } - - // Update the value of the part as long as the multiplier fits - // in 32 bits. When we can't guarantee that the next iteration - // will not overflow the multiplier, we stop parsing the part - // by leaving the loop. - const unsigned int kMaximumMultiplier = 0xffffffffU / 36; - uint32_t m = multiplier * radix; - if (m > kMaximumMultiplier) break; - part = part * radix + d; - multiplier = m; - ASSERT(multiplier > part); - - ++current; - if (current == end) { - done = true; - break; - } - } - - // Update the value and skip the part in the string. - v = v * multiplier + part; - } while (!done); - - if (!allow_trailing_junk && - AdvanceToNonspace(unicode_cache, ¤t, end)) { - return JunkStringValue(); - } - - return negative ? -v : v; -} - - -// Converts a string to a double value. Assumes the Iterator supports -// the following operations: -// 1. current == end (other ops are not allowed), current != end. -// 2. *current - gets the current character in the sequence. -// 3. ++current (advances the position). -template <class Iterator, class EndMark> -double InternalStringToDouble(UnicodeCache* unicode_cache, - Iterator current, - EndMark end, - int flags, - double empty_string_val) { - // To make sure that iterator dereferencing is valid the following - // convention is used: - // 1. Each '++current' statement is followed by check for equality to 'end'. - // 2. If AdvanceToNonspace returned false then current == end. - // 3. If 'current' becomes be equal to 'end' the function returns or goes to - // 'parsing_done'. - // 4. 'current' is not dereferenced after the 'parsing_done' label. - // 5. Code before 'parsing_done' may rely on 'current != end'. - if (!AdvanceToNonspace(unicode_cache, ¤t, end)) { - return empty_string_val; - } - - const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0; - - // The longest form of simplified number is: "-<significant digits>'.1eXXX\0". - const int kBufferSize = kMaxSignificantDigits + 10; - char buffer[kBufferSize]; // NOLINT: size is known at compile time. - int buffer_pos = 0; - - // Exponent will be adjusted if insignificant digits of the integer part - // or insignificant leading zeros of the fractional part are dropped. - int exponent = 0; - int significant_digits = 0; - int insignificant_digits = 0; - bool nonzero_digit_dropped = false; - - enum Sign { - NONE, - NEGATIVE, - POSITIVE - }; - - Sign sign = NONE; - - if (*current == '+') { - // Ignore leading sign. - ++current; - if (current == end) return JunkStringValue(); - sign = POSITIVE; - } else if (*current == '-') { - ++current; - if (current == end) return JunkStringValue(); - sign = NEGATIVE; - } - - static const char kInfinityString[] = "Infinity"; - if (*current == kInfinityString[0]) { - if (!SubStringEquals(¤t, end, kInfinityString)) { - return JunkStringValue(); - } - - if (!allow_trailing_junk && - AdvanceToNonspace(unicode_cache, ¤t, end)) { - return JunkStringValue(); - } - - ASSERT(buffer_pos == 0); - return (sign == NEGATIVE) ? -V8_INFINITY : V8_INFINITY; - } - - bool leading_zero = false; - if (*current == '0') { - ++current; - if (current == end) return SignedZero(sign == NEGATIVE); - - leading_zero = true; - - // It could be hexadecimal value. - if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) { - ++current; - if (current == end || !isDigit(*current, 16) || sign != NONE) { - return JunkStringValue(); // "0x". - } - - return InternalStringToIntDouble<4>(unicode_cache, - current, - end, - false, - allow_trailing_junk); - } - - // Ignore leading zeros in the integer part. - while (*current == '0') { - ++current; - if (current == end) return SignedZero(sign == NEGATIVE); - } - } - - bool octal = leading_zero && (flags & ALLOW_OCTALS) != 0; - - // Copy significant digits of the integer part (if any) to the buffer. - while (*current >= '0' && *current <= '9') { - if (significant_digits < kMaxSignificantDigits) { - ASSERT(buffer_pos < kBufferSize); - buffer[buffer_pos++] = static_cast<char>(*current); - significant_digits++; - // Will later check if it's an octal in the buffer. - } else { - insignificant_digits++; // Move the digit into the exponential part. - nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; - } - octal = octal && *current < '8'; - ++current; - if (current == end) goto parsing_done; - } - - if (significant_digits == 0) { - octal = false; - } - - if (*current == '.') { - if (octal && !allow_trailing_junk) return JunkStringValue(); - if (octal) goto parsing_done; - - ++current; - if (current == end) { - if (significant_digits == 0 && !leading_zero) { - return JunkStringValue(); - } else { - goto parsing_done; - } - } - - if (significant_digits == 0) { - // octal = false; - // Integer part consists of 0 or is absent. Significant digits start after - // leading zeros (if any). - while (*current == '0') { - ++current; - if (current == end) return SignedZero(sign == NEGATIVE); - exponent--; // Move this 0 into the exponent. - } - } - - // There is a fractional part. We don't emit a '.', but adjust the exponent - // instead. - while (*current >= '0' && *current <= '9') { - if (significant_digits < kMaxSignificantDigits) { - ASSERT(buffer_pos < kBufferSize); - buffer[buffer_pos++] = static_cast<char>(*current); - significant_digits++; - exponent--; - } else { - // Ignore insignificant digits in the fractional part. - nonzero_digit_dropped = nonzero_digit_dropped || *current != '0'; - } - ++current; - if (current == end) goto parsing_done; - } - } - - if (!leading_zero && exponent == 0 && significant_digits == 0) { - // If leading_zeros is true then the string contains zeros. - // If exponent < 0 then string was [+-]\.0*... - // If significant_digits != 0 the string is not equal to 0. - // Otherwise there are no digits in the string. - return JunkStringValue(); - } - - // Parse exponential part. - if (*current == 'e' || *current == 'E') { - if (octal) return JunkStringValue(); - ++current; - if (current == end) { - if (allow_trailing_junk) { - goto parsing_done; - } else { - return JunkStringValue(); - } - } - char sign = '+'; - if (*current == '+' || *current == '-') { - sign = static_cast<char>(*current); - ++current; - if (current == end) { - if (allow_trailing_junk) { - goto parsing_done; - } else { - return JunkStringValue(); - } - } - } - - if (current == end || *current < '0' || *current > '9') { - if (allow_trailing_junk) { - goto parsing_done; - } else { - return JunkStringValue(); - } - } - - const int max_exponent = INT_MAX / 2; - ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2); - int num = 0; - do { - // Check overflow. - int digit = *current - '0'; - if (num >= max_exponent / 10 - && !(num == max_exponent / 10 && digit <= max_exponent % 10)) { - num = max_exponent; - } else { - num = num * 10 + digit; - } - ++current; - } while (current != end && *current >= '0' && *current <= '9'); - - exponent += (sign == '-' ? -num : num); - } - - if (!allow_trailing_junk && - AdvanceToNonspace(unicode_cache, ¤t, end)) { - return JunkStringValue(); - } - - parsing_done: - exponent += insignificant_digits; - - if (octal) { - return InternalStringToIntDouble<3>(unicode_cache, - buffer, - buffer + buffer_pos, - sign == NEGATIVE, - allow_trailing_junk); - } - - if (nonzero_digit_dropped) { - buffer[buffer_pos++] = '1'; - exponent--; - } - - ASSERT(buffer_pos < kBufferSize); - buffer[buffer_pos] = '\0'; - - double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent); - return (sign == NEGATIVE) ? -converted : converted; -} - -} } // namespace v8::internal - -#endif // V8_CONVERSIONS_INL_H_ |