summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/conversions-inl.h
diff options
context:
space:
mode:
Diffstat (limited to 'src/3rdparty/v8/src/conversions-inl.h')
-rw-r--r--src/3rdparty/v8/src/conversions-inl.h678
1 files changed, 0 insertions, 678 deletions
diff --git a/src/3rdparty/v8/src/conversions-inl.h b/src/3rdparty/v8/src/conversions-inl.h
deleted file mode 100644
index 7edaf22..0000000
--- a/src/3rdparty/v8/src/conversions-inl.h
+++ /dev/null
@@ -1,678 +0,0 @@
-// Copyright 2011 the V8 project authors. All rights reserved.
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following
-// disclaimer in the documentation and/or other materials provided
-// with the distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived
-// from this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-#ifndef V8_CONVERSIONS_INL_H_
-#define V8_CONVERSIONS_INL_H_
-
-#include <limits.h> // Required for INT_MAX etc.
-#include <math.h>
-#include <float.h> // Required for DBL_MAX and on Win32 for finite()
-#include <stdarg.h>
-#include "globals.h" // Required for V8_INFINITY
-
-// ----------------------------------------------------------------------------
-// Extra POSIX/ANSI functions for Win32/MSVC.
-
-#include "conversions.h"
-#include "double.h"
-#include "platform.h"
-#include "scanner.h"
-#include "strtod.h"
-
-namespace v8 {
-namespace internal {
-
-inline double JunkStringValue() {
- return BitCast<double, uint64_t>(kQuietNaNMask);
-}
-
-
-inline double SignedZero(bool negative) {
- return negative ? uint64_to_double(Double::kSignMask) : 0.0;
-}
-
-
-// The fast double-to-unsigned-int conversion routine does not guarantee
-// rounding towards zero, or any reasonable value if the argument is larger
-// than what fits in an unsigned 32-bit integer.
-inline unsigned int FastD2UI(double x) {
- // There is no unsigned version of lrint, so there is no fast path
- // in this function as there is in FastD2I. Using lrint doesn't work
- // for values of 2^31 and above.
-
- // Convert "small enough" doubles to uint32_t by fixing the 32
- // least significant non-fractional bits in the low 32 bits of the
- // double, and reading them from there.
- const double k2Pow52 = 4503599627370496.0;
- bool negative = x < 0;
- if (negative) {
- x = -x;
- }
- if (x < k2Pow52) {
- x += k2Pow52;
- uint32_t result;
- Address mantissa_ptr = reinterpret_cast<Address>(&x);
- // Copy least significant 32 bits of mantissa.
- memcpy(&result, mantissa_ptr, sizeof(result));
- return negative ? ~result + 1 : result;
- }
- // Large number (outside uint32 range), Infinity or NaN.
- return 0x80000000u; // Return integer indefinite.
-}
-
-
-inline double DoubleToInteger(double x) {
- if (isnan(x)) return 0;
- if (!isfinite(x) || x == 0) return x;
- return (x >= 0) ? floor(x) : ceil(x);
-}
-
-
-int32_t DoubleToInt32(double x) {
- int32_t i = FastD2I(x);
- if (FastI2D(i) == x) return i;
- Double d(x);
- int exponent = d.Exponent();
- if (exponent < 0) {
- if (exponent <= -Double::kSignificandSize) return 0;
- return d.Sign() * static_cast<int32_t>(d.Significand() >> -exponent);
- } else {
- if (exponent > 31) return 0;
- return d.Sign() * static_cast<int32_t>(d.Significand() << exponent);
- }
-}
-
-
-template <class Iterator, class EndMark>
-bool SubStringEquals(Iterator* current,
- EndMark end,
- const char* substring) {
- ASSERT(**current == *substring);
- for (substring++; *substring != '\0'; substring++) {
- ++*current;
- if (*current == end || **current != *substring) return false;
- }
- ++*current;
- return true;
-}
-
-
-// Returns true if a nonspace character has been found and false if the
-// end was been reached before finding a nonspace character.
-template <class Iterator, class EndMark>
-inline bool AdvanceToNonspace(UnicodeCache* unicode_cache,
- Iterator* current,
- EndMark end) {
- while (*current != end) {
- if (!unicode_cache->IsWhiteSpace(**current)) return true;
- ++*current;
- }
- return false;
-}
-
-
-// Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
-template <int radix_log_2, class Iterator, class EndMark>
-double InternalStringToIntDouble(UnicodeCache* unicode_cache,
- Iterator current,
- EndMark end,
- bool negative,
- bool allow_trailing_junk) {
- ASSERT(current != end);
-
- // Skip leading 0s.
- while (*current == '0') {
- ++current;
- if (current == end) return SignedZero(negative);
- }
-
- int64_t number = 0;
- int exponent = 0;
- const int radix = (1 << radix_log_2);
-
- do {
- int digit;
- if (*current >= '0' && *current <= '9' && *current < '0' + radix) {
- digit = static_cast<char>(*current) - '0';
- } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) {
- digit = static_cast<char>(*current) - 'a' + 10;
- } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) {
- digit = static_cast<char>(*current) - 'A' + 10;
- } else {
- if (allow_trailing_junk ||
- !AdvanceToNonspace(unicode_cache, &current, end)) {
- break;
- } else {
- return JunkStringValue();
- }
- }
-
- number = number * radix + digit;
- int overflow = static_cast<int>(number >> 53);
- if (overflow != 0) {
- // Overflow occurred. Need to determine which direction to round the
- // result.
- int overflow_bits_count = 1;
- while (overflow > 1) {
- overflow_bits_count++;
- overflow >>= 1;
- }
-
- int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
- int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
- number >>= overflow_bits_count;
- exponent = overflow_bits_count;
-
- bool zero_tail = true;
- while (true) {
- ++current;
- if (current == end || !isDigit(*current, radix)) break;
- zero_tail = zero_tail && *current == '0';
- exponent += radix_log_2;
- }
-
- if (!allow_trailing_junk &&
- AdvanceToNonspace(unicode_cache, &current, end)) {
- return JunkStringValue();
- }
-
- int middle_value = (1 << (overflow_bits_count - 1));
- if (dropped_bits > middle_value) {
- number++; // Rounding up.
- } else if (dropped_bits == middle_value) {
- // Rounding to even to consistency with decimals: half-way case rounds
- // up if significant part is odd and down otherwise.
- if ((number & 1) != 0 || !zero_tail) {
- number++; // Rounding up.
- }
- }
-
- // Rounding up may cause overflow.
- if ((number & (static_cast<int64_t>(1) << 53)) != 0) {
- exponent++;
- number >>= 1;
- }
- break;
- }
- ++current;
- } while (current != end);
-
- ASSERT(number < ((int64_t)1 << 53));
- ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
-
- if (exponent == 0) {
- if (negative) {
- if (number == 0) return -0.0;
- number = -number;
- }
- return static_cast<double>(number);
- }
-
- ASSERT(number != 0);
- return ldexp(static_cast<double>(negative ? -number : number), exponent);
-}
-
-
-template <class Iterator, class EndMark>
-double InternalStringToInt(UnicodeCache* unicode_cache,
- Iterator current,
- EndMark end,
- int radix) {
- const bool allow_trailing_junk = true;
- const double empty_string_val = JunkStringValue();
-
- if (!AdvanceToNonspace(unicode_cache, &current, end)) {
- return empty_string_val;
- }
-
- bool negative = false;
- bool leading_zero = false;
-
- if (*current == '+') {
- // Ignore leading sign; skip following spaces.
- ++current;
- if (current == end) {
- return JunkStringValue();
- }
- } else if (*current == '-') {
- ++current;
- if (current == end) {
- return JunkStringValue();
- }
- negative = true;
- }
-
- if (radix == 0) {
- // Radix detection.
- radix = 10;
- if (*current == '0') {
- ++current;
- if (current == end) return SignedZero(negative);
- if (*current == 'x' || *current == 'X') {
- radix = 16;
- ++current;
- if (current == end) return JunkStringValue();
- } else {
- leading_zero = true;
- }
- }
- } else if (radix == 16) {
- if (*current == '0') {
- // Allow "0x" prefix.
- ++current;
- if (current == end) return SignedZero(negative);
- if (*current == 'x' || *current == 'X') {
- ++current;
- if (current == end) return JunkStringValue();
- } else {
- leading_zero = true;
- }
- }
- }
-
- if (radix < 2 || radix > 36) return JunkStringValue();
-
- // Skip leading zeros.
- while (*current == '0') {
- leading_zero = true;
- ++current;
- if (current == end) return SignedZero(negative);
- }
-
- if (!leading_zero && !isDigit(*current, radix)) {
- return JunkStringValue();
- }
-
- if (IsPowerOf2(radix)) {
- switch (radix) {
- case 2:
- return InternalStringToIntDouble<1>(
- unicode_cache, current, end, negative, allow_trailing_junk);
- case 4:
- return InternalStringToIntDouble<2>(
- unicode_cache, current, end, negative, allow_trailing_junk);
- case 8:
- return InternalStringToIntDouble<3>(
- unicode_cache, current, end, negative, allow_trailing_junk);
-
- case 16:
- return InternalStringToIntDouble<4>(
- unicode_cache, current, end, negative, allow_trailing_junk);
-
- case 32:
- return InternalStringToIntDouble<5>(
- unicode_cache, current, end, negative, allow_trailing_junk);
- default:
- UNREACHABLE();
- }
- }
-
- if (radix == 10) {
- // Parsing with strtod.
- const int kMaxSignificantDigits = 309; // Doubles are less than 1.8e308.
- // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero
- // end.
- const int kBufferSize = kMaxSignificantDigits + 2;
- char buffer[kBufferSize];
- int buffer_pos = 0;
- while (*current >= '0' && *current <= '9') {
- if (buffer_pos <= kMaxSignificantDigits) {
- // If the number has more than kMaxSignificantDigits it will be parsed
- // as infinity.
- ASSERT(buffer_pos < kBufferSize);
- buffer[buffer_pos++] = static_cast<char>(*current);
- }
- ++current;
- if (current == end) break;
- }
-
- if (!allow_trailing_junk &&
- AdvanceToNonspace(unicode_cache, &current, end)) {
- return JunkStringValue();
- }
-
- ASSERT(buffer_pos < kBufferSize);
- buffer[buffer_pos] = '\0';
- Vector<const char> buffer_vector(buffer, buffer_pos);
- return negative ? -Strtod(buffer_vector, 0) : Strtod(buffer_vector, 0);
- }
-
- // The following code causes accumulating rounding error for numbers greater
- // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10,
- // 16, or 32, then mathInt may be an implementation-dependent approximation to
- // the mathematical integer value" (15.1.2.2).
-
- int lim_0 = '0' + (radix < 10 ? radix : 10);
- int lim_a = 'a' + (radix - 10);
- int lim_A = 'A' + (radix - 10);
-
- // NOTE: The code for computing the value may seem a bit complex at
- // first glance. It is structured to use 32-bit multiply-and-add
- // loops as long as possible to avoid loosing precision.
-
- double v = 0.0;
- bool done = false;
- do {
- // Parse the longest part of the string starting at index j
- // possible while keeping the multiplier, and thus the part
- // itself, within 32 bits.
- unsigned int part = 0, multiplier = 1;
- while (true) {
- int d;
- if (*current >= '0' && *current < lim_0) {
- d = *current - '0';
- } else if (*current >= 'a' && *current < lim_a) {
- d = *current - 'a' + 10;
- } else if (*current >= 'A' && *current < lim_A) {
- d = *current - 'A' + 10;
- } else {
- done = true;
- break;
- }
-
- // Update the value of the part as long as the multiplier fits
- // in 32 bits. When we can't guarantee that the next iteration
- // will not overflow the multiplier, we stop parsing the part
- // by leaving the loop.
- const unsigned int kMaximumMultiplier = 0xffffffffU / 36;
- uint32_t m = multiplier * radix;
- if (m > kMaximumMultiplier) break;
- part = part * radix + d;
- multiplier = m;
- ASSERT(multiplier > part);
-
- ++current;
- if (current == end) {
- done = true;
- break;
- }
- }
-
- // Update the value and skip the part in the string.
- v = v * multiplier + part;
- } while (!done);
-
- if (!allow_trailing_junk &&
- AdvanceToNonspace(unicode_cache, &current, end)) {
- return JunkStringValue();
- }
-
- return negative ? -v : v;
-}
-
-
-// Converts a string to a double value. Assumes the Iterator supports
-// the following operations:
-// 1. current == end (other ops are not allowed), current != end.
-// 2. *current - gets the current character in the sequence.
-// 3. ++current (advances the position).
-template <class Iterator, class EndMark>
-double InternalStringToDouble(UnicodeCache* unicode_cache,
- Iterator current,
- EndMark end,
- int flags,
- double empty_string_val) {
- // To make sure that iterator dereferencing is valid the following
- // convention is used:
- // 1. Each '++current' statement is followed by check for equality to 'end'.
- // 2. If AdvanceToNonspace returned false then current == end.
- // 3. If 'current' becomes be equal to 'end' the function returns or goes to
- // 'parsing_done'.
- // 4. 'current' is not dereferenced after the 'parsing_done' label.
- // 5. Code before 'parsing_done' may rely on 'current != end'.
- if (!AdvanceToNonspace(unicode_cache, &current, end)) {
- return empty_string_val;
- }
-
- const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0;
-
- // The longest form of simplified number is: "-<significant digits>'.1eXXX\0".
- const int kBufferSize = kMaxSignificantDigits + 10;
- char buffer[kBufferSize]; // NOLINT: size is known at compile time.
- int buffer_pos = 0;
-
- // Exponent will be adjusted if insignificant digits of the integer part
- // or insignificant leading zeros of the fractional part are dropped.
- int exponent = 0;
- int significant_digits = 0;
- int insignificant_digits = 0;
- bool nonzero_digit_dropped = false;
-
- enum Sign {
- NONE,
- NEGATIVE,
- POSITIVE
- };
-
- Sign sign = NONE;
-
- if (*current == '+') {
- // Ignore leading sign.
- ++current;
- if (current == end) return JunkStringValue();
- sign = POSITIVE;
- } else if (*current == '-') {
- ++current;
- if (current == end) return JunkStringValue();
- sign = NEGATIVE;
- }
-
- static const char kInfinityString[] = "Infinity";
- if (*current == kInfinityString[0]) {
- if (!SubStringEquals(&current, end, kInfinityString)) {
- return JunkStringValue();
- }
-
- if (!allow_trailing_junk &&
- AdvanceToNonspace(unicode_cache, &current, end)) {
- return JunkStringValue();
- }
-
- ASSERT(buffer_pos == 0);
- return (sign == NEGATIVE) ? -V8_INFINITY : V8_INFINITY;
- }
-
- bool leading_zero = false;
- if (*current == '0') {
- ++current;
- if (current == end) return SignedZero(sign == NEGATIVE);
-
- leading_zero = true;
-
- // It could be hexadecimal value.
- if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
- ++current;
- if (current == end || !isDigit(*current, 16) || sign != NONE) {
- return JunkStringValue(); // "0x".
- }
-
- return InternalStringToIntDouble<4>(unicode_cache,
- current,
- end,
- false,
- allow_trailing_junk);
- }
-
- // Ignore leading zeros in the integer part.
- while (*current == '0') {
- ++current;
- if (current == end) return SignedZero(sign == NEGATIVE);
- }
- }
-
- bool octal = leading_zero && (flags & ALLOW_OCTALS) != 0;
-
- // Copy significant digits of the integer part (if any) to the buffer.
- while (*current >= '0' && *current <= '9') {
- if (significant_digits < kMaxSignificantDigits) {
- ASSERT(buffer_pos < kBufferSize);
- buffer[buffer_pos++] = static_cast<char>(*current);
- significant_digits++;
- // Will later check if it's an octal in the buffer.
- } else {
- insignificant_digits++; // Move the digit into the exponential part.
- nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
- }
- octal = octal && *current < '8';
- ++current;
- if (current == end) goto parsing_done;
- }
-
- if (significant_digits == 0) {
- octal = false;
- }
-
- if (*current == '.') {
- if (octal && !allow_trailing_junk) return JunkStringValue();
- if (octal) goto parsing_done;
-
- ++current;
- if (current == end) {
- if (significant_digits == 0 && !leading_zero) {
- return JunkStringValue();
- } else {
- goto parsing_done;
- }
- }
-
- if (significant_digits == 0) {
- // octal = false;
- // Integer part consists of 0 or is absent. Significant digits start after
- // leading zeros (if any).
- while (*current == '0') {
- ++current;
- if (current == end) return SignedZero(sign == NEGATIVE);
- exponent--; // Move this 0 into the exponent.
- }
- }
-
- // There is a fractional part. We don't emit a '.', but adjust the exponent
- // instead.
- while (*current >= '0' && *current <= '9') {
- if (significant_digits < kMaxSignificantDigits) {
- ASSERT(buffer_pos < kBufferSize);
- buffer[buffer_pos++] = static_cast<char>(*current);
- significant_digits++;
- exponent--;
- } else {
- // Ignore insignificant digits in the fractional part.
- nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
- }
- ++current;
- if (current == end) goto parsing_done;
- }
- }
-
- if (!leading_zero && exponent == 0 && significant_digits == 0) {
- // If leading_zeros is true then the string contains zeros.
- // If exponent < 0 then string was [+-]\.0*...
- // If significant_digits != 0 the string is not equal to 0.
- // Otherwise there are no digits in the string.
- return JunkStringValue();
- }
-
- // Parse exponential part.
- if (*current == 'e' || *current == 'E') {
- if (octal) return JunkStringValue();
- ++current;
- if (current == end) {
- if (allow_trailing_junk) {
- goto parsing_done;
- } else {
- return JunkStringValue();
- }
- }
- char sign = '+';
- if (*current == '+' || *current == '-') {
- sign = static_cast<char>(*current);
- ++current;
- if (current == end) {
- if (allow_trailing_junk) {
- goto parsing_done;
- } else {
- return JunkStringValue();
- }
- }
- }
-
- if (current == end || *current < '0' || *current > '9') {
- if (allow_trailing_junk) {
- goto parsing_done;
- } else {
- return JunkStringValue();
- }
- }
-
- const int max_exponent = INT_MAX / 2;
- ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
- int num = 0;
- do {
- // Check overflow.
- int digit = *current - '0';
- if (num >= max_exponent / 10
- && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
- num = max_exponent;
- } else {
- num = num * 10 + digit;
- }
- ++current;
- } while (current != end && *current >= '0' && *current <= '9');
-
- exponent += (sign == '-' ? -num : num);
- }
-
- if (!allow_trailing_junk &&
- AdvanceToNonspace(unicode_cache, &current, end)) {
- return JunkStringValue();
- }
-
- parsing_done:
- exponent += insignificant_digits;
-
- if (octal) {
- return InternalStringToIntDouble<3>(unicode_cache,
- buffer,
- buffer + buffer_pos,
- sign == NEGATIVE,
- allow_trailing_junk);
- }
-
- if (nonzero_digit_dropped) {
- buffer[buffer_pos++] = '1';
- exponent--;
- }
-
- ASSERT(buffer_pos < kBufferSize);
- buffer[buffer_pos] = '\0';
-
- double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
- return (sign == NEGATIVE) ? -converted : converted;
-}
-
-} } // namespace v8::internal
-
-#endif // V8_CONVERSIONS_INL_H_