summaryrefslogtreecommitdiff
path: root/src/3rdparty/v8/src/platform-win32.cc
diff options
context:
space:
mode:
authorSimon Hausmann <simon.hausmann@nokia.com>2012-01-05 10:12:14 +0100
committerSimon Hausmann <simon.hausmann@nokia.com>2012-01-05 12:18:02 +0100
commitba0f3a56487cf43207ab0ef1c898fa093082287b (patch)
treee93181a50477d83c22983ea2c318150d78d06982 /src/3rdparty/v8/src/platform-win32.cc
parentbbfea5b3a10cad429714267d507cc90f3da6db1b (diff)
downloadqtjsbackend-ba0f3a56487cf43207ab0ef1c898fa093082287b.tar.gz
Imported v8 version 3.7.3 from https://github.com/v8/v8.git
Change-Id: I152648081e46f599c2bb88eaaf67034fa5daac3a
Diffstat (limited to 'src/3rdparty/v8/src/platform-win32.cc')
-rw-r--r--src/3rdparty/v8/src/platform-win32.cc2042
1 files changed, 2042 insertions, 0 deletions
diff --git a/src/3rdparty/v8/src/platform-win32.cc b/src/3rdparty/v8/src/platform-win32.cc
new file mode 100644
index 0000000..8771c43
--- /dev/null
+++ b/src/3rdparty/v8/src/platform-win32.cc
@@ -0,0 +1,2042 @@
+// Copyright 2011 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// Platform specific code for Win32.
+
+#define V8_WIN32_HEADERS_FULL
+#include "win32-headers.h"
+
+#include "v8.h"
+
+#include "platform.h"
+#include "vm-state-inl.h"
+
+#ifdef _MSC_VER
+
+// Case-insensitive bounded string comparisons. Use stricmp() on Win32. Usually
+// defined in strings.h.
+int strncasecmp(const char* s1, const char* s2, int n) {
+ return _strnicmp(s1, s2, n);
+}
+
+#endif // _MSC_VER
+
+
+// Extra functions for MinGW. Most of these are the _s functions which are in
+// the Microsoft Visual Studio C++ CRT.
+#ifdef __MINGW32__
+
+int localtime_s(tm* out_tm, const time_t* time) {
+ tm* posix_local_time_struct = localtime(time);
+ if (posix_local_time_struct == NULL) return 1;
+ *out_tm = *posix_local_time_struct;
+ return 0;
+}
+
+
+// Not sure this the correct interpretation of _mkgmtime
+time_t _mkgmtime(tm* timeptr) {
+ return mktime(timeptr);
+}
+
+
+int fopen_s(FILE** pFile, const char* filename, const char* mode) {
+ *pFile = fopen(filename, mode);
+ return *pFile != NULL ? 0 : 1;
+}
+
+
+#define _TRUNCATE 0
+#define STRUNCATE 80
+
+int _vsnprintf_s(char* buffer, size_t sizeOfBuffer, size_t count,
+ const char* format, va_list argptr) {
+ ASSERT(count == _TRUNCATE);
+ return _vsnprintf(buffer, sizeOfBuffer, format, argptr);
+}
+
+
+int strncpy_s(char* dest, size_t dest_size, const char* source, size_t count) {
+ CHECK(source != NULL);
+ CHECK(dest != NULL);
+ CHECK_GT(dest_size, 0);
+
+ if (count == _TRUNCATE) {
+ while (dest_size > 0 && *source != 0) {
+ *(dest++) = *(source++);
+ --dest_size;
+ }
+ if (dest_size == 0) {
+ *(dest - 1) = 0;
+ return STRUNCATE;
+ }
+ } else {
+ while (dest_size > 0 && count > 0 && *source != 0) {
+ *(dest++) = *(source++);
+ --dest_size;
+ --count;
+ }
+ }
+ CHECK_GT(dest_size, 0);
+ *dest = 0;
+ return 0;
+}
+
+
+inline void MemoryBarrier() {
+ int barrier = 0;
+ __asm__ __volatile__("xchgl %%eax,%0 ":"=r" (barrier));
+}
+
+#endif // __MINGW32__
+
+// Generate a pseudo-random number in the range 0-2^31-1. Usually
+// defined in stdlib.h. Missing in both Microsoft Visual Studio C++ and MinGW.
+int random() {
+ return rand();
+}
+
+
+namespace v8 {
+namespace internal {
+
+intptr_t OS::MaxVirtualMemory() {
+ return 0;
+}
+
+
+double ceiling(double x) {
+ return ceil(x);
+}
+
+
+static Mutex* limit_mutex = NULL;
+
+#if defined(V8_TARGET_ARCH_IA32)
+static OS::MemCopyFunction memcopy_function = NULL;
+static Mutex* memcopy_function_mutex = OS::CreateMutex();
+// Defined in codegen-ia32.cc.
+OS::MemCopyFunction CreateMemCopyFunction();
+
+// Copy memory area to disjoint memory area.
+void OS::MemCopy(void* dest, const void* src, size_t size) {
+ if (memcopy_function == NULL) {
+ ScopedLock lock(memcopy_function_mutex);
+ if (memcopy_function == NULL) {
+ OS::MemCopyFunction temp = CreateMemCopyFunction();
+ MemoryBarrier();
+ memcopy_function = temp;
+ }
+ }
+ // Note: here we rely on dependent reads being ordered. This is true
+ // on all architectures we currently support.
+ (*memcopy_function)(dest, src, size);
+#ifdef DEBUG
+ CHECK_EQ(0, memcmp(dest, src, size));
+#endif
+}
+#endif // V8_TARGET_ARCH_IA32
+
+#ifdef _WIN64
+typedef double (*ModuloFunction)(double, double);
+static ModuloFunction modulo_function = NULL;
+static Mutex* modulo_function_mutex = OS::CreateMutex();
+// Defined in codegen-x64.cc.
+ModuloFunction CreateModuloFunction();
+
+double modulo(double x, double y) {
+ if (modulo_function == NULL) {
+ ScopedLock lock(modulo_function_mutex);
+ if (modulo_function == NULL) {
+ ModuloFunction temp = CreateModuloFunction();
+ MemoryBarrier();
+ modulo_function = temp;
+ }
+ }
+ // Note: here we rely on dependent reads being ordered. This is true
+ // on all architectures we currently support.
+ return (*modulo_function)(x, y);
+}
+#else // Win32
+
+double modulo(double x, double y) {
+ // Workaround MS fmod bugs. ECMA-262 says:
+ // dividend is finite and divisor is an infinity => result equals dividend
+ // dividend is a zero and divisor is nonzero finite => result equals dividend
+ if (!(isfinite(x) && (!isfinite(y) && !isnan(y))) &&
+ !(x == 0 && (y != 0 && isfinite(y)))) {
+ x = fmod(x, y);
+ }
+ return x;
+}
+
+#endif // _WIN64
+
+// ----------------------------------------------------------------------------
+// The Time class represents time on win32. A timestamp is represented as
+// a 64-bit integer in 100 nano-seconds since January 1, 1601 (UTC). JavaScript
+// timestamps are represented as a doubles in milliseconds since 00:00:00 UTC,
+// January 1, 1970.
+
+class Time {
+ public:
+ // Constructors.
+ Time();
+ explicit Time(double jstime);
+ Time(int year, int mon, int day, int hour, int min, int sec);
+
+ // Convert timestamp to JavaScript representation.
+ double ToJSTime();
+
+ // Set timestamp to current time.
+ void SetToCurrentTime();
+
+ // Returns the local timezone offset in milliseconds east of UTC. This is
+ // the number of milliseconds you must add to UTC to get local time, i.e.
+ // LocalOffset(CET) = 3600000 and LocalOffset(PST) = -28800000. This
+ // routine also takes into account whether daylight saving is effect
+ // at the time.
+ int64_t LocalOffset();
+
+ // Returns the daylight savings time offset for the time in milliseconds.
+ int64_t DaylightSavingsOffset();
+
+ // Returns a string identifying the current timezone for the
+ // timestamp taking into account daylight saving.
+ char* LocalTimezone();
+
+ private:
+ // Constants for time conversion.
+ static const int64_t kTimeEpoc = 116444736000000000LL;
+ static const int64_t kTimeScaler = 10000;
+ static const int64_t kMsPerMinute = 60000;
+
+ // Constants for timezone information.
+ static const int kTzNameSize = 128;
+ static const bool kShortTzNames = false;
+
+ // Timezone information. We need to have static buffers for the
+ // timezone names because we return pointers to these in
+ // LocalTimezone().
+ static bool tz_initialized_;
+ static TIME_ZONE_INFORMATION tzinfo_;
+ static char std_tz_name_[kTzNameSize];
+ static char dst_tz_name_[kTzNameSize];
+
+ // Initialize the timezone information (if not already done).
+ static void TzSet();
+
+ // Guess the name of the timezone from the bias.
+ static const char* GuessTimezoneNameFromBias(int bias);
+
+ // Return whether or not daylight savings time is in effect at this time.
+ bool InDST();
+
+ // Return the difference (in milliseconds) between this timestamp and
+ // another timestamp.
+ int64_t Diff(Time* other);
+
+ // Accessor for FILETIME representation.
+ FILETIME& ft() { return time_.ft_; }
+
+ // Accessor for integer representation.
+ int64_t& t() { return time_.t_; }
+
+ // Although win32 uses 64-bit integers for representing timestamps,
+ // these are packed into a FILETIME structure. The FILETIME structure
+ // is just a struct representing a 64-bit integer. The TimeStamp union
+ // allows access to both a FILETIME and an integer representation of
+ // the timestamp.
+ union TimeStamp {
+ FILETIME ft_;
+ int64_t t_;
+ };
+
+ TimeStamp time_;
+};
+
+// Static variables.
+bool Time::tz_initialized_ = false;
+TIME_ZONE_INFORMATION Time::tzinfo_;
+char Time::std_tz_name_[kTzNameSize];
+char Time::dst_tz_name_[kTzNameSize];
+
+
+// Initialize timestamp to start of epoc.
+Time::Time() {
+ t() = 0;
+}
+
+
+// Initialize timestamp from a JavaScript timestamp.
+Time::Time(double jstime) {
+ t() = static_cast<int64_t>(jstime) * kTimeScaler + kTimeEpoc;
+}
+
+
+// Initialize timestamp from date/time components.
+Time::Time(int year, int mon, int day, int hour, int min, int sec) {
+ SYSTEMTIME st;
+ st.wYear = year;
+ st.wMonth = mon;
+ st.wDay = day;
+ st.wHour = hour;
+ st.wMinute = min;
+ st.wSecond = sec;
+ st.wMilliseconds = 0;
+ SystemTimeToFileTime(&st, &ft());
+}
+
+
+// Convert timestamp to JavaScript timestamp.
+double Time::ToJSTime() {
+ return static_cast<double>((t() - kTimeEpoc) / kTimeScaler);
+}
+
+
+// Guess the name of the timezone from the bias.
+// The guess is very biased towards the northern hemisphere.
+const char* Time::GuessTimezoneNameFromBias(int bias) {
+ static const int kHour = 60;
+ switch (-bias) {
+ case -9*kHour: return "Alaska";
+ case -8*kHour: return "Pacific";
+ case -7*kHour: return "Mountain";
+ case -6*kHour: return "Central";
+ case -5*kHour: return "Eastern";
+ case -4*kHour: return "Atlantic";
+ case 0*kHour: return "GMT";
+ case +1*kHour: return "Central Europe";
+ case +2*kHour: return "Eastern Europe";
+ case +3*kHour: return "Russia";
+ case +5*kHour + 30: return "India";
+ case +8*kHour: return "China";
+ case +9*kHour: return "Japan";
+ case +12*kHour: return "New Zealand";
+ default: return "Local";
+ }
+}
+
+
+// Initialize timezone information. The timezone information is obtained from
+// windows. If we cannot get the timezone information we fall back to CET.
+// Please notice that this code is not thread-safe.
+void Time::TzSet() {
+ // Just return if timezone information has already been initialized.
+ if (tz_initialized_) return;
+
+ // Initialize POSIX time zone data.
+ _tzset();
+ // Obtain timezone information from operating system.
+ memset(&tzinfo_, 0, sizeof(tzinfo_));
+ if (GetTimeZoneInformation(&tzinfo_) == TIME_ZONE_ID_INVALID) {
+ // If we cannot get timezone information we fall back to CET.
+ tzinfo_.Bias = -60;
+ tzinfo_.StandardDate.wMonth = 10;
+ tzinfo_.StandardDate.wDay = 5;
+ tzinfo_.StandardDate.wHour = 3;
+ tzinfo_.StandardBias = 0;
+ tzinfo_.DaylightDate.wMonth = 3;
+ tzinfo_.DaylightDate.wDay = 5;
+ tzinfo_.DaylightDate.wHour = 2;
+ tzinfo_.DaylightBias = -60;
+ }
+
+ // Make standard and DST timezone names.
+ WideCharToMultiByte(CP_UTF8, 0, tzinfo_.StandardName, -1,
+ std_tz_name_, kTzNameSize, NULL, NULL);
+ std_tz_name_[kTzNameSize - 1] = '\0';
+ WideCharToMultiByte(CP_UTF8, 0, tzinfo_.DaylightName, -1,
+ dst_tz_name_, kTzNameSize, NULL, NULL);
+ dst_tz_name_[kTzNameSize - 1] = '\0';
+
+ // If OS returned empty string or resource id (like "@tzres.dll,-211")
+ // simply guess the name from the UTC bias of the timezone.
+ // To properly resolve the resource identifier requires a library load,
+ // which is not possible in a sandbox.
+ if (std_tz_name_[0] == '\0' || std_tz_name_[0] == '@') {
+ OS::SNPrintF(Vector<char>(std_tz_name_, kTzNameSize - 1),
+ "%s Standard Time",
+ GuessTimezoneNameFromBias(tzinfo_.Bias));
+ }
+ if (dst_tz_name_[0] == '\0' || dst_tz_name_[0] == '@') {
+ OS::SNPrintF(Vector<char>(dst_tz_name_, kTzNameSize - 1),
+ "%s Daylight Time",
+ GuessTimezoneNameFromBias(tzinfo_.Bias));
+ }
+
+ // Timezone information initialized.
+ tz_initialized_ = true;
+}
+
+
+// Return the difference in milliseconds between this and another timestamp.
+int64_t Time::Diff(Time* other) {
+ return (t() - other->t()) / kTimeScaler;
+}
+
+
+// Set timestamp to current time.
+void Time::SetToCurrentTime() {
+ // The default GetSystemTimeAsFileTime has a ~15.5ms resolution.
+ // Because we're fast, we like fast timers which have at least a
+ // 1ms resolution.
+ //
+ // timeGetTime() provides 1ms granularity when combined with
+ // timeBeginPeriod(). If the host application for v8 wants fast
+ // timers, it can use timeBeginPeriod to increase the resolution.
+ //
+ // Using timeGetTime() has a drawback because it is a 32bit value
+ // and hence rolls-over every ~49days.
+ //
+ // To use the clock, we use GetSystemTimeAsFileTime as our base;
+ // and then use timeGetTime to extrapolate current time from the
+ // start time. To deal with rollovers, we resync the clock
+ // any time when more than kMaxClockElapsedTime has passed or
+ // whenever timeGetTime creates a rollover.
+
+ static bool initialized = false;
+ static TimeStamp init_time;
+ static DWORD init_ticks;
+ static const int64_t kHundredNanosecondsPerSecond = 10000000;
+ static const int64_t kMaxClockElapsedTime =
+ 60*kHundredNanosecondsPerSecond; // 1 minute
+
+ // If we are uninitialized, we need to resync the clock.
+ bool needs_resync = !initialized;
+
+ // Get the current time.
+ TimeStamp time_now;
+ GetSystemTimeAsFileTime(&time_now.ft_);
+ DWORD ticks_now = timeGetTime();
+
+ // Check if we need to resync due to clock rollover.
+ needs_resync |= ticks_now < init_ticks;
+
+ // Check if we need to resync due to elapsed time.
+ needs_resync |= (time_now.t_ - init_time.t_) > kMaxClockElapsedTime;
+
+ // Resync the clock if necessary.
+ if (needs_resync) {
+ GetSystemTimeAsFileTime(&init_time.ft_);
+ init_ticks = ticks_now = timeGetTime();
+ initialized = true;
+ }
+
+ // Finally, compute the actual time. Why is this so hard.
+ DWORD elapsed = ticks_now - init_ticks;
+ this->time_.t_ = init_time.t_ + (static_cast<int64_t>(elapsed) * 10000);
+}
+
+
+// Return the local timezone offset in milliseconds east of UTC. This
+// takes into account whether daylight saving is in effect at the time.
+// Only times in the 32-bit Unix range may be passed to this function.
+// Also, adding the time-zone offset to the input must not overflow.
+// The function EquivalentTime() in date.js guarantees this.
+int64_t Time::LocalOffset() {
+ // Initialize timezone information, if needed.
+ TzSet();
+
+ Time rounded_to_second(*this);
+ rounded_to_second.t() = rounded_to_second.t() / 1000 / kTimeScaler *
+ 1000 * kTimeScaler;
+ // Convert to local time using POSIX localtime function.
+ // Windows XP Service Pack 3 made SystemTimeToTzSpecificLocalTime()
+ // very slow. Other browsers use localtime().
+
+ // Convert from JavaScript milliseconds past 1/1/1970 0:00:00 to
+ // POSIX seconds past 1/1/1970 0:00:00.
+ double unchecked_posix_time = rounded_to_second.ToJSTime() / 1000;
+ if (unchecked_posix_time > INT_MAX || unchecked_posix_time < 0) {
+ return 0;
+ }
+ // Because _USE_32BIT_TIME_T is defined, time_t is a 32-bit int.
+ time_t posix_time = static_cast<time_t>(unchecked_posix_time);
+
+ // Convert to local time, as struct with fields for day, hour, year, etc.
+ tm posix_local_time_struct;
+ if (localtime_s(&posix_local_time_struct, &posix_time)) return 0;
+ // Convert local time in struct to POSIX time as if it were a UTC time.
+ time_t local_posix_time = _mkgmtime(&posix_local_time_struct);
+ Time localtime(1000.0 * local_posix_time);
+
+ return localtime.Diff(&rounded_to_second);
+}
+
+
+// Return whether or not daylight savings time is in effect at this time.
+bool Time::InDST() {
+ // Initialize timezone information, if needed.
+ TzSet();
+
+ // Determine if DST is in effect at the specified time.
+ bool in_dst = false;
+ if (tzinfo_.StandardDate.wMonth != 0 || tzinfo_.DaylightDate.wMonth != 0) {
+ // Get the local timezone offset for the timestamp in milliseconds.
+ int64_t offset = LocalOffset();
+
+ // Compute the offset for DST. The bias parameters in the timezone info
+ // are specified in minutes. These must be converted to milliseconds.
+ int64_t dstofs = -(tzinfo_.Bias + tzinfo_.DaylightBias) * kMsPerMinute;
+
+ // If the local time offset equals the timezone bias plus the daylight
+ // bias then DST is in effect.
+ in_dst = offset == dstofs;
+ }
+
+ return in_dst;
+}
+
+
+// Return the daylight savings time offset for this time.
+int64_t Time::DaylightSavingsOffset() {
+ return InDST() ? 60 * kMsPerMinute : 0;
+}
+
+
+// Returns a string identifying the current timezone for the
+// timestamp taking into account daylight saving.
+char* Time::LocalTimezone() {
+ // Return the standard or DST time zone name based on whether daylight
+ // saving is in effect at the given time.
+ return InDST() ? dst_tz_name_ : std_tz_name_;
+}
+
+
+void OS::Setup() {
+ // Seed the random number generator.
+ // Convert the current time to a 64-bit integer first, before converting it
+ // to an unsigned. Going directly can cause an overflow and the seed to be
+ // set to all ones. The seed will be identical for different instances that
+ // call this setup code within the same millisecond.
+ uint64_t seed = static_cast<uint64_t>(TimeCurrentMillis());
+ srand(static_cast<unsigned int>(seed));
+ limit_mutex = CreateMutex();
+}
+
+
+// Returns the accumulated user time for thread.
+int OS::GetUserTime(uint32_t* secs, uint32_t* usecs) {
+ FILETIME dummy;
+ uint64_t usertime;
+
+ // Get the amount of time that the thread has executed in user mode.
+ if (!GetThreadTimes(GetCurrentThread(), &dummy, &dummy, &dummy,
+ reinterpret_cast<FILETIME*>(&usertime))) return -1;
+
+ // Adjust the resolution to micro-seconds.
+ usertime /= 10;
+
+ // Convert to seconds and microseconds
+ *secs = static_cast<uint32_t>(usertime / 1000000);
+ *usecs = static_cast<uint32_t>(usertime % 1000000);
+ return 0;
+}
+
+
+// Returns current time as the number of milliseconds since
+// 00:00:00 UTC, January 1, 1970.
+double OS::TimeCurrentMillis() {
+ Time t;
+ t.SetToCurrentTime();
+ return t.ToJSTime();
+}
+
+// Returns the tickcounter based on timeGetTime.
+int64_t OS::Ticks() {
+ return timeGetTime() * 1000; // Convert to microseconds.
+}
+
+
+// Returns a string identifying the current timezone taking into
+// account daylight saving.
+const char* OS::LocalTimezone(double time) {
+ return Time(time).LocalTimezone();
+}
+
+
+// Returns the local time offset in milliseconds east of UTC without
+// taking daylight savings time into account.
+double OS::LocalTimeOffset() {
+ // Use current time, rounded to the millisecond.
+ Time t(TimeCurrentMillis());
+ // Time::LocalOffset inlcudes any daylight savings offset, so subtract it.
+ return static_cast<double>(t.LocalOffset() - t.DaylightSavingsOffset());
+}
+
+
+// Returns the daylight savings offset in milliseconds for the given
+// time.
+double OS::DaylightSavingsOffset(double time) {
+ int64_t offset = Time(time).DaylightSavingsOffset();
+ return static_cast<double>(offset);
+}
+
+
+int OS::GetLastError() {
+ return ::GetLastError();
+}
+
+
+// ----------------------------------------------------------------------------
+// Win32 console output.
+//
+// If a Win32 application is linked as a console application it has a normal
+// standard output and standard error. In this case normal printf works fine
+// for output. However, if the application is linked as a GUI application,
+// the process doesn't have a console, and therefore (debugging) output is lost.
+// This is the case if we are embedded in a windows program (like a browser).
+// In order to be able to get debug output in this case the the debugging
+// facility using OutputDebugString. This output goes to the active debugger
+// for the process (if any). Else the output can be monitored using DBMON.EXE.
+
+enum OutputMode {
+ UNKNOWN, // Output method has not yet been determined.
+ CONSOLE, // Output is written to stdout.
+ ODS // Output is written to debug facility.
+};
+
+static OutputMode output_mode = UNKNOWN; // Current output mode.
+
+
+// Determine if the process has a console for output.
+static bool HasConsole() {
+ // Only check the first time. Eventual race conditions are not a problem,
+ // because all threads will eventually determine the same mode.
+ if (output_mode == UNKNOWN) {
+ // We cannot just check that the standard output is attached to a console
+ // because this would fail if output is redirected to a file. Therefore we
+ // say that a process does not have an output console if either the
+ // standard output handle is invalid or its file type is unknown.
+ if (GetStdHandle(STD_OUTPUT_HANDLE) != INVALID_HANDLE_VALUE &&
+ GetFileType(GetStdHandle(STD_OUTPUT_HANDLE)) != FILE_TYPE_UNKNOWN)
+ output_mode = CONSOLE;
+ else
+ output_mode = ODS;
+ }
+ return output_mode == CONSOLE;
+}
+
+
+static void VPrintHelper(FILE* stream, const char* format, va_list args) {
+ if (HasConsole()) {
+ vfprintf(stream, format, args);
+ } else {
+ // It is important to use safe print here in order to avoid
+ // overflowing the buffer. We might truncate the output, but this
+ // does not crash.
+ EmbeddedVector<char, 4096> buffer;
+ OS::VSNPrintF(buffer, format, args);
+ OutputDebugStringA(buffer.start());
+ }
+}
+
+
+FILE* OS::FOpen(const char* path, const char* mode) {
+ FILE* result;
+ if (fopen_s(&result, path, mode) == 0) {
+ return result;
+ } else {
+ return NULL;
+ }
+}
+
+
+bool OS::Remove(const char* path) {
+ return (DeleteFileA(path) != 0);
+}
+
+
+FILE* OS::OpenTemporaryFile() {
+ // tmpfile_s tries to use the root dir, don't use it.
+ char tempPathBuffer[MAX_PATH];
+ DWORD path_result = 0;
+ path_result = GetTempPathA(MAX_PATH, tempPathBuffer);
+ if (path_result > MAX_PATH || path_result == 0) return NULL;
+ UINT name_result = 0;
+ char tempNameBuffer[MAX_PATH];
+ name_result = GetTempFileNameA(tempPathBuffer, "", 0, tempNameBuffer);
+ if (name_result == 0) return NULL;
+ FILE* result = FOpen(tempNameBuffer, "w+"); // Same mode as tmpfile uses.
+ if (result != NULL) {
+ Remove(tempNameBuffer); // Delete on close.
+ }
+ return result;
+}
+
+
+// Open log file in binary mode to avoid /n -> /r/n conversion.
+const char* const OS::LogFileOpenMode = "wb";
+
+
+// Print (debug) message to console.
+void OS::Print(const char* format, ...) {
+ va_list args;
+ va_start(args, format);
+ VPrint(format, args);
+ va_end(args);
+}
+
+
+void OS::VPrint(const char* format, va_list args) {
+ VPrintHelper(stdout, format, args);
+}
+
+
+void OS::FPrint(FILE* out, const char* format, ...) {
+ va_list args;
+ va_start(args, format);
+ VFPrint(out, format, args);
+ va_end(args);
+}
+
+
+void OS::VFPrint(FILE* out, const char* format, va_list args) {
+ VPrintHelper(out, format, args);
+}
+
+
+// Print error message to console.
+void OS::PrintError(const char* format, ...) {
+ va_list args;
+ va_start(args, format);
+ VPrintError(format, args);
+ va_end(args);
+}
+
+
+void OS::VPrintError(const char* format, va_list args) {
+ VPrintHelper(stderr, format, args);
+}
+
+
+int OS::SNPrintF(Vector<char> str, const char* format, ...) {
+ va_list args;
+ va_start(args, format);
+ int result = VSNPrintF(str, format, args);
+ va_end(args);
+ return result;
+}
+
+
+int OS::VSNPrintF(Vector<char> str, const char* format, va_list args) {
+ int n = _vsnprintf_s(str.start(), str.length(), _TRUNCATE, format, args);
+ // Make sure to zero-terminate the string if the output was
+ // truncated or if there was an error.
+ if (n < 0 || n >= str.length()) {
+ if (str.length() > 0)
+ str[str.length() - 1] = '\0';
+ return -1;
+ } else {
+ return n;
+ }
+}
+
+
+char* OS::StrChr(char* str, int c) {
+ return const_cast<char*>(strchr(str, c));
+}
+
+
+void OS::StrNCpy(Vector<char> dest, const char* src, size_t n) {
+ // Use _TRUNCATE or strncpy_s crashes (by design) if buffer is too small.
+ size_t buffer_size = static_cast<size_t>(dest.length());
+ if (n + 1 > buffer_size) // count for trailing '\0'
+ n = _TRUNCATE;
+ int result = strncpy_s(dest.start(), dest.length(), src, n);
+ USE(result);
+ ASSERT(result == 0 || (n == _TRUNCATE && result == STRUNCATE));
+}
+
+
+// We keep the lowest and highest addresses mapped as a quick way of
+// determining that pointers are outside the heap (used mostly in assertions
+// and verification). The estimate is conservative, ie, not all addresses in
+// 'allocated' space are actually allocated to our heap. The range is
+// [lowest, highest), inclusive on the low and and exclusive on the high end.
+static void* lowest_ever_allocated = reinterpret_cast<void*>(-1);
+static void* highest_ever_allocated = reinterpret_cast<void*>(0);
+
+
+static void UpdateAllocatedSpaceLimits(void* address, int size) {
+ ASSERT(limit_mutex != NULL);
+ ScopedLock lock(limit_mutex);
+
+ lowest_ever_allocated = Min(lowest_ever_allocated, address);
+ highest_ever_allocated =
+ Max(highest_ever_allocated,
+ reinterpret_cast<void*>(reinterpret_cast<char*>(address) + size));
+}
+
+
+bool OS::IsOutsideAllocatedSpace(void* pointer) {
+ if (pointer < lowest_ever_allocated || pointer >= highest_ever_allocated)
+ return true;
+ // Ask the Windows API
+ if (IsBadWritePtr(pointer, 1))
+ return true;
+ return false;
+}
+
+
+// Get the system's page size used by VirtualAlloc() or the next power
+// of two. The reason for always returning a power of two is that the
+// rounding up in OS::Allocate expects that.
+static size_t GetPageSize() {
+ static size_t page_size = 0;
+ if (page_size == 0) {
+ SYSTEM_INFO info;
+ GetSystemInfo(&info);
+ page_size = RoundUpToPowerOf2(info.dwPageSize);
+ }
+ return page_size;
+}
+
+
+// The allocation alignment is the guaranteed alignment for
+// VirtualAlloc'ed blocks of memory.
+size_t OS::AllocateAlignment() {
+ static size_t allocate_alignment = 0;
+ if (allocate_alignment == 0) {
+ SYSTEM_INFO info;
+ GetSystemInfo(&info);
+ allocate_alignment = info.dwAllocationGranularity;
+ }
+ return allocate_alignment;
+}
+
+
+void* OS::Allocate(const size_t requested,
+ size_t* allocated,
+ bool is_executable) {
+ // The address range used to randomize RWX allocations in OS::Allocate
+ // Try not to map pages into the default range that windows loads DLLs
+ // Use a multiple of 64k to prevent committing unused memory.
+ // Note: This does not guarantee RWX regions will be within the
+ // range kAllocationRandomAddressMin to kAllocationRandomAddressMax
+#ifdef V8_HOST_ARCH_64_BIT
+ static const intptr_t kAllocationRandomAddressMin = 0x0000000080000000;
+ static const intptr_t kAllocationRandomAddressMax = 0x000003FFFFFF0000;
+#else
+ static const intptr_t kAllocationRandomAddressMin = 0x04000000;
+ static const intptr_t kAllocationRandomAddressMax = 0x3FFF0000;
+#endif
+
+ // VirtualAlloc rounds allocated size to page size automatically.
+ size_t msize = RoundUp(requested, static_cast<int>(GetPageSize()));
+ intptr_t address = 0;
+
+ // Windows XP SP2 allows Data Excution Prevention (DEP).
+ int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
+
+ // For exectutable pages try and randomize the allocation address
+ if (prot == PAGE_EXECUTE_READWRITE &&
+ msize >= static_cast<size_t>(Page::kPageSize)) {
+ address = (V8::RandomPrivate(Isolate::Current()) << kPageSizeBits)
+ | kAllocationRandomAddressMin;
+ address &= kAllocationRandomAddressMax;
+ }
+
+ LPVOID mbase = VirtualAlloc(reinterpret_cast<void *>(address),
+ msize,
+ MEM_COMMIT | MEM_RESERVE,
+ prot);
+ if (mbase == NULL && address != 0)
+ mbase = VirtualAlloc(NULL, msize, MEM_COMMIT | MEM_RESERVE, prot);
+
+ if (mbase == NULL) {
+ LOG(ISOLATE, StringEvent("OS::Allocate", "VirtualAlloc failed"));
+ return NULL;
+ }
+
+ ASSERT(IsAligned(reinterpret_cast<size_t>(mbase), OS::AllocateAlignment()));
+
+ *allocated = msize;
+ UpdateAllocatedSpaceLimits(mbase, static_cast<int>(msize));
+ return mbase;
+}
+
+
+void OS::Free(void* address, const size_t size) {
+ // TODO(1240712): VirtualFree has a return value which is ignored here.
+ VirtualFree(address, 0, MEM_RELEASE);
+ USE(size);
+}
+
+
+void OS::ProtectCode(void* address, const size_t size) {
+ DWORD old_protect;
+ VirtualProtect(address, size, PAGE_EXECUTE_READ, &old_protect);
+}
+
+
+void OS::Guard(void* address, const size_t size) {
+ DWORD oldprotect;
+ VirtualProtect(address, size, PAGE_READONLY | PAGE_GUARD, &oldprotect);
+}
+
+
+void OS::Sleep(int milliseconds) {
+ ::Sleep(milliseconds);
+}
+
+
+void OS::Abort() {
+ if (!IsDebuggerPresent()) {
+#ifdef _MSC_VER
+ // Make the MSVCRT do a silent abort.
+ _set_abort_behavior(0, _WRITE_ABORT_MSG);
+ _set_abort_behavior(0, _CALL_REPORTFAULT);
+#endif // _MSC_VER
+ abort();
+ } else {
+ DebugBreak();
+ }
+}
+
+
+void OS::DebugBreak() {
+#ifdef _MSC_VER
+ __debugbreak();
+#else
+ ::DebugBreak();
+#endif
+}
+
+
+class Win32MemoryMappedFile : public OS::MemoryMappedFile {
+ public:
+ Win32MemoryMappedFile(HANDLE file,
+ HANDLE file_mapping,
+ void* memory,
+ int size)
+ : file_(file),
+ file_mapping_(file_mapping),
+ memory_(memory),
+ size_(size) { }
+ virtual ~Win32MemoryMappedFile();
+ virtual void* memory() { return memory_; }
+ virtual int size() { return size_; }
+ private:
+ HANDLE file_;
+ HANDLE file_mapping_;
+ void* memory_;
+ int size_;
+};
+
+
+OS::MemoryMappedFile* OS::MemoryMappedFile::open(const char* name) {
+ // Open a physical file
+ HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
+ FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_EXISTING, 0, NULL);
+ if (file == INVALID_HANDLE_VALUE) return NULL;
+
+ int size = static_cast<int>(GetFileSize(file, NULL));
+
+ // Create a file mapping for the physical file
+ HANDLE file_mapping = CreateFileMapping(file, NULL,
+ PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
+ if (file_mapping == NULL) return NULL;
+
+ // Map a view of the file into memory
+ void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
+ return new Win32MemoryMappedFile(file, file_mapping, memory, size);
+}
+
+
+OS::MemoryMappedFile* OS::MemoryMappedFile::create(const char* name, int size,
+ void* initial) {
+ // Open a physical file
+ HANDLE file = CreateFileA(name, GENERIC_READ | GENERIC_WRITE,
+ FILE_SHARE_READ | FILE_SHARE_WRITE, NULL, OPEN_ALWAYS, 0, NULL);
+ if (file == NULL) return NULL;
+ // Create a file mapping for the physical file
+ HANDLE file_mapping = CreateFileMapping(file, NULL,
+ PAGE_READWRITE, 0, static_cast<DWORD>(size), NULL);
+ if (file_mapping == NULL) return NULL;
+ // Map a view of the file into memory
+ void* memory = MapViewOfFile(file_mapping, FILE_MAP_ALL_ACCESS, 0, 0, size);
+ if (memory) memmove(memory, initial, size);
+ return new Win32MemoryMappedFile(file, file_mapping, memory, size);
+}
+
+
+Win32MemoryMappedFile::~Win32MemoryMappedFile() {
+ if (memory_ != NULL)
+ UnmapViewOfFile(memory_);
+ CloseHandle(file_mapping_);
+ CloseHandle(file_);
+}
+
+
+// The following code loads functions defined in DbhHelp.h and TlHelp32.h
+// dynamically. This is to avoid being depending on dbghelp.dll and
+// tlhelp32.dll when running (the functions in tlhelp32.dll have been moved to
+// kernel32.dll at some point so loading functions defines in TlHelp32.h
+// dynamically might not be necessary any more - for some versions of Windows?).
+
+// Function pointers to functions dynamically loaded from dbghelp.dll.
+#define DBGHELP_FUNCTION_LIST(V) \
+ V(SymInitialize) \
+ V(SymGetOptions) \
+ V(SymSetOptions) \
+ V(SymGetSearchPath) \
+ V(SymLoadModule64) \
+ V(StackWalk64) \
+ V(SymGetSymFromAddr64) \
+ V(SymGetLineFromAddr64) \
+ V(SymFunctionTableAccess64) \
+ V(SymGetModuleBase64)
+
+// Function pointers to functions dynamically loaded from dbghelp.dll.
+#define TLHELP32_FUNCTION_LIST(V) \
+ V(CreateToolhelp32Snapshot) \
+ V(Module32FirstW) \
+ V(Module32NextW)
+
+// Define the decoration to use for the type and variable name used for
+// dynamically loaded DLL function..
+#define DLL_FUNC_TYPE(name) _##name##_
+#define DLL_FUNC_VAR(name) _##name
+
+// Define the type for each dynamically loaded DLL function. The function
+// definitions are copied from DbgHelp.h and TlHelp32.h. The IN and VOID macros
+// from the Windows include files are redefined here to have the function
+// definitions to be as close to the ones in the original .h files as possible.
+#ifndef IN
+#define IN
+#endif
+#ifndef VOID
+#define VOID void
+#endif
+
+// DbgHelp isn't supported on MinGW yet
+#ifndef __MINGW32__
+// DbgHelp.h functions.
+typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymInitialize))(IN HANDLE hProcess,
+ IN PSTR UserSearchPath,
+ IN BOOL fInvadeProcess);
+typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymGetOptions))(VOID);
+typedef DWORD (__stdcall *DLL_FUNC_TYPE(SymSetOptions))(IN DWORD SymOptions);
+typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSearchPath))(
+ IN HANDLE hProcess,
+ OUT PSTR SearchPath,
+ IN DWORD SearchPathLength);
+typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymLoadModule64))(
+ IN HANDLE hProcess,
+ IN HANDLE hFile,
+ IN PSTR ImageName,
+ IN PSTR ModuleName,
+ IN DWORD64 BaseOfDll,
+ IN DWORD SizeOfDll);
+typedef BOOL (__stdcall *DLL_FUNC_TYPE(StackWalk64))(
+ DWORD MachineType,
+ HANDLE hProcess,
+ HANDLE hThread,
+ LPSTACKFRAME64 StackFrame,
+ PVOID ContextRecord,
+ PREAD_PROCESS_MEMORY_ROUTINE64 ReadMemoryRoutine,
+ PFUNCTION_TABLE_ACCESS_ROUTINE64 FunctionTableAccessRoutine,
+ PGET_MODULE_BASE_ROUTINE64 GetModuleBaseRoutine,
+ PTRANSLATE_ADDRESS_ROUTINE64 TranslateAddress);
+typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetSymFromAddr64))(
+ IN HANDLE hProcess,
+ IN DWORD64 qwAddr,
+ OUT PDWORD64 pdwDisplacement,
+ OUT PIMAGEHLP_SYMBOL64 Symbol);
+typedef BOOL (__stdcall *DLL_FUNC_TYPE(SymGetLineFromAddr64))(
+ IN HANDLE hProcess,
+ IN DWORD64 qwAddr,
+ OUT PDWORD pdwDisplacement,
+ OUT PIMAGEHLP_LINE64 Line64);
+// DbgHelp.h typedefs. Implementation found in dbghelp.dll.
+typedef PVOID (__stdcall *DLL_FUNC_TYPE(SymFunctionTableAccess64))(
+ HANDLE hProcess,
+ DWORD64 AddrBase); // DbgHelp.h typedef PFUNCTION_TABLE_ACCESS_ROUTINE64
+typedef DWORD64 (__stdcall *DLL_FUNC_TYPE(SymGetModuleBase64))(
+ HANDLE hProcess,
+ DWORD64 AddrBase); // DbgHelp.h typedef PGET_MODULE_BASE_ROUTINE64
+
+// TlHelp32.h functions.
+typedef HANDLE (__stdcall *DLL_FUNC_TYPE(CreateToolhelp32Snapshot))(
+ DWORD dwFlags,
+ DWORD th32ProcessID);
+typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32FirstW))(HANDLE hSnapshot,
+ LPMODULEENTRY32W lpme);
+typedef BOOL (__stdcall *DLL_FUNC_TYPE(Module32NextW))(HANDLE hSnapshot,
+ LPMODULEENTRY32W lpme);
+
+#undef IN
+#undef VOID
+
+// Declare a variable for each dynamically loaded DLL function.
+#define DEF_DLL_FUNCTION(name) DLL_FUNC_TYPE(name) DLL_FUNC_VAR(name) = NULL;
+DBGHELP_FUNCTION_LIST(DEF_DLL_FUNCTION)
+TLHELP32_FUNCTION_LIST(DEF_DLL_FUNCTION)
+#undef DEF_DLL_FUNCTION
+
+// Load the functions. This function has a lot of "ugly" macros in order to
+// keep down code duplication.
+
+static bool LoadDbgHelpAndTlHelp32() {
+ static bool dbghelp_loaded = false;
+
+ if (dbghelp_loaded) return true;
+
+ HMODULE module;
+
+ // Load functions from the dbghelp.dll module.
+ module = LoadLibrary(TEXT("dbghelp.dll"));
+ if (module == NULL) {
+ return false;
+ }
+
+#define LOAD_DLL_FUNC(name) \
+ DLL_FUNC_VAR(name) = \
+ reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
+
+DBGHELP_FUNCTION_LIST(LOAD_DLL_FUNC)
+
+#undef LOAD_DLL_FUNC
+
+ // Load functions from the kernel32.dll module (the TlHelp32.h function used
+ // to be in tlhelp32.dll but are now moved to kernel32.dll).
+ module = LoadLibrary(TEXT("kernel32.dll"));
+ if (module == NULL) {
+ return false;
+ }
+
+#define LOAD_DLL_FUNC(name) \
+ DLL_FUNC_VAR(name) = \
+ reinterpret_cast<DLL_FUNC_TYPE(name)>(GetProcAddress(module, #name));
+
+TLHELP32_FUNCTION_LIST(LOAD_DLL_FUNC)
+
+#undef LOAD_DLL_FUNC
+
+ // Check that all functions where loaded.
+ bool result =
+#define DLL_FUNC_LOADED(name) (DLL_FUNC_VAR(name) != NULL) &&
+
+DBGHELP_FUNCTION_LIST(DLL_FUNC_LOADED)
+TLHELP32_FUNCTION_LIST(DLL_FUNC_LOADED)
+
+#undef DLL_FUNC_LOADED
+ true;
+
+ dbghelp_loaded = result;
+ return result;
+ // NOTE: The modules are never unloaded and will stay around until the
+ // application is closed.
+}
+
+
+// Load the symbols for generating stack traces.
+static bool LoadSymbols(HANDLE process_handle) {
+ static bool symbols_loaded = false;
+
+ if (symbols_loaded) return true;
+
+ BOOL ok;
+
+ // Initialize the symbol engine.
+ ok = _SymInitialize(process_handle, // hProcess
+ NULL, // UserSearchPath
+ false); // fInvadeProcess
+ if (!ok) return false;
+
+ DWORD options = _SymGetOptions();
+ options |= SYMOPT_LOAD_LINES;
+ options |= SYMOPT_FAIL_CRITICAL_ERRORS;
+ options = _SymSetOptions(options);
+
+ char buf[OS::kStackWalkMaxNameLen] = {0};
+ ok = _SymGetSearchPath(process_handle, buf, OS::kStackWalkMaxNameLen);
+ if (!ok) {
+ int err = GetLastError();
+ PrintF("%d\n", err);
+ return false;
+ }
+
+ HANDLE snapshot = _CreateToolhelp32Snapshot(
+ TH32CS_SNAPMODULE, // dwFlags
+ GetCurrentProcessId()); // th32ProcessId
+ if (snapshot == INVALID_HANDLE_VALUE) return false;
+ MODULEENTRY32W module_entry;
+ module_entry.dwSize = sizeof(module_entry); // Set the size of the structure.
+ BOOL cont = _Module32FirstW(snapshot, &module_entry);
+ while (cont) {
+ DWORD64 base;
+ // NOTE the SymLoadModule64 function has the peculiarity of accepting a
+ // both unicode and ASCII strings even though the parameter is PSTR.
+ base = _SymLoadModule64(
+ process_handle, // hProcess
+ 0, // hFile
+ reinterpret_cast<PSTR>(module_entry.szExePath), // ImageName
+ reinterpret_cast<PSTR>(module_entry.szModule), // ModuleName
+ reinterpret_cast<DWORD64>(module_entry.modBaseAddr), // BaseOfDll
+ module_entry.modBaseSize); // SizeOfDll
+ if (base == 0) {
+ int err = GetLastError();
+ if (err != ERROR_MOD_NOT_FOUND &&
+ err != ERROR_INVALID_HANDLE) return false;
+ }
+ LOG(i::Isolate::Current(),
+ SharedLibraryEvent(
+ module_entry.szExePath,
+ reinterpret_cast<unsigned int>(module_entry.modBaseAddr),
+ reinterpret_cast<unsigned int>(module_entry.modBaseAddr +
+ module_entry.modBaseSize)));
+ cont = _Module32NextW(snapshot, &module_entry);
+ }
+ CloseHandle(snapshot);
+
+ symbols_loaded = true;
+ return true;
+}
+
+
+void OS::LogSharedLibraryAddresses() {
+ // SharedLibraryEvents are logged when loading symbol information.
+ // Only the shared libraries loaded at the time of the call to
+ // LogSharedLibraryAddresses are logged. DLLs loaded after
+ // initialization are not accounted for.
+ if (!LoadDbgHelpAndTlHelp32()) return;
+ HANDLE process_handle = GetCurrentProcess();
+ LoadSymbols(process_handle);
+}
+
+
+void OS::SignalCodeMovingGC() {
+}
+
+
+// Walk the stack using the facilities in dbghelp.dll and tlhelp32.dll
+
+// Switch off warning 4748 (/GS can not protect parameters and local variables
+// from local buffer overrun because optimizations are disabled in function) as
+// it is triggered by the use of inline assembler.
+#pragma warning(push)
+#pragma warning(disable : 4748)
+int OS::StackWalk(Vector<OS::StackFrame> frames) {
+ BOOL ok;
+
+ // Load the required functions from DLL's.
+ if (!LoadDbgHelpAndTlHelp32()) return kStackWalkError;
+
+ // Get the process and thread handles.
+ HANDLE process_handle = GetCurrentProcess();
+ HANDLE thread_handle = GetCurrentThread();
+
+ // Read the symbols.
+ if (!LoadSymbols(process_handle)) return kStackWalkError;
+
+ // Capture current context.
+ CONTEXT context;
+ RtlCaptureContext(&context);
+
+ // Initialize the stack walking
+ STACKFRAME64 stack_frame;
+ memset(&stack_frame, 0, sizeof(stack_frame));
+#ifdef _WIN64
+ stack_frame.AddrPC.Offset = context.Rip;
+ stack_frame.AddrFrame.Offset = context.Rbp;
+ stack_frame.AddrStack.Offset = context.Rsp;
+#else
+ stack_frame.AddrPC.Offset = context.Eip;
+ stack_frame.AddrFrame.Offset = context.Ebp;
+ stack_frame.AddrStack.Offset = context.Esp;
+#endif
+ stack_frame.AddrPC.Mode = AddrModeFlat;
+ stack_frame.AddrFrame.Mode = AddrModeFlat;
+ stack_frame.AddrStack.Mode = AddrModeFlat;
+ int frames_count = 0;
+
+ // Collect stack frames.
+ int frames_size = frames.length();
+ while (frames_count < frames_size) {
+ ok = _StackWalk64(
+ IMAGE_FILE_MACHINE_I386, // MachineType
+ process_handle, // hProcess
+ thread_handle, // hThread
+ &stack_frame, // StackFrame
+ &context, // ContextRecord
+ NULL, // ReadMemoryRoutine
+ _SymFunctionTableAccess64, // FunctionTableAccessRoutine
+ _SymGetModuleBase64, // GetModuleBaseRoutine
+ NULL); // TranslateAddress
+ if (!ok) break;
+
+ // Store the address.
+ ASSERT((stack_frame.AddrPC.Offset >> 32) == 0); // 32-bit address.
+ frames[frames_count].address =
+ reinterpret_cast<void*>(stack_frame.AddrPC.Offset);
+
+ // Try to locate a symbol for this frame.
+ DWORD64 symbol_displacement;
+ SmartArrayPointer<IMAGEHLP_SYMBOL64> symbol(
+ NewArray<IMAGEHLP_SYMBOL64>(kStackWalkMaxNameLen));
+ if (symbol.is_empty()) return kStackWalkError; // Out of memory.
+ memset(*symbol, 0, sizeof(IMAGEHLP_SYMBOL64) + kStackWalkMaxNameLen);
+ (*symbol)->SizeOfStruct = sizeof(IMAGEHLP_SYMBOL64);
+ (*symbol)->MaxNameLength = kStackWalkMaxNameLen;
+ ok = _SymGetSymFromAddr64(process_handle, // hProcess
+ stack_frame.AddrPC.Offset, // Address
+ &symbol_displacement, // Displacement
+ *symbol); // Symbol
+ if (ok) {
+ // Try to locate more source information for the symbol.
+ IMAGEHLP_LINE64 Line;
+ memset(&Line, 0, sizeof(Line));
+ Line.SizeOfStruct = sizeof(Line);
+ DWORD line_displacement;
+ ok = _SymGetLineFromAddr64(
+ process_handle, // hProcess
+ stack_frame.AddrPC.Offset, // dwAddr
+ &line_displacement, // pdwDisplacement
+ &Line); // Line
+ // Format a text representation of the frame based on the information
+ // available.
+ if (ok) {
+ SNPrintF(MutableCStrVector(frames[frames_count].text,
+ kStackWalkMaxTextLen),
+ "%s %s:%d:%d",
+ (*symbol)->Name, Line.FileName, Line.LineNumber,
+ line_displacement);
+ } else {
+ SNPrintF(MutableCStrVector(frames[frames_count].text,
+ kStackWalkMaxTextLen),
+ "%s",
+ (*symbol)->Name);
+ }
+ // Make sure line termination is in place.
+ frames[frames_count].text[kStackWalkMaxTextLen - 1] = '\0';
+ } else {
+ // No text representation of this frame
+ frames[frames_count].text[0] = '\0';
+
+ // Continue if we are just missing a module (for non C/C++ frames a
+ // module will never be found).
+ int err = GetLastError();
+ if (err != ERROR_MOD_NOT_FOUND) {
+ break;
+ }
+ }
+
+ frames_count++;
+ }
+
+ // Return the number of frames filled in.
+ return frames_count;
+}
+
+// Restore warnings to previous settings.
+#pragma warning(pop)
+
+#else // __MINGW32__
+void OS::LogSharedLibraryAddresses() { }
+void OS::SignalCodeMovingGC() { }
+int OS::StackWalk(Vector<OS::StackFrame> frames) { return 0; }
+#endif // __MINGW32__
+
+
+uint64_t OS::CpuFeaturesImpliedByPlatform() {
+ return 0; // Windows runs on anything.
+}
+
+
+double OS::nan_value() {
+#ifdef _MSC_VER
+ // Positive Quiet NaN with no payload (aka. Indeterminate) has all bits
+ // in mask set, so value equals mask.
+ static const __int64 nanval = kQuietNaNMask;
+ return *reinterpret_cast<const double*>(&nanval);
+#else // _MSC_VER
+ return NAN;
+#endif // _MSC_VER
+}
+
+
+int OS::ActivationFrameAlignment() {
+#ifdef _WIN64
+ return 16; // Windows 64-bit ABI requires the stack to be 16-byte aligned.
+#else
+ return 8; // Floating-point math runs faster with 8-byte alignment.
+#endif
+}
+
+
+void OS::ReleaseStore(volatile AtomicWord* ptr, AtomicWord value) {
+ MemoryBarrier();
+ *ptr = value;
+}
+
+
+VirtualMemory::VirtualMemory() : address_(NULL), size_(0) { }
+
+
+VirtualMemory::VirtualMemory(size_t size)
+ : address_(ReserveRegion(size)), size_(size) { }
+
+
+VirtualMemory::VirtualMemory(size_t size, size_t alignment)
+ : address_(NULL), size_(0) {
+ ASSERT(IsAligned(alignment, static_cast<intptr_t>(OS::AllocateAlignment())));
+ size_t request_size = RoundUp(size + alignment,
+ static_cast<intptr_t>(OS::AllocateAlignment()));
+ void* address = ReserveRegion(request_size);
+ if (address == NULL) return;
+ Address base = RoundUp(static_cast<Address>(address), alignment);
+ // Try reducing the size by freeing and then reallocating a specific area.
+ bool result = ReleaseRegion(address, request_size);
+ USE(result);
+ ASSERT(result);
+ address = VirtualAlloc(base, size, MEM_RESERVE, PAGE_NOACCESS);
+ if (address != NULL) {
+ request_size = size;
+ ASSERT(base == static_cast<Address>(address));
+ } else {
+ // Resizing failed, just go with a bigger area.
+ address = ReserveRegion(request_size);
+ if (address == NULL) return;
+ }
+ address_ = address;
+ size_ = request_size;
+}
+
+
+VirtualMemory::~VirtualMemory() {
+ if (IsReserved()) {
+ bool result = ReleaseRegion(address_, size_);
+ ASSERT(result);
+ USE(result);
+ }
+}
+
+
+bool VirtualMemory::IsReserved() {
+ return address_ != NULL;
+}
+
+
+void VirtualMemory::Reset() {
+ address_ = NULL;
+ size_ = 0;
+}
+
+
+bool VirtualMemory::Commit(void* address, size_t size, bool is_executable) {
+ if (CommitRegion(address, size, is_executable)) {
+ UpdateAllocatedSpaceLimits(address, static_cast<int>(size));
+ return true;
+ }
+ return false;
+}
+
+
+bool VirtualMemory::Uncommit(void* address, size_t size) {
+ ASSERT(IsReserved());
+ return UncommitRegion(address, size);
+}
+
+
+void* VirtualMemory::ReserveRegion(size_t size) {
+ return VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
+}
+
+
+bool VirtualMemory::CommitRegion(void* base, size_t size, bool is_executable) {
+ int prot = is_executable ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
+ if (NULL == VirtualAlloc(base, size, MEM_COMMIT, prot)) {
+ return false;
+ }
+
+ UpdateAllocatedSpaceLimits(base, static_cast<int>(size));
+ return true;
+}
+
+
+bool VirtualMemory::UncommitRegion(void* base, size_t size) {
+ return VirtualFree(base, size, MEM_DECOMMIT) != 0;
+}
+
+
+bool VirtualMemory::ReleaseRegion(void* base, size_t size) {
+ return VirtualFree(base, 0, MEM_RELEASE) != 0;
+}
+
+
+
+// ----------------------------------------------------------------------------
+// Win32 thread support.
+
+// Definition of invalid thread handle and id.
+static const HANDLE kNoThread = INVALID_HANDLE_VALUE;
+
+// Entry point for threads. The supplied argument is a pointer to the thread
+// object. The entry function dispatches to the run method in the thread
+// object. It is important that this function has __stdcall calling
+// convention.
+static unsigned int __stdcall ThreadEntry(void* arg) {
+ Thread* thread = reinterpret_cast<Thread*>(arg);
+ thread->Run();
+ return 0;
+}
+
+
+class Thread::PlatformData : public Malloced {
+ public:
+ explicit PlatformData(HANDLE thread) : thread_(thread) {}
+ HANDLE thread_;
+ unsigned thread_id_;
+};
+
+
+// Initialize a Win32 thread object. The thread has an invalid thread
+// handle until it is started.
+
+Thread::Thread(const Options& options)
+ : stack_size_(options.stack_size) {
+ data_ = new PlatformData(kNoThread);
+ set_name(options.name);
+}
+
+
+Thread::Thread(const char* name)
+ : stack_size_(0) {
+ data_ = new PlatformData(kNoThread);
+ set_name(name);
+}
+
+
+void Thread::set_name(const char* name) {
+ OS::StrNCpy(Vector<char>(name_, sizeof(name_)), name, strlen(name));
+ name_[sizeof(name_) - 1] = '\0';
+}
+
+
+// Close our own handle for the thread.
+Thread::~Thread() {
+ if (data_->thread_ != kNoThread) CloseHandle(data_->thread_);
+ delete data_;
+}
+
+
+// Create a new thread. It is important to use _beginthreadex() instead of
+// the Win32 function CreateThread(), because the CreateThread() does not
+// initialize thread specific structures in the C runtime library.
+void Thread::Start() {
+ data_->thread_ = reinterpret_cast<HANDLE>(
+ _beginthreadex(NULL,
+ static_cast<unsigned>(stack_size_),
+ ThreadEntry,
+ this,
+ 0,
+ &data_->thread_id_));
+}
+
+
+// Wait for thread to terminate.
+void Thread::Join() {
+ if (data_->thread_id_ != GetCurrentThreadId()) {
+ WaitForSingleObject(data_->thread_, INFINITE);
+ }
+}
+
+
+Thread::LocalStorageKey Thread::CreateThreadLocalKey() {
+ DWORD result = TlsAlloc();
+ ASSERT(result != TLS_OUT_OF_INDEXES);
+ return static_cast<LocalStorageKey>(result);
+}
+
+
+void Thread::DeleteThreadLocalKey(LocalStorageKey key) {
+ BOOL result = TlsFree(static_cast<DWORD>(key));
+ USE(result);
+ ASSERT(result);
+}
+
+
+void* Thread::GetThreadLocal(LocalStorageKey key) {
+ return TlsGetValue(static_cast<DWORD>(key));
+}
+
+
+void Thread::SetThreadLocal(LocalStorageKey key, void* value) {
+ BOOL result = TlsSetValue(static_cast<DWORD>(key), value);
+ USE(result);
+ ASSERT(result);
+}
+
+
+
+void Thread::YieldCPU() {
+ Sleep(0);
+}
+
+
+// ----------------------------------------------------------------------------
+// Win32 mutex support.
+//
+// On Win32 mutexes are implemented using CRITICAL_SECTION objects. These are
+// faster than Win32 Mutex objects because they are implemented using user mode
+// atomic instructions. Therefore we only do ring transitions if there is lock
+// contention.
+
+class Win32Mutex : public Mutex {
+ public:
+ Win32Mutex() { InitializeCriticalSection(&cs_); }
+
+ virtual ~Win32Mutex() { DeleteCriticalSection(&cs_); }
+
+ virtual int Lock() {
+ EnterCriticalSection(&cs_);
+ return 0;
+ }
+
+ virtual int Unlock() {
+ LeaveCriticalSection(&cs_);
+ return 0;
+ }
+
+
+ virtual bool TryLock() {
+ // Returns non-zero if critical section is entered successfully entered.
+ return TryEnterCriticalSection(&cs_);
+ }
+
+ private:
+ CRITICAL_SECTION cs_; // Critical section used for mutex
+};
+
+
+Mutex* OS::CreateMutex() {
+ return new Win32Mutex();
+}
+
+
+// ----------------------------------------------------------------------------
+// Win32 semaphore support.
+//
+// On Win32 semaphores are implemented using Win32 Semaphore objects. The
+// semaphores are anonymous. Also, the semaphores are initialized to have
+// no upper limit on count.
+
+
+class Win32Semaphore : public Semaphore {
+ public:
+ explicit Win32Semaphore(int count) {
+ sem = ::CreateSemaphoreA(NULL, count, 0x7fffffff, NULL);
+ }
+
+ ~Win32Semaphore() {
+ CloseHandle(sem);
+ }
+
+ void Wait() {
+ WaitForSingleObject(sem, INFINITE);
+ }
+
+ bool Wait(int timeout) {
+ // Timeout in Windows API is in milliseconds.
+ DWORD millis_timeout = timeout / 1000;
+ return WaitForSingleObject(sem, millis_timeout) != WAIT_TIMEOUT;
+ }
+
+ void Signal() {
+ LONG dummy;
+ ReleaseSemaphore(sem, 1, &dummy);
+ }
+
+ private:
+ HANDLE sem;
+};
+
+
+Semaphore* OS::CreateSemaphore(int count) {
+ return new Win32Semaphore(count);
+}
+
+
+// ----------------------------------------------------------------------------
+// Win32 socket support.
+//
+
+class Win32Socket : public Socket {
+ public:
+ explicit Win32Socket() {
+ // Create the socket.
+ socket_ = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
+ }
+ explicit Win32Socket(SOCKET socket): socket_(socket) { }
+ virtual ~Win32Socket() { Shutdown(); }
+
+ // Server initialization.
+ bool Bind(const int port);
+ bool Listen(int backlog) const;
+ Socket* Accept() const;
+
+ // Client initialization.
+ bool Connect(const char* host, const char* port);
+
+ // Shutdown socket for both read and write.
+ bool Shutdown();
+
+ // Data Transimission
+ int Send(const char* data, int len) const;
+ int Receive(char* data, int len) const;
+
+ bool SetReuseAddress(bool reuse_address);
+
+ bool IsValid() const { return socket_ != INVALID_SOCKET; }
+
+ private:
+ SOCKET socket_;
+};
+
+
+bool Win32Socket::Bind(const int port) {
+ if (!IsValid()) {
+ return false;
+ }
+
+ sockaddr_in addr;
+ memset(&addr, 0, sizeof(addr));
+ addr.sin_family = AF_INET;
+ addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
+ addr.sin_port = htons(port);
+ int status = bind(socket_,
+ reinterpret_cast<struct sockaddr *>(&addr),
+ sizeof(addr));
+ return status == 0;
+}
+
+
+bool Win32Socket::Listen(int backlog) const {
+ if (!IsValid()) {
+ return false;
+ }
+
+ int status = listen(socket_, backlog);
+ return status == 0;
+}
+
+
+Socket* Win32Socket::Accept() const {
+ if (!IsValid()) {
+ return NULL;
+ }
+
+ SOCKET socket = accept(socket_, NULL, NULL);
+ if (socket == INVALID_SOCKET) {
+ return NULL;
+ } else {
+ return new Win32Socket(socket);
+ }
+}
+
+
+bool Win32Socket::Connect(const char* host, const char* port) {
+ if (!IsValid()) {
+ return false;
+ }
+
+ // Lookup host and port.
+ struct addrinfo *result = NULL;
+ struct addrinfo hints;
+ memset(&hints, 0, sizeof(addrinfo));
+ hints.ai_family = AF_INET;
+ hints.ai_socktype = SOCK_STREAM;
+ hints.ai_protocol = IPPROTO_TCP;
+ int status = getaddrinfo(host, port, &hints, &result);
+ if (status != 0) {
+ return false;
+ }
+
+ // Connect.
+ status = connect(socket_,
+ result->ai_addr,
+ static_cast<int>(result->ai_addrlen));
+ freeaddrinfo(result);
+ return status == 0;
+}
+
+
+bool Win32Socket::Shutdown() {
+ if (IsValid()) {
+ // Shutdown socket for both read and write.
+ int status = shutdown(socket_, SD_BOTH);
+ closesocket(socket_);
+ socket_ = INVALID_SOCKET;
+ return status == SOCKET_ERROR;
+ }
+ return true;
+}
+
+
+int Win32Socket::Send(const char* data, int len) const {
+ int status = send(socket_, data, len, 0);
+ return status;
+}
+
+
+int Win32Socket::Receive(char* data, int len) const {
+ int status = recv(socket_, data, len, 0);
+ return status;
+}
+
+
+bool Win32Socket::SetReuseAddress(bool reuse_address) {
+ BOOL on = reuse_address ? true : false;
+ int status = setsockopt(socket_, SOL_SOCKET, SO_REUSEADDR,
+ reinterpret_cast<char*>(&on), sizeof(on));
+ return status == SOCKET_ERROR;
+}
+
+
+bool Socket::Setup() {
+ // Initialize Winsock32
+ int err;
+ WSADATA winsock_data;
+ WORD version_requested = MAKEWORD(1, 0);
+ err = WSAStartup(version_requested, &winsock_data);
+ if (err != 0) {
+ PrintF("Unable to initialize Winsock, err = %d\n", Socket::LastError());
+ }
+
+ return err == 0;
+}
+
+
+int Socket::LastError() {
+ return WSAGetLastError();
+}
+
+
+uint16_t Socket::HToN(uint16_t value) {
+ return htons(value);
+}
+
+
+uint16_t Socket::NToH(uint16_t value) {
+ return ntohs(value);
+}
+
+
+uint32_t Socket::HToN(uint32_t value) {
+ return htonl(value);
+}
+
+
+uint32_t Socket::NToH(uint32_t value) {
+ return ntohl(value);
+}
+
+
+Socket* OS::CreateSocket() {
+ return new Win32Socket();
+}
+
+
+// ----------------------------------------------------------------------------
+// Win32 profiler support.
+
+class Sampler::PlatformData : public Malloced {
+ public:
+ // Get a handle to the calling thread. This is the thread that we are
+ // going to profile. We need to make a copy of the handle because we are
+ // going to use it in the sampler thread. Using GetThreadHandle() will
+ // not work in this case. We're using OpenThread because DuplicateHandle
+ // for some reason doesn't work in Chrome's sandbox.
+ PlatformData() : profiled_thread_(OpenThread(THREAD_GET_CONTEXT |
+ THREAD_SUSPEND_RESUME |
+ THREAD_QUERY_INFORMATION,
+ false,
+ GetCurrentThreadId())) {}
+
+ ~PlatformData() {
+ if (profiled_thread_ != NULL) {
+ CloseHandle(profiled_thread_);
+ profiled_thread_ = NULL;
+ }
+ }
+
+ HANDLE profiled_thread() { return profiled_thread_; }
+
+ private:
+ HANDLE profiled_thread_;
+};
+
+
+class SamplerThread : public Thread {
+ public:
+ explicit SamplerThread(int interval)
+ : Thread("SamplerThread"),
+ interval_(interval) {}
+
+ static void AddActiveSampler(Sampler* sampler) {
+ ScopedLock lock(mutex_);
+ SamplerRegistry::AddActiveSampler(sampler);
+ if (instance_ == NULL) {
+ instance_ = new SamplerThread(sampler->interval());
+ instance_->Start();
+ } else {
+ ASSERT(instance_->interval_ == sampler->interval());
+ }
+ }
+
+ static void RemoveActiveSampler(Sampler* sampler) {
+ ScopedLock lock(mutex_);
+ SamplerRegistry::RemoveActiveSampler(sampler);
+ if (SamplerRegistry::GetState() == SamplerRegistry::HAS_NO_SAMPLERS) {
+ RuntimeProfiler::StopRuntimeProfilerThreadBeforeShutdown(instance_);
+ delete instance_;
+ instance_ = NULL;
+ }
+ }
+
+ // Implement Thread::Run().
+ virtual void Run() {
+ SamplerRegistry::State state;
+ while ((state = SamplerRegistry::GetState()) !=
+ SamplerRegistry::HAS_NO_SAMPLERS) {
+ bool cpu_profiling_enabled =
+ (state == SamplerRegistry::HAS_CPU_PROFILING_SAMPLERS);
+ bool runtime_profiler_enabled = RuntimeProfiler::IsEnabled();
+ // When CPU profiling is enabled both JavaScript and C++ code is
+ // profiled. We must not suspend.
+ if (!cpu_profiling_enabled) {
+ if (rate_limiter_.SuspendIfNecessary()) continue;
+ }
+ if (cpu_profiling_enabled) {
+ if (!SamplerRegistry::IterateActiveSamplers(&DoCpuProfile, this)) {
+ return;
+ }
+ }
+ if (runtime_profiler_enabled) {
+ if (!SamplerRegistry::IterateActiveSamplers(&DoRuntimeProfile, NULL)) {
+ return;
+ }
+ }
+ OS::Sleep(interval_);
+ }
+ }
+
+ static void DoCpuProfile(Sampler* sampler, void* raw_sampler_thread) {
+ if (!sampler->isolate()->IsInitialized()) return;
+ if (!sampler->IsProfiling()) return;
+ SamplerThread* sampler_thread =
+ reinterpret_cast<SamplerThread*>(raw_sampler_thread);
+ sampler_thread->SampleContext(sampler);
+ }
+
+ static void DoRuntimeProfile(Sampler* sampler, void* ignored) {
+ if (!sampler->isolate()->IsInitialized()) return;
+ sampler->isolate()->runtime_profiler()->NotifyTick();
+ }
+
+ void SampleContext(Sampler* sampler) {
+ HANDLE profiled_thread = sampler->platform_data()->profiled_thread();
+ if (profiled_thread == NULL) return;
+
+ // Context used for sampling the register state of the profiled thread.
+ CONTEXT context;
+ memset(&context, 0, sizeof(context));
+
+ TickSample sample_obj;
+ TickSample* sample = CpuProfiler::TickSampleEvent(sampler->isolate());
+ if (sample == NULL) sample = &sample_obj;
+
+ static const DWORD kSuspendFailed = static_cast<DWORD>(-1);
+ if (SuspendThread(profiled_thread) == kSuspendFailed) return;
+ sample->state = sampler->isolate()->current_vm_state();
+
+ context.ContextFlags = CONTEXT_FULL;
+ if (GetThreadContext(profiled_thread, &context) != 0) {
+#if V8_HOST_ARCH_X64
+ sample->pc = reinterpret_cast<Address>(context.Rip);
+ sample->sp = reinterpret_cast<Address>(context.Rsp);
+ sample->fp = reinterpret_cast<Address>(context.Rbp);
+#else
+ sample->pc = reinterpret_cast<Address>(context.Eip);
+ sample->sp = reinterpret_cast<Address>(context.Esp);
+ sample->fp = reinterpret_cast<Address>(context.Ebp);
+#endif
+ sampler->SampleStack(sample);
+ sampler->Tick(sample);
+ }
+ ResumeThread(profiled_thread);
+ }
+
+ const int interval_;
+ RuntimeProfilerRateLimiter rate_limiter_;
+
+ // Protects the process wide state below.
+ static Mutex* mutex_;
+ static SamplerThread* instance_;
+
+ DISALLOW_COPY_AND_ASSIGN(SamplerThread);
+};
+
+
+Mutex* SamplerThread::mutex_ = OS::CreateMutex();
+SamplerThread* SamplerThread::instance_ = NULL;
+
+
+Sampler::Sampler(Isolate* isolate, int interval)
+ : isolate_(isolate),
+ interval_(interval),
+ profiling_(false),
+ active_(false),
+ samples_taken_(0) {
+ data_ = new PlatformData;
+}
+
+
+Sampler::~Sampler() {
+ ASSERT(!IsActive());
+ delete data_;
+}
+
+
+void Sampler::Start() {
+ ASSERT(!IsActive());
+ SetActive(true);
+ SamplerThread::AddActiveSampler(this);
+}
+
+
+void Sampler::Stop() {
+ ASSERT(IsActive());
+ SamplerThread::RemoveActiveSampler(this);
+ SetActive(false);
+}
+
+
+} } // namespace v8::internal