1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
|
/****************************************************************************
**
** Copyright (C) 2009 Nokia Corporation and/or its subsidiary(-ies).
** All rights reserved.
** Contact: Nokia Corporation (qt-info@nokia.com)
**
** This file is part of the QtNetwork module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** No Commercial Usage
** This file contains pre-release code and may not be distributed.
** You may use this file in accordance with the terms and conditions
** contained in the Technology Preview License Agreement accompanying
** this package.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Nokia gives you certain additional
** rights. These rights are described in the Nokia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
** If you have questions regarding the use of this file, please contact
** Nokia at qt-info@nokia.com.
**
**
**
**
**
**
**
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include <QEventLoop>
#include <QTimer>
#include "qnetworksession.h"
#ifdef Q_OS_SYMBIAN
#include "qnetworksession_s60_p.h"
#elif MAEMO
#include "qnetworksession_maemo_p.h"
#else
#include "qnetworksession_p.h"
#endif
QT_BEGIN_NAMESPACE
/*!
\class QNetworkSession
\brief The QNetworkSession class provides control over the system's access points
and enables session management for cases when multiple clients access the same access point.
\inmodule QtNetwork
\ingroup bearer
A QNetworkSession enables control over the system's network interfaces. The session's configuration
parameter are determined via the QNetworkConfiguration object to which it is bound. Depending on the
type of the session (single access point or service network) a session may be linked to one or more
network interfaces. By means of \l{open()}{opening} and \l{close()}{closing} of network sessions
a developer can start and stop the systems network interfaces. If the configuration represents
multiple access points (see \l QNetworkConfiguration::ServiceNetwork) more advanced features such as roaming may be supported.
QNetworkSession supports session management within the same process and depending on the platform's
capabilities may support out-of-process sessions. If the same
network configuration is used by multiple active sessions the underlying network interface is only terminated once
the last session has been closed.
\section1 Roaming
Applications may connect to the preferredConfigurationChanged() signal in order to
receive notifications when a more suitable access point becomes available.
In response to this signal the application may initiate the roaming via migrate()
or may ignore() the new access point. Once the session has roamed the
newConfigurationActivated() signal is emitted. The application may now test the
carrier and can accept() or reject() it. The session will return to the previous
access point if the roaming was rejected.
Some platforms may support the notion of forced roaming and application level roaming (ALR).
ALR implies that the application controls (via migrate(), ignore(), accept() and reject())
whether a network session can roam from one network configuration to the next. Such control is useful
if the application maintains stateful socket connections and wants to control the transition from
one interface to the next.
Forced roaming implies that the system automatically roams to the next network without
consulting the application. This has the advantage that the application can make use of roaming features
without actually being aware of it. It is expected that the application detects that the underlying
socket is broken and automatically reconnects via the new network link.
If the platform supports both modes of roaming an application indicates its preference
by connecting to the preferredConfigurationChanged() signal. Connecting to this signal means that
the application wants to take control over the roaming behavior and therefore implies application
level roaming.
\sa QNetworkConfiguration, QNetworkConfigurationManager
*/
/*!
\enum QNetworkSession::State
This enum describes the connectivity state of the session. If the session is based on a
single access point configuration the state of the session is the same as the state of the
associated network interface.
\value Invalid The session is invalid due to an invalid configuration. This may
happen due to a removed access point or a configuration that was
invalid to begin with.
\value NotAvailable The session is based on a defined but not yet discovered QNetworkConfiguration
(see \l QNetworkConfiguration::StateFlag).
\value Connecting The network session is being established.
\value Connected The network session is connected. If the current process wishes to use this session
it has to register its interest by calling open(). A network session
is considered to be ready for socket operations if it isActive() and connected.
\value Closing The network session is in the process of being shut down.
\value Disconnected The network session is not connected. The associated QNetworkConfiguration
has the state QNetworkConfiguration::Discovered.
\value Roaming The network session is roaming from one access point to another
access point.
*/
/*!
\enum QNetworkSession::SessionError
This enum describes the session errors that can occur.
\value UnknownSessionError An unidentified error occurred.
\value SessionAbortedError The session was aborted by the user or system.
\value RoamingError The session cannot roam to the new configuration.
\value OperationNotSupportedError The operation is not supported for current configuration.
\value InvalidConfigurationError The operation cannot currently be performed for the
current configuration.
*/
/*!
\fn void QNetworkSession::stateChanged(QNetworkSession::State state)
This signal is emitted whenever the state of the network session changes.
The \a state parameter is the new state.
\sa state()
*/
/*!
\fn void QNetworkSession::error(QNetworkSession::SessionError error)
This signal is emitted after an error occurred. The \a error parameter
describes the error that occurred.
\sa error(), errorString()
*/
/*!
\fn void QNetworkSession::preferredConfigurationChanged(const QNetworkConfiguration& config, bool isSeamless)
This signal is emitted when the preferred configuration/access point for the
session changes. Only sessions which are based on service network configurations
may emit this signal. \a config can be used to determine access point specific
details such as proxy settings and \a isSeamless indicates whether roaming will
break the sessions IP address.
As a consequence to this signal the application may start the roaming process
by calling migrate() or may chose to ignore() the new access point. If the application
doesn't call either of the two functions the session ignores the migration opportunity.
If the roaming process is non-seamless the IP address will change which means that
a socket becomes invalid. However seamless mobility can ensure that the local IP address
does not change. This is achieved by using a virtual IP address which is bound to the actual
link address. During the roaming process the virtual address is attached to the new link
address.
Some platforms may support the concept of Forced Roaming and Application Level Roaming (ALR).
Forced roaming implies that the platform may simply roam to a new configuration without
consulting applications. It is up to the application to detect the link layer loss and reestablish
its sockets. In contrast ALR provides the opportunity to prevent the system from roaming.
If this session is based on a configuration that supports roaming the application can choose
whether it wants to be consulted (ALR use case) by connecting to this signal. For as long as this signal
connection remains the session remains registered as a roaming stakeholder; otherwise roaming will
be enforced by the platform.
\sa migrate(), ignore(), QNetworkConfiguration::isRoamingAvailable()
*/
/*!
\fn void QNetworkSession::newConfigurationActivated()
This signal is emitted once the session has roamed to the new access point.
The application may reopen its socket and test the suitability of the new network link.
Subsequently it may accept() or reject() the new access point.
\sa accept(), reject()
*/
/*!
\fn void QNetworkSession::opened()
This signal is emitted when the network session has been opened.
The underlying network interface will not be shut down as long as the session remains open.
Note that this feature is dependent on \l{QNetworkConfigurationManager::SystemSessionSupport}{system wide session support}.
*/
/*!
\fn void QNetworkSession::closed()
This signal is emitted when the network session has been closed.
*/
/*!
Constructs a session based on \a connectionConfig with the given \a parent.
\sa QNetworkConfiguration
*/
QNetworkSession::QNetworkSession(const QNetworkConfiguration& connectionConfig, QObject* parent)
: QObject(parent)
{
d = new QNetworkSessionPrivate;
d->q = this;
d->publicConfig = connectionConfig;
d->syncStateWithInterface();
QObject::connect(d, SIGNAL(quitPendingWaitsForOpened()),
this, SIGNAL(opened()));
}
/*!
Frees the resources associated with the QNetworkSession object.
*/
QNetworkSession::~QNetworkSession()
{
delete d;
}
/*!
Creates an active/open session which increases the session counter on the underlying network interface.
The system will not terminate a network interface until the session reference counter reaches zero.
Therefore an active session allows an application to register its use of the interface.
The interface is started if it is not active yet. Some platforms may not provide support
for out-of-process sessions. On such platforms the session counter ignores any sessions
held by another process. The platform capabilities can be
detected via QNetworkConfigurationManager::capabilities().
Note that this call is asynchronous. Depending on the outcome of this call the results can be enquired
by connecting to the stateChanged(), opened() or error() signals.
It is not a requirement to open a session in order to monitor the underlying network interface.
\sa close(), stop(), isActive()
*/
void QNetworkSession::open()
{
d->open();
}
/*!
Waits until the session has been opened, up to \a msecs milliseconds. If the session has been opened, this
function returns true; otherwise it returns false. In the case where it returns false, you can call error()
to determine the cause of the error.
The following example waits up to one second for the session to be opened:
\code
session->open();
if (session->waitForOpened(1000))
qDebug("Open!");
\endcode
If \a msecs is -1, this function will not time out.
\sa open(), error()
*/
bool QNetworkSession::waitForOpened(int msecs)
{
if (d->isActive)
return true;
if (d->state != Connecting)
return false;
QEventLoop* loop = new QEventLoop(this);
QObject::connect(d, SIGNAL(quitPendingWaitsForOpened()),
loop, SLOT(quit()));
//final call
if (msecs>=0)
QTimer::singleShot(msecs, loop, SLOT(quit()));
loop->exec();
loop->disconnect();
loop->deleteLater();
return d->isActive;
}
/*!
Decreases the session counter on the associated network configuration. If the session counter reaches zero
the active network interface is shut down. This also means that state() will only change from \l Connected to
\l Disconnected if this was the last active session.
If the platform does not support out-of-process sessions calling this function does not stop the
interface. In this case \l{stop()} has to be used to force a shut down.
The platform capabilities can be detected via QNetworkConfigurationManager::capabilities().
Note that this call is asynchronous. Depending on the outcome of this call the results can be enquired
by connecting to the stateChanged(), opened() or error() signals.
\sa open(), stop(), isActive()
*/
void QNetworkSession::close()
{
d->close();
}
/*!
Invalidates all active sessions against the network interface and therefore stops the
underlying network interface. This function always changes the session's state() flag to
\l Disconnected.
\sa open(), close()
*/
void QNetworkSession::stop()
{
d->stop();
}
/*!
Returns the QNetworkConfiguration that this network session object is based on.
\sa QNetworkConfiguration
*/
QNetworkConfiguration QNetworkSession::configuration() const
{
return d->publicConfig;
}
/*!
Returns the type of bearer currently used by this session. The string is not translated and therefore can
not be shown to the user. The subsequent table presents the currently known bearer types:
\table
\header
\o Value
\o Description
\row
\o Ethernet
\o The session is based on Ethernet.
\row
\o WLAN
\o The session is based on Wireless LAN.
\row
\o 2G
\o The session uses CSD, GPRS, HSCSD, EDGE or cdmaOne.
\row
\o CDMA2000
\o The session uses CDMA.
\row
\o WCDMA
\o The session uses W-CDMA/UMTS.
\row
\o HSPA
\o The session uses High Speed Packet Access.
\row
\o Bluetooth
\o The session uses Bluetooth.
\row
\o WiMAX
\o The session uses WiMAX.
\endtable
If the session is based on a network configuration of type
\l QNetworkConfiguration::ServiceNetwork the type of the preferred or currently
active configuration is returned. Therefore the bearer type may change
over time.
This function returns an empty string if this session is based on an invalid configuration.
*/
QString QNetworkSession::bearerName() const
{
return d->bearerName();
}
/*!
Returns the network interface that is used by this session.
This function only returns a valid QNetworkInterface when this session is \l Connected.
The returned interface may change as a result of a roaming process.
\sa state()
*/
QNetworkInterface QNetworkSession::interface() const
{
return d->currentInterface();
}
/*!
Returns true if this object holds an active session on the underlying network interface.
The session can be controlled via open() and close().
*/
bool QNetworkSession::isActive() const
{
return d->isActive;
}
/*!
Returns the state of the session. If the session is based on a
single access point configuration the state of the session is the same as the state of the
associated network interface. Therefore a network session object can be used to monitor
network interfaces.
A \l QNetworkConfiguration::ServiceNetwork based session summarizes the state of all its children
and therefore returns the \l Connected state if at least one of its sub configurations is connected.
Note that it is not required to hold an active session in order to obtain the network interface state.
A connected but inactive session may be used to monitor network interfaces whereas an active and connected
session object may prevent the network interface from being shut down.
\sa error(), stateChanged()
*/
QNetworkSession::State QNetworkSession::state() const
{
return d->state;
}
/*!
Returns the type of error that last occurred.
\sa state(), errorString()
*/
QNetworkSession::SessionError QNetworkSession::error() const
{
return d->error();
}
/*!
Returns a human-readable description of the last device error that
occurred.
\sa error()
*/
QString QNetworkSession::errorString() const
{
return d->errorString();
}
/*!
Returns the value for property \a key.
A network session can have properties attached which may describe the session in more details.
This function can be used to gain access to those properties.
The following property keys are guaranteed to be specified on all platforms:
\table
\header
\o Key \o Description
\row
\o ActiveConfigurationIdentifier
\o If the session \l isActive() this property returns the identifier of the
QNetworkConfiguration that is used by this session; otherwise an empty string.
The main purpose of this key is to determine which Internet access point is used
if the session is based on a \l{QNetworkConfiguration::ServiceNetwork}{ServiceNetwork}.
The following code snippet highlights the difference:
\code
QNetworkConfigurationManager mgr;
QNetworkConfiguration ap = mgr.defaultConfiguration();
QNetworkSession* session = new QNetworkSession(ap);
... //code activates session
QString ident = session->sessionProperty("ActiveConfigurationIdentifier").toString();
if ( ap.type() == QNetworkConfiguration::ServiceNetwork ) {
Q_ASSERT( ap.identifier() != ident );
Q_ASSERT( ap.children().contains( mgr.configurationFromIdentifier(ident) ) );
} else if ( ap.type() == QNetworkConfiguration::InternetAccessPoint ) {
Q_ASSERT( ap.identifier() == ident );
}
\endcode
\row
\o UserChoiceConfigurationIdentifier
\o If the session \l isActive() and is bound to a QNetworkConfiguration of type
UserChoice, this property returns the identifier of the QNetworkConfiguration that the
configuration resolved to when \l open() was called; otherwise an empty string.
The purpose of this key is to determine the real QNetworkConfiguration that the
session is using. This key is different to \i ActiveConfigurationIdentifier in that
this key may return an identifier for either a
\l {QNetworkConfiguration::ServiceNetwork}{service network} or a
\l {QNetworkConfiguration::InternetAccessPoint}{Internet access points} configurations
whereas \i ActiveConfigurationIdentifier always returns identifiers for
\l {QNetworkConfiguration::InternetAccessPoint}{Internet access points} configurations.
\row
\o ConnectInBackground
\o Setting this property to \i true before calling \l open() implies that the connection attempt
is made but if no connection can be established, the user is not connsulted and asked to select
a suitable connection. This property is not set by default and support for it depends on the platform.
\endtable
*/
QVariant QNetworkSession::sessionProperty(const QString& key) const
{
if (!d->publicConfig.isValid())
return QVariant();
if (key == "ActiveConfigurationIdentifier") {
if (!d->isActive)
return QString();
else
return d->activeConfig.identifier();
}
if (key == "UserChoiceConfigurationIdentifier") {
if (!d->isActive || d->publicConfig.type() != QNetworkConfiguration::UserChoice)
return QString();
if (d->serviceConfig.isValid())
return d->serviceConfig.identifier();
else
return d->activeConfig.identifier();
}
return d->sessionProperty(key);
}
/*!
Sets the property \a value on the session. The property is identified using
\a key. Removing an already set property can be achieved by passing an
invalid QVariant.
Note that the \i UserChoiceConfigurationIdentifier and \i ActiveConfigurationIdentifier
properties are read only and cannot be changed using this method.
*/
void QNetworkSession::setSessionProperty(const QString& key, const QVariant& value)
{
if (key == "ActiveConfigurationIdentifier"
|| key == "UserChoiceConfigurationIdentifier")
return;
d->setSessionProperty(key, value);
}
/*!
Instructs the session to roam to the new access point. The old access point remains active
until the application calls accept().
The newConfigurationActivated() signal is emitted once roaming has been completed.
\sa accept()
*/
void QNetworkSession::migrate()
{
d->migrate();
}
/*!
This function indicates that the application does not wish to roam the session. This
is the default behavior if an application doesn't call migrate() in response to a
preferredConfigurationChanged() signal.
\sa migrate()
*/
void QNetworkSession::ignore()
{
//TODO Do we really need this function if we consider that this is
// the default behavior if nobody calls migrate()?
d->ignore();
}
/*!
Instructs the session to permanently accept the new access point. Once this function
has been called the session may not return to the old access point.
The old access point may be closed in the process if there are no other network sessions for it.
Therefore any open socket that still uses the old access point
may become unusable and should be closed before completing the migration.
*/
void QNetworkSession::accept()
{
d->accept();
}
/*!
The new access point is not suitable for the application. By calling this function the
session returns to the previous access point/configuration. This action may invalidate
any socket that has been created via the not desired access point.
\sa accept()
*/
void QNetworkSession::reject()
{
d->reject();
}
/*!
Returns the amount of data sent in bytes; otherwise 0.
This field value includes the usage across all active network
sessions which use the same network interface.
If the session is based on a service network configuration the number of
sent bytes across all active member configurations are returned.
This function may not always be supported on all platforms and returns
0. The platform capability can be detected via QNetworkConfigurationManager::DataStatistics.
*/
quint64 QNetworkSession::bytesWritten() const
{
return d->bytesWritten();
}
/*!
Returns the amount of data received in bytes; otherwise 0.
This field value includes the usage across all active network
sessions which use the same network interface.
If the session is based on a service network configuration the number of
sent bytes across all active member configurations are returned.
This function may not always be supported on all platforms and returns
0. The platform capability can be detected via QNetworkConfigurationManager::DataStatistics.
*/
quint64 QNetworkSession::bytesReceived() const
{
return d->bytesReceived();
}
/*!
Returns the number of seconds that the session has been active.
*/
quint64 QNetworkSession::activeTime() const
{
return d->activeTime();
}
/*!
\internal
This function is required to detect whether the client wants to control
the roaming process. If he connects to preferredConfigurationChanged() signal
he intends to influence it. Otherwise QNetworkSession always roams
without registering this session as a stakeholder in the roaming process.
For more details check the Forced vs ALR roaming section in the QNetworkSession
class description.
*/
void QNetworkSession::connectNotify(const char *signal)
{
QObject::connectNotify(signal);
//check for preferredConfigurationChanged() signal connect notification
//This is not required on all platforms
#ifdef Q_OS_SYMBIAN
if (qstrcmp(signal, SIGNAL(preferredConfigurationChanged(QNetworkConfiguration,bool))) == 0) {
d->setALREnabled(true);
}
#endif
}
/*!
\internal
This function is called when the client disconnects from the preferredConfigurationChanged()
signal.
\sa connectNotify()
*/
void QNetworkSession::disconnectNotify(const char *signal)
{
QObject::disconnectNotify(signal);
//check for preferredConfigurationChanged() signal disconnect notification
//This is not required on all platforms
#ifdef Q_OS_SYMBIAN
if (qstrcmp(signal, SIGNAL(preferredConfigurationChanged(QNetworkConfiguration,bool))) == 0) {
d->setALREnabled(false);
}
#endif
}
#include "moc_qnetworksession.cpp"
QT_END_NAMESPACE
|