summaryrefslogtreecommitdiff
path: root/src/gui/graphicsview/qgraphicsanchorlayout_p.cpp
diff options
context:
space:
mode:
authorGunnar Sletta <gunnar@trolltech.com>2009-11-13 08:07:29 +0100
committerGunnar Sletta <gunnar@trolltech.com>2009-11-13 08:07:29 +0100
commit3794e55c2c8427dd8bd4f86af5e894cc80267881 (patch)
tree9067656d5e021a585a976fb84f73b94e161cae19 /src/gui/graphicsview/qgraphicsanchorlayout_p.cpp
parent7be079e1b1f13b58f5d69f86e5854edd25065532 (diff)
parent99b19431e6846a36a65f23d21a95140a081d1f1a (diff)
downloadqt4-tools-3794e55c2c8427dd8bd4f86af5e894cc80267881.tar.gz
Merge branch '4.6' of git@scm.dev.nokia.troll.no:qt/qt into 4.6
Conflicts: dist/changes-4.6.0
Diffstat (limited to 'src/gui/graphicsview/qgraphicsanchorlayout_p.cpp')
-rw-r--r--src/gui/graphicsview/qgraphicsanchorlayout_p.cpp937
1 files changed, 579 insertions, 358 deletions
diff --git a/src/gui/graphicsview/qgraphicsanchorlayout_p.cpp b/src/gui/graphicsview/qgraphicsanchorlayout_p.cpp
index 41aa8aac9a..182594e55b 100644
--- a/src/gui/graphicsview/qgraphicsanchorlayout_p.cpp
+++ b/src/gui/graphicsview/qgraphicsanchorlayout_p.cpp
@@ -61,6 +61,8 @@ QGraphicsAnchorPrivate::QGraphicsAnchorPrivate(int version)
QGraphicsAnchorPrivate::~QGraphicsAnchorPrivate()
{
+ // ###
+ layoutPrivate->restoreSimplifiedGraph(QGraphicsAnchorLayoutPrivate::Orientation(data->orientation));
layoutPrivate->removeAnchor(data->from, data->to);
}
@@ -105,7 +107,7 @@ qreal QGraphicsAnchorPrivate::spacing() const
static void internalSizeHints(QSizePolicy::Policy policy,
qreal minSizeHint, qreal prefSizeHint, qreal maxSizeHint,
qreal *minSize, qreal *prefSize,
- qreal *expSize, qreal *maxSize)
+ qreal *maxSize)
{
// minSize, prefSize and maxSize are initialized
// with item's preferred Size: this is QSizePolicy::Fixed.
@@ -135,11 +137,6 @@ static void internalSizeHints(QSizePolicy::Policy policy,
*prefSize = *minSize;
else
*prefSize = prefSizeHint;
-
- if (policy & QSizePolicy::ExpandFlag)
- *expSize = *maxSize;
- else
- *expSize = *prefSize;
}
bool AnchorData::refreshSizeHints(const QLayoutStyleInfo *styleInfo)
@@ -154,7 +151,6 @@ bool AnchorData::refreshSizeHints(const QLayoutStyleInfo *styleInfo)
if (isLayoutAnchor) {
minSize = 0;
prefSize = 0;
- expSize = 0;
maxSize = QWIDGETSIZE_MAX;
if (isCenterAnchor)
maxSize /= 2;
@@ -205,8 +201,8 @@ bool AnchorData::refreshSizeHints(const QLayoutStyleInfo *styleInfo)
}
maxSizeHint = QWIDGETSIZE_MAX;
}
- internalSizeHints(policy, minSizeHint, prefSizeHint, maxSizeHint,
- &minSize, &prefSize, &expSize, &maxSize);
+ internalSizeHints(policy, minSizeHint, prefSizeHint, maxSizeHint,
+ &minSize, &prefSize, &maxSize);
// Set the anchor effective sizes to preferred.
//
@@ -217,7 +213,6 @@ bool AnchorData::refreshSizeHints(const QLayoutStyleInfo *styleInfo)
// recalculate and override the values we set here.
sizeAtMinimum = prefSize;
sizeAtPreferred = prefSize;
- sizeAtExpanding = prefSize;
sizeAtMaximum = prefSize;
return true;
@@ -225,10 +220,20 @@ bool AnchorData::refreshSizeHints(const QLayoutStyleInfo *styleInfo)
void ParallelAnchorData::updateChildrenSizes()
{
- firstEdge->sizeAtMinimum = secondEdge->sizeAtMinimum = sizeAtMinimum;
- firstEdge->sizeAtPreferred = secondEdge->sizeAtPreferred = sizeAtPreferred;
- firstEdge->sizeAtExpanding = secondEdge->sizeAtExpanding = sizeAtExpanding;
- firstEdge->sizeAtMaximum = secondEdge->sizeAtMaximum = sizeAtMaximum;
+ firstEdge->sizeAtMinimum = sizeAtMinimum;
+ firstEdge->sizeAtPreferred = sizeAtPreferred;
+ firstEdge->sizeAtMaximum = sizeAtMaximum;
+
+ const bool secondFwd = (secondEdge->from == from);
+ if (secondFwd) {
+ secondEdge->sizeAtMinimum = sizeAtMinimum;
+ secondEdge->sizeAtPreferred = sizeAtPreferred;
+ secondEdge->sizeAtMaximum = sizeAtMaximum;
+ } else {
+ secondEdge->sizeAtMinimum = -sizeAtMinimum;
+ secondEdge->sizeAtPreferred = -sizeAtPreferred;
+ secondEdge->sizeAtMaximum = -sizeAtMaximum;
+ }
firstEdge->updateChildrenSizes();
secondEdge->updateChildrenSizes();
@@ -247,8 +252,16 @@ bool ParallelAnchorData::refreshSizeHints_helper(const QLayoutStyleInfo *styleIn
return false;
}
- minSize = qMax(firstEdge->minSize, secondEdge->minSize);
- maxSize = qMin(firstEdge->maxSize, secondEdge->maxSize);
+ // Account for parallel anchors where the second edge is backwards.
+ // We rely on the fact that a forward anchor of sizes min, pref, max is equivalent
+ // to a backwards anchor of size (-max, -pref, -min)
+ const bool secondFwd = (secondEdge->from == from);
+ const qreal secondMin = secondFwd ? secondEdge->minSize : -secondEdge->maxSize;
+ const qreal secondPref = secondFwd ? secondEdge->prefSize : -secondEdge->prefSize;
+ const qreal secondMax = secondFwd ? secondEdge->maxSize : -secondEdge->minSize;
+
+ minSize = qMax(firstEdge->minSize, secondMin);
+ maxSize = qMin(firstEdge->maxSize, secondMax);
// This condition means that the maximum size of one anchor being simplified is smaller than
// the minimum size of the other anchor. The consequence is that there won't be a valid size
@@ -257,16 +270,27 @@ bool ParallelAnchorData::refreshSizeHints_helper(const QLayoutStyleInfo *styleIn
return false;
}
- expSize = qMax(firstEdge->expSize, secondEdge->expSize);
- expSize = qMin(expSize, maxSize);
+ // The equivalent preferred Size of a parallel anchor is calculated as to
+ // reduce the deviation from the original preferred sizes _and_ to avoid shrinking
+ // items below their preferred sizes, unless strictly needed.
- prefSize = qMax(firstEdge->prefSize, secondEdge->prefSize);
- prefSize = qMin(prefSize, expSize);
+ // ### This logic only holds if all anchors in the layout are "well-behaved" in the
+ // following terms:
+ //
+ // - There are no negative-sized anchors
+ // - All sequential anchors are composed of children in the same direction as the
+ // sequential anchor itself
+ //
+ // With these assumptions we can grow a child knowing that no hidden items will
+ // have to shrink as the result of that.
+ // If any of these does not hold, we have a situation where the ParallelAnchor
+ // does not have enough information to calculate its equivalent prefSize.
+ prefSize = qMax(firstEdge->prefSize, secondPref);
+ prefSize = qMin(prefSize, maxSize);
// See comment in AnchorData::refreshSizeHints() about sizeAt* values
sizeAtMinimum = prefSize;
sizeAtPreferred = prefSize;
- sizeAtExpanding = prefSize;
sizeAtMaximum = prefSize;
return true;
@@ -280,8 +304,7 @@ bool ParallelAnchorData::refreshSizeHints_helper(const QLayoutStyleInfo *styleIn
1 is at Maximum
*/
static QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> getFactor(qreal value, qreal min,
- qreal pref, qreal exp,
- qreal max)
+ qreal pref, qreal max)
{
QGraphicsAnchorLayoutPrivate::Interval interval;
qreal lower;
@@ -291,13 +314,9 @@ static QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> getFactor(qreal valu
interval = QGraphicsAnchorLayoutPrivate::MinToPreferred;
lower = min;
upper = pref;
- } else if (value < exp) {
- interval = QGraphicsAnchorLayoutPrivate::PreferredToExpanding;
- lower = pref;
- upper = exp;
} else {
- interval = QGraphicsAnchorLayoutPrivate::ExpandingToMax;
- lower = exp;
+ interval = QGraphicsAnchorLayoutPrivate::PreferredToMax;
+ lower = pref;
upper = max;
}
@@ -313,7 +332,7 @@ static QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> getFactor(qreal valu
static qreal interpolate(const QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> &factor,
qreal min, qreal pref,
- qreal exp, qreal max)
+ qreal max)
{
qreal lower;
qreal upper;
@@ -323,12 +342,8 @@ static qreal interpolate(const QPair<QGraphicsAnchorLayoutPrivate::Interval, qre
lower = min;
upper = pref;
break;
- case QGraphicsAnchorLayoutPrivate::PreferredToExpanding:
+ case QGraphicsAnchorLayoutPrivate::PreferredToMax:
lower = pref;
- upper = exp;
- break;
- case QGraphicsAnchorLayoutPrivate::ExpandingToMax:
- lower = exp;
upper = max;
break;
}
@@ -341,34 +356,31 @@ void SequentialAnchorData::updateChildrenSizes()
// ### REMOVE ME
// ### check whether we are guarantee to get those or we need to warn stuff at this
// point.
- Q_ASSERT(sizeAtMinimum > minSize || qFuzzyCompare(sizeAtMinimum, minSize));
- Q_ASSERT(sizeAtMinimum < maxSize || qFuzzyCompare(sizeAtMinimum, maxSize));
- Q_ASSERT(sizeAtPreferred > minSize || qFuzzyCompare(sizeAtPreferred, minSize));
- Q_ASSERT(sizeAtPreferred < maxSize || qFuzzyCompare(sizeAtPreferred, maxSize));
- Q_ASSERT(sizeAtExpanding > minSize || qFuzzyCompare(sizeAtExpanding, minSize));
- Q_ASSERT(sizeAtExpanding < maxSize || qFuzzyCompare(sizeAtExpanding, maxSize));
- Q_ASSERT(sizeAtMaximum > minSize || qFuzzyCompare(sizeAtMaximum, minSize));
- Q_ASSERT(sizeAtMaximum < maxSize || qFuzzyCompare(sizeAtMaximum, maxSize));
+ Q_ASSERT(sizeAtMinimum > minSize || qAbs(sizeAtMinimum - minSize) < 0.00000001);
+ Q_ASSERT(sizeAtPreferred > minSize || qAbs(sizeAtPreferred - minSize) < 0.00000001);
+ Q_ASSERT(sizeAtMaximum > minSize || qAbs(sizeAtMaximum - minSize) < 0.00000001);
+
+ // These may be false if this anchor was in parallel with the layout stucture
+ // Q_ASSERT(sizeAtMinimum < maxSize || qAbs(sizeAtMinimum - maxSize) < 0.00000001);
+ // Q_ASSERT(sizeAtPreferred < maxSize || qAbs(sizeAtPreferred - maxSize) < 0.00000001);
+ // Q_ASSERT(sizeAtMaximum < maxSize || qAbs(sizeAtMaximum - maxSize) < 0.00000001);
// Band here refers if the value is in the Minimum To Preferred
// band (the lower band) or the Preferred To Maximum (the upper band).
const QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> minFactor =
- getFactor(sizeAtMinimum, minSize, prefSize, expSize, maxSize);
+ getFactor(sizeAtMinimum, minSize, prefSize, maxSize);
const QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> prefFactor =
- getFactor(sizeAtPreferred, minSize, prefSize, expSize, maxSize);
- const QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> expFactor =
- getFactor(sizeAtExpanding, minSize, prefSize, expSize, maxSize);
+ getFactor(sizeAtPreferred, minSize, prefSize, maxSize);
const QPair<QGraphicsAnchorLayoutPrivate::Interval, qreal> maxFactor =
- getFactor(sizeAtMaximum, minSize, prefSize, expSize, maxSize);
+ getFactor(sizeAtMaximum, minSize, prefSize, maxSize);
for (int i = 0; i < m_edges.count(); ++i) {
AnchorData *e = m_edges.at(i);
- e->sizeAtMinimum = interpolate(minFactor, e->minSize, e->prefSize, e->expSize, e->maxSize);
- e->sizeAtPreferred = interpolate(prefFactor, e->minSize, e->prefSize, e->expSize, e->maxSize);
- e->sizeAtExpanding = interpolate(expFactor, e->minSize, e->prefSize, e->expSize, e->maxSize);
- e->sizeAtMaximum = interpolate(maxFactor, e->minSize, e->prefSize, e->expSize, e->maxSize);
+ e->sizeAtMinimum = interpolate(minFactor, e->minSize, e->prefSize, e->maxSize);
+ e->sizeAtPreferred = interpolate(prefFactor, e->minSize, e->prefSize, e->maxSize);
+ e->sizeAtMaximum = interpolate(maxFactor, e->minSize, e->prefSize, e->maxSize);
e->updateChildrenSizes();
}
@@ -384,7 +396,6 @@ bool SequentialAnchorData::refreshSizeHints_helper(const QLayoutStyleInfo *style
{
minSize = 0;
prefSize = 0;
- expSize = 0;
maxSize = 0;
for (int i = 0; i < m_edges.count(); ++i) {
@@ -396,14 +407,12 @@ bool SequentialAnchorData::refreshSizeHints_helper(const QLayoutStyleInfo *style
minSize += edge->minSize;
prefSize += edge->prefSize;
- expSize += edge->expSize;
maxSize += edge->maxSize;
}
// See comment in AnchorData::refreshSizeHints() about sizeAt* values
sizeAtMinimum = prefSize;
sizeAtPreferred = prefSize;
- sizeAtExpanding = prefSize;
sizeAtMaximum = prefSize;
return true;
@@ -478,12 +487,15 @@ QGraphicsAnchorLayoutPrivate::QGraphicsAnchorLayoutPrivate()
for (int j = 0; j < 3; ++j) {
sizeHints[i][j] = -1;
}
- sizeAtExpanding[i] = -1;
interpolationProgress[i] = -1;
spacings[i] = -1;
graphSimplified[i] = false;
graphHasConflicts[i] = false;
+
+ layoutFirstVertex[i] = 0;
+ layoutCentralVertex[i] = 0;
+ layoutLastVertex[i] = 0;
}
}
@@ -526,33 +538,67 @@ inline static qreal checkAdd(qreal a, qreal b)
/*!
\internal
- Adds \a newAnchor to the graph \a g.
+ Adds \a newAnchor to the graph.
Returns the newAnchor itself if it could be added without further changes to the graph. If a
- new parallel anchor had to be created, then returns the new parallel anchor. In case the
- addition is unfeasible -- because a parallel setup is not possible, returns 0.
+ new parallel anchor had to be created, then returns the new parallel anchor. If a parallel anchor
+ had to be created and it results in an unfeasible setup, \a feasible is set to false, otherwise
+ true.
+
+ Note that in the case a new parallel anchor is created, it might also take over some constraints
+ from its children anchors.
*/
-static AnchorData *addAnchorMaybeParallel(Graph<AnchorVertex, AnchorData> *g,
- AnchorData *newAnchor)
+AnchorData *QGraphicsAnchorLayoutPrivate::addAnchorMaybeParallel(AnchorData *newAnchor, bool *feasible)
{
- bool feasible = true;
+ Orientation orientation = Orientation(newAnchor->orientation);
+ Graph<AnchorVertex, AnchorData> &g = graph[orientation];
+ *feasible = true;
// If already exists one anchor where newAnchor is supposed to be, we create a parallel
// anchor.
- if (AnchorData *oldAnchor = g->takeEdge(newAnchor->from, newAnchor->to)) {
+ if (AnchorData *oldAnchor = g.takeEdge(newAnchor->from, newAnchor->to)) {
ParallelAnchorData *parallel = new ParallelAnchorData(oldAnchor, newAnchor);
+ // The parallel anchor will "replace" its children anchors in
+ // every center constraint that they appear.
+
+ // ### If the dependent (center) anchors had reference(s) to their constraints, we
+ // could avoid traversing all the itemCenterConstraints.
+ QList<QSimplexConstraint *> &constraints = itemCenterConstraints[orientation];
+
+ AnchorData *children[2] = { oldAnchor, newAnchor };
+ QList<QSimplexConstraint *> *childrenConstraints[2] = { &parallel->m_firstConstraints,
+ &parallel->m_secondConstraints };
+
+ for (int i = 0; i < 2; ++i) {
+ AnchorData *child = children[i];
+ QList<QSimplexConstraint *> *childConstraints = childrenConstraints[i];
+
+ if (!child->isCenterAnchor)
+ continue;
+
+ parallel->isCenterAnchor = true;
+
+ for (int i = 0; i < constraints.count(); ++i) {
+ QSimplexConstraint *c = constraints[i];
+ if (c->variables.contains(child)) {
+ childConstraints->append(c);
+ qreal v = c->variables.take(child);
+ c->variables.insert(parallel, v);
+ }
+ }
+ }
+
// At this point we can identify that the parallel anchor is not feasible, e.g. one
// anchor minimum size is bigger than the other anchor maximum size.
- feasible = parallel->refreshSizeHints_helper(0, false);
+ *feasible = parallel->refreshSizeHints_helper(0, false);
newAnchor = parallel;
}
- g->createEdge(newAnchor->from, newAnchor->to, newAnchor);
- return feasible ? newAnchor : 0;
+ g.createEdge(newAnchor->from, newAnchor->to, newAnchor);
+ return newAnchor;
}
-
/*!
\internal
@@ -656,30 +702,185 @@ bool QGraphicsAnchorLayoutPrivate::simplifyGraph(Orientation orientation)
if (graphSimplified[orientation])
return true;
- graphSimplified[orientation] = true;
#if 0
qDebug("Simplifying Graph for %s",
orientation == Horizontal ? "Horizontal" : "Vertical");
#endif
- if (!graph[orientation].rootVertex())
- return true;
+ // Vertex simplification
+ if (!simplifyVertices(orientation)) {
+ restoreVertices(orientation);
+ return false;
+ }
+ // Anchor simplification
bool dirty;
bool feasible = true;
do {
dirty = simplifyGraphIteration(orientation, &feasible);
} while (dirty && feasible);
- if (!feasible)
- graphSimplified[orientation] = false;
+ // Note that if we are not feasible, we fallback and make sure that the graph is fully restored
+ if (!feasible) {
+ graphSimplified[orientation] = true;
+ restoreSimplifiedGraph(orientation);
+ restoreVertices(orientation);
+ return false;
+ }
+
+ graphSimplified[orientation] = true;
+ return true;
+}
+
+static AnchorVertex *replaceVertex_helper(AnchorData *data, AnchorVertex *oldV, AnchorVertex *newV)
+{
+ AnchorVertex *other;
+ if (data->from == oldV) {
+ data->from = newV;
+ other = data->to;
+ } else {
+ data->to = newV;
+ other = data->from;
+ }
+ return other;
+}
+
+bool QGraphicsAnchorLayoutPrivate::replaceVertex(Orientation orientation, AnchorVertex *oldV,
+ AnchorVertex *newV, const QList<AnchorData *> &edges)
+{
+ Graph<AnchorVertex, AnchorData> &g = graph[orientation];
+ bool feasible = true;
+
+ for (int i = 0; i < edges.count(); ++i) {
+ AnchorData *ad = edges[i];
+ AnchorVertex *otherV = replaceVertex_helper(ad, oldV, newV);
+
+#if defined(QT_DEBUG)
+ ad->name = QString::fromAscii("%1 --to--> %2").arg(ad->from->toString()).arg(ad->to->toString());
+#endif
+
+ bool newFeasible;
+ AnchorData *newAnchor = addAnchorMaybeParallel(ad, &newFeasible);
+ feasible &= newFeasible;
+
+ if (newAnchor != ad) {
+ // A parallel was created, we mark that in the list of anchors created by vertex
+ // simplification. This is needed because we want to restore them in a separate step
+ // from the restoration of anchor simplification.
+ anchorsFromSimplifiedVertices[orientation].append(newAnchor);
+ }
+
+ g.takeEdge(oldV, otherV);
+ }
return feasible;
}
/*!
\internal
+*/
+bool QGraphicsAnchorLayoutPrivate::simplifyVertices(Orientation orientation)
+{
+ Q_Q(QGraphicsAnchorLayout);
+ Graph<AnchorVertex, AnchorData> &g = graph[orientation];
+
+ // We'll walk through vertices
+ QStack<AnchorVertex *> stack;
+ stack.push(layoutFirstVertex[orientation]);
+ QSet<AnchorVertex *> visited;
+
+ while (!stack.isEmpty()) {
+ AnchorVertex *v = stack.pop();
+ visited.insert(v);
+
+ // Each adjacent of 'v' is a possible vertex to be merged. So we traverse all of
+ // them. Since once a merge is made, we might add new adjacents, and we don't want to
+ // pass two times through one adjacent. The 'index' is used to track our position.
+ QList<AnchorVertex *> adjacents = g.adjacentVertices(v);
+ int index = 0;
+
+ while (index < adjacents.count()) {
+ AnchorVertex *next = adjacents.at(index);
+ index++;
+
+ AnchorData *data = g.edgeData(v, next);
+ const bool bothLayoutVertices = v->m_item == q && next->m_item == q;
+ const bool zeroSized = !data->minSize && !data->maxSize;
+
+ if (!bothLayoutVertices && zeroSized) {
+
+ // Create a new vertex pair, note that we keep a list of those vertices so we can
+ // easily process them when restoring the graph.
+ AnchorVertexPair *newV = new AnchorVertexPair(v, next, data);
+ simplifiedVertices[orientation].append(newV);
+
+ // Collect the anchors of both vertices, the new vertex pair will take their place
+ // in those anchors
+ const QList<AnchorVertex *> &vAdjacents = g.adjacentVertices(v);
+ const QList<AnchorVertex *> &nextAdjacents = g.adjacentVertices(next);
+
+ for (int i = 0; i < vAdjacents.count(); ++i) {
+ AnchorVertex *adjacent = vAdjacents.at(i);
+ if (adjacent != next) {
+ AnchorData *ad = g.edgeData(v, adjacent);
+ newV->m_firstAnchors.append(ad);
+ }
+ }
+
+ for (int i = 0; i < nextAdjacents.count(); ++i) {
+ AnchorVertex *adjacent = nextAdjacents.at(i);
+ if (adjacent != v) {
+ AnchorData *ad = g.edgeData(next, adjacent);
+ newV->m_secondAnchors.append(ad);
+
+ // We'll also add new vertices to the adjacent list of the new 'v', to be
+ // created as a vertex pair and replace the current one.
+ if (!adjacents.contains(adjacent))
+ adjacents.append(adjacent);
+ }
+ }
+
+ // ### merge this loop into the ones that calculated m_firstAnchors/m_secondAnchors?
+ // Make newV take the place of v and next
+ bool feasible = replaceVertex(orientation, v, newV, newV->m_firstAnchors);
+ feasible &= replaceVertex(orientation, next, newV, newV->m_secondAnchors);
+
+ // Update the layout vertex information if one of the vertices is a layout vertex.
+ AnchorVertex *layoutVertex = 0;
+ if (v->m_item == q)
+ layoutVertex = v;
+ else if (next->m_item == q)
+ layoutVertex = next;
+
+ if (layoutVertex) {
+ // Layout vertices always have m_item == q...
+ newV->m_item = q;
+ changeLayoutVertex(orientation, layoutVertex, newV);
+ }
+
+ g.takeEdge(v, next);
+
+ // If a non-feasibility is found, we leave early and cancel the simplification
+ if (!feasible)
+ return false;
+
+ v = newV;
+ visited.insert(newV);
+
+ } else if (!visited.contains(next) && !stack.contains(next)) {
+ // If the adjacent is not fit for merge and it wasn't visited by the outermost
+ // loop, we add it to the stack.
+ stack.push(next);
+ }
+ }
+ }
+
+ return true;
+}
+
+/*!
+ \internal
One iteration of the simplification algorithm. Returns true if another iteration is needed.
@@ -700,7 +901,7 @@ bool QGraphicsAnchorLayoutPrivate::simplifyGraphIteration(QGraphicsAnchorLayoutP
QSet<AnchorVertex *> visited;
QStack<QPair<AnchorVertex *, AnchorVertex *> > stack;
- stack.push(qMakePair(static_cast<AnchorVertex *>(0), g.rootVertex()));
+ stack.push(qMakePair(static_cast<AnchorVertex *>(0), layoutFirstVertex[orientation]));
QVector<AnchorVertex*> candidates;
bool candidatesForward;
@@ -719,7 +920,8 @@ bool QGraphicsAnchorLayoutPrivate::simplifyGraphIteration(QGraphicsAnchorLayoutP
// (a) it is a layout vertex, we don't simplify away the layout vertices;
// (b) it does not have exactly 2 adjacents;
// (c) it will change the direction of the sequence;
- // (d) its next adjacent is already visited (a cycle in the graph).
+ // (d) its next adjacent is already visited (a cycle in the graph);
+ // (e) the next anchor is a center anchor.
const QList<AnchorVertex *> &adjacents = g.adjacentVertices(v);
const bool isLayoutVertex = v->m_item == q;
@@ -742,13 +944,14 @@ bool QGraphicsAnchorLayoutPrivate::simplifyGraphIteration(QGraphicsAnchorLayoutP
candidatesForward = (beforeSequence == data->from);
}
- // This is a tricky part. We peek at the next vertex to find out
+ // This is a tricky part. We peek at the next vertex to find out whether
//
- // - whether the edge from this vertex to the next vertex has the same direction;
- // - whether we already visited the next vertex.
+ // - the edge from this vertex to the next vertex has the same direction;
+ // - we already visited the next vertex;
+ // - the next anchor is a center.
//
- // Those are needed to identify (c) and (d). Note that unlike (a) and (b), we preempt
- // the end of sequence by looking into the next vertex.
+ // Those are needed to identify the remaining end of sequence cases. Note that unlike
+ // (a) and (b), we preempt the end of sequence by looking into the next vertex.
// Peek at the next vertex
AnchorVertex *after;
@@ -766,8 +969,8 @@ bool QGraphicsAnchorLayoutPrivate::simplifyGraphIteration(QGraphicsAnchorLayoutP
const bool willChangeDirection = (candidatesForward != (v == data->from));
const bool cycleFound = visited.contains(after);
- // Now cases (c) and (d)...
- endOfSequence = willChangeDirection || cycleFound;
+ // Now cases (c), (d) and (e)...
+ endOfSequence = willChangeDirection || cycleFound || data->isCenterAnchor;
if (endOfSequence) {
if (!willChangeDirection) {
@@ -839,9 +1042,10 @@ bool QGraphicsAnchorLayoutPrivate::simplifyGraphIteration(QGraphicsAnchorLayoutP
// If 'beforeSequence' and 'afterSequence' already had an anchor between them, we'll
// create a parallel anchor between the new sequence and the old anchor.
- AnchorData *newAnchor = addAnchorMaybeParallel(&g, sequence);
+ bool newFeasible;
+ AnchorData *newAnchor = addAnchorMaybeParallel(sequence, &newFeasible);
- if (!newAnchor) {
+ if (!newFeasible) {
*feasible = false;
return false;
}
@@ -861,48 +1065,70 @@ bool QGraphicsAnchorLayoutPrivate::simplifyGraphIteration(QGraphicsAnchorLayoutP
return false;
}
-static void restoreSimplifiedAnchor(Graph<AnchorVertex, AnchorData> &g,
- AnchorData *edge,
- AnchorVertex *before,
- AnchorVertex *after)
+void QGraphicsAnchorLayoutPrivate::restoreSimplifiedAnchor(AnchorData *edge)
{
- Q_ASSERT(edge->type != AnchorData::Normal);
#if 0
static const char *anchortypes[] = {"Normal",
"Sequential",
"Parallel"};
qDebug("Restoring %s edge.", anchortypes[int(edge->type)]);
#endif
- if (edge->type == AnchorData::Sequential) {
- SequentialAnchorData* seqEdge = static_cast<SequentialAnchorData*>(edge);
- // restore the sequential anchor
- AnchorVertex *prev = before;
- AnchorVertex *last = after;
- if (edge->from != prev)
- qSwap(last, prev);
-
- for (int i = 0; i < seqEdge->m_edges.count(); ++i) {
- AnchorVertex *v1 = (i < seqEdge->m_children.count()) ? seqEdge->m_children.at(i) : last;
- AnchorData *data = seqEdge->m_edges.at(i);
- if (data->type != AnchorData::Normal) {
- restoreSimplifiedAnchor(g, data, prev, v1);
- } else {
- g.createEdge(prev, v1, data);
- }
- prev = v1;
+
+ Graph<AnchorVertex, AnchorData> &g = graph[edge->orientation];
+
+ if (edge->type == AnchorData::Normal) {
+ g.createEdge(edge->from, edge->to, edge);
+
+ } else if (edge->type == AnchorData::Sequential) {
+ SequentialAnchorData *sequence = static_cast<SequentialAnchorData *>(edge);
+
+ for (int i = 0; i < sequence->m_edges.count(); ++i) {
+ AnchorData *data = sequence->m_edges.at(i);
+ restoreSimplifiedAnchor(data);
}
+
+ delete sequence;
+
} else if (edge->type == AnchorData::Parallel) {
- ParallelAnchorData* parallelEdge = static_cast<ParallelAnchorData*>(edge);
- AnchorData *parallelEdges[2] = {parallelEdge->firstEdge,
- parallelEdge->secondEdge};
- for (int i = 0; i < 2; ++i) {
- AnchorData *data = parallelEdges[i];
- if (data->type == AnchorData::Normal) {
- g.createEdge(before, after, data);
- } else {
- restoreSimplifiedAnchor(g, data, before, after);
- }
- }
+
+ // Skip parallel anchors that were created by vertex simplification, they will be processed
+ // later, when restoring vertex simplification.
+ // ### we could improve this check bit having a bit inside 'edge'
+ if (anchorsFromSimplifiedVertices[edge->orientation].contains(edge))
+ return;
+
+ ParallelAnchorData* parallel = static_cast<ParallelAnchorData*>(edge);
+ restoreSimplifiedConstraints(parallel);
+
+ // ### Because of the way parallel anchors are created in the anchor simplification
+ // algorithm, we know that one of these will be a sequence, so it'll be safe if the other
+ // anchor create an edge between the same vertices as the parallel.
+ Q_ASSERT(parallel->firstEdge->type == AnchorData::Sequential
+ || parallel->secondEdge->type == AnchorData::Sequential);
+ restoreSimplifiedAnchor(parallel->firstEdge);
+ restoreSimplifiedAnchor(parallel->secondEdge);
+
+ delete parallel;
+ }
+}
+
+void QGraphicsAnchorLayoutPrivate::restoreSimplifiedConstraints(ParallelAnchorData *parallel)
+{
+ if (!parallel->isCenterAnchor)
+ return;
+
+ for (int i = 0; i < parallel->m_firstConstraints.count(); ++i) {
+ QSimplexConstraint *c = parallel->m_firstConstraints.at(i);
+ qreal v = c->variables[parallel];
+ c->variables.remove(parallel);
+ c->variables.insert(parallel->firstEdge, v);
+ }
+
+ for (int i = 0; i < parallel->m_secondConstraints.count(); ++i) {
+ QSimplexConstraint *c = parallel->m_secondConstraints.at(i);
+ qreal v = c->variables[parallel];
+ c->variables.remove(parallel);
+ c->variables.insert(parallel->secondEdge, v);
}
}
@@ -917,19 +1143,93 @@ void QGraphicsAnchorLayoutPrivate::restoreSimplifiedGraph(Orientation orientatio
orientation == Horizontal ? "Horizontal" : "Vertical");
#endif
+ // Restore anchor simplification
Graph<AnchorVertex, AnchorData> &g = graph[orientation];
-
QList<QPair<AnchorVertex*, AnchorVertex*> > connections = g.connections();
for (int i = 0; i < connections.count(); ++i) {
AnchorVertex *v1 = connections.at(i).first;
AnchorVertex *v2 = connections.at(i).second;
AnchorData *edge = g.edgeData(v1, v2);
- if (edge->type != AnchorData::Normal) {
- AnchorData *oldEdge = g.takeEdge(v1, v2);
- restoreSimplifiedAnchor(g, edge, v1, v2);
- delete oldEdge;
+
+ // We restore only sequential anchors and parallels that were not created by
+ // vertex simplification.
+ if (edge->type == AnchorData::Sequential
+ || (edge->type == AnchorData::Parallel &&
+ !anchorsFromSimplifiedVertices[orientation].contains(edge))) {
+
+ g.takeEdge(v1, v2);
+ restoreSimplifiedAnchor(edge);
}
}
+
+ restoreVertices(orientation);
+}
+
+void QGraphicsAnchorLayoutPrivate::restoreVertices(Orientation orientation)
+{
+ Q_Q(QGraphicsAnchorLayout);
+
+ Graph<AnchorVertex, AnchorData> &g = graph[orientation];
+ QList<AnchorVertexPair *> &toRestore = simplifiedVertices[orientation];
+
+ // We will restore the vertices in the inverse order of creation, this way we ensure that
+ // the vertex being restored was not wrapped by another simplification.
+ for (int i = toRestore.count() - 1; i >= 0; --i) {
+ AnchorVertexPair *pair = toRestore.at(i);
+ QList<AnchorVertex *> adjacents = g.adjacentVertices(pair);
+
+ // Restore the removed edge, this will also restore both vertices 'first' and 'second' to
+ // the graph structure.
+ AnchorVertex *first = pair->m_first;
+ AnchorVertex *second = pair->m_second;
+ g.createEdge(first, second, pair->m_removedAnchor);
+
+ // Restore the anchors for the first child vertex
+ for (int j = 0; j < pair->m_firstAnchors.count(); ++j) {
+ AnchorData *ad = pair->m_firstAnchors.at(j);
+ Q_ASSERT(ad->from == pair || ad->to == pair);
+
+ replaceVertex_helper(ad, pair, first);
+ g.createEdge(ad->from, ad->to, ad);
+ }
+
+ // Restore the anchors for the second child vertex
+ for (int j = 0; j < pair->m_secondAnchors.count(); ++j) {
+ AnchorData *ad = pair->m_secondAnchors.at(j);
+ Q_ASSERT(ad->from == pair || ad->to == pair);
+
+ replaceVertex_helper(ad, pair, second);
+ g.createEdge(ad->from, ad->to, ad);
+ }
+
+ for (int j = 0; j < adjacents.count(); ++j) {
+ g.takeEdge(pair, adjacents.at(j));
+ }
+
+ // The pair simplified a layout vertex, so place back the correct vertex in the variable
+ // that track layout vertices
+ if (pair->m_item == q) {
+ AnchorVertex *layoutVertex = first->m_item == q ? first : second;
+ Q_ASSERT(layoutVertex->m_item == q);
+ changeLayoutVertex(orientation, pair, layoutVertex);
+ }
+
+ delete pair;
+ }
+ toRestore.clear();
+
+ // The restoration process for vertex simplification also restored the effect of the
+ // parallel anchors created during vertex simplification, so we just need to restore
+ // the constraints in case of parallels that contain center anchors. For the same
+ // reason as above, order matters here.
+ QList<AnchorData *> &parallelAnchors = anchorsFromSimplifiedVertices[orientation];
+
+ for (int i = parallelAnchors.count() - 1; i >= 0; --i) {
+ ParallelAnchorData *parallel = static_cast<ParallelAnchorData *>(parallelAnchors.at(i));
+ restoreSimplifiedConstraints(parallel);
+ delete parallel;
+ }
+ parallelAnchors.clear();
}
QGraphicsAnchorLayoutPrivate::Orientation
@@ -959,9 +1259,10 @@ void QGraphicsAnchorLayoutPrivate::createLayoutEdges()
data->maxSize = QWIDGETSIZE_MAX;
data->skipInPreferred = 1;
- // Set the Layout Left edge as the root of the horizontal graph.
- AnchorVertex *v = internalVertex(layout, Qt::AnchorLeft);
- graph[Horizontal].setRootVertex(v);
+ // Save a reference to layout vertices
+ layoutFirstVertex[Horizontal] = internalVertex(layout, Qt::AnchorLeft);
+ layoutCentralVertex[Horizontal] = 0;
+ layoutLastVertex[Horizontal] = internalVertex(layout, Qt::AnchorRight);
// Vertical
data = new AnchorData;
@@ -970,17 +1271,18 @@ void QGraphicsAnchorLayoutPrivate::createLayoutEdges()
data->maxSize = QWIDGETSIZE_MAX;
data->skipInPreferred = 1;
- // Set the Layout Top edge as the root of the vertical graph.
- v = internalVertex(layout, Qt::AnchorTop);
- graph[Vertical].setRootVertex(v);
+ // Save a reference to layout vertices
+ layoutFirstVertex[Vertical] = internalVertex(layout, Qt::AnchorTop);
+ layoutCentralVertex[Vertical] = 0;
+ layoutLastVertex[Vertical] = internalVertex(layout, Qt::AnchorBottom);
}
void QGraphicsAnchorLayoutPrivate::deleteLayoutEdges()
{
Q_Q(QGraphicsAnchorLayout);
- Q_ASSERT(internalVertex(q, Qt::AnchorHorizontalCenter) == NULL);
- Q_ASSERT(internalVertex(q, Qt::AnchorVerticalCenter) == NULL);
+ Q_ASSERT(!internalVertex(q, Qt::AnchorHorizontalCenter));
+ Q_ASSERT(!internalVertex(q, Qt::AnchorVerticalCenter));
removeAnchor_helper(internalVertex(q, Qt::AnchorLeft),
internalVertex(q, Qt::AnchorRight));
@@ -1019,6 +1321,8 @@ void QGraphicsAnchorLayoutPrivate::createItemEdges(QGraphicsLayoutItem *item)
void QGraphicsAnchorLayoutPrivate::createCenterAnchors(
QGraphicsLayoutItem *item, Qt::AnchorPoint centerEdge)
{
+ Q_Q(QGraphicsAnchorLayout);
+
Orientation orientation;
switch (centerEdge) {
case Qt::AnchorHorizontalCenter:
@@ -1061,24 +1365,32 @@ void QGraphicsAnchorLayoutPrivate::createCenterAnchors(
c->variables.insert(data, 1.0);
addAnchor_helper(item, firstEdge, item, centerEdge, data);
data->isCenterAnchor = true;
+ data->dependency = AnchorData::Master;
data->refreshSizeHints(0);
data = new AnchorData;
c->variables.insert(data, -1.0);
addAnchor_helper(item, centerEdge, item, lastEdge, data);
data->isCenterAnchor = true;
+ data->dependency = AnchorData::Slave;
data->refreshSizeHints(0);
itemCenterConstraints[orientation].append(c);
// Remove old one
removeAnchor_helper(first, last);
+
+ if (item == q) {
+ layoutCentralVertex[orientation] = internalVertex(q, centerEdge);
+ }
}
void QGraphicsAnchorLayoutPrivate::removeCenterAnchors(
QGraphicsLayoutItem *item, Qt::AnchorPoint centerEdge,
bool substitute)
{
+ Q_Q(QGraphicsAnchorLayout);
+
Orientation orientation;
switch (centerEdge) {
case Qt::AnchorHorizontalCenter:
@@ -1120,7 +1432,7 @@ void QGraphicsAnchorLayoutPrivate::removeCenterAnchors(
AnchorData *oldData = g.edgeData(first, center);
// Remove center constraint
for (int i = itemCenterConstraints[orientation].count() - 1; i >= 0; --i) {
- if (itemCenterConstraints[orientation][i]->variables.contains(oldData)) {
+ if (itemCenterConstraints[orientation].at(i)->variables.contains(oldData)) {
delete itemCenterConstraints[orientation].takeAt(i);
break;
}
@@ -1151,6 +1463,10 @@ void QGraphicsAnchorLayoutPrivate::removeCenterAnchors(
// by this time, the center vertex is deleted and merged into a non-centered internal anchor
removeAnchor_helper(first, internalVertex(item, lastEdge));
}
+
+ if (item == q) {
+ layoutCentralVertex[orientation] = 0;
+ }
}
@@ -1180,7 +1496,7 @@ void QGraphicsAnchorLayoutPrivate::removeCenterConstraints(QGraphicsLayoutItem *
// Look for our anchor in all item center constraints, then remove it
for (int i = 0; i < itemCenterConstraints[orientation].size(); ++i) {
- if (itemCenterConstraints[orientation][i]->variables.contains(internalAnchor)) {
+ if (itemCenterConstraints[orientation].at(i)->variables.contains(internalAnchor)) {
delete itemCenterConstraints[orientation].takeAt(i);
break;
}
@@ -1690,7 +2006,7 @@ QList<AnchorData *> getVariables(QList<QSimplexConstraint *> constraints)
{
QSet<AnchorData *> variableSet;
for (int i = 0; i < constraints.count(); ++i) {
- const QSimplexConstraint *c = constraints[i];
+ const QSimplexConstraint *c = constraints.at(i);
foreach (QSimplexVariable *var, c->variables.keys()) {
variableSet += static_cast<AnchorData *>(var);
}
@@ -1724,12 +2040,19 @@ QList<AnchorData *> getVariables(QList<QSimplexConstraint *> constraints)
void QGraphicsAnchorLayoutPrivate::calculateGraphs(
QGraphicsAnchorLayoutPrivate::Orientation orientation)
{
- Q_Q(QGraphicsAnchorLayout);
-
#if defined(QT_DEBUG) || defined(Q_AUTOTEST_EXPORT)
lastCalculationUsedSimplex[orientation] = false;
#endif
+ // ### This is necessary because now we do vertex simplification, we still don't know
+ // differentiate between invalidate()s that doesn't need resimplification and those which
+ // need. For example, when size hint of an item changes, this may cause an anchor to reach 0 or to
+ // leave 0 and get a size. In both cases we need resimplify.
+ //
+ // ### one possible solution would be tracking all the 0-sized anchors, if this set change, we need
+ // resimplify.
+ restoreSimplifiedGraph(orientation);
+
// Reset the nominal sizes of each anchor based on the current item sizes. This function
// works with both simplified and non-simplified graphs, so it'll work when the
// simplification is going to be reused.
@@ -1768,12 +2091,12 @@ void QGraphicsAnchorLayoutPrivate::calculateGraphs(
// Now run the simplex solver to calculate Minimum, Preferred and Maximum sizes
// of the "trunk" set of constraints and variables.
// ### does trunk always exist? empty = trunk is the layout left->center->right
- QList<QSimplexConstraint *> trunkConstraints = parts[0];
+ QList<QSimplexConstraint *> trunkConstraints = parts.at(0);
QList<AnchorData *> trunkVariables = getVariables(trunkConstraints);
// For minimum and maximum, use the path between the two layout sides as the
// objective function.
- AnchorVertex *v = internalVertex(q, pickEdge(Qt::AnchorRight, orientation));
+ AnchorVertex *v = layoutLastVertex[orientation];
GraphPath trunkPath = graphPaths[orientation].value(v);
bool feasible = calculateTrunk(orientation, trunkPath, trunkConstraints, trunkVariables);
@@ -1787,7 +2110,7 @@ void QGraphicsAnchorLayoutPrivate::calculateGraphs(
if (!feasible)
break;
- QList<QSimplexConstraint *> partConstraints = parts[i];
+ QList<QSimplexConstraint *> partConstraints = parts.at(i);
QList<AnchorData *> partVariables = getVariables(partConstraints);
Q_ASSERT(!partVariables.isEmpty());
feasible &= calculateNonTrunk(partConstraints, partVariables);
@@ -1836,27 +2159,19 @@ bool QGraphicsAnchorLayoutPrivate::calculateTrunk(Orientation orientation, const
if (feasible) {
solvePreferred(allConstraints, variables);
- // Note that we don't include the sizeHintConstraints, since they
- // have a different logic for solveExpanding().
- solveExpanding(constraints, variables);
-
- // Calculate and set the preferred and expanding sizes for the layout,
+ // Calculate and set the preferred size for the layout,
// from the edge sizes that were calculated above.
qreal pref(0.0);
- qreal expanding(0.0);
foreach (const AnchorData *ad, path.positives) {
pref += ad->sizeAtPreferred;
- expanding += ad->sizeAtExpanding;
}
foreach (const AnchorData *ad, path.negatives) {
pref -= ad->sizeAtPreferred;
- expanding -= ad->sizeAtExpanding;
}
sizeHints[orientation][Qt::MinimumSize] = min;
sizeHints[orientation][Qt::PreferredSize] = pref;
sizeHints[orientation][Qt::MaximumSize] = max;
- sizeAtExpanding[orientation] = expanding;
}
qDeleteAll(sizeHintConstraints);
@@ -1870,13 +2185,11 @@ bool QGraphicsAnchorLayoutPrivate::calculateTrunk(Orientation orientation, const
AnchorData *ad = path.positives.toList()[0];
ad->sizeAtMinimum = ad->minSize;
ad->sizeAtPreferred = ad->prefSize;
- ad->sizeAtExpanding = ad->expSize;
ad->sizeAtMaximum = ad->maxSize;
sizeHints[orientation][Qt::MinimumSize] = ad->sizeAtMinimum;
sizeHints[orientation][Qt::PreferredSize] = ad->sizeAtPreferred;
sizeHints[orientation][Qt::MaximumSize] = ad->sizeAtMaximum;
- sizeAtExpanding[orientation] = ad->sizeAtExpanding;
}
#if defined(QT_DEBUG) || defined(Q_AUTOTEST_EXPORT)
@@ -1899,10 +2212,9 @@ bool QGraphicsAnchorLayoutPrivate::calculateNonTrunk(const QList<QSimplexConstra
// Propagate size at preferred to other sizes. Semi-floats always will be
// in their sizeAtPreferred.
for (int j = 0; j < variables.count(); ++j) {
- AnchorData *ad = variables[j];
+ AnchorData *ad = variables.at(j);
Q_ASSERT(ad);
ad->sizeAtMinimum = ad->sizeAtPreferred;
- ad->sizeAtExpanding = ad->sizeAtPreferred;
ad->sizeAtMaximum = ad->sizeAtPreferred;
}
}
@@ -1955,7 +2267,7 @@ void QGraphicsAnchorLayoutPrivate::findPaths(Orientation orientation)
QSet<AnchorData *> visited;
- AnchorVertex *root = graph[orientation].rootVertex();
+ AnchorVertex *root = layoutFirstVertex[orientation];
graphPaths[orientation].insert(root, GraphPath());
@@ -2013,7 +2325,7 @@ void QGraphicsAnchorLayoutPrivate::constraintsFromPaths(Orientation orientation)
QList<GraphPath> pathsToVertex = graphPaths[orientation].values(vertex);
for (int i = 1; i < valueCount; ++i) {
constraints[orientation] += \
- pathsToVertex[0].constraint(pathsToVertex[i]);
+ pathsToVertex[0].constraint(pathsToVertex.at(i));
}
}
}
@@ -2041,9 +2353,37 @@ void QGraphicsAnchorLayoutPrivate::updateAnchorSizes(Orientation orientation)
QList<QSimplexConstraint *> QGraphicsAnchorLayoutPrivate::constraintsFromSizeHints(
const QList<AnchorData *> &anchors)
{
+ if (anchors.isEmpty())
+ return QList<QSimplexConstraint *>();
+
+ // Look for the layout edge. That can be either the first half in case the
+ // layout is split in two, or the whole layout anchor.
+ Orientation orient = Orientation(anchors.first()->orientation);
+ AnchorData *layoutEdge = 0;
+ if (layoutCentralVertex[orient]) {
+ layoutEdge = graph[orient].edgeData(layoutFirstVertex[orient], layoutCentralVertex[orient]);
+ } else {
+ layoutEdge = graph[orient].edgeData(layoutFirstVertex[orient], layoutLastVertex[orient]);
+
+ // If maxSize is less then "infinite", that means there are other anchors
+ // grouped together with this one. We can't ignore its maximum value so we
+ // set back the variable to NULL to prevent the continue condition from being
+ // satisfied in the loop below.
+ if (layoutEdge->maxSize < QWIDGETSIZE_MAX)
+ layoutEdge = 0;
+ }
+
+ // For each variable, create constraints based on size hints
QList<QSimplexConstraint *> anchorConstraints;
+ bool unboundedProblem = true;
for (int i = 0; i < anchors.size(); ++i) {
- AnchorData *ad = anchors[i];
+ AnchorData *ad = anchors.at(i);
+
+ // Anchors that have their size directly linked to another one don't need constraints
+ // For exammple, the second half of an item has exactly the same size as the first half
+ // thus constraining the latter is enough.
+ if (ad->dependency == AnchorData::Slave)
+ continue;
if ((ad->minSize == ad->maxSize) || qFuzzyCompare(ad->minSize, ad->maxSize)) {
QSimplexConstraint *c = new QSimplexConstraint;
@@ -2051,6 +2391,7 @@ QList<QSimplexConstraint *> QGraphicsAnchorLayoutPrivate::constraintsFromSizeHin
c->constant = ad->minSize;
c->ratio = QSimplexConstraint::Equal;
anchorConstraints += c;
+ unboundedProblem = false;
} else {
QSimplexConstraint *c = new QSimplexConstraint;
c->variables.insert(ad, 1.0);
@@ -2058,14 +2399,30 @@ QList<QSimplexConstraint *> QGraphicsAnchorLayoutPrivate::constraintsFromSizeHin
c->ratio = QSimplexConstraint::MoreOrEqual;
anchorConstraints += c;
+ // We avoid adding restrictions to the layout internal anchors. That's
+ // to prevent unnecessary fair distribution from happening due to this
+ // artificial restriction.
+ if (ad == layoutEdge)
+ continue;
+
c = new QSimplexConstraint;
c->variables.insert(ad, 1.0);
c->constant = ad->maxSize;
c->ratio = QSimplexConstraint::LessOrEqual;
anchorConstraints += c;
+ unboundedProblem = false;
}
}
+ // If no upper boundary restriction was added, add one to avoid unbounded problem
+ if (unboundedProblem) {
+ QSimplexConstraint *c = new QSimplexConstraint;
+ c->variables.insert(layoutEdge, 1.0);
+ c->constant = QWIDGETSIZE_MAX;
+ c->ratio = QSimplexConstraint::LessOrEqual;
+ anchorConstraints += c;
+ }
+
return anchorConstraints;
}
@@ -2075,38 +2432,26 @@ QList<QSimplexConstraint *> QGraphicsAnchorLayoutPrivate::constraintsFromSizeHin
QList< QList<QSimplexConstraint *> >
QGraphicsAnchorLayoutPrivate::getGraphParts(Orientation orientation)
{
- Q_Q(QGraphicsAnchorLayout);
+ Q_ASSERT(layoutFirstVertex[orientation] && layoutLastVertex[orientation]);
- // Find layout vertices and edges for the current orientation.
- AnchorVertex *layoutFirstVertex = \
- internalVertex(q, pickEdge(Qt::AnchorLeft, orientation));
-
- AnchorVertex *layoutCentralVertex = \
- internalVertex(q, pickEdge(Qt::AnchorHorizontalCenter, orientation));
-
- AnchorVertex *layoutLastVertex = \
- internalVertex(q, pickEdge(Qt::AnchorRight, orientation));
-
- Q_ASSERT(layoutFirstVertex && layoutLastVertex);
-
- AnchorData *edgeL1 = NULL;
- AnchorData *edgeL2 = NULL;
+ AnchorData *edgeL1 = 0;
+ AnchorData *edgeL2 = 0;
// The layout may have a single anchor between Left and Right or two half anchors
// passing through the center
- if (layoutCentralVertex) {
- edgeL1 = graph[orientation].edgeData(layoutFirstVertex, layoutCentralVertex);
- edgeL2 = graph[orientation].edgeData(layoutCentralVertex, layoutLastVertex);
+ if (layoutCentralVertex[orientation]) {
+ edgeL1 = graph[orientation].edgeData(layoutFirstVertex[orientation], layoutCentralVertex[orientation]);
+ edgeL2 = graph[orientation].edgeData(layoutCentralVertex[orientation], layoutLastVertex[orientation]);
} else {
- edgeL1 = graph[orientation].edgeData(layoutFirstVertex, layoutLastVertex);
+ edgeL1 = graph[orientation].edgeData(layoutFirstVertex[orientation], layoutLastVertex[orientation]);
}
QLinkedList<QSimplexConstraint *> remainingConstraints;
for (int i = 0; i < constraints[orientation].count(); ++i) {
- remainingConstraints += constraints[orientation][i];
+ remainingConstraints += constraints[orientation].at(i);
}
for (int i = 0; i < itemCenterConstraints[orientation].count(); ++i) {
- remainingConstraints += itemCenterConstraints[orientation][i];
+ remainingConstraints += itemCenterConstraints[orientation].at(i);
}
QList<QSimplexConstraint *> trunkConstraints;
@@ -2276,6 +2621,21 @@ void QGraphicsAnchorLayoutPrivate::setItemsGeometries(const QRectF &geom)
}
/*!
+ \internal
+
+ Fill the distance in the vertex and in the sub-vertices if its a combined vertex.
+*/
+static void setVertexDistance(AnchorVertex *v, qreal distance)
+{
+ v->distance = distance;
+ if (v->m_type == AnchorVertex::Pair) {
+ AnchorVertexPair *pair = static_cast<AnchorVertexPair *>(v);
+ setVertexDistance(pair->m_first, distance);
+ setVertexDistance(pair->m_second, distance);
+ }
+}
+
+/*!
\internal
Calculate the position of each vertex based on the paths to each of
@@ -2288,9 +2648,9 @@ void QGraphicsAnchorLayoutPrivate::calculateVertexPositions(
QSet<AnchorVertex *> visited;
// Get root vertex
- AnchorVertex *root = graph[orientation].rootVertex();
+ AnchorVertex *root = layoutFirstVertex[orientation];
- root->distance = 0;
+ setVertexDistance(root, 0);
visited.insert(root);
// Add initial edges to the queue
@@ -2314,7 +2674,7 @@ void QGraphicsAnchorLayoutPrivate::calculateVertexPositions(
continue;
visited.insert(pair.second);
- interpolateEdge(pair.first, edge, orientation);
+ interpolateEdge(pair.first, edge);
QList<AnchorVertex *> adjacents = graph[orientation].adjacentVertices(pair.second);
for (int i = 0; i < adjacents.count(); ++i) {
@@ -2343,7 +2703,6 @@ void QGraphicsAnchorLayoutPrivate::setupEdgesInterpolation(
result = getFactor(current,
sizeHints[orientation][Qt::MinimumSize],
sizeHints[orientation][Qt::PreferredSize],
- sizeAtExpanding[orientation],
sizeHints[orientation][Qt::MaximumSize]);
interpolationInterval[orientation] = result.first;
@@ -2358,7 +2717,6 @@ void QGraphicsAnchorLayoutPrivate::setupEdgesInterpolation(
- minimum size,
- preferred size,
- - size when all expanding anchors are expanded,
- maximum size.
These three key values are calculated in advance using linear
@@ -2370,36 +2728,32 @@ void QGraphicsAnchorLayoutPrivate::setupEdgesInterpolation(
vertices to be initalized, so it calls specialized functions that
will recurse back to interpolateEdge().
*/
-void QGraphicsAnchorLayoutPrivate::interpolateEdge(AnchorVertex *base,
- AnchorData *edge,
- Orientation orientation)
+void QGraphicsAnchorLayoutPrivate::interpolateEdge(AnchorVertex *base, AnchorData *edge)
{
+ const Orientation orientation = Orientation(edge->orientation);
const QPair<Interval, qreal> factor(interpolationInterval[orientation],
interpolationProgress[orientation]);
qreal edgeDistance = interpolate(factor, edge->sizeAtMinimum, edge->sizeAtPreferred,
- edge->sizeAtExpanding, edge->sizeAtMaximum);
+ edge->sizeAtMaximum);
Q_ASSERT(edge->from == base || edge->to == base);
- if (edge->from == base)
- edge->to->distance = base->distance + edgeDistance;
- else
- edge->from->distance = base->distance - edgeDistance;
+ // Calculate the distance for the vertex opposite to the base
+ if (edge->from == base) {
+ setVertexDistance(edge->to, base->distance + edgeDistance);
+ } else {
+ setVertexDistance(edge->from, base->distance - edgeDistance);
+ }
// Process child anchors
if (edge->type == AnchorData::Sequential)
- interpolateSequentialEdges(edge->from,
- static_cast<SequentialAnchorData *>(edge),
- orientation);
+ interpolateSequentialEdges(static_cast<SequentialAnchorData *>(edge));
else if (edge->type == AnchorData::Parallel)
- interpolateParallelEdges(edge->from,
- static_cast<ParallelAnchorData *>(edge),
- orientation);
+ interpolateParallelEdges(static_cast<ParallelAnchorData *>(edge));
}
-void QGraphicsAnchorLayoutPrivate::interpolateParallelEdges(
- AnchorVertex *base, ParallelAnchorData *data, Orientation orientation)
+void QGraphicsAnchorLayoutPrivate::interpolateParallelEdges(ParallelAnchorData *data)
{
// In parallels the boundary vertices are already calculate, we
// just need to look for sequential groups inside, because only
@@ -2407,46 +2761,44 @@ void QGraphicsAnchorLayoutPrivate::interpolateParallelEdges(
// First edge
if (data->firstEdge->type == AnchorData::Sequential)
- interpolateSequentialEdges(base,
- static_cast<SequentialAnchorData *>(data->firstEdge),
- orientation);
+ interpolateSequentialEdges(static_cast<SequentialAnchorData *>(data->firstEdge));
else if (data->firstEdge->type == AnchorData::Parallel)
- interpolateParallelEdges(base,
- static_cast<ParallelAnchorData *>(data->firstEdge),
- orientation);
+ interpolateParallelEdges(static_cast<ParallelAnchorData *>(data->firstEdge));
// Second edge
if (data->secondEdge->type == AnchorData::Sequential)
- interpolateSequentialEdges(base,
- static_cast<SequentialAnchorData *>(data->secondEdge),
- orientation);
+ interpolateSequentialEdges(static_cast<SequentialAnchorData *>(data->secondEdge));
else if (data->secondEdge->type == AnchorData::Parallel)
- interpolateParallelEdges(base,
- static_cast<ParallelAnchorData *>(data->secondEdge),
- orientation);
+ interpolateParallelEdges(static_cast<ParallelAnchorData *>(data->secondEdge));
}
-void QGraphicsAnchorLayoutPrivate::interpolateSequentialEdges(
- AnchorVertex *base, SequentialAnchorData *data, Orientation orientation)
+void QGraphicsAnchorLayoutPrivate::interpolateSequentialEdges(SequentialAnchorData *data)
{
- AnchorVertex *prev = base;
+ // This method is supposed to handle any sequential anchor, even out-of-order
+ // ones. However, in the current QGAL implementation we should get only the
+ // well behaved ones.
+ Q_ASSERT(data->m_edges.first()->from == data->from);
+ Q_ASSERT(data->m_edges.last()->to == data->to);
- // ### I'm not sure whether this assumption is safe. If not,
- // consider that m_edges.last() could be used instead (so
- // at(0) would be the one to be treated specially).
- Q_ASSERT(base == data->m_edges.at(0)->to || base == data->m_edges.at(0)->from);
+ // At this point, the two outter vertices already have their distance
+ // calculated.
+ // We use the first as the base to calculate the internal ones
+
+ AnchorVertex *prev = data->from;
- // Skip the last
for (int i = 0; i < data->m_edges.count() - 1; ++i) {
- AnchorData *child = data->m_edges.at(i);
- interpolateEdge(prev, child, orientation);
- prev = child->to;
+ AnchorData *edge = data->m_edges.at(i);
+ interpolateEdge(prev, edge);
+
+ // Use the recently calculated vertex as the base for the next one
+ const bool edgeIsForward = (edge->from == prev);
+ prev = edgeIsForward ? edge->to : edge->from;
}
// Treat the last specially, since we already calculated it's end
// vertex, so it's only interesting if it's a complex one
if (data->m_edges.last()->type != AnchorData::Normal)
- interpolateEdge(prev, data->m_edges.last(), orientation);
+ interpolateEdge(prev, data->m_edges.last());
}
bool QGraphicsAnchorLayoutPrivate::solveMinMax(const QList<QSimplexConstraint *> &constraints,
@@ -2472,9 +2824,10 @@ bool QGraphicsAnchorLayoutPrivate::solveMinMax(const QList<QSimplexConstraint *>
// Save sizeAtMinimum results
QList<AnchorData *> variables = getVariables(constraints);
for (int i = 0; i < variables.size(); ++i) {
- AnchorData *ad = static_cast<AnchorData *>(variables[i]);
- Q_ASSERT(ad->result >= ad->minSize || qFuzzyCompare(ad->result, ad->minSize));
+ AnchorData *ad = static_cast<AnchorData *>(variables.at(i));
ad->sizeAtMinimum = ad->result;
+ Q_ASSERT(ad->sizeAtMinimum >= ad->minSize ||
+ qAbs(ad->sizeAtMinimum - ad->minSize) < 0.00000001);
}
// Calculate maximum values
@@ -2482,9 +2835,10 @@ bool QGraphicsAnchorLayoutPrivate::solveMinMax(const QList<QSimplexConstraint *>
// Save sizeAtMaximum results
for (int i = 0; i < variables.size(); ++i) {
- AnchorData *ad = static_cast<AnchorData *>(variables[i]);
- Q_ASSERT(ad->result <= ad->maxSize || qFuzzyCompare(ad->result, ad->maxSize));
+ AnchorData *ad = static_cast<AnchorData *>(variables.at(i));
ad->sizeAtMaximum = ad->result;
+ // Q_ASSERT(ad->sizeAtMaximum <= ad->maxSize ||
+ // qAbs(ad->sizeAtMaximum - ad->maxSize) < 0.00000001);
}
}
return feasible;
@@ -2515,7 +2869,7 @@ bool QGraphicsAnchorLayoutPrivate::solvePreferred(const QList<QSimplexConstraint
// A + A_shrinker - A_grower = A_pref
//
for (int i = 0; i < variables.size(); ++i) {
- AnchorData *ad = variables[i];
+ AnchorData *ad = variables.at(i);
if (ad->skipInPreferred)
continue;
@@ -2546,7 +2900,7 @@ bool QGraphicsAnchorLayoutPrivate::solvePreferred(const QList<QSimplexConstraint
// Save sizeAtPreferred results
for (int i = 0; i < variables.size(); ++i) {
- AnchorData *ad = variables[i];
+ AnchorData *ad = variables.at(i);
ad->sizeAtPreferred = ad->result;
}
@@ -2563,139 +2917,6 @@ bool QGraphicsAnchorLayoutPrivate::solvePreferred(const QList<QSimplexConstraint
/*!
\internal
- Calculate the "expanding" keyframe
-
- This new keyframe sits between the already existing sizeAtPreferred and
- sizeAtMaximum keyframes. Its goal is to modify the interpolation between
- the latter as to respect the "expanding" size policy of some anchors.
-
- Previously all items would be subject to a linear interpolation between
- sizeAtPreferred and sizeAtMaximum values. This will change now, the
- expanding anchors will change their size before the others. To calculate
- this keyframe we use the following logic:
-
- 1) Ask each anchor for their desired expanding size (ad->expSize), this
- value depends on the anchor expanding property in the following way:
-
- - Expanding normal anchors want to grow towards their maximum size
- - Non-expanding normal anchors want to remain at their preferred size.
- - Sequential anchors wants to grow towards a size that is calculated by:
- summarizing it's child anchors, where it will use preferred size for non-expanding anchors
- and maximum size for expanding anchors.
- - Parallel anchors want to grow towards the smallest maximum size of all the expanding anchors.
-
- 2) Clamp their desired values to the value they assume in the neighbour
- keyframes (sizeAtPreferred and sizeAtExpanding)
-
- 3) Run simplex with a setup that ensures the following:
-
- a. Anchors will change their value from their sizeAtPreferred towards
- their sizeAtMaximum as much as required to ensure that ALL anchors
- reach their respective "desired" expanding sizes.
-
- b. No anchors will change their value beyond what is NEEDED to satisfy
- the requirement above.
-
- The final result is that, at the "expanding" keyframe expanding anchors
- will grow and take with them all anchors that are parallel to them.
- However, non-expanding anchors will remain at their preferred size unless
- they are forced to grow by a parallel expanding anchor.
-
- Note: For anchors where the sizeAtPreferred is bigger than sizeAtMaximum,
- the visual effect when the layout grows from its preferred size is
- the following: Expanding anchors will keep their size while non
- expanding ones will shrink. Only after non-expanding anchors have
- shrinked all the way, the expanding anchors will start to shrink too.
-*/
-void QGraphicsAnchorLayoutPrivate::solveExpanding(const QList<QSimplexConstraint *> &constraints,
- const QList<AnchorData *> &variables)
-{
- QList<QSimplexConstraint *> itemConstraints;
- QSimplexConstraint *objective = new QSimplexConstraint;
- bool hasExpanding = false;
-
- // Construct the simplex constraints and objective
- for (int i = 0; i < variables.size(); ++i) {
- // For each anchor
- AnchorData *ad = variables[i];
-
- // Clamp the desired expanding size
- qreal upperBoundary = qMax(ad->sizeAtPreferred, ad->sizeAtMaximum);
- qreal lowerBoundary = qMin(ad->sizeAtPreferred, ad->sizeAtMaximum);
- qreal boundedExpSize = qBound(lowerBoundary, ad->expSize, upperBoundary);
-
- // Expanding anchors are those that want to move from their preferred size
- if (boundedExpSize != ad->sizeAtPreferred)
- hasExpanding = true;
-
- // Lock anchor between boundedExpSize and sizeAtMaximum (ensure 3.a)
- if (boundedExpSize == ad->sizeAtMaximum || qFuzzyCompare(boundedExpSize, ad->sizeAtMaximum)) {
- // The interval has only one possible value, we can use an "Equal"
- // constraint and don't need to add this variable to the objective.
- QSimplexConstraint *itemC = new QSimplexConstraint;
- itemC->ratio = QSimplexConstraint::Equal;
- itemC->variables.insert(ad, 1.0);
- itemC->constant = boundedExpSize;
- itemConstraints << itemC;
- } else {
- // Add MoreOrEqual and LessOrEqual constraints.
- QSimplexConstraint *itemC = new QSimplexConstraint;
- itemC->ratio = QSimplexConstraint::MoreOrEqual;
- itemC->variables.insert(ad, 1.0);
- itemC->constant = qMin(boundedExpSize, ad->sizeAtMaximum);
- itemConstraints << itemC;
-
- itemC = new QSimplexConstraint;
- itemC->ratio = QSimplexConstraint::LessOrEqual;
- itemC->variables.insert(ad, 1.0);
- itemC->constant = qMax(boundedExpSize, ad->sizeAtMaximum);
- itemConstraints << itemC;
-
- // Create objective to avoid the anchors from moving away from
- // the preferred size more than the needed amount. (ensure 3.b)
- // The objective function is the distance between sizeAtPreferred
- // and sizeAtExpanding, it will be minimized.
- if (ad->sizeAtExpanding < ad->sizeAtMaximum) {
- // Try to shrink this variable towards its sizeAtPreferred value
- objective->variables.insert(ad, 1.0);
- } else {
- // Try to grow this variable towards its sizeAtPreferred value
- objective->variables.insert(ad, -1.0);
- }
- }
- }
-
- // Solve
- if (hasExpanding == false) {
- // If no anchors are expanding, we don't need to run the simplex
- // Set all variables to their preferred size
- for (int i = 0; i < variables.size(); ++i) {
- variables[i]->sizeAtExpanding = variables[i]->sizeAtPreferred;
- }
- } else {
- // Run simplex
- QSimplex simplex;
-
- // Satisfy expanding (3.a)
- bool feasible = simplex.setConstraints(constraints + itemConstraints);
- Q_ASSERT(feasible);
-
- // Reduce damage (3.b)
- simplex.setObjective(objective);
- simplex.solveMin();
-
- // Collect results
- for (int i = 0; i < variables.size(); ++i) {
- variables[i]->sizeAtExpanding = variables[i]->result;
- }
- }
-
- delete objective;
- qDeleteAll(itemConstraints);
-}
-
-/*!
- \internal
Returns true if there are no arrangement that satisfies all constraints.
Otherwise returns false.