summaryrefslogtreecommitdiff
path: root/src/libs/qtcreatorcdbext/containers.cpp
blob: 8fbd64f0a503b379d8909c1dcd3c3cbad8fd203a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
/****************************************************************************
**
** Copyright (C) 2013 Digia Plc and/or its subsidiary(-ies).
** Contact: http://www.qt-project.org/legal
**
** This file is part of Qt Creator.
**
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and Digia.  For licensing terms and
** conditions see http://qt.digia.com/licensing.  For further information
** use the contact form at http://qt.digia.com/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 2.1 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL included in the
** packaging of this file.  Please review the following information to
** ensure the GNU Lesser General Public License version 2.1 requirements
** will be met: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html.
**
** In addition, as a special exception, Digia gives you certain additional
** rights.  These rights are described in the Digia Qt LGPL Exception
** version 1.1, included in the file LGPL_EXCEPTION.txt in this package.
**
****************************************************************************/

#include "containers.h"
#include "symbolgroupvalue.h"
#include "symbolgroup.h"
#include "stringutils.h"

#include <functional>
#include <iterator>

typedef AbstractSymbolGroupNode::AbstractSymbolGroupNodePtrVector AbstractSymbolGroupNodePtrVector;
typedef std::vector<SymbolGroupValue> SymbolGroupValueVector;
typedef std::vector<int>::size_type VectorIndexType;

// Read a pointer array from debuggee memory (ULONG64/32 according pointer size)
static void *readPointerArray(ULONG64 address, unsigned count, const SymbolGroupValueContext &ctx)
{
    const unsigned pointerSize = SymbolGroupValue::pointerSize();
    const ULONG allocSize = pointerSize * count;
    ULONG bytesRead = 0;
    void *data = new unsigned char[allocSize];
    const HRESULT hr = ctx.dataspaces->ReadVirtual(address, data, allocSize, &bytesRead);
    if (FAILED(hr) || bytesRead != allocSize) {
        delete [] data;
        return 0;
    }
    return data;
}

template <class UInt>
inline void dumpHexArray(std::ostream &os, const UInt *a, int count)
{
    os << std::showbase << std::hex;
    std::copy(a, a + count, std::ostream_iterator<UInt>(os, ", "));
    os << std::noshowbase << std::dec;
}

static inline void dump32bitPointerArray(std::ostream &os, const void *a, int count)
{
    dumpHexArray(os, reinterpret_cast<const ULONG32 *>(a), count);
}

static inline void dump64bitPointerArray(std::ostream &os, const void *a, int count)
{
    dumpHexArray(os, reinterpret_cast<const ULONG64 *>(a), count);
}

// Fix the inner type of containers (that is, make it work smoothly with AddSymbol)
// by prefixing it with the module except for well-known types like STL/Qt types
static inline std::string fixInnerType(std::string type,
                                       const SymbolGroupValue &container)
{
    std::string stripped
        = SymbolGroupValue::stripConst(SymbolGroupValue::stripClassPrefixes(type));

    // Unfortunately the cdb can not handle the vc exclusiv 64 bit integer
    // "__int64" but works fine with "int64", so we have to strip down "__"
    const size_t __int64pos = stripped.find("__int64");
    if (__int64pos != std::string::npos)
        stripped.erase(__int64pos, 2);

    const KnownType kt = knownType(stripped, 0);
    // Resolve types unless they are POD or pointers to POD (that is, qualify 'Foo' and 'Foo*')
    const bool needResolve = kt == KT_Unknown || kt ==  KT_PointerType || !(kt & KT_POD_Type);
    const std::string fixed = needResolve ?
                SymbolGroupValue::resolveType(stripped, container.context(), container.module()) :
                stripped;
    if (SymbolGroupValue::verbose) {
        DebugPrint dp;
        dp << "fixInnerType (resolved=" << needResolve << ") '" << type << "' [";
        formatKnownTypeFlags(dp, kt);
        dp << "] -> '" << fixed <<"'\n";
    }
    return fixed;
}

// Return size from an STL vector (last/first iterators).
static inline int msvcStdVectorSize(const SymbolGroupValue &v)
{
    // MSVC2012 has 2 base classes, MSVC2010 1, MSVC2008 none
    if (const SymbolGroupValue myFirstPtrV = SymbolGroupValue::findMember(v, "_Myfirst")) {
        if (const SymbolGroupValue myLastPtrV = myFirstPtrV.parent()["_Mylast"]) {
            const ULONG64 firstPtr = myFirstPtrV.pointerValue();
            const ULONG64 lastPtr = myLastPtrV.pointerValue();
            if (!firstPtr || lastPtr < firstPtr)
                return -1;
            if (lastPtr == firstPtr)
                return 0;
            // Subtract the pointers: We need to do the pointer arithmetics ourselves
            // as we get char *pointers.
            const std::string innerType = fixInnerType(SymbolGroupValue::stripPointerType(myFirstPtrV.type()), v);
            const size_t size = SymbolGroupValue::sizeOf(innerType.c_str());
            if (size == 0)
                return -1;
            return static_cast<int>((lastPtr - firstPtr) / size);
        }
    }
    return -1;
}

// Return size of container or -1
int containerSize(KnownType kt, SymbolGroupNode *n, const SymbolGroupValueContext &ctx)
{
    QTC_TRACE_IN
    if ((kt & KT_ContainerType) == 0)
        return -1;
    const int ct = containerSize(kt, SymbolGroupValue(n, ctx));
    QTC_TRACE_OUT
    return ct;
}

/*! Determine size of containers \ingroup qtcreatorcdbext */
int containerSize(KnownType kt, const SymbolGroupValue &v)
{
    switch (kt) {
    case KT_QStringList:
        if (const SymbolGroupValue base = v[unsigned(0)])
            return containerSize(KT_QList, base);
        break;
    case KT_QList:
        if (const SymbolGroupValue dV = v["d"]) {
            if (const SymbolGroupValue beginV = dV["begin"]) {
                const int begin = beginV.intValue();
                const int end = dV["end"].intValue();
                if (begin >= 0 && end >= begin)
                    return end - begin;
            }
        }
        break;
    case KT_QLinkedList:
    case KT_QHash:
        if (const SymbolGroupValue sizeV = v["d"]["size"])
            return sizeV.intValue();
        break;
    case KT_QMap:
    case KT_QVector: {
        // Inheritance from QVectorTypedData, QMapData<> in Qt 5.
        const SymbolGroupValue sizeV =
            QtInfo::get(v.context()).version >= 5 ?
            v["d"][unsigned(0)]["size"] : v["d"]["size"];
        if (sizeV)
            return sizeV.intValue();
    }
        break;
    case KT_QMultiHash:
        if (const SymbolGroupValue qHash = v[unsigned(0)])
            return containerSize(KT_QHash, qHash);
        break;
    case KT_QQueue:
        if (const SymbolGroupValue qList= v[unsigned(0)])
            return containerSize(KT_QList, qList);
        break;
    case KT_QStack:
        if (const SymbolGroupValue qVector = v[unsigned(0)])
            return containerSize(KT_QVector, qVector);
        break;
    case KT_QSet:
        if (const SymbolGroupValue base = v[unsigned(0)])
            return containerSize(KT_QHash, base);
        break;
    case KT_QMultiMap:
        if (const SymbolGroupValue base = v[unsigned(0)])
            return containerSize(KT_QMap, base);
        break;
    case KT_StdVector:
        return msvcStdVectorSize(v);
    case KT_StdDeque: // MSVC2012 has many base classes, MSVC2010 1, MSVC2008 none
    case KT_StdSet:
    case KT_StdMap:
    case KT_StdMultiMap:
    case KT_StdList:
        if (const SymbolGroupValue size = SymbolGroupValue::findMember(v, "_Mysize"))
            return size.intValue();
        break;
    case KT_StdStack:
        if (const SymbolGroupValue deque =  v[unsigned(0)])
            return containerSize(KT_StdDeque, deque);
        break;
    }
    return -1;
}

/* Generate a list of children by invoking the functions to obtain the value
 * and the next link */
template <class ValueFunction, class NextFunction>
AbstractSymbolGroupNodePtrVector linkedListChildList(SymbolGroupValue headNode,
                                                     int count,
                                                     ValueFunction valueFunc,
                                                     NextFunction nextFunc)
{
    AbstractSymbolGroupNodePtrVector rc;
    rc.reserve(count);
    for (int i =0; i < count && headNode; i++) {
        if (const SymbolGroupValue value = valueFunc(headNode)) {
            rc.push_back(ReferenceSymbolGroupNode::createArrayNode(i, value.node()));
            headNode = nextFunc(headNode);
        } else {
            break;
        }
    }
    return rc;
}

// Helper function for linkedListChildList that returns a member by name
class MemberByName : public std::unary_function<const SymbolGroupValue &, SymbolGroupValue>
{
public:
    explicit MemberByName(const char *name) : m_name(name) {}
    SymbolGroupValue operator()(const SymbolGroupValue &v) { return v[m_name]; }

private:
    const char *m_name;
};

// std::list<T>: Skip dummy head node and then a linked list of "_Next", "_Myval".
static inline AbstractSymbolGroupNodePtrVector stdListChildList(SymbolGroupNode *n, int count,
                                                        const SymbolGroupValueContext &ctx)
{
    if (!count)
        return AbstractSymbolGroupNodePtrVector();
    const SymbolGroupValue head = SymbolGroupValue::findMember(SymbolGroupValue(n, ctx), "_Myhead")["_Next"];
    if (head)
        return linkedListChildList(head, count, MemberByName("_Myval"), MemberByName("_Next"));
    if (SymbolGroupValue::verbose)
        DebugPrint() << "std::list failure: " << head;
    return AbstractSymbolGroupNodePtrVector();
}

// QLinkedList<T>: Dummy head node and then a linked list of "n", "t".
static inline AbstractSymbolGroupNodePtrVector qLinkedListChildList(SymbolGroupNode *n, int count,
                                                        const SymbolGroupValueContext &ctx)
{
    if (count)
        if (const SymbolGroupValue head = SymbolGroupValue(n, ctx)["e"]["n"])
            return linkedListChildList(head, count, MemberByName("t"), MemberByName("n"));
    return AbstractSymbolGroupNodePtrVector();
}

/* Helper for array-type containers:
 * Add a series of "*(innertype *)0x (address + n * size)" fake child symbols.
 * for a function generating a sequence of addresses. */

template <class AddressFunc>
AbstractSymbolGroupNodePtrVector arrayChildList(SymbolGroup *sg, AddressFunc addressFunc,
                                                const std::string &module,
                                                const std::string &innerType,
                                                int count)
{
    AbstractSymbolGroupNodePtrVector rc;
    if (!count)
        return rc;
    std::string errorMessage;
    rc.reserve(count);
    for (int i = 0; i < count; i++) {
        const std::string name = SymbolGroupValue::pointedToSymbolName(addressFunc(), innerType);
        if (SymbolGroupNode *child = sg->addSymbol(module, name, std::string(), &errorMessage)) {
            rc.push_back(ReferenceSymbolGroupNode::createArrayNode(i, child));
        } else {
            if (SymbolGroupValue::verbose)
                DebugPrint() << "addSymbol fails in arrayChildList";
            break;
        }
    }
    if (SymbolGroupValue::verbose)
        DebugPrint() << "arrayChildList '" << innerType << "' count=" << count << " returns "
                     << rc.size() << " elements";
    return rc;
}

// Helper function for arrayChildList() taking a reference to an address and simply generating
// a sequence of address, address + delta, address + 2 * delta...
class AddressSequence
{
public:
    explicit inline AddressSequence(ULONG64 &address, ULONG delta) : m_address(address), m_delta(delta) {}
    inline ULONG64 operator()()
    {
        const ULONG64 rc = m_address;
        m_address += m_delta;
        return rc;
    }

private:
    ULONG64 &m_address;
    const ULONG m_delta;
};

static inline AbstractSymbolGroupNodePtrVector
    arrayChildList(SymbolGroup *sg, ULONG64 address, const std::string &module,
                   const std::string &innerType, int count)
{
    if (const unsigned innerTypeSize = SymbolGroupValue::sizeOf(innerType.c_str()))
        return arrayChildList(sg, AddressSequence(address, innerTypeSize),
                              module, innerType, count);
    return AbstractSymbolGroupNodePtrVector();
}

// std::vector<T>
static inline AbstractSymbolGroupNodePtrVector
    stdVectorChildList(SymbolGroupNode *n, int count, const SymbolGroupValueContext &ctx)
{
    if (!count)
        return AbstractSymbolGroupNodePtrVector();
    // MSVC2012 has 2 base classes, MSVC2010 1, MSVC2008 none
    const SymbolGroupValue vec = SymbolGroupValue(n, ctx);
    SymbolGroupValue myFirst = SymbolGroupValue::findMember(vec, "_Myfirst");
    if (!myFirst)
        return AbstractSymbolGroupNodePtrVector();
    // std::vector<T>: _Myfirst is a pointer of T*. Get address
    // element to obtain address.
    const ULONG64 address = myFirst.pointerValue();
    if (!address)
        return AbstractSymbolGroupNodePtrVector();
    const std::string firstType = myFirst.type();
    const std::string innerType = fixInnerType(SymbolGroupValue::stripPointerType(firstType), vec);
    if (SymbolGroupValue::verbose)
        DebugPrint() << n->name() << " inner type: '" << innerType << "' from '" << firstType << '\'';
    return arrayChildList(n->symbolGroup(), address, n->module(), innerType, count);
}

// Helper for std::deque<>: From the array of deque blocks, read out the values.
template<class AddressType>
AbstractSymbolGroupNodePtrVector
    stdDequeChildrenHelper(SymbolGroup *sg,
                           const AddressType *blockArray, ULONG64 blockArraySize,
                           const std::string &module,
                           const std::string &innerType, ULONG64 innerTypeSize,
                           ULONG64 startOffset, ULONG64 dequeSize, int count)
{
    AbstractSymbolGroupNodePtrVector rc;
    rc.reserve(count);
    std::string errorMessage;
    // Determine block number and offset in the block array T[][dequeSize]
    // and create symbol by address.
    for (int i = 0; i < count; i++) {
        // see <deque>-header: std::deque<T>::iterator::operator*
        const ULONG64 offset = startOffset + i;
        ULONG64 block = offset / dequeSize;
        if (block >= blockArraySize)
            block -= blockArraySize;
        const ULONG64 blockOffset = offset % dequeSize;
        const ULONG64 address = blockArray[block] + innerTypeSize * blockOffset;
        if (SymbolGroupNode *n = sg->addSymbol(module, SymbolGroupValue::pointedToSymbolName(address, innerType), std::string(), &errorMessage))
            rc.push_back(ReferenceSymbolGroupNode::createArrayNode(i, n));
        else
            return AbstractSymbolGroupNodePtrVector();
    }
    return rc;
}

// std::deque<>
static inline AbstractSymbolGroupNodePtrVector
    stdDequeChildList(const SymbolGroupValue &dequeIn, int count)
{
    if (!count)
        return AbstractSymbolGroupNodePtrVector();
    // From MSVC10 on, there is an additional base class, MSVC2012 more.
    const SymbolGroupValue map = SymbolGroupValue::findMember(dequeIn, "_Map");
    if (!map)
        return AbstractSymbolGroupNodePtrVector();
    const SymbolGroupValue deque = map.parent();
    const ULONG64 arrayAddress = map.pointerValue();
    const int startOffset = deque["_Myoff"].intValue();
    const int mapSize  = deque["_Mapsize"].intValue();
    if (!arrayAddress || startOffset < 0 || mapSize <= 0)
        return AbstractSymbolGroupNodePtrVector();
    const std::vector<std::string> innerTypes = dequeIn.innerTypes();
    if (innerTypes.empty())
        return AbstractSymbolGroupNodePtrVector();
    const std::string innerType = fixInnerType(innerTypes.front(), deque);
    // Get the deque size (block size) which is an unavailable static member
    // (cf <deque> for the actual expression).
    const unsigned innerTypeSize = SymbolGroupValue::sizeOf(innerType.c_str());
    if (!innerTypeSize)
        return AbstractSymbolGroupNodePtrVector();
    const int dequeSize = innerTypeSize <= 1 ? 16 : innerTypeSize <= 2 ?
                               8 : innerTypeSize <= 4 ? 4 : innerTypeSize <= 8 ? 2 : 1;
    // Read out map array (pointing to the blocks)
    void *mapArray = readPointerArray(arrayAddress, mapSize, deque.context());
    if (!mapArray)
        return AbstractSymbolGroupNodePtrVector();
    const AbstractSymbolGroupNodePtrVector rc = SymbolGroupValue::pointerSize() == 8 ?
        stdDequeChildrenHelper(deque.node()->symbolGroup(),
                               reinterpret_cast<const ULONG64 *>(mapArray), mapSize,
                               deque.module(), innerType, innerTypeSize, startOffset, dequeSize, count) :
        stdDequeChildrenHelper(deque.node()->symbolGroup(),
                               reinterpret_cast<const ULONG32 *>(mapArray), mapSize,
                               deque.module(), innerType, innerTypeSize, startOffset, dequeSize, count);
    delete [] mapArray;
    return rc;
}

/* Helper class for red-black trees (std::map<>,std::set<> based on std::__Tree:
 * or Qt 5 maps).
 * We locally rebuild the structure in using instances of below class 'RedBlackTreeNode'
 * with 'left' and 'right' pointers and the values. Reason being that while it is
 * possible to write the iteration in terms of class SymbolGroupValue, it involves
 * going back up the tree over the flat node->parent pointers. Doing that in the debugger
 * sometimes ends up in nirvana, apparently due to it not being able to properly expand it.
 * RedBlackTreeNode has a buildMapRecursion() to build a hierarchy from a STL __Tree or
 * Qt 5 map header value, taking a helper providing node creation and left/right symbol names.
 * Use begin() to return the first node and next() to iterate. The latter are modeled
 * after the _Tree::iterator base classes. (_Tree::begin, _Tree::iterator::operator++()
 * STL tree nodes have a "value" member which is the pair of map data.
 * In Qt 5, the node is a QMapNodeBase which needs to be casted to a QMapNode<K, V>. */

class RedBlackTreeNode
{
private:
    RedBlackTreeNode(const RedBlackTreeNode &);
    RedBlackTreeNode &operator=(const RedBlackTreeNode &);

public:
    explicit RedBlackTreeNode(RedBlackTreeNode *p, const SymbolGroupValue &nodeValue);
    ~RedBlackTreeNode() { delete m_left; delete m_right; }

    const SymbolGroupValue &nodeValue() const { return m_node; }

    // Iterator helpers: Return first and move to next
    const RedBlackTreeNode *begin() const { return RedBlackTreeNode::leftMost(this); }
    static const RedBlackTreeNode *next(const RedBlackTreeNode *s);

    // Debug helpers
    template <class DebugFunction>
    void debug(std::ostream &os, DebugFunction df, unsigned depth = 0) const;

    static RedBlackTreeNode *buildMapRecursion(const SymbolGroupValue &n, ULONG64 headAddress,
                                               RedBlackTreeNode *parent,
                                               const char *leftSymbol, const char *rightSymbol);

    static const RedBlackTreeNode *leftMost(const RedBlackTreeNode *n);

private:
    RedBlackTreeNode *const m_parent;
    RedBlackTreeNode *m_left;
    RedBlackTreeNode *m_right;
    const SymbolGroupValue m_node;
};

RedBlackTreeNode::RedBlackTreeNode(RedBlackTreeNode *p, const SymbolGroupValue &node)
    : m_parent(p), m_left(0), m_right(0), m_node(node)
{
}

const RedBlackTreeNode *RedBlackTreeNode::leftMost(const RedBlackTreeNode *n)
{
    for ( ; n->m_left ; n = n->m_left ) ;
    return n;
}

const RedBlackTreeNode *RedBlackTreeNode::next(const RedBlackTreeNode *s)
{
    if (s->m_right) // If we have a right node, return its left-most
        return RedBlackTreeNode::leftMost(s->m_right);
    do { // Climb looking for 'right' subtree, that is, we are left of it
        RedBlackTreeNode *parent = s->m_parent;
        if (!parent || parent->m_right != s)
            return parent;
        s = parent;
    } while (true);
    return 0;
}

/* Build the tree using the helper which is asked to create the node
 * and provide the names of the "left" and "right" nodes. */
RedBlackTreeNode *RedBlackTreeNode::buildMapRecursion(const SymbolGroupValue &n, ULONG64 headAddress,
                                                      RedBlackTreeNode *parent,
                                                      const char *leftSymbol, const char *rightSymbol)
{
    RedBlackTreeNode *node = new RedBlackTreeNode(parent, n);
    // Get left and right nodes. A node pointing to 0 (Qt) or 'head' (STL) terminates the recursion
    if (const SymbolGroupValue left = n[leftSymbol])
        if (const ULONG64 leftAddr = left.pointerValue())
            if (leftAddr && leftAddr != headAddress)
                node->m_left = buildMapRecursion(left, headAddress, node, leftSymbol, rightSymbol);
    if (const SymbolGroupValue right = n[rightSymbol])
        if (const ULONG64 rightAddr = right.pointerValue())
            if (rightAddr && rightAddr != headAddress)
                node->m_right = buildMapRecursion(right, headAddress, node, leftSymbol, rightSymbol);
    return node;
}

template <class DebugFunction>
void RedBlackTreeNode::debug(std::ostream &os, DebugFunction df, unsigned depth) const
{
    df(m_node, os, 2 * depth);
    if (m_left)
        m_left->debug(os, df, depth + 1);
    if (m_right)
        m_right->debug(os, df, depth + 1);
}

static inline void indentStream(std::ostream &os, unsigned indent)
{
    for (unsigned i = 0; i < indent; ++i)
        os << ' ';
}

// Debugging helper for a SymbolGroupValue containing a __Tree::node of
// a map (assuming a std::pair inside).
static void debugMSVC2010MapNode(const SymbolGroupValue &n, std::ostream &os, unsigned indent = 0)
{
    indentStream(os, indent);
    os << "Node at " << std::hex << std::showbase << n.address()
       << std::dec << std::noshowbase
       << " Value='" << wStringToString(n.value()) << "', Parent=" << wStringToString(n["_Parent"].value())
       << ", Left=" << wStringToString(n["_Left"].value())
       << ", Right=" << wStringToString(n["_Right"].value())
       << ", nil='" <<  wStringToString(n["_Isnil"].value());
    if (const SymbolGroupValue pairBase = n["_Myval"][unsigned(0)]) {
        os << "', key='"  << wStringToString(pairBase["first"].value())
           << "', value='"   << wStringToString(pairBase["second"].value())
           << '\'';
    } else {
        os << "', key='"  << wStringToString(n["_Myval"].value()) << '\'';
    }
    os << '\n';
}

// Helper for std::map<>,std::set<> based on std::__Tree:
// Return the list of children (pair for maps, direct children for set)
static inline SymbolGroupValueVector
    stdTreeChildList(const SymbolGroupValue &treeIn, int count)
{
    if (!count)
        return SymbolGroupValueVector();
    // MSVC2012: many base classes.
    // MSVC2010: "class _Tree : public _Tree_val: public _Tree_nod".
    // MSVC2008: Direct class
    const SymbolGroupValue sizeV = SymbolGroupValue::findMember(treeIn, "_Mysize");
    const SymbolGroupValue tree = sizeV.parent();
    const int size = sizeV.intValue();
    if (!tree|| size <= 0)
        return SymbolGroupValueVector();
    // Build the tree and iterate it.
    // Goto root of tree (see _Tree::_Root())
    RedBlackTreeNode *nodeTree = 0;
    if (const SymbolGroupValue head = tree["_Myhead"])
        if (const ULONG64 headAddress = head.pointerValue())
            nodeTree = RedBlackTreeNode::buildMapRecursion(head["_Parent"], headAddress, 0, "_Left", "_Right");
    if (!nodeTree)
        return SymbolGroupValueVector();
    if (SymbolGroupValue::verbose > 1)
        nodeTree->debug(DebugPrint(), debugMSVC2010MapNode);
    SymbolGroupValueVector rc;
    rc.reserve(count);
    int i = 0;
    for (const RedBlackTreeNode *n = nodeTree->begin() ; n && i < count; n = RedBlackTreeNode::next(n), i++) {
        const SymbolGroupValue value = n->nodeValue()["_Myval"];
        if (!value) {
            delete nodeTree;
            return SymbolGroupValueVector();
        }
        rc.push_back(value);
    }
    delete nodeTree;
    if (rc.size() != count)
        return SymbolGroupValueVector();
    return rc;
}

// std::set<>: Children directly contained in list
static inline AbstractSymbolGroupNodePtrVector
    stdSetChildList(const SymbolGroupValue &set, int count)
{
    const SymbolGroupValueVector children = stdTreeChildList(set, count);
    if (int(children.size()) != count)
        return AbstractSymbolGroupNodePtrVector();
    AbstractSymbolGroupNodePtrVector rc;
    rc.reserve(count);
    for (int i = 0; i < count; i++)
        rc.push_back(ReferenceSymbolGroupNode::createArrayNode(i, children.at(i).node()));
    return rc;
}

// std::map<K,V>: A list of std::pair<K,V> (derived from std::pair_base<K,V>)
static inline AbstractSymbolGroupNodePtrVector
    stdMapChildList(const SymbolGroupValue &map, int count)
{
    const SymbolGroupValueVector children = stdTreeChildList(map[unsigned(0)], count);
    if (int(children.size()) != count)
        return AbstractSymbolGroupNodePtrVector();
    AbstractSymbolGroupNodePtrVector rc;
    rc.reserve(count);
    const std::string firstName = "first";
    for (int i = 0; i < count; i++) {
        // MSVC2010 (only) has a std::pair_base class.
        const SymbolGroupValue key = SymbolGroupValue::findMember(children.at(i), firstName);
        const SymbolGroupValue pairBase = key.parent();
        const SymbolGroupValue value = pairBase["second"];
        if (key && value) {
            rc.push_back(MapNodeSymbolGroupNode::create(i, pairBase.address(),
                                                        pairBase.type(),
                                                        key.node(), value.node()));
        } else {
            return AbstractSymbolGroupNodePtrVector();
        }
    }
    return rc;
}

// QVector<T>
static inline AbstractSymbolGroupNodePtrVector
    qVectorChildList(SymbolGroupNode *n, int count, const SymbolGroupValueContext &ctx)
{
    if (!count)
        return AbstractSymbolGroupNodePtrVector();
    const SymbolGroupValue vec(n, ctx);
    const int qtVersion = QtInfo::get(vec.context()).version;
    if (qtVersion < 5) {
        // Qt 4: QVector<T>: p/array is declared as array of T. Dereference first
        // element to obtain address.
        if (const SymbolGroupValue firstElementV = vec["p"]["array"][unsigned(0)]) {
            if (const ULONG64 arrayAddress = firstElementV.address()) {
                const std::string fixedInnerType = fixInnerType(firstElementV.type(), vec);
                return arrayChildList(n->symbolGroup(), arrayAddress, n->module(), fixedInnerType, count);
            }
        }
        return AbstractSymbolGroupNodePtrVector();
    }
    // Qt 5: Data are located in a pool behind 'd' (similar to QString,
    // QByteArray).
    const SymbolGroupValue dV = vec["d"][unsigned(0)];
    const SymbolGroupValue offsetV = dV["offset"];
    if (!dV || !offsetV)
        return AbstractSymbolGroupNodePtrVector();
    const ULONG64 arrayAddress = dV.address() + offsetV.intValue();
    std::vector<std::string> innerTypes = SymbolGroupValue::innerTypesOf(vec.type());
    if (arrayAddress && !innerTypes.empty()) {
        return arrayChildList(n->symbolGroup(), arrayAddress, n->module(),
                              fixInnerType(innerTypes.front(), vec),
                              count);
    }
    return AbstractSymbolGroupNodePtrVector();
}

// Helper function for arrayChildList() for use with QLists of large types that are an
// array of pointers to allocated elements: Generate a pointer sequence by reading out the array.
template <class AddressType>
class AddressArraySequence
{
public:
    explicit inline AddressArraySequence(const AddressType *array) : m_array(array) {}
    inline ULONG64 operator()() { return *m_array++; }

private:
    const AddressType *m_array;
};

// QList<>.
static inline AbstractSymbolGroupNodePtrVector
    qListChildList(const SymbolGroupValue &v, int count)
{
    // QList<T>: d/array is declared as array of void *[]. Dereference first
    // element to obtain address.
    if (!count)
        return AbstractSymbolGroupNodePtrVector();
    const SymbolGroupValue dV = v["d"];
    if (!dV)
        return AbstractSymbolGroupNodePtrVector();
    const int begin = dV["begin"].intValue();
    if (begin < 0)
        return AbstractSymbolGroupNodePtrVector();
    const SymbolGroupValue firstElementV = dV["array"][unsigned(0)];
    if (!firstElementV)
        return AbstractSymbolGroupNodePtrVector();
     ULONG64 arrayAddress = firstElementV.address();
     if (!arrayAddress)
         return AbstractSymbolGroupNodePtrVector();
     const std::vector<std::string> innerTypes = v.innerTypes();
     if (innerTypes.size() != 1)
         return AbstractSymbolGroupNodePtrVector();
     const std::string innerType = fixInnerType(innerTypes.front(), v);
     const unsigned innerTypeSize = SymbolGroupValue::sizeOf(innerType.c_str());
     if (SymbolGroupValue::verbose)
         DebugPrint() << "QList " << v.name() << " inner type " << innerType << ' ' << innerTypeSize;
     if (!innerTypeSize)
         return AbstractSymbolGroupNodePtrVector();
     /* QList<> is:
      * 1) An array of 'void *[]' where T values are coerced into the elements for
      *    POD/pointer types and small, movable or primitive Qt types. That is, smaller
      *    elements are also aligned at 'void *' boundaries.
      * 2) An array of 'T *[]' (pointer to allocated instances) for anything else
      *    (QTypeInfo<T>::isLarge || QTypeInfo<T>::isStatic)
      *    isStatic depends on QTypeInfo specializations and hardcoded flags for types. */
     const unsigned pointerSize = SymbolGroupValue::pointerSize();
     arrayAddress += begin * pointerSize;
     if (SymbolGroupValue::isPointerType(innerType)) // Quick check: Any pointer is T[]
         return arrayChildList(v.node()->symbolGroup(),
                               AddressSequence(arrayAddress, pointerSize),
                               v.module(), innerType, count);
     // Check condition for large||static.
     bool isLargeOrStatic = innerTypeSize > pointerSize;
     if (!isLargeOrStatic && !SymbolGroupValue::isPointerType(innerType)) {
         const KnownType kt = knownType(innerType, false); // inner type, no 'class ' prefix.
         if (kt != KT_Unknown && !(kt & (KT_POD_Type|KT_Qt_PrimitiveType|KT_Qt_MovableType)))
             isLargeOrStatic = true;
     }
     if (SymbolGroupValue::verbose)
         DebugPrint() << "isLargeOrStatic " << isLargeOrStatic;
     if (isLargeOrStatic) {
         // Retrieve the pointer array ourselves to avoid having to evaluate '*(class foo**)'
         if (void *data = readPointerArray(arrayAddress, count, v.context()))  {
             // Generate sequence of addresses from pointer array
             const AbstractSymbolGroupNodePtrVector rc = pointerSize == 8 ?
                         arrayChildList(v.node()->symbolGroup(),
                                        AddressArraySequence<ULONG64>(reinterpret_cast<const ULONG64 *>(data)),
                                        v.module(), innerType, count) :
                         arrayChildList(v.node()->symbolGroup(), AddressArraySequence<ULONG32>(reinterpret_cast<const ULONG32 *>(data)),
                                        v.module(), innerType, count);
             delete [] data;
             return rc;
         }
         return AbstractSymbolGroupNodePtrVector();
     }
     return arrayChildList(v.node()->symbolGroup(),
                           AddressSequence(arrayAddress, pointerSize),
                           v.module(), innerType, count);
}

// Return the list of buckets of a 'QHash<>' as 'QHashData::Node *' values from
// the list of addresses passed in
template<class AddressType>
SymbolGroupValueVector hashBuckets(SymbolGroup *sg, const std::string &hashNodeType,
                                   const AddressType *pointerArray,
                                   int numBuckets,
                                   AddressType ePtr,
                                   const std::string &module,
                                   const SymbolGroupValueContext &ctx)
{
    SymbolGroupValueVector rc;
    rc.reserve(numBuckets);
    const AddressType *end = pointerArray + numBuckets;
    std::string errorMessage;
    // Skip 'e' special values as they are used as placeholder for reserve(d)
    // empty array elements.
    for (const AddressType *p = pointerArray; p < end; p++) {
        if (*p != ePtr) {
            const std::string name = SymbolGroupValue::pointedToSymbolName(*p, hashNodeType);
            if (SymbolGroupNode *child = sg->addSymbol(module, name, std::string(), &errorMessage)) {
                rc.push_back(SymbolGroupValue(child, ctx));
            } else {
                return std::vector<SymbolGroupValue>();
                break;
            }
        }
    }
    return rc;
}

// Return the node type of a QHash/QMap:
// "class QHash<K,V>[ *]" -> [struct] "QtCored4!QHashNode<K,V>";
static inline std::string qHashNodeType(const SymbolGroupValue &v,
                                        const char *nodeType)
{
    std::string qHashType = SymbolGroupValue::stripPointerType(v.type());
    const std::string::size_type pos = qHashType.find('<');
    if (pos != std::string::npos)
        qHashType.insert(pos, nodeType);
    // A map node must be qualified with the current module and
    // the Qt namespace (particularly QMapNode, QHashNodes work also for
    // the unqualified case).
    const QtInfo &qtInfo = QtInfo::get(v.context());
    const std::string currentModule = v.module();
    return QtInfo::prependModuleAndNameSpace(qHashType, currentModule, qtInfo.nameSpace);
}

// Return up to count nodes of type "QHashNode<K,V>" of a "class QHash<K,V>".
SymbolGroupValueVector qHashNodes(const SymbolGroupValue &v,
                                  VectorIndexType count)
{
    if (!count)
        return SymbolGroupValueVector();
    const SymbolGroupValue hashData = v["d"];
    // 'e' is used as a special value to indicate empty hash buckets in the array.
    const ULONG64 ePtr = v["e"].pointerValue();
    if (SymbolGroupValue::verbose)
        DebugPrint() << v << " Count=" << count << ",ePtr=0x" << std::hex << ePtr;
    if (!hashData || !ePtr)
        return SymbolGroupValueVector();
    // Retrieve the array of buckets of 'd'
    const int numBuckets = hashData["numBuckets"].intValue();
    const ULONG64 bucketArray = hashData["buckets"].pointerValue();
    if (numBuckets <= 0 || !bucketArray)
        return SymbolGroupValueVector();
    void *bucketPointers = readPointerArray(bucketArray, numBuckets, v.context());
    if (!bucketPointers)
        return SymbolGroupValueVector();
    // Get list of buckets (starting elements of 'QHashData::Node')
    const std::string dummyNodeType = QtInfo::get(v.context()).prependQtCoreModule("QHashData::Node");
    const SymbolGroupValueVector buckets = SymbolGroupValue::pointerSize() == 8 ?
        hashBuckets(v.node()->symbolGroup(), dummyNodeType,
                    reinterpret_cast<const ULONG64 *>(bucketPointers), numBuckets,
                    ePtr, v.module(), v.context()) :
        hashBuckets(v.node()->symbolGroup(), dummyNodeType,
                    reinterpret_cast<const ULONG32 *>(bucketPointers), numBuckets,
                    ULONG32(ePtr), v.module(), v.context());
    delete [] bucketPointers ;
    // Generate the list 'QHashData::Node *' by iterating over the linked list of
    // nodes starting at each bucket. Using the 'QHashData::Node *' instead of
    // the 'QHashNode<K,T>' is much faster. Each list has a trailing, unused
    // dummy element. The initial element as such is skipped due to the pointer/value
    // duality (since its 'next' element is identical to it when using typecast<> later on).
    SymbolGroupValueVector dummyNodeList;
    dummyNodeList.reserve(count);
    bool notEnough = true;
    const SymbolGroupValueVector::const_iterator ncend = buckets.end();
    for (SymbolGroupValueVector::const_iterator it = buckets.begin(); notEnough && it != ncend; ++it) {
        for (SymbolGroupValue l = *it; notEnough && l ; ) {
            const SymbolGroupValue next = l["next"];
            if (next && next.pointerValue()) { // Stop at trailing dummy element
                dummyNodeList.push_back(next);
                if (dummyNodeList.size() >= count) // Stop at maximum count
                    notEnough = false;
                if (SymbolGroupValue::verbose > 1)
                    DebugPrint() << '#' << (dummyNodeList.size() - 1) << " l=" << l << ",next=" << next;
                l = next;
            } else {
                break;
            }
        }
    }
    // Finally convert them into real nodes 'QHashNode<K,V> (potentially expensive)
    const std::string nodeType = qHashNodeType(v, "Node");
    if (SymbolGroupValue::verbose)
        DebugPrint() << "Converting into " << nodeType;
    SymbolGroupValueVector nodeList;
    nodeList.reserve(count);
    const SymbolGroupValueVector::const_iterator dcend = dummyNodeList.end();
    for (SymbolGroupValueVector::const_iterator it = dummyNodeList.begin(); it != dcend; ++it) {
        if (const SymbolGroupValue n = (*it).typeCast(nodeType.c_str()))
            nodeList.push_back(n);
        else
            return SymbolGroupValueVector();
    }
    return nodeList;
}

// QSet<>: Contains a 'QHash<key, QHashDummyValue>' as member 'q_hash'.
// Just dump the keys as an array.
static inline AbstractSymbolGroupNodePtrVector
    qSetChildList(const SymbolGroupValue &v, int count)
{
    const SymbolGroupValue qHash = v["q_hash"];
    AbstractSymbolGroupNodePtrVector rc;
    if (!count || !qHash)
        return rc;
    const SymbolGroupValueVector nodes = qHashNodes(qHash, count);
    if (nodes.size() != VectorIndexType(count))
        return rc;
    rc.reserve(count);
    for (int i = 0; i < count; i++) {
        if (const SymbolGroupValue key = nodes.at(i)["key"])
            rc.push_back(ReferenceSymbolGroupNode::createArrayNode(i, key.node()));
        else
            return AbstractSymbolGroupNodePtrVector();
    }
    return rc;
}

// QHash<>: Add with fake map nodes.
static inline AbstractSymbolGroupNodePtrVector
    qHashChildList(const SymbolGroupValue &v, int count)
{
    AbstractSymbolGroupNodePtrVector rc;
    if (!count)
        return rc;
    const SymbolGroupValueVector nodes = qHashNodes(v, count);
    if (nodes.size() != count)
        return rc;
    rc.reserve(count);
    for (int i = 0; i < count; i++) {
        const SymbolGroupValue &mapNode = nodes.at(i);
        const SymbolGroupValue key = mapNode["key"];
        const SymbolGroupValue value = mapNode["value"];
        if (!key || !value)
            return AbstractSymbolGroupNodePtrVector();
        rc.push_back(MapNodeSymbolGroupNode::create(i, mapNode.address(),
                                                    mapNode.type(), key.node(), value.node()));
    }
    return rc;
}

// Qt 4: QMap<>: Return the list of QMapData::Node
static inline SymbolGroupValueVector qMap4Nodes(const SymbolGroupValue &v, VectorIndexType count)
{
    const SymbolGroupValue e = v["e"];
    const ULONG64 ePtr = e.pointerValue();
    if (SymbolGroupValue::verbose)
        DebugPrint() << v.type() << " E=0x" << std::hex << ePtr;
    if (!ePtr)
        return SymbolGroupValueVector();
    if (SymbolGroupValue::verbose)
        DebugPrint() << v.type() << " E=0x" << std::hex << ePtr;
    SymbolGroupValueVector rc;
    rc.reserve(count);
    SymbolGroupValue n = e["forward"][unsigned(0)];
    for (VectorIndexType i = 0; i < count && n && n.pointerValue() != ePtr; ++i) {
        rc.push_back(n);
        n = n["forward"][unsigned(0)];
    }
    return rc;
}

static void debugQMap5Node(const SymbolGroupValue &n, std::ostream &os, unsigned indent = 0)
{
    const char *color = (n["p"].intValue() & 1) ? "black" : "red";
    indentStream(os, indent);
    os << n.address() << ' ' <<color << " left: " << n["left"] << " right: " << n["right"];
}

// Qt 5: QMap<>: Return the list of QMapNode<K, V>
static inline AbstractSymbolGroupNodePtrVector qMap5Nodes(const SymbolGroupValue &v, VectorIndexType count)
{
    const SymbolGroupValue head = SymbolGroupValue::findMember(v["d"], "header");
    SymbolGroupValue root = head["left"];
    if (!root)
        return AbstractSymbolGroupNodePtrVector();

    const std::string nodeType = qHashNodeType(v, "Node");
    const std::string nodePtrType = nodeType +  " *";
    if (SymbolGroupValue::verbose)
        DebugPrint() << v.type() << "," << nodeType;

    RedBlackTreeNode *nodeTree =
        RedBlackTreeNode::buildMapRecursion(root, head.address(), 0, "left", "right");
    if (!nodeTree)
        return AbstractSymbolGroupNodePtrVector();
    if (SymbolGroupValue::verbose > 1)
        nodeTree->debug(DebugPrint(), debugQMap5Node);
    VectorIndexType i = 0;
    // Finally convert them into real nodes 'QHashNode<K,V> (potentially expensive)
    AbstractSymbolGroupNodePtrVector result;
    result.reserve(count);
    for (const RedBlackTreeNode *n = nodeTree->begin() ; n && i < count; n = RedBlackTreeNode::next(n), i++) {
        if (const SymbolGroupValue qmapNode = n->nodeValue().pointerTypeCast(nodePtrType.c_str())) {
            const SymbolGroupValue key = qmapNode["key"];
            const SymbolGroupValue value = qmapNode["value"];
            if (!key || !value) {
                delete nodeTree;
                return AbstractSymbolGroupNodePtrVector();
            }
            result.push_back(MapNodeSymbolGroupNode::create(i, key.address(),
                                                            nodeType,
                                                            key.node(), value.node()));
        }
    }
    delete nodeTree;
    return result;
}

// QMap<>: Add with fake map nodes.
static inline AbstractSymbolGroupNodePtrVector
    qMapChildList(const SymbolGroupValue &v, VectorIndexType count)
{
    if (SymbolGroupValue::verbose)
        DebugPrint() << v.type() << "," << count;

    if (!count)
        return AbstractSymbolGroupNodePtrVector();
    if (QtInfo::get(v.context()).version >= 5)
        return qMap5Nodes(v, count);
    // Get node type: 'class namespace::QMap<K,T>'
    // ->'QtCored4!namespace::QMapNode<K,T>'
    // Note: Any types QMapNode<> will not be found without modules!
    const std::string mapNodeType = qHashNodeType(v, "Node");
    const std::string mapPayloadNodeType = qHashNodeType(v, "PayloadNode");
    // Calculate the offset needed (see QMap::concrete() used by the iterator).
    const unsigned payloadNodeSize = SymbolGroupValue::sizeOf(mapPayloadNodeType.c_str());
    if (SymbolGroupValue::verbose) {
        DebugPrint() << v.type() << "," << mapNodeType << ':'
                     << mapPayloadNodeType << ':' << payloadNodeSize
                     << ", pointerSize=" << SymbolGroupValue::pointerSize();
    }
    if (!payloadNodeSize)
        return AbstractSymbolGroupNodePtrVector();
    const ULONG64 payLoad  = payloadNodeSize - SymbolGroupValue::pointerSize();
    // Get the value offset. Manually determine the alignment to be able
    // to retrieve key/value without having to deal with QMapNode<> (see below).
    // Subtract the 2 trailing pointers of the node.
    const std::vector<std::string> innerTypes = v.innerTypes();
    if (innerTypes.size() != 2u)
        return AbstractSymbolGroupNodePtrVector();
    const std::string keyType = fixInnerType(innerTypes.front(), v);
    const std::string valueType = fixInnerType(innerTypes.at(1), v);
    const unsigned valueSize = SymbolGroupValue::sizeOf(valueType.c_str());
    const unsigned valueOffset = SymbolGroupValue::fieldOffset(mapNodeType.c_str(), "value");
    if (SymbolGroupValue::verbose)
        DebugPrint() << "Payload=" << payLoad << ",valueOffset=" << valueOffset << ','
                     << innerTypes.front() << ',' << innerTypes.back() << ':' << valueSize;
    if (!valueOffset || !valueSize)
        return AbstractSymbolGroupNodePtrVector();
    // Get the children.
    const SymbolGroupValueVector childNodes = qMap4Nodes(v, count);
    if (SymbolGroupValue::verbose)
        DebugPrint() << "children: " << childNodes.size() << " of " << count;
    // Deep  expansion of the forward[0] sometimes fails. In that case,
    // take what we can get.
    if (childNodes.size() != count)
        count = childNodes.size();
    // The correct way of doing this would be to construct additional symbols
    // '*(QMapNode<K,V> *)(node_address)'. However, when doing this as of
    // 'CDB 6.12.0002.633' (21.12.2010) IDebugSymbolGroup::AddSymbol()
    // just fails, returning DEBUG_ANY_ID without actually doing something. So,
    // we circumvent the map nodes and directly create key and values at their addresses.
    AbstractSymbolGroupNodePtrVector rc;
    rc.reserve(count);
    std::string errorMessage;
    SymbolGroup *sg = v.node()->symbolGroup();
    for (VectorIndexType i = 0; i < count ; ++i) {
        const ULONG64 nodePtr = childNodes.at(i).pointerValue();
        if (!nodePtr)
            return AbstractSymbolGroupNodePtrVector();
        const ULONG64 keyAddress = nodePtr - payLoad;
        const std::string keyExp = SymbolGroupValue::pointedToSymbolName(keyAddress, keyType);
        const std::string valueExp = SymbolGroupValue::pointedToSymbolName(keyAddress + valueOffset, valueType);
        if (SymbolGroupValue::verbose) {
            DebugPrint() << '#' << i << '/' << count << ' ' << std::hex << ",node=0x" << nodePtr <<
                  ',' <<keyExp << ',' << valueExp;
        }
        // Create the nodes
        SymbolGroupNode *keyNode = sg->addSymbol(v.module(), keyExp, std::string(), &errorMessage);
        SymbolGroupNode *valueNode = sg->addSymbol(v.module(), valueExp, std::string(), &errorMessage);
        if (!keyNode || !valueNode)
            return AbstractSymbolGroupNodePtrVector();
        rc.push_back(MapNodeSymbolGroupNode::create(int(i), keyAddress,
                                                    mapNodeType, keyNode, valueNode));
    }
    return rc;
}

/*! Determine children of containers \ingroup qtcreatorcdbext */
AbstractSymbolGroupNodePtrVector containerChildren(SymbolGroupNode *node, int type,
                                                   int size, const SymbolGroupValueContext &ctx)
{
    if (SymbolGroupValue::verbose) {
        DebugPrint dp;
        dp << "containerChildren " << node->name() << '/' << node->iName() << '/' << node->type()
           << " at 0x" << std::hex << node->address() << std::dec
           << " count=" << size << ",knowntype=" << type << " [";
        formatKnownTypeFlags(dp, static_cast<KnownType>(type));
        dp << ']';
    }
    if (!size)
        return AbstractSymbolGroupNodePtrVector();
    if (size > 100)
        size = 100;
    switch (type) {
    case KT_QVector:
        return qVectorChildList(node, size, ctx);
    case KT_StdVector:
        return stdVectorChildList(node, size, ctx);
    case KT_QLinkedList:
        return qLinkedListChildList(node, size, ctx);
    case KT_QList:
        return qListChildList(SymbolGroupValue(node, ctx), size);
    case KT_QQueue:
        if (const SymbolGroupValue qList = SymbolGroupValue(node, ctx)[unsigned(0)])
            return qListChildList(qList, size);
        break;
    case KT_QStack:
        if (const SymbolGroupValue qVector = SymbolGroupValue(node, ctx)[unsigned(0)])
            return qVectorChildList(qVector.node(), size, ctx);
        break;
    case KT_QHash:
        return qHashChildList(SymbolGroupValue(node, ctx), size);
    case KT_QMultiHash:
        if (const SymbolGroupValue hash = SymbolGroupValue(node, ctx)[unsigned(0)])
            return qHashChildList(hash, size);
        break;
    case KT_QSet:
        return qSetChildList(SymbolGroupValue(node, ctx), size);
    case KT_QMap:
        return qMapChildList(SymbolGroupValue(node, ctx), size);
    case KT_QMultiMap:
        if (const SymbolGroupValue qmap = SymbolGroupValue(node, ctx)[unsigned(0)])
            return qMapChildList(qmap, size);
        break;
    case KT_QStringList:
        if (const SymbolGroupValue qList = SymbolGroupValue(node, ctx)[unsigned(0)])
            return qListChildList(qList, size);
        break;
    case KT_StdList:
        return stdListChildList(node, size , ctx);
    case KT_StdDeque:
        return stdDequeChildList(SymbolGroupValue(node, ctx), size);
    case KT_StdStack:
        if (const SymbolGroupValue deque = SymbolGroupValue(node, ctx)[unsigned(0)])
            return stdDequeChildList(deque, size);
        break;
    case KT_StdSet:
        return stdSetChildList(SymbolGroupValue(node, ctx), size);
    case KT_StdMap:
    case KT_StdMultiMap:
        return stdMapChildList(SymbolGroupValue(node, ctx), size);
    }
    return AbstractSymbolGroupNodePtrVector();
}