1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
|
// 16bit code to handle system clocks.
//
// Copyright (C) 2008-2010 Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2002 MandrakeSoft S.A.
//
// This file may be distributed under the terms of the GNU LGPLv3 license.
#include "biosvar.h" // SET_BDA
#include "bregs.h" // struct bregs
#include "hw/pic.h" // pic_eoi1
#include "hw/ps2port.h" // ps2_check_event
#include "hw/rtc.h" // rtc_read
#include "hw/usb-hid.h" // usb_check_event
#include "output.h" // debug_enter
#include "stacks.h" // yield
#include "string.h" // memset
#include "util.h" // clock_setup
/****************************************************************
* Init
****************************************************************/
static u32
bcd2bin(u8 val)
{
return (val & 0xf) + ((val >> 4) * 10);
}
u8 Century VARLOW;
void
clock_setup(void)
{
dprintf(3, "init timer\n");
pit_setup();
rtc_setup();
rtc_updating();
u32 seconds = bcd2bin(rtc_read(CMOS_RTC_SECONDS));
u32 minutes = bcd2bin(rtc_read(CMOS_RTC_MINUTES));
u32 hours = bcd2bin(rtc_read(CMOS_RTC_HOURS));
u32 ticks = ticks_from_ms(((hours * 60 + minutes) * 60 + seconds) * 1000);
SET_BDA(timer_counter, ticks % TICKS_PER_DAY);
// Setup Century storage
if (CONFIG_QEMU) {
Century = rtc_read(CMOS_CENTURY);
} else {
// Infer current century from the year.
u8 year = rtc_read(CMOS_RTC_YEAR);
if (year > 0x80)
Century = 0x19;
else
Century = 0x20;
}
enable_hwirq(0, FUNC16(entry_08));
if (CONFIG_RTC_TIMER)
enable_hwirq(8, FUNC16(entry_70));
}
/****************************************************************
* Standard clock functions
****************************************************************/
// get current clock count
static void
handle_1a00(struct bregs *regs)
{
yield();
u32 ticks = GET_BDA(timer_counter);
regs->cx = ticks >> 16;
regs->dx = ticks;
regs->al = GET_BDA(timer_rollover);
SET_BDA(timer_rollover, 0); // reset flag
set_success(regs);
}
// Set Current Clock Count
static void
handle_1a01(struct bregs *regs)
{
u32 ticks = (regs->cx << 16) | regs->dx;
SET_BDA(timer_counter, ticks);
SET_BDA(timer_rollover, 0); // reset flag
// XXX - should use set_code_success()?
regs->ah = 0;
set_success(regs);
}
// Read CMOS Time
static void
handle_1a02(struct bregs *regs)
{
if (rtc_updating()) {
set_invalid(regs);
return;
}
regs->dh = rtc_read(CMOS_RTC_SECONDS);
regs->cl = rtc_read(CMOS_RTC_MINUTES);
regs->ch = rtc_read(CMOS_RTC_HOURS);
regs->dl = rtc_read(CMOS_STATUS_B) & RTC_B_DSE;
regs->ah = 0;
regs->al = regs->ch;
set_success(regs);
}
// Set CMOS Time
static void
handle_1a03(struct bregs *regs)
{
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3
// before 1111 1101 0111 1101 0000 0000
// after 0110 0010 0110 0010 0000 0010
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = ((RegB & 01100000b) | 00000010b)
if (rtc_updating()) {
rtc_setup();
// fall through as if an update were not in progress
}
rtc_write(CMOS_RTC_SECONDS, regs->dh);
rtc_write(CMOS_RTC_MINUTES, regs->cl);
rtc_write(CMOS_RTC_HOURS, regs->ch);
// Set Daylight Savings time enabled bit to requested value
u8 val8 = ((rtc_read(CMOS_STATUS_B) & (RTC_B_PIE|RTC_B_AIE))
| RTC_B_24HR | (regs->dl & RTC_B_DSE));
rtc_write(CMOS_STATUS_B, val8);
regs->ah = 0;
regs->al = val8; // val last written to Reg B
set_success(regs);
}
// Read CMOS Date
static void
handle_1a04(struct bregs *regs)
{
regs->ah = 0;
if (rtc_updating()) {
set_invalid(regs);
return;
}
regs->cl = rtc_read(CMOS_RTC_YEAR);
regs->dh = rtc_read(CMOS_RTC_MONTH);
regs->dl = rtc_read(CMOS_RTC_DAY_MONTH);
regs->ch = GET_LOW(Century);
regs->al = regs->ch;
set_success(regs);
}
// Set CMOS Date
static void
handle_1a05(struct bregs *regs)
{
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3 try#4
// before 1111 1101 0111 1101 0000 0010 0000 0000
// after 0110 1101 0111 1101 0000 0010 0000 0000
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = (RegB & 01111111b)
if (rtc_updating()) {
rtc_setup();
set_invalid(regs);
return;
}
rtc_write(CMOS_RTC_YEAR, regs->cl);
rtc_write(CMOS_RTC_MONTH, regs->dh);
rtc_write(CMOS_RTC_DAY_MONTH, regs->dl);
SET_LOW(Century, regs->ch);
// clear halt-clock bit
u8 val8 = rtc_read(CMOS_STATUS_B) & ~RTC_B_SET;
rtc_write(CMOS_STATUS_B, val8);
regs->ah = 0;
regs->al = val8; // AL = val last written to Reg B
set_success(regs);
}
// Set Alarm Time in CMOS
static void
handle_1a06(struct bregs *regs)
{
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3
// before 1101 1111 0101 1111 0000 0000
// after 0110 1111 0111 1111 0010 0000
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = ((RegB & 01111111b) | 00100000b)
u8 val8 = rtc_read(CMOS_STATUS_B); // Get Status Reg B
regs->ax = 0;
if (val8 & RTC_B_AIE) {
// Alarm interrupt enabled already
set_invalid(regs);
return;
}
if (rtc_updating()) {
rtc_setup();
// fall through as if an update were not in progress
}
rtc_write(CMOS_RTC_SECONDS_ALARM, regs->dh);
rtc_write(CMOS_RTC_MINUTES_ALARM, regs->cl);
rtc_write(CMOS_RTC_HOURS_ALARM, regs->ch);
// enable Status Reg B alarm bit, clear halt clock bit
rtc_write(CMOS_STATUS_B, (val8 & ~RTC_B_SET) | RTC_B_AIE);
set_success(regs);
}
// Turn off Alarm
static void
handle_1a07(struct bregs *regs)
{
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3 try#4
// before 1111 1101 0111 1101 0010 0000 0010 0010
// after 0100 0101 0101 0101 0000 0000 0000 0010
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = (RegB & 01010111b)
u8 val8 = rtc_read(CMOS_STATUS_B); // Get Status Reg B
// clear clock-halt bit, disable alarm bit
rtc_write(CMOS_STATUS_B, val8 & ~(RTC_B_SET|RTC_B_AIE));
regs->ah = 0;
regs->al = val8; // val last written to Reg B
set_success(regs);
}
static void
handle_1abb(struct bregs *regs)
{
if (!CONFIG_TCGBIOS)
return;
dprintf(DEBUG_tcg, "16: Calling tpm_interrupt_handler\n");
call32(tpm_interrupt_handler32, MAKE_FLATPTR(GET_SEG(SS), regs), 0);
}
// Unsupported
static void
handle_1aXX(struct bregs *regs)
{
set_unimplemented(regs);
}
// INT 1Ah Time-of-day Service Entry Point
void VISIBLE16
handle_1a(struct bregs *regs)
{
debug_enter(regs, DEBUG_HDL_1a);
switch (regs->ah) {
case 0x00: handle_1a00(regs); break;
case 0x01: handle_1a01(regs); break;
case 0x02: handle_1a02(regs); break;
case 0x03: handle_1a03(regs); break;
case 0x04: handle_1a04(regs); break;
case 0x05: handle_1a05(regs); break;
case 0x06: handle_1a06(regs); break;
case 0x07: handle_1a07(regs); break;
case 0xbb: handle_1abb(regs); break;
default: handle_1aXX(regs); break;
}
}
// Update main tick counter
static void
clock_update(void)
{
u32 counter = GET_BDA(timer_counter);
counter++;
// compare to one days worth of timer ticks at 18.2 hz
if (counter >= TICKS_PER_DAY) {
// there has been a midnight rollover at this point
counter = 0;
SET_BDA(timer_rollover, GET_BDA(timer_rollover) + 1);
}
SET_BDA(timer_counter, counter);
// Check for internal events.
floppy_tick();
usb_check_event();
ps2_check_event();
sercon_check_event();
}
// INT 08h System Timer ISR Entry Point
void VISIBLE16
handle_08(void)
{
debug_isr(DEBUG_ISR_08);
clock_update();
// chain to user timer tick INT #0x1c
struct bregs br;
memset(&br, 0, sizeof(br));
br.flags = F_IF;
call16_int(0x1c, &br);
pic_eoi1();
}
u32 last_timer_check VARLOW;
// Simulate timer irq on machines without hardware irqs
void
clock_poll_irq(void)
{
if (CONFIG_HARDWARE_IRQ)
return;
if (!timer_check(GET_LOW(last_timer_check)))
return;
SET_LOW(last_timer_check, timer_calc(ticks_to_ms(1)));
clock_update();
}
/****************************************************************
* IRQ based timer
****************************************************************/
// Calculate the timer value at 'count' number of full timer ticks in
// the future.
u32
irqtimer_calc_ticks(u32 count)
{
return (GET_BDA(timer_counter) + count + 1) % TICKS_PER_DAY;
}
// Return the timer value that is 'msecs' time in the future.
u32
irqtimer_calc(u32 msecs)
{
if (!msecs)
return GET_BDA(timer_counter);
return irqtimer_calc_ticks(ticks_from_ms(msecs));
}
// Check if the given timer value has passed.
int
irqtimer_check(u32 end)
{
return (((GET_BDA(timer_counter) + TICKS_PER_DAY - end) % TICKS_PER_DAY)
< (TICKS_PER_DAY/2));
}
/****************************************************************
* Periodic timer
****************************************************************/
static int
set_usertimer(u32 usecs, u16 seg, u16 offset)
{
if (GET_BDA(rtc_wait_flag) & RWS_WAIT_PENDING)
return -1;
// Interval not already set.
SET_BDA(rtc_wait_flag, RWS_WAIT_PENDING); // Set status byte.
SET_BDA(user_wait_complete_flag, SEGOFF(seg, offset));
SET_BDA(user_wait_timeout, usecs);
rtc_use();
return 0;
}
static void
clear_usertimer(void)
{
if (!(GET_BDA(rtc_wait_flag) & RWS_WAIT_PENDING))
return;
// Turn off status byte.
SET_BDA(rtc_wait_flag, 0);
rtc_release();
}
#define RET_ECLOCKINUSE 0x83
// Wait for CX:DX microseconds
void
handle_1586(struct bregs *regs)
{
if (!CONFIG_RTC_TIMER) {
set_code_unimplemented(regs, RET_EUNSUPPORTED);
return;
}
// Use the rtc to wait for the specified time.
u8 statusflag = 0;
u32 count = (regs->cx << 16) | regs->dx;
int ret = set_usertimer(count, GET_SEG(SS), (u32)&statusflag);
if (ret) {
set_code_invalid(regs, RET_ECLOCKINUSE);
return;
}
while (!statusflag)
yield_toirq();
set_success(regs);
}
// Set Interval requested.
static void
handle_158300(struct bregs *regs)
{
int ret = set_usertimer((regs->cx << 16) | regs->dx, regs->es, regs->bx);
if (ret)
// Interval already set.
set_code_invalid(regs, RET_EUNSUPPORTED);
else
set_success(regs);
}
// Clear interval requested
static void
handle_158301(struct bregs *regs)
{
clear_usertimer();
set_success(regs);
}
static void
handle_1583XX(struct bregs *regs)
{
set_code_unimplemented(regs, RET_EUNSUPPORTED);
regs->al--;
}
void
handle_1583(struct bregs *regs)
{
if (!CONFIG_RTC_TIMER) {
handle_1583XX(regs);
return;
}
switch (regs->al) {
case 0x00: handle_158300(regs); break;
case 0x01: handle_158301(regs); break;
default: handle_1583XX(regs); break;
}
}
#define USEC_PER_RTC DIV_ROUND_CLOSEST(1000000, 1024)
// int70h: IRQ8 - CMOS RTC
void VISIBLE16
handle_70(void)
{
if (!CONFIG_RTC_TIMER)
return;
debug_isr(DEBUG_ISR_70);
// Check which modes are enabled and have occurred.
u8 registerB = rtc_read(CMOS_STATUS_B);
u8 registerC = rtc_read(CMOS_STATUS_C);
if (!(registerB & (RTC_B_PIE|RTC_B_AIE)))
goto done;
if (registerC & RTC_B_AIE) {
// Handle Alarm Interrupt.
struct bregs br;
memset(&br, 0, sizeof(br));
br.flags = F_IF;
call16_int(0x4a, &br);
}
if (!(registerC & RTC_B_PIE))
goto done;
// Handle Periodic Interrupt.
check_preempt();
if (!GET_BDA(rtc_wait_flag))
goto done;
// Wait Interval (Int 15, AH=83) active.
u32 time = GET_BDA(user_wait_timeout); // Time left in microseconds.
if (time < USEC_PER_RTC) {
// Done waiting - write to specified flag byte.
struct segoff_s segoff = GET_BDA(user_wait_complete_flag);
u16 ptr_seg = segoff.seg;
u8 *ptr_far = (u8*)(segoff.offset+0);
u8 oldval = GET_FARVAR(ptr_seg, *ptr_far);
SET_FARVAR(ptr_seg, *ptr_far, oldval | 0x80);
clear_usertimer();
} else {
// Continue waiting.
time -= USEC_PER_RTC;
SET_BDA(user_wait_timeout, time);
}
done:
pic_eoi2();
}
|