summaryrefslogtreecommitdiff
path: root/docs/README.rst
blob: b8eef135ebfb127386ef33a5d463a9de79e03db4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
============
 Interfaces
============

.. currentmodule:: zope.interface

Interfaces are objects that specify (document) the external behavior
of objects that "provide" them.  An interface specifies behavior
through:

- Informal documentation in a doc string

- Attribute definitions

- Invariants, which are conditions that must hold for objects that
  provide the interface

Attribute definitions specify specific attributes. They define the
attribute name and provide documentation and constraints of attribute
values.  Attribute definitions can take a number of forms, as we'll
see below.

Defining interfaces
===================

Interfaces are defined using Python ``class`` statements:

.. doctest::

  >>> import zope.interface
  >>> class IFoo(zope.interface.Interface):
  ...    """Foo blah blah"""
  ...
  ...    x = zope.interface.Attribute("""X blah blah""")
  ...
  ...    def bar(q, r=None):
  ...        """bar blah blah"""

In the example above, we've created an interface, :class:`IFoo`.  We
subclassed :class:`zope.interface.Interface`, which is an ancestor interface for
all interfaces, much as ``object`` is an ancestor of all new-style
classes [#create]_.   The interface is not a class, it's an Interface,
an instance of :class:`zope.interface.interface.InterfaceClass`:

.. doctest::

  >>> type(IFoo)
  <class 'zope.interface.interface.InterfaceClass'>

We can ask for the interface's documentation:

.. doctest::

  >>> IFoo.__doc__
  'Foo blah blah'

and its name:

.. doctest::

  >>> IFoo.__name__
  'IFoo'

and even its module:

.. doctest::

  >>> IFoo.__module__
  'builtins'

The interface defined two attributes:

``x``
  This is the simplest form of attribute definition.  It has a name
  and a doc string.  It doesn't formally specify anything else.

``bar``
  This is a method.  A method is defined via a function definition.  A
  method is simply an attribute constrained to be a callable with a
  particular signature, as provided by the function definition.

  Note that ``bar`` doesn't take a ``self`` argument.  Interfaces document
  how an object is *used*.  When calling instance methods, you don't
  pass a ``self`` argument, so a ``self`` argument isn't included in the
  interface signature.  The ``self`` argument in instance methods is
  really an implementation detail of Python instances. Other objects,
  besides instances can provide interfaces and their methods might not
  be instance methods. For example, modules can provide interfaces and
  their methods are usually just functions.  Even instances can have
  methods that are not instance methods.

You can access the attributes defined by an interface using mapping
syntax:

.. doctest::

  >>> x = IFoo['x']
  >>> type(x)
  <class 'zope.interface.interface.Attribute'>
  >>> x.__name__
  'x'
  >>> x.__doc__
  'X blah blah'

  >>> IFoo.get('x').__name__
  'x'

  >>> IFoo.get('y')

You can use ``in`` to determine if an interface defines a name:

.. doctest::

  >>> 'x' in IFoo
  True

You can iterate over interfaces to get the names they define:

.. doctest::

  >>> names = list(IFoo)
  >>> names.sort()
  >>> names
  ['bar', 'x']

Remember that interfaces aren't classes. You can't access attribute
definitions as attributes of interfaces:

.. doctest::

  >>> IFoo.x
  Traceback (most recent call last):
    File "<stdin>", line 1, in ?
  AttributeError: 'InterfaceClass' object has no attribute 'x'

Methods provide access to the method signature:

.. doctest::

  >>> bar = IFoo['bar']
  >>> bar.getSignatureString()
  '(q, r=None)'

TODO
  Methods really should have a better API.  This is something that
  needs to be improved.

Declaring interfaces
====================

Having defined interfaces, we can *declare* that objects provide
them.  Before we describe the details, lets define some terms:

*provide*
   We say that objects *provide* interfaces.  If an object provides an
   interface, then the interface specifies the behavior of the
   object. In other words, interfaces specify the behavior of the
   objects that provide them.

*implement*
   We normally say that classes *implement* interfaces.  If a class
   implements an interface, then the instances of the class provide
   the interface.  Objects provide interfaces that their classes
   implement [#factory]_.  (Objects can provide interfaces directly,
   in addition to what their classes implement.)

   It is important to note that classes don't usually provide the
   interfaces that they implement.

   We can generalize this to factories.  For any callable object we
   can declare that it produces objects that provide some interfaces
   by saying that the factory implements the interfaces.

Now that we've defined these terms, we can talk about the API for
declaring interfaces.

Declaring implemented interfaces
--------------------------------

The most common way to declare interfaces is using the `implementer`
decorator on a class:

.. doctest::

  >>> @zope.interface.implementer(IFoo)
  ... class Foo:
  ...
  ...     def __init__(self, x=None):
  ...         self.x = x
  ...
  ...     def bar(self, q, r=None):
  ...         return q, r, self.x
  ...
  ...     def __repr__(self):
  ...         return "Foo(%s)" % self.x


In this example, we declared that ``Foo`` implements ``IFoo``. This means
that instances of ``Foo`` provide ``IFoo``.  Having made this declaration,
there are several ways we can introspect the declarations.  First, we
can ask an interface whether it is implemented by a class:

.. doctest::

  >>> IFoo.implementedBy(Foo)
  True

And we can ask whether an interface is provided by an object:

.. doctest::

  >>> foo = Foo()
  >>> IFoo.providedBy(foo)
  True

Of course, ``Foo`` doesn't *provide* ``IFoo``, it *implements* it:

.. doctest::

  >>> IFoo.providedBy(Foo)
  False

We can also ask what interfaces are implemented by a class:

.. doctest::

  >>> list(zope.interface.implementedBy(Foo))
  [<InterfaceClass builtins.IFoo>]

It's an error to ask for interfaces implemented by a non-callable
object:

.. doctest::

  >>> IFoo.implementedBy(foo)
  Traceback (most recent call last):
  ...
  TypeError: ('ImplementedBy called for non-factory', Foo(None))

  >>> list(zope.interface.implementedBy(foo))
  Traceback (most recent call last):
  ...
  TypeError: ('ImplementedBy called for non-factory', Foo(None))

Similarly, we can ask what interfaces are provided by an object:

.. doctest::

  >>> list(zope.interface.providedBy(foo))
  [<InterfaceClass builtins.IFoo>]
  >>> list(zope.interface.providedBy(Foo))
  []

We can declare interfaces implemented by other factories (besides
classes).  We do this using the same `implementer` decorator.

.. doctest::

  >>> @zope.interface.implementer(IFoo)
  ... def yfoo(y):
  ...     foo = Foo()
  ...     foo.y = y
  ...     return foo

  >>> list(zope.interface.implementedBy(yfoo))
  [<InterfaceClass builtins.IFoo>]

Note that the implementer decorator may modify its argument. Callers
should not assume that a new object is created.

Using implementer also works on callable objects. This is used by
:py:mod:`zope.formlib`, as an example:

.. doctest::

  >>> class yfactory:
  ...     def __call__(self, y):
  ...         foo = Foo()
  ...         foo.y = y
  ...         return foo
  >>> yfoo = yfactory()
  >>> yfoo = zope.interface.implementer(IFoo)(yfoo)

  >>> list(zope.interface.implementedBy(yfoo))
  [<InterfaceClass builtins.IFoo>]

XXX: Double check and update these version numbers:

In :py:mod:`zope.interface` 3.5.2 and lower, the implementer decorator can not
be used for classes, but in 3.6.0 and higher it can:

.. doctest::

  >>> Foo = zope.interface.implementer(IFoo)(Foo)
  >>> list(zope.interface.providedBy(Foo()))
  [<InterfaceClass builtins.IFoo>]

Note that class decorators using the ``@implementer(IFoo)`` syntax are only
supported in Python 2.6 and later.

.. autofunction:: implementer
   :noindex:

   .. XXX: Duplicate description.

Declaring provided interfaces
-----------------------------

We can declare interfaces directly provided by objects.  Suppose that
we want to document what the ``__init__`` method of the ``Foo`` class
does.  It's not *really* part of ``IFoo``.  You wouldn't normally call
the ``__init__`` method on Foo instances.  Rather, the ``__init__`` method
is part of ``Foo``'s ``__call__`` method:

.. doctest::

  >>> class IFooFactory(zope.interface.Interface):
  ...     """Create foos"""
  ...
  ...     def __call__(x=None):
  ...         """Create a foo
  ...
  ...         The argument provides the initial value for x ...
  ...         """

It's the class that provides this interface, so we declare the
interface on the class:

.. doctest::

  >>> zope.interface.directlyProvides(Foo, IFooFactory)

And then, we'll see that Foo provides some interfaces:

.. doctest::

  >>> list(zope.interface.providedBy(Foo))
  [<InterfaceClass builtins.IFooFactory>]
  >>> IFooFactory.providedBy(Foo)
  True

Declaring class interfaces is common enough that there's a special
decorator for it, `provider`:

.. doctest::

  >>> @zope.interface.implementer(IFoo)
  ... @zope.interface.provider(IFooFactory)
  ... class Foo2:
  ...
  ...     def __init__(self, x=None):
  ...         self.x = x
  ...
  ...     def bar(self, q, r=None):
  ...         return q, r, self.x
  ...
  ...     def __repr__(self):
  ...         return "Foo(%s)" % self.x

  >>> list(zope.interface.providedBy(Foo2))
  [<InterfaceClass builtins.IFooFactory>]
  >>> IFooFactory.providedBy(Foo2)
  True

There's a similar function, ``moduleProvides``, that supports interface
declarations from within module definitions.  For example, see the use
of ``moduleProvides`` call in ``zope.interface.__init__``, which declares that
the package ``zope.interface`` provides ``IInterfaceDeclaration``.

Sometimes, we want to declare interfaces on instances, even though
those instances get interfaces from their classes.  Suppose we create
a new interface, ``ISpecial``:

.. doctest::

  >>> class ISpecial(zope.interface.Interface):
  ...     reason = zope.interface.Attribute("Reason why we're special")
  ...     def brag():
  ...         "Brag about being special"

We can make an existing foo instance special by providing ``reason``
and ``brag`` attributes:

.. doctest::

  >>> foo.reason = 'I just am'
  >>> def brag():
  ...      return "I'm special!"
  >>> foo.brag = brag
  >>> foo.reason
  'I just am'
  >>> foo.brag()
  "I'm special!"

and by declaring the interface:

.. doctest::

  >>> zope.interface.directlyProvides(foo, ISpecial)

then the new interface is included in the provided interfaces:

.. doctest::

  >>> ISpecial.providedBy(foo)
  True
  >>> list(zope.interface.providedBy(foo))
  [<InterfaceClass builtins.ISpecial>, <InterfaceClass builtins.IFoo>]

We can find out what interfaces are directly provided by an object:

.. doctest::

  >>> list(zope.interface.directlyProvidedBy(foo))
  [<InterfaceClass builtins.ISpecial>]

  >>> newfoo = Foo()
  >>> list(zope.interface.directlyProvidedBy(newfoo))
  []

.. autofunction:: provider
   :noindex:

   .. XXX: Duplicate description.

Inherited declarations
----------------------

Normally, declarations are inherited:

.. doctest::

  >>> @zope.interface.implementer(ISpecial)
  ... class SpecialFoo(Foo):
  ...     reason = 'I just am'
  ...     def brag(self):
  ...         return "I'm special because %s" % self.reason

  >>> list(zope.interface.implementedBy(SpecialFoo))
  [<InterfaceClass builtins.ISpecial>, <InterfaceClass builtins.IFoo>]

  >>> list(zope.interface.providedBy(SpecialFoo()))
  [<InterfaceClass builtins.ISpecial>, <InterfaceClass builtins.IFoo>]

Sometimes, you don't want to inherit declarations.  In that case, you
can use ``implementer_only``, instead of ``implementer``:

.. doctest::

  >>> @zope.interface.implementer_only(ISpecial)
  ... class Special(Foo):
  ...     reason = 'I just am'
  ...     def brag(self):
  ...         return "I'm special because %s" % self.reason

  >>> list(zope.interface.implementedBy(Special))
  [<InterfaceClass builtins.ISpecial>]

  >>> list(zope.interface.providedBy(Special()))
  [<InterfaceClass builtins.ISpecial>]

External declarations
---------------------

Normally, we make implementation declarations as part of a class
definition. Sometimes, we may want to make declarations from outside
the class definition. For example, we might want to declare interfaces
for classes that we didn't write.  The function ``classImplements`` can
be used for this purpose:

.. doctest::

  >>> class C:
  ...     pass

  >>> zope.interface.classImplements(C, IFoo)
  >>> list(zope.interface.implementedBy(C))
  [<InterfaceClass builtins.IFoo>]

.. autofunction:: classImplements
   :noindex:

We can use ``classImplementsOnly`` to exclude inherited interfaces:

.. doctest::

  >>> class C(Foo):
  ...     pass

  >>> zope.interface.classImplementsOnly(C, ISpecial)
  >>> list(zope.interface.implementedBy(C))
  [<InterfaceClass builtins.ISpecial>]

.. autofunction:: classImplementsOnly
   :noindex:

   .. XXX: Duplicate description.

Declaration Objects
-------------------

When we declare interfaces, we create *declaration* objects.  When we
query declarations, declaration objects are returned:

.. doctest::

  >>> type(zope.interface.implementedBy(Special))
  <class 'zope.interface.declarations.Implements'>

Declaration objects and interface objects are similar in many ways. In
fact, they share a common base class.  The important thing to realize
about them is that they can be used where interfaces are expected in
declarations. Here's a silly example:

.. doctest::

  >>> @zope.interface.implementer_only(
  ...     zope.interface.implementedBy(Foo),
  ...     ISpecial,
  ... )
  ... class Special2(object):
  ...     reason = 'I just am'
  ...     def brag(self):
  ...         return "I'm special because %s" % self.reason

The declaration here is almost the same as
``zope.interface.implementer(ISpecial)``, except that the order of
interfaces in the resulting declaration is different:

.. doctest::

  >>> list(zope.interface.implementedBy(Special2))
  [<InterfaceClass builtins.IFoo>, <InterfaceClass builtins.ISpecial>]


Interface Inheritance
=====================

Interfaces can extend other interfaces. They do this simply by listing
the other interfaces as base interfaces:

.. doctest::

  >>> class IBlat(zope.interface.Interface):
  ...     """Blat blah blah"""
  ...
  ...     y = zope.interface.Attribute("y blah blah")
  ...     def eek():
  ...         """eek blah blah"""

  >>> IBlat.__bases__
  (<InterfaceClass zope.interface.Interface>,)

  >>> class IBaz(IFoo, IBlat):
  ...     """Baz blah"""
  ...     def eek(a=1):
  ...         """eek in baz blah"""
  ...

  >>> IBaz.__bases__
  (<InterfaceClass builtins.IFoo>, <InterfaceClass builtins.IBlat>)

  >>> names = list(IBaz)
  >>> names.sort()
  >>> names
  ['bar', 'eek', 'x', 'y']

Note that ``IBaz`` overrides ``eek``:

.. doctest::

  >>> IBlat['eek'].__doc__
  'eek blah blah'
  >>> IBaz['eek'].__doc__
  'eek in baz blah'

We were careful to override ``eek`` in a compatible way.  When extending
an interface, the extending interface should be compatible [#compat]_
with the extended interfaces.

We can ask whether one interface extends another:

.. doctest::

  >>> IBaz.extends(IFoo)
  True
  >>> IBlat.extends(IFoo)
  False

Note that interfaces don't extend themselves:

.. doctest::

  >>> IBaz.extends(IBaz)
  False

Sometimes we wish they did, but we can instead use ``isOrExtends``:

.. doctest::

  >>> IBaz.isOrExtends(IBaz)
  True
  >>> IBaz.isOrExtends(IFoo)
  True
  >>> IFoo.isOrExtends(IBaz)
  False

When we iterate over an interface, we get all of the names it defines,
including names defined by base interfaces. Sometimes, we want *just*
the names defined by the interface directly. We can use the ``names``
method for that:

.. doctest::

  >>> list(IBaz.names())
  ['eek']

Inheritance of attribute specifications
---------------------------------------

An interface may override attribute definitions from base interfaces.
If two base interfaces define the same attribute, the attribute is
inherited from the most specific interface. For example, with:

.. doctest::

  >>> class IBase(zope.interface.Interface):
  ...
  ...     def foo():
  ...         "base foo doc"

  >>> class IBase1(IBase):
  ...     pass

  >>> class IBase2(IBase):
  ...
  ...     def foo():
  ...         "base2 foo doc"

  >>> class ISub(IBase1, IBase2):
  ...     pass

``ISub``'s definition of ``foo`` is the one from ``IBase2``, since ``IBase2`` is more
specific than ``IBase``:

.. doctest::

  >>> ISub['foo'].__doc__
  'base2 foo doc'

Note that this differs from a depth-first search.

Sometimes, it's useful to ask whether an interface defines an
attribute directly.  You can use the direct method to get a directly
defined definitions:

.. doctest::

  >>> IBase.direct('foo').__doc__
  'base foo doc'

  >>> ISub.direct('foo')

Specifications
--------------

Interfaces and declarations are both special cases of specifications.
What we described above for interface inheritance applies to both
declarations and specifications.  Declarations actually extend the
interfaces that they declare:

.. doctest::

  >>> @zope.interface.implementer(IBaz)
  ... class Baz(object):
  ...     pass

  >>> baz_implements = zope.interface.implementedBy(Baz)
  >>> baz_implements.__bases__
  (<InterfaceClass builtins.IBaz>, classImplements(object))

  >>> baz_implements.extends(IFoo)
  True

  >>> baz_implements.isOrExtends(IFoo)
  True
  >>> baz_implements.isOrExtends(baz_implements)
  True

Specifications (interfaces and declarations) provide an ``__sro__``
that lists the specification and all of it's ancestors:

.. doctest::

  >>> from pprint import pprint
  >>> pprint(baz_implements.__sro__)
  (classImplements(Baz, IBaz),
   <InterfaceClass builtins.IBaz>,
   <InterfaceClass builtins.IFoo>,
   <InterfaceClass builtins.IBlat>,
   classImplements(object),
   <InterfaceClass zope.interface.Interface>)
  >>> class IBiz(zope.interface.Interface):
  ...    pass
  >>> @zope.interface.implementer(IBiz)
  ... class Biz(Baz):
  ...    pass
  >>> pprint(zope.interface.implementedBy(Biz).__sro__)
  (classImplements(Biz, IBiz),
   <InterfaceClass builtins.IBiz>,
   classImplements(Baz, IBaz),
   <InterfaceClass builtins.IBaz>,
   <InterfaceClass builtins.IFoo>,
   <InterfaceClass builtins.IBlat>,
   classImplements(object),
   <InterfaceClass zope.interface.Interface>)

Tagged Values
=============

.. autofunction:: taggedValue

Interfaces and attribute descriptions support an extension mechanism,
borrowed from UML, called "tagged values" that lets us store extra
data:

.. doctest::

  >>> IFoo.setTaggedValue('date-modified', '2004-04-01')
  >>> IFoo.setTaggedValue('author', 'Jim Fulton')
  >>> IFoo.getTaggedValue('date-modified')
  '2004-04-01'
  >>> IFoo.queryTaggedValue('date-modified')
  '2004-04-01'
  >>> IFoo.queryTaggedValue('datemodified')
  >>> tags = list(IFoo.getTaggedValueTags())
  >>> tags.sort()
  >>> tags
  ['author', 'date-modified']

Function attributes are converted to tagged values when method
attribute definitions are created:

.. doctest::

  >>> class IBazFactory(zope.interface.Interface):
  ...     def __call__():
  ...         "create one"
  ...     __call__.return_type = IBaz

  >>> IBazFactory['__call__'].getTaggedValue('return_type')
  <InterfaceClass builtins.IBaz>

Tagged values can also be defined from within an interface definition:

.. doctest::

  >>> class IWithTaggedValues(zope.interface.Interface):
  ...     zope.interface.taggedValue('squish', 'squash')
  >>> IWithTaggedValues.getTaggedValue('squish')
  'squash'

Tagged values are inherited in the same way that attribute and method
descriptions are. Inheritance can be ignored by using the "direct"
versions of functions.

.. doctest::

   >>> class IExtendsIWithTaggedValues(IWithTaggedValues):
   ...     zope.interface.taggedValue('child', True)
   >>> IExtendsIWithTaggedValues.getTaggedValue('child')
   True
   >>> IExtendsIWithTaggedValues.getDirectTaggedValue('child')
   True
   >>> IExtendsIWithTaggedValues.getTaggedValue('squish')
   'squash'
   >>> print(IExtendsIWithTaggedValues.queryDirectTaggedValue('squish'))
   None
   >>> IExtendsIWithTaggedValues.setTaggedValue('squish', 'SQUASH')
   >>> IExtendsIWithTaggedValues.getTaggedValue('squish')
   'SQUASH'
   >>> IExtendsIWithTaggedValues.getDirectTaggedValue('squish')
   'SQUASH'


Invariants
==========

.. autofunction:: invariant

Interfaces can express conditions that must hold for objects that
provide them. These conditions are expressed using one or more
invariants.  Invariants are callable objects that will be called with
an object that provides an interface. An invariant raises an ``Invalid``
exception if the condition doesn't hold.  Here's an example:

.. doctest::

  >>> class RangeError(zope.interface.Invalid):
  ...     """A range has invalid limits"""
  ...     def __repr__(self):
  ...         return "RangeError(%r)" % self.args

  >>> def range_invariant(ob):
  ...     if ob.max < ob.min:
  ...         raise RangeError(ob)

Given this invariant, we can use it in an interface definition:

.. doctest::

  >>> class IRange(zope.interface.Interface):
  ...     min = zope.interface.Attribute("Lower bound")
  ...     max = zope.interface.Attribute("Upper bound")
  ...
  ...     zope.interface.invariant(range_invariant)

Interfaces have a method for checking their invariants:

.. doctest::

  >>> @zope.interface.implementer(IRange)
  ... class Range(object):
  ...     def __init__(self, min, max):
  ...         self.min, self.max = min, max
  ...
  ...     def __repr__(self):
  ...         return "Range(%s, %s)" % (self.min, self.max)

  >>> IRange.validateInvariants(Range(1,2))
  >>> IRange.validateInvariants(Range(1,1))
  >>> IRange.validateInvariants(Range(2,1))
  Traceback (most recent call last):
  ...
  RangeError: Range(2, 1)

If you have multiple invariants, you may not want to stop checking
after the first error.  If you pass a list to ``validateInvariants``,
then a single ``Invalid`` exception will be raised with the list of
exceptions as its argument:

.. doctest::

  >>> from zope.interface.exceptions import Invalid
  >>> errors = []
  >>> try:
  ...     IRange.validateInvariants(Range(2,1), errors)
  ... except Invalid as e:
  ...     str(e)
  '[RangeError(Range(2, 1))]'

And the list will be filled with the individual exceptions:

.. doctest::

  >>> errors
  [RangeError(Range(2, 1))]

  >>> del errors[:]

Adaptation
==========

Interfaces can be called to perform *adaptation*. Adaptation is the
process of converting an object to an object implementing the
interface. For example, in mathematics, to represent a point in space
or on a graph there's the familiar Cartesian coordinate system using
``CartesianPoint(x, y)``, and there's also the Polar coordinate system
using ``PolarPoint(r, theta)``, plus several others (homogeneous,
log-polar, etc). Polar points are most convenient for some types of
operations, but cartesian points may make more intuitive sense to most
people. Before printing an arbitrary point, we might want to *adapt* it
to ``ICartesianPoint``, or before performing some mathematical
operation you might want to adapt the arbitrary point to ``IPolarPoint``.

The semantics are based on those of the  :pep:`246` ``adapt``
function.

If an object cannot be adapted, then a ``TypeError`` is raised:

.. doctest::

  >>> class ICartesianPoint(zope.interface.Interface):
  ...     x = zope.interface.Attribute("Distance from origin along x axis")
  ...     y = zope.interface.Attribute("Distance from origin along y axis")

  >>> ICartesianPoint(0)
  Traceback (most recent call last):
  ...
  TypeError: ('Could not adapt', 0, <InterfaceClass builtins.ICartesianPoint>)


unless a default value is provided as a second positional argument;
this value is not checked to see if it implements the interface:

.. doctest::

  >>> ICartesianPoint(0, 'bob')
  'bob'

If an object already implements the interface, then it will be returned:

.. doctest::

  >>> @zope.interface.implementer(ICartesianPoint)
  ... class CartesianPoint(object):
  ...     """The default cartesian point is the origin."""
  ...     def __init__(self, x=0, y=0):
  ...         self.x = x
  ...         self.y = y
  ...     def __repr__(self):
  ...         return "CartesianPoint(%s, %s)" % (self.x, self.y)

  >>> obj = CartesianPoint()
  >>> ICartesianPoint(obj) is obj
  True

``__conform__``
---------------

:pep:`246` outlines a requirement:

    When the object knows about the [interface], and either considers
    itself compliant, or knows how to wrap itself suitably.

This is handled with ``__conform__``. If an object implements
``__conform__``, then it will be used to give the object the chance to
decide if it knows about the interface. This is true even if the class
declares that it implements the interface.

.. doctest::

  >>> @zope.interface.implementer(ICartesianPoint)
  ... class C(object):
  ...     def __conform__(self, proto):
  ...          return "This could be anything."

  >>> ICartesianPoint(C())
  'This could be anything.'

If ``__conform__`` returns ``None`` (because the object is unaware of
the interface), then the rest of the adaptation process will continue.
Here, we demonstrate that if the object already provides the
interface, it is returned.

.. doctest::

  >>> @zope.interface.implementer(ICartesianPoint)
  ... class C(object):
  ...     def __conform__(self, proto):
  ...          return None

  >>> c = C()
  >>> ICartesianPoint(c) is c
  True


Adapter hooks (see :ref:`adapt_adapter_hooks`) will also be used, if present (after
a ``__conform__`` method, if any, has been tried):

.. doctest::

  >>> from zope.interface.interface import adapter_hooks
  >>> def adapt_tuple_to_point(iface, obj):
  ...     if isinstance(obj, tuple) and len(obj) == 2:
  ...         return CartesianPoint(*obj)

  >>> adapter_hooks.append(adapt_tuple_to_point)
  >>> ICartesianPoint((1, 1))
  CartesianPoint(1, 1)

  >>> adapter_hooks.remove(adapt_tuple_to_point)
  >>> ICartesianPoint((1, 1))
  Traceback (most recent call last):
  ...
  TypeError: ('Could not adapt', (1, 1), <InterfaceClass builtins.ICartesianPoint>)

.. _adapt_adapter_hooks:

``__adapt__`` and adapter hooks
-------------------------------

Interfaces implement the :pep:`246` ``__adapt__`` method to satisfy
the requirement:

    When the [interface] knows about the object, and either the object
    already complies or the [interface] knows how to suitably wrap the
    object.

This method is normally not called directly. It is called by the
:pep:`246` adapt framework and by the interface ``__call__`` operator
once ``__conform__`` (if any) has failed.

The ``__adapt__`` method is responsible for adapting an object to the
receiver.

The default version returns ``None`` (because by default no interface
"knows how to suitably wrap the object"):

.. doctest::

  >>> ICartesianPoint.__adapt__(0)

unless the object given provides the interface ("the object already complies"):

.. doctest::

  >>> @zope.interface.implementer(ICartesianPoint)
  ... class C(object):
  ...     pass

  >>> obj = C()
  >>> ICartesianPoint.__adapt__(obj) is obj
  True

.. rubric:: Customizing ``__adapt__`` in an interface

It is possible to replace or customize the ``__adapt___``
functionality for particular interfaces, if that interface "knows how
to suitably wrap [an] object". This method should return the adapted
object if it knows how, or call the super class to continue with the
default adaptation process.

.. doctest::

   >>> import math
   >>> class IPolarPoint(zope.interface.Interface):
   ...     r = zope.interface.Attribute("Distance from center.")
   ...     theta = zope.interface.Attribute("Angle from horizontal.")
   ...     @zope.interface.interfacemethod
   ...     def __adapt__(self, obj):
   ...          if ICartesianPoint.providedBy(obj):
   ...              # Convert to polar coordinates.
   ...              r = math.sqrt(obj.x ** 2 + obj.y ** 2)
   ...              theta = math.acos(obj.x / r)
   ...              theta = math.degrees(theta)
   ...              return PolarPoint(r, theta)
   ...          return super(type(IPolarPoint), self).__adapt__(obj)

   >>> @zope.interface.implementer(IPolarPoint)
   ... class PolarPoint(object):
   ...     def __init__(self, r=0, theta=0):
   ...        self.r = r; self.theta = theta
   ...     def __repr__(self):
   ...        return "PolarPoint(%s, %s)" % (self.r, self.theta)
   >>> IPolarPoint(CartesianPoint(0, 1))
   PolarPoint(1.0, 90.0)
   >>> IPolarPoint(PolarPoint())
   PolarPoint(0, 0)

.. seealso:: :func:`zope.interface.interfacemethod`, which explains
   how to override functions in interface definitions and why, prior
   to Python 3.6, the zero-argument version of `super` cannot be used.

.. rubric:: Using adapter hooks for loose coupling

Commonly, the author of the interface doesn't know how to wrap all
possible objects, and neither does the author of an object know how to
``__conform__`` to all possible interfaces. To support decoupling
interfaces and objects, interfaces support the concept of "adapter
hooks." Adapter hooks are a global sequence of callables
``hook(interface, object)`` that are called, in order, from the
default ``__adapt__`` method until one returns a non-``None`` result.

.. note::
   In many applications, a :doc:`adapter` is installed as
   the first or only adapter hook.

We'll install a hook that adapts from a 2D ``(x, y)`` Cartesian point
on a plane to a three-dimensional point ``(x, y, z)`` by assuming the
``z`` coordinate is 0. First, we'll define this new interface and an
implementation:

.. doctest::

  >>> class ICartesianPoint3D(ICartesianPoint):
  ...      z = zope.interface.Attribute("Depth.")
  >>> @zope.interface.implementer(ICartesianPoint3D)
  ... class CartesianPoint3D(CartesianPoint):
  ...     def __init__(self, x=0, y=0, z=0):
  ...        CartesianPoint.__init__(self, x, y)
  ...        self.z = 0
  ...     def __repr__(self):
  ...        return "CartesianPoint3D(%s, %s, %s)" % (self.x, self.y, self.z)


We install a hook by simply adding it to the ``adapter_hooks`` list:

.. doctest::

  >>> from zope.interface.interface import adapter_hooks
  >>> def returns_none(iface, obj):
  ...     print("(First adapter hook returning None.)")
  >>> def adapt_2d_to_3d(iface, obj):
  ...     if iface == ICartesianPoint3D and ICartesianPoint.providedBy(obj):
  ...         return CartesianPoint3D(obj.x, obj.y, 0)
  >>> adapter_hooks.append(returns_none)
  >>> adapter_hooks.append(adapt_2d_to_3d)
  >>> ICartesianPoint3D.__adapt__(CartesianPoint())
  (First adapter hook returning None.)
  CartesianPoint3D(0, 0, 0)
  >>> ICartesianPoint3D(CartesianPoint())
  (First adapter hook returning None.)
  CartesianPoint3D(0, 0, 0)

Hooks can be uninstalled by removing them from the list:

.. doctest::

  >>> adapter_hooks.remove(returns_none)
  >>> adapter_hooks.remove(adapt_2d_to_3d)
  >>> ICartesianPoint3D.__adapt__(CartesianPoint())

.. _global_persistence:

Persistence, Sorting, Equality and Hashing
==========================================

.. tip:: For the practical implications of what's discussed below, and
         some potential problems, see :ref:`spec_eq_hash`.

Just like Python classes, interfaces are designed to inexpensively
support persistence using Python's standard :mod:`pickle` module. This
means that one process can send a *reference* to an interface to another
process in the form of a byte string, and that other process can load
that byte string and get the object that is that interface. The processes
may be separated in time (one after the other), in space (running on
different machines) or even be parts of the same process communicating
with itself.

We can demonstrate this. Observe how small the byte string needed to
capture the reference is. Also note that since this is the same
process, the identical object is found and returned:

.. doctest::

   >>> import sys
   >>> import pickle
   >>> class Foo(object):
   ...    pass
   >>> sys.modules[__name__].Foo = Foo # XXX, see below
   >>> pickled_byte_string = pickle.dumps(Foo, 0)
   >>> len(pickled_byte_string)
   21
   >>> imported = pickle.loads(pickled_byte_string)
   >>> imported == Foo
   True
   >>> imported is Foo
   True
   >>> class IFoo(zope.interface.Interface):
   ...     pass
   >>> sys.modules[__name__].IFoo = IFoo # XXX, see below
   >>> pickled_byte_string = pickle.dumps(IFoo, 0)
   >>> len(pickled_byte_string)
   22
   >>> imported = pickle.loads(pickled_byte_string)
   >>> imported is IFoo
   True
   >>> imported == IFoo
   True

.. rubric:: References to Global Objects

The eagle-eyed reader will have noticed the two funny lines like
``sys.modules[__name__].Foo = Foo``. What's that for? To understand,
we must know a bit about how Python "pickles" (``pickle.dump`` or
``pickle.dumps``) classes or interfaces.

When Python pickles a class or an interface, it does so as a "global
object" [#global_object]_. Global objects are expected to already
exist (contrast this with pickling a string or an object instance,
which creates a new object in the receiving process) with all their
necessary state information (for classes and interfaces, the state
information would be things like the list of methods and defined
attributes) in the receiving process, so the pickled byte string needs
only contain enough data to look up that existing object; this data is a
*reference*. Not only does this minimize the amount of data required
to persist such an object, it also facilitates changing the definition
of the object over time: if a class or interface gains or loses
methods or attributes, loading a previously pickled reference will use
the *current definition* of the object.

The *reference* to a global object that's stored in the byte string
consists only of the object's ``__name__`` and ``__module__``. Before
a global object *obj* is pickled, Python makes sure that the object being
pickled is the same one that can be found at
``getattr(sys.modules[obj.__module__], obj.__name__)``; if there is no
such object, or it refers to a different object, pickling fails. The
two funny lines make sure that holds, no matter how this example is
run (using some doctest runners, it doesn't hold by default, unlike it
normally would).

We can show some examples of what happens when that condition doesn't
hold. First, what if we change the global object and try to pickle the
old one?

.. doctest::

   >>> sys.modules[__name__].Foo = 42
   >>> pickle.dumps(Foo)
   Traceback (most recent call last):
   ...
   _pickle.PicklingError: Can't pickle <class 'Foo'>: it's not the same object as builtins.Foo

A consequence of this is that only one object of the given name can be
defined and pickled at a time. If we were to try to define a new ``Foo``
class (remembering that normally the ``sys.modules[__name__].Foo =``
line is automatic), we still cannot pickle the old one:

.. doctest::

   >>> orig_Foo = Foo
   >>> class Foo(object):
   ...    pass
   >>> sys.modules[__name__].Foo = Foo # XXX, usually automatic
   >>> pickle.dumps(orig_Foo)
   Traceback (most recent call last):
   ...
   _pickle.PicklingError: Can't pickle <class 'Foo'>: it's not the same object as builtins.Foo

Or what if there simply is no global object?

.. doctest::

   >>> del sys.modules[__name__].Foo
   >>> pickle.dumps(Foo)
   Traceback (most recent call last):
   ...
   _pickle.PicklingError: Can't pickle <class 'Foo'>: attribute lookup Foo on builtins failed

Interfaces and classes behave the same in all those ways.

.. rubric:: What's This Have To Do With Sorting, Equality and Hashing?

Another important design consideration for interfaces is that they
should be sortable. This permits them to be used, for example, as keys
in a (persistent) `BTree <https://btrees.readthedocs.io>`_. As such,
they define a total ordering, meaning that any given interface can
definitively said to be greater than, less than, or equal to, any
other interface. This relationship must be *stable* and hold the same
across any two processes.

An object becomes sortable by overriding the equality method
``__eq__`` and at least one of the comparison methods (such as
``__lt__``).

Classes, on the other hand, are not sortable [#class_sort]_.
Classes can only be tested for equality, and they implement this using
object identity: ``class_a == class_b`` is equivalent to ``class_a is class_b``.

In addition to being sortable, it's important for interfaces to be
hashable so they can be used as keys in dictionaries or members of
sets. This is done by implementing the ``__hash__`` method [#hashable]_.

Classes are hashable, and they also implement this based on object
identity, with the equivalent of ``id(class_a)``.

To be both hashable and sortable, the hash method and the equality and
comparison methods **must** `be consistent with each other
<https://docs.python.org/3/reference/datamodel.html#object.__hash__>`_.
That is, they must all be based on the same principle.

Classes use the principle of identity to implement equality and
hashing, but they don't implement sorting because identity isn't a
stable sorting method (it is different in every process).

Interfaces need to be sortable. In order for all three of hashing,
equality and sorting to be consistent, interfaces implement them using
the same principle as persistence. Interfaces are treated like "global
objects" and sort and hash using the same information a *reference* to
them would: their ``__name__`` and ``__module__``.

In this way, hashing, equality and sorting are consistent with each
other, and consistent with pickling:

.. doctest::

   >>> class IFoo(zope.interface.Interface):
   ...     pass
   >>> sys.modules[__name__].IFoo = IFoo # XXX, usually automatic
   >>> f1 = IFoo
   >>> pickled_f1 = pickle.dumps(f1)
   >>> class IFoo(zope.interface.Interface):
   ...     pass
   >>> sys.modules[__name__].IFoo = IFoo # XXX, usually automatic
   >>> IFoo == f1
   True
   >>> unpickled_f1 = pickle.loads(pickled_f1)
   >>> unpickled_f1 == IFoo == f1
   True

This isn't quite the case for classes; note how ``f1`` wasn't equal to
``Foo`` before pickling, but the unpickled value is:

.. doctest::

   >>> class Foo(object):
   ...     pass
   >>> sys.modules[__name__].Foo = Foo # XXX, usually automatic
   >>> f1 = Foo
   >>> pickled_f1 = pickle.dumps(Foo)
   >>> class Foo(object):
   ...     pass
   >>> sys.modules[__name__].Foo = Foo # XXX, usually automatic
   >>> f1 == Foo
   False
   >>> unpickled_f1 = pickle.loads(pickled_f1)
   >>> unpickled_f1 == Foo # Surprise!
   True
   >>> unpickled_f1 == f1
   False

For more information, and some rare potential pitfalls, see
:ref:`spec_eq_hash`.

.. rubric:: Footnotes

.. [#create] The main reason we subclass ``Interface`` is to cause the
             Python class statement to create an interface, rather
             than a class.

             It's possible to create interfaces by calling a special
             interface class directly.  Doing this, it's possible
             (and, on rare occasions, useful) to create interfaces
             that don't descend from ``Interface``.  Using this
             technique is beyond the scope of this document.

.. [#factory] Classes are factories.  They can be called to create
              their instances.  We expect that we will eventually
              extend the concept of implementation to other kinds of
              factories, so that we can declare the interfaces
              provided by the objects created.

.. [#compat] The goal is substitutability.  An object that provides an
             extending interface should be substitutable for an object
             that provides the extended interface.  In our example, an
             object that provides ``IBaz`` should be usable wherever an
             object that provides ``IBlat`` is expected.

             The interface implementation doesn't enforce this,
             but maybe it should do some checks.

.. [#class_sort] In Python 2, classes could be sorted, but the sort
                 was not stable (it also used the identity principle)
                 and not useful for persistence; this was considered a
                 bug that was fixed in Python 3.

.. [#hashable] In order to be hashable, you must implement both
               ``__eq__``  and ``__hash__``. If you only implement
               ``__eq__``, Python makes sure the type cannot be
               used in a dictionary, set, or with :func:`hash`. In
               Python 2, this wasn't the case, and forgetting to
               override ``__hash__`` was a constant source of bugs.

.. [#global_object] From the name of the pickle bytecode operator; it
                    varies depending on the protocol but always
                    includes "GLOBAL".