1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
# Tablib: format-agnostic tabular dataset library
[](https://jazzband.co/)
[](https://travis-ci.org/jazzband/tablib)
[](https://codecov.io/gh/jazzband/tablib)
_____ ______ ___________ ______
__ /_______ ____ /_ ___ /___(_)___ /_
_ __/_ __ `/__ __ \__ / __ / __ __ \
/ /_ / /_/ / _ /_/ /_ / _ / _ /_/ /
\__/ \__,_/ /_.___/ /_/ /_/ /_.___/
Tablib is a format-agnostic tabular dataset library, written in Python.
Output formats supported:
- Excel (Sets + Books)
- JSON (Sets + Books)
- YAML (Sets + Books)
- Pandas DataFrames (Sets)
- HTML (Sets)
- Jira (Sets)
- TSV (Sets)
- ODS (Sets)
- CSV (Sets)
- DBF (Sets)
Note that tablib *purposefully* excludes XML support. It always will. (Note: This is a
joke. Pull requests are welcome.)
## Overview
`tablib.Dataset()`
A Dataset is a table of tabular data.
It may or may not have a header row.
They can be build and manipulated as raw Python datatypes (Lists of tuples|dictionaries).
Datasets can be imported from JSON, YAML, DBF, and CSV;
they can be exported to XLSX, XLS, ODS, JSON, YAML, DBF, CSV, TSV, and HTML.
`tablib.Databook()`
A Databook is a set of Datasets.
The most common form of a Databook is an Excel file with multiple spreadsheets.
Databooks can be imported from JSON and YAML;
they can be exported to XLSX, XLS, ODS, JSON, and YAML.
## Usage
Populate fresh data files:
```python
headers = ('first_name', 'last_name')
data = [
('John', 'Adams'),
('George', 'Washington')
]
data = tablib.Dataset(*data, headers=headers)
```
Intelligently add new rows:
```python
>>> data.append(('Henry', 'Ford'))
```
Intelligently add new columns:
```python
>>> data.append_col((90, 67, 83), header='age')
```
Slice rows:
```python
>>> print(data[:2])
[('John', 'Adams', 90), ('George', 'Washington', 67)]
```
Slice columns by header:
```python
>>> print(data['first_name'])
['John', 'George', 'Henry']
```
Easily delete rows:
```python
>>> del data[1]
```
## Exports
Drumroll please...........
### JSON!
```python
>>> print(data.export('json'))
[
{
"last_name": "Adams",
"age": 90,
"first_name": "John"
},
{
"last_name": "Ford",
"age": 83,
"first_name": "Henry"
}
]
```
### YAML!
```python
>>> print(data.export('yaml'))
- {age: 90, first_name: John, last_name: Adams}
- {age: 83, first_name: Henry, last_name: Ford}
```
### CSV...
```python
>>> print(data.export('csv'))
first_name,last_name,age
John,Adams,90
Henry,Ford,83
```
### EXCEL!
```python
>>> with open('people.xls', 'wb') as f:
... f.write(data.export('xls'))
```
### DBF!
```python
>>> with open('people.dbf', 'wb') as f:
... f.write(data.export('dbf'))
```
### Pandas DataFrame!
```python
>>> print(data.export('df')):
first_name last_name age
0 John Adams 90
1 Henry Ford 83
```
It's that easy.
## Installation
To install tablib, simply:
```console
$ pip install tablib[pandas]
```
Make sure to check out [Tablib on PyPI](https://pypi.org/project/tablib/)!
## Contribute
Please see the [contributing guide](https://github.com/jazzband/tablib/blob/master/.github/CONTRIBUTING.md).
|