summaryrefslogtreecommitdiff
path: root/doc/build/orm/extensions
diff options
context:
space:
mode:
Diffstat (limited to 'doc/build/orm/extensions')
-rw-r--r--doc/build/orm/extensions/declarative.rst33
-rw-r--r--doc/build/orm/extensions/declarative/api.rst114
-rw-r--r--doc/build/orm/extensions/declarative/basic_use.rst133
-rw-r--r--doc/build/orm/extensions/declarative/index.rst32
-rw-r--r--doc/build/orm/extensions/declarative/inheritance.rst318
-rw-r--r--doc/build/orm/extensions/declarative/mixins.rst541
-rw-r--r--doc/build/orm/extensions/declarative/relationships.rst138
-rw-r--r--doc/build/orm/extensions/declarative/table_config.rst143
-rw-r--r--doc/build/orm/extensions/index.rst2
9 files changed, 1420 insertions, 34 deletions
diff --git a/doc/build/orm/extensions/declarative.rst b/doc/build/orm/extensions/declarative.rst
deleted file mode 100644
index 7d9e634b5..000000000
--- a/doc/build/orm/extensions/declarative.rst
+++ /dev/null
@@ -1,33 +0,0 @@
-.. _declarative_toplevel:
-
-Declarative
-===========
-
-.. automodule:: sqlalchemy.ext.declarative
-
-API Reference
--------------
-
-.. autofunction:: declarative_base
-
-.. autofunction:: as_declarative
-
-.. autoclass:: declared_attr
- :members:
-
-.. autofunction:: sqlalchemy.ext.declarative.api._declarative_constructor
-
-.. autofunction:: has_inherited_table
-
-.. autofunction:: synonym_for
-
-.. autofunction:: comparable_using
-
-.. autofunction:: instrument_declarative
-
-.. autoclass:: AbstractConcreteBase
-
-.. autoclass:: ConcreteBase
-
-.. autoclass:: DeferredReflection
- :members:
diff --git a/doc/build/orm/extensions/declarative/api.rst b/doc/build/orm/extensions/declarative/api.rst
new file mode 100644
index 000000000..67b66a970
--- /dev/null
+++ b/doc/build/orm/extensions/declarative/api.rst
@@ -0,0 +1,114 @@
+.. automodule:: sqlalchemy.ext.declarative
+
+===============
+Declarative API
+===============
+
+API Reference
+=============
+
+.. autofunction:: declarative_base
+
+.. autofunction:: as_declarative
+
+.. autoclass:: declared_attr
+ :members:
+
+.. autofunction:: sqlalchemy.ext.declarative.api._declarative_constructor
+
+.. autofunction:: has_inherited_table
+
+.. autofunction:: synonym_for
+
+.. autofunction:: comparable_using
+
+.. autofunction:: instrument_declarative
+
+.. autoclass:: AbstractConcreteBase
+
+.. autoclass:: ConcreteBase
+
+.. autoclass:: DeferredReflection
+ :members:
+
+
+Special Directives
+------------------
+
+``__declare_last__()``
+~~~~~~~~~~~~~~~~~~~~~~
+
+The ``__declare_last__()`` hook allows definition of
+a class level function that is automatically called by the
+:meth:`.MapperEvents.after_configured` event, which occurs after mappings are
+assumed to be completed and the 'configure' step has finished::
+
+ class MyClass(Base):
+ @classmethod
+ def __declare_last__(cls):
+ ""
+ # do something with mappings
+
+.. versionadded:: 0.7.3
+
+``__declare_first__()``
+~~~~~~~~~~~~~~~~~~~~~~~
+
+Like ``__declare_last__()``, but is called at the beginning of mapper
+configuration via the :meth:`.MapperEvents.before_configured` event::
+
+ class MyClass(Base):
+ @classmethod
+ def __declare_first__(cls):
+ ""
+ # do something before mappings are configured
+
+.. versionadded:: 0.9.3
+
+.. _declarative_abstract:
+
+``__abstract__``
+~~~~~~~~~~~~~~~~~~~
+
+``__abstract__`` causes declarative to skip the production
+of a table or mapper for the class entirely. A class can be added within a
+hierarchy in the same way as mixin (see :ref:`declarative_mixins`), allowing
+subclasses to extend just from the special class::
+
+ class SomeAbstractBase(Base):
+ __abstract__ = True
+
+ def some_helpful_method(self):
+ ""
+
+ @declared_attr
+ def __mapper_args__(cls):
+ return {"helpful mapper arguments":True}
+
+ class MyMappedClass(SomeAbstractBase):
+ ""
+
+One possible use of ``__abstract__`` is to use a distinct
+:class:`.MetaData` for different bases::
+
+ Base = declarative_base()
+
+ class DefaultBase(Base):
+ __abstract__ = True
+ metadata = MetaData()
+
+ class OtherBase(Base):
+ __abstract__ = True
+ metadata = MetaData()
+
+Above, classes which inherit from ``DefaultBase`` will use one
+:class:`.MetaData` as the registry of tables, and those which inherit from
+``OtherBase`` will use a different one. The tables themselves can then be
+created perhaps within distinct databases::
+
+ DefaultBase.metadata.create_all(some_engine)
+ OtherBase.metadata_create_all(some_other_engine)
+
+.. versionadded:: 0.7.3
+
+
diff --git a/doc/build/orm/extensions/declarative/basic_use.rst b/doc/build/orm/extensions/declarative/basic_use.rst
new file mode 100644
index 000000000..10b79e5a6
--- /dev/null
+++ b/doc/build/orm/extensions/declarative/basic_use.rst
@@ -0,0 +1,133 @@
+=========
+Basic Use
+=========
+
+SQLAlchemy object-relational configuration involves the
+combination of :class:`.Table`, :func:`.mapper`, and class
+objects to define a mapped class.
+:mod:`~sqlalchemy.ext.declarative` allows all three to be
+expressed at once within the class declaration. As much as
+possible, regular SQLAlchemy schema and ORM constructs are
+used directly, so that configuration between "classical" ORM
+usage and declarative remain highly similar.
+
+As a simple example::
+
+ from sqlalchemy.ext.declarative import declarative_base
+
+ Base = declarative_base()
+
+ class SomeClass(Base):
+ __tablename__ = 'some_table'
+ id = Column(Integer, primary_key=True)
+ name = Column(String(50))
+
+Above, the :func:`declarative_base` callable returns a new base class from
+which all mapped classes should inherit. When the class definition is
+completed, a new :class:`.Table` and :func:`.mapper` will have been generated.
+
+The resulting table and mapper are accessible via
+``__table__`` and ``__mapper__`` attributes on the
+``SomeClass`` class::
+
+ # access the mapped Table
+ SomeClass.__table__
+
+ # access the Mapper
+ SomeClass.__mapper__
+
+Defining Attributes
+===================
+
+In the previous example, the :class:`.Column` objects are
+automatically named with the name of the attribute to which they are
+assigned.
+
+To name columns explicitly with a name distinct from their mapped attribute,
+just give the column a name. Below, column "some_table_id" is mapped to the
+"id" attribute of `SomeClass`, but in SQL will be represented as
+"some_table_id"::
+
+ class SomeClass(Base):
+ __tablename__ = 'some_table'
+ id = Column("some_table_id", Integer, primary_key=True)
+
+Attributes may be added to the class after its construction, and they will be
+added to the underlying :class:`.Table` and
+:func:`.mapper` definitions as appropriate::
+
+ SomeClass.data = Column('data', Unicode)
+ SomeClass.related = relationship(RelatedInfo)
+
+Classes which are constructed using declarative can interact freely
+with classes that are mapped explicitly with :func:`.mapper`.
+
+It is recommended, though not required, that all tables
+share the same underlying :class:`~sqlalchemy.schema.MetaData` object,
+so that string-configured :class:`~sqlalchemy.schema.ForeignKey`
+references can be resolved without issue.
+
+Accessing the MetaData
+=======================
+
+The :func:`declarative_base` base class contains a
+:class:`.MetaData` object where newly defined
+:class:`.Table` objects are collected. This object is
+intended to be accessed directly for
+:class:`.MetaData`-specific operations. Such as, to issue
+CREATE statements for all tables::
+
+ engine = create_engine('sqlite://')
+ Base.metadata.create_all(engine)
+
+:func:`declarative_base` can also receive a pre-existing
+:class:`.MetaData` object, which allows a
+declarative setup to be associated with an already
+existing traditional collection of :class:`~sqlalchemy.schema.Table`
+objects::
+
+ mymetadata = MetaData()
+ Base = declarative_base(metadata=mymetadata)
+
+
+Class Constructor
+=================
+
+As a convenience feature, the :func:`declarative_base` sets a default
+constructor on classes which takes keyword arguments, and assigns them
+to the named attributes::
+
+ e = Engineer(primary_language='python')
+
+Mapper Configuration
+====================
+
+Declarative makes use of the :func:`~.orm.mapper` function internally
+when it creates the mapping to the declared table. The options
+for :func:`~.orm.mapper` are passed directly through via the
+``__mapper_args__`` class attribute. As always, arguments which reference
+locally mapped columns can reference them directly from within the
+class declaration::
+
+ from datetime import datetime
+
+ class Widget(Base):
+ __tablename__ = 'widgets'
+
+ id = Column(Integer, primary_key=True)
+ timestamp = Column(DateTime, nullable=False)
+
+ __mapper_args__ = {
+ 'version_id_col': timestamp,
+ 'version_id_generator': lambda v:datetime.now()
+ }
+
+
+.. _declarative_sql_expressions:
+
+Defining SQL Expressions
+========================
+
+See :ref:`mapper_sql_expressions` for examples on declaratively
+mapping attributes to SQL expressions.
+
diff --git a/doc/build/orm/extensions/declarative/index.rst b/doc/build/orm/extensions/declarative/index.rst
new file mode 100644
index 000000000..dc4f392f3
--- /dev/null
+++ b/doc/build/orm/extensions/declarative/index.rst
@@ -0,0 +1,32 @@
+.. _declarative_toplevel:
+
+===========
+Declarative
+===========
+
+The Declarative system is the typically used system provided by the SQLAlchemy
+ORM in order to define classes mapped to relational database tables. However,
+as noted in :ref:`classical_mapping`, Declarative is in fact a series of
+extensions that ride on top of the SQLAlchemy :func:`.mapper` construct.
+
+While the documentation typically refers to Declarative for most examples,
+the following sections will provide detailed information on how the
+Declarative API interacts with the basic :func:`.mapper` and Core :class:`.Table`
+systems, as well as how sophisticated patterns can be built using systems
+such as mixins.
+
+
+.. toctree::
+ :maxdepth: 2
+
+ basic_use
+ relationships
+ table_config
+ inheritance
+ mixins
+ api
+
+
+
+
+
diff --git a/doc/build/orm/extensions/declarative/inheritance.rst b/doc/build/orm/extensions/declarative/inheritance.rst
new file mode 100644
index 000000000..684b07bfd
--- /dev/null
+++ b/doc/build/orm/extensions/declarative/inheritance.rst
@@ -0,0 +1,318 @@
+.. _declarative_inheritance:
+
+Inheritance Configuration
+=========================
+
+Declarative supports all three forms of inheritance as intuitively
+as possible. The ``inherits`` mapper keyword argument is not needed
+as declarative will determine this from the class itself. The various
+"polymorphic" keyword arguments are specified using ``__mapper_args__``.
+
+Joined Table Inheritance
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+Joined table inheritance is defined as a subclass that defines its own
+table::
+
+ class Person(Base):
+ __tablename__ = 'people'
+ id = Column(Integer, primary_key=True)
+ discriminator = Column('type', String(50))
+ __mapper_args__ = {'polymorphic_on': discriminator}
+
+ class Engineer(Person):
+ __tablename__ = 'engineers'
+ __mapper_args__ = {'polymorphic_identity': 'engineer'}
+ id = Column(Integer, ForeignKey('people.id'), primary_key=True)
+ primary_language = Column(String(50))
+
+Note that above, the ``Engineer.id`` attribute, since it shares the
+same attribute name as the ``Person.id`` attribute, will in fact
+represent the ``people.id`` and ``engineers.id`` columns together,
+with the "Engineer.id" column taking precedence if queried directly.
+To provide the ``Engineer`` class with an attribute that represents
+only the ``engineers.id`` column, give it a different attribute name::
+
+ class Engineer(Person):
+ __tablename__ = 'engineers'
+ __mapper_args__ = {'polymorphic_identity': 'engineer'}
+ engineer_id = Column('id', Integer, ForeignKey('people.id'),
+ primary_key=True)
+ primary_language = Column(String(50))
+
+
+.. versionchanged:: 0.7 joined table inheritance favors the subclass
+ column over that of the superclass, such as querying above
+ for ``Engineer.id``. Prior to 0.7 this was the reverse.
+
+.. _declarative_single_table:
+
+Single Table Inheritance
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+Single table inheritance is defined as a subclass that does not have
+its own table; you just leave out the ``__table__`` and ``__tablename__``
+attributes::
+
+ class Person(Base):
+ __tablename__ = 'people'
+ id = Column(Integer, primary_key=True)
+ discriminator = Column('type', String(50))
+ __mapper_args__ = {'polymorphic_on': discriminator}
+
+ class Engineer(Person):
+ __mapper_args__ = {'polymorphic_identity': 'engineer'}
+ primary_language = Column(String(50))
+
+When the above mappers are configured, the ``Person`` class is mapped
+to the ``people`` table *before* the ``primary_language`` column is
+defined, and this column will not be included in its own mapping.
+When ``Engineer`` then defines the ``primary_language`` column, the
+column is added to the ``people`` table so that it is included in the
+mapping for ``Engineer`` and is also part of the table's full set of
+columns. Columns which are not mapped to ``Person`` are also excluded
+from any other single or joined inheriting classes using the
+``exclude_properties`` mapper argument. Below, ``Manager`` will have
+all the attributes of ``Person`` and ``Manager`` but *not* the
+``primary_language`` attribute of ``Engineer``::
+
+ class Manager(Person):
+ __mapper_args__ = {'polymorphic_identity': 'manager'}
+ golf_swing = Column(String(50))
+
+The attribute exclusion logic is provided by the
+``exclude_properties`` mapper argument, and declarative's default
+behavior can be disabled by passing an explicit ``exclude_properties``
+collection (empty or otherwise) to the ``__mapper_args__``.
+
+Resolving Column Conflicts
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Note above that the ``primary_language`` and ``golf_swing`` columns
+are "moved up" to be applied to ``Person.__table__``, as a result of their
+declaration on a subclass that has no table of its own. A tricky case
+comes up when two subclasses want to specify *the same* column, as below::
+
+ class Person(Base):
+ __tablename__ = 'people'
+ id = Column(Integer, primary_key=True)
+ discriminator = Column('type', String(50))
+ __mapper_args__ = {'polymorphic_on': discriminator}
+
+ class Engineer(Person):
+ __mapper_args__ = {'polymorphic_identity': 'engineer'}
+ start_date = Column(DateTime)
+
+ class Manager(Person):
+ __mapper_args__ = {'polymorphic_identity': 'manager'}
+ start_date = Column(DateTime)
+
+Above, the ``start_date`` column declared on both ``Engineer`` and ``Manager``
+will result in an error::
+
+ sqlalchemy.exc.ArgumentError: Column 'start_date' on class
+ <class '__main__.Manager'> conflicts with existing
+ column 'people.start_date'
+
+In a situation like this, Declarative can't be sure
+of the intent, especially if the ``start_date`` columns had, for example,
+different types. A situation like this can be resolved by using
+:class:`.declared_attr` to define the :class:`.Column` conditionally, taking
+care to return the **existing column** via the parent ``__table__`` if it
+already exists::
+
+ from sqlalchemy.ext.declarative import declared_attr
+
+ class Person(Base):
+ __tablename__ = 'people'
+ id = Column(Integer, primary_key=True)
+ discriminator = Column('type', String(50))
+ __mapper_args__ = {'polymorphic_on': discriminator}
+
+ class Engineer(Person):
+ __mapper_args__ = {'polymorphic_identity': 'engineer'}
+
+ @declared_attr
+ def start_date(cls):
+ "Start date column, if not present already."
+ return Person.__table__.c.get('start_date', Column(DateTime))
+
+ class Manager(Person):
+ __mapper_args__ = {'polymorphic_identity': 'manager'}
+
+ @declared_attr
+ def start_date(cls):
+ "Start date column, if not present already."
+ return Person.__table__.c.get('start_date', Column(DateTime))
+
+Above, when ``Manager`` is mapped, the ``start_date`` column is
+already present on the ``Person`` class. Declarative lets us return
+that :class:`.Column` as a result in this case, where it knows to skip
+re-assigning the same column. If the mapping is mis-configured such
+that the ``start_date`` column is accidentally re-assigned to a
+different table (such as, if we changed ``Manager`` to be joined
+inheritance without fixing ``start_date``), an error is raised which
+indicates an existing :class:`.Column` is trying to be re-assigned to
+a different owning :class:`.Table`.
+
+.. versionadded:: 0.8 :class:`.declared_attr` can be used on a non-mixin
+ class, and the returned :class:`.Column` or other mapped attribute
+ will be applied to the mapping as any other attribute. Previously,
+ the resulting attribute would be ignored, and also result in a warning
+ being emitted when a subclass was created.
+
+.. versionadded:: 0.8 :class:`.declared_attr`, when used either with a
+ mixin or non-mixin declarative class, can return an existing
+ :class:`.Column` already assigned to the parent :class:`.Table`,
+ to indicate that the re-assignment of the :class:`.Column` should be
+ skipped, however should still be mapped on the target class,
+ in order to resolve duplicate column conflicts.
+
+The same concept can be used with mixin classes (see
+:ref:`declarative_mixins`)::
+
+ class Person(Base):
+ __tablename__ = 'people'
+ id = Column(Integer, primary_key=True)
+ discriminator = Column('type', String(50))
+ __mapper_args__ = {'polymorphic_on': discriminator}
+
+ class HasStartDate(object):
+ @declared_attr
+ def start_date(cls):
+ return cls.__table__.c.get('start_date', Column(DateTime))
+
+ class Engineer(HasStartDate, Person):
+ __mapper_args__ = {'polymorphic_identity': 'engineer'}
+
+ class Manager(HasStartDate, Person):
+ __mapper_args__ = {'polymorphic_identity': 'manager'}
+
+The above mixin checks the local ``__table__`` attribute for the column.
+Because we're using single table inheritance, we're sure that in this case,
+``cls.__table__`` refers to ``People.__table__``. If we were mixing joined-
+and single-table inheritance, we might want our mixin to check more carefully
+if ``cls.__table__`` is really the :class:`.Table` we're looking for.
+
+Concrete Table Inheritance
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Concrete is defined as a subclass which has its own table and sets the
+``concrete`` keyword argument to ``True``::
+
+ class Person(Base):
+ __tablename__ = 'people'
+ id = Column(Integer, primary_key=True)
+ name = Column(String(50))
+
+ class Engineer(Person):
+ __tablename__ = 'engineers'
+ __mapper_args__ = {'concrete':True}
+ id = Column(Integer, primary_key=True)
+ primary_language = Column(String(50))
+ name = Column(String(50))
+
+Usage of an abstract base class is a little less straightforward as it
+requires usage of :func:`~sqlalchemy.orm.util.polymorphic_union`,
+which needs to be created with the :class:`.Table` objects
+before the class is built::
+
+ engineers = Table('engineers', Base.metadata,
+ Column('id', Integer, primary_key=True),
+ Column('name', String(50)),
+ Column('primary_language', String(50))
+ )
+ managers = Table('managers', Base.metadata,
+ Column('id', Integer, primary_key=True),
+ Column('name', String(50)),
+ Column('golf_swing', String(50))
+ )
+
+ punion = polymorphic_union({
+ 'engineer':engineers,
+ 'manager':managers
+ }, 'type', 'punion')
+
+ class Person(Base):
+ __table__ = punion
+ __mapper_args__ = {'polymorphic_on':punion.c.type}
+
+ class Engineer(Person):
+ __table__ = engineers
+ __mapper_args__ = {'polymorphic_identity':'engineer', 'concrete':True}
+
+ class Manager(Person):
+ __table__ = managers
+ __mapper_args__ = {'polymorphic_identity':'manager', 'concrete':True}
+
+.. _declarative_concrete_helpers:
+
+Using the Concrete Helpers
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Helper classes provides a simpler pattern for concrete inheritance.
+With these objects, the ``__declare_first__`` helper is used to configure the
+"polymorphic" loader for the mapper after all subclasses have been declared.
+
+.. versionadded:: 0.7.3
+
+An abstract base can be declared using the
+:class:`.AbstractConcreteBase` class::
+
+ from sqlalchemy.ext.declarative import AbstractConcreteBase
+
+ class Employee(AbstractConcreteBase, Base):
+ pass
+
+To have a concrete ``employee`` table, use :class:`.ConcreteBase` instead::
+
+ from sqlalchemy.ext.declarative import ConcreteBase
+
+ class Employee(ConcreteBase, Base):
+ __tablename__ = 'employee'
+ employee_id = Column(Integer, primary_key=True)
+ name = Column(String(50))
+ __mapper_args__ = {
+ 'polymorphic_identity':'employee',
+ 'concrete':True}
+
+
+Either ``Employee`` base can be used in the normal fashion::
+
+ class Manager(Employee):
+ __tablename__ = 'manager'
+ employee_id = Column(Integer, primary_key=True)
+ name = Column(String(50))
+ manager_data = Column(String(40))
+ __mapper_args__ = {
+ 'polymorphic_identity':'manager',
+ 'concrete':True}
+
+ class Engineer(Employee):
+ __tablename__ = 'engineer'
+ employee_id = Column(Integer, primary_key=True)
+ name = Column(String(50))
+ engineer_info = Column(String(40))
+ __mapper_args__ = {'polymorphic_identity':'engineer',
+ 'concrete':True}
+
+
+The :class:`.AbstractConcreteBase` class is itself mapped, and can be
+used as a target of relationships::
+
+ class Company(Base):
+ __tablename__ = 'company'
+
+ id = Column(Integer, primary_key=True)
+ employees = relationship("Employee",
+ primaryjoin="Company.id == Employee.company_id")
+
+
+.. versionchanged:: 0.9.3 Support for use of :class:`.AbstractConcreteBase`
+ as the target of a :func:`.relationship` has been improved.
+
+It can also be queried directly::
+
+ for employee in session.query(Employee).filter(Employee.name == 'qbert'):
+ print(employee)
+
diff --git a/doc/build/orm/extensions/declarative/mixins.rst b/doc/build/orm/extensions/declarative/mixins.rst
new file mode 100644
index 000000000..d64477649
--- /dev/null
+++ b/doc/build/orm/extensions/declarative/mixins.rst
@@ -0,0 +1,541 @@
+.. _declarative_mixins:
+
+Mixin and Custom Base Classes
+==============================
+
+A common need when using :mod:`~sqlalchemy.ext.declarative` is to
+share some functionality, such as a set of common columns, some common
+table options, or other mapped properties, across many
+classes. The standard Python idioms for this is to have the classes
+inherit from a base which includes these common features.
+
+When using :mod:`~sqlalchemy.ext.declarative`, this idiom is allowed
+via the usage of a custom declarative base class, as well as a "mixin" class
+which is inherited from in addition to the primary base. Declarative
+includes several helper features to make this work in terms of how
+mappings are declared. An example of some commonly mixed-in
+idioms is below::
+
+ from sqlalchemy.ext.declarative import declared_attr
+
+ class MyMixin(object):
+
+ @declared_attr
+ def __tablename__(cls):
+ return cls.__name__.lower()
+
+ __table_args__ = {'mysql_engine': 'InnoDB'}
+ __mapper_args__= {'always_refresh': True}
+
+ id = Column(Integer, primary_key=True)
+
+ class MyModel(MyMixin, Base):
+ name = Column(String(1000))
+
+Where above, the class ``MyModel`` will contain an "id" column
+as the primary key, a ``__tablename__`` attribute that derives
+from the name of the class itself, as well as ``__table_args__``
+and ``__mapper_args__`` defined by the ``MyMixin`` mixin class.
+
+There's no fixed convention over whether ``MyMixin`` precedes
+``Base`` or not. Normal Python method resolution rules apply, and
+the above example would work just as well with::
+
+ class MyModel(Base, MyMixin):
+ name = Column(String(1000))
+
+This works because ``Base`` here doesn't define any of the
+variables that ``MyMixin`` defines, i.e. ``__tablename__``,
+``__table_args__``, ``id``, etc. If the ``Base`` did define
+an attribute of the same name, the class placed first in the
+inherits list would determine which attribute is used on the
+newly defined class.
+
+Augmenting the Base
+~~~~~~~~~~~~~~~~~~~
+
+In addition to using a pure mixin, most of the techniques in this
+section can also be applied to the base class itself, for patterns that
+should apply to all classes derived from a particular base. This is achieved
+using the ``cls`` argument of the :func:`.declarative_base` function::
+
+ from sqlalchemy.ext.declarative import declared_attr
+
+ class Base(object):
+ @declared_attr
+ def __tablename__(cls):
+ return cls.__name__.lower()
+
+ __table_args__ = {'mysql_engine': 'InnoDB'}
+
+ id = Column(Integer, primary_key=True)
+
+ from sqlalchemy.ext.declarative import declarative_base
+
+ Base = declarative_base(cls=Base)
+
+ class MyModel(Base):
+ name = Column(String(1000))
+
+Where above, ``MyModel`` and all other classes that derive from ``Base`` will
+have a table name derived from the class name, an ``id`` primary key column,
+as well as the "InnoDB" engine for MySQL.
+
+Mixing in Columns
+~~~~~~~~~~~~~~~~~
+
+The most basic way to specify a column on a mixin is by simple
+declaration::
+
+ class TimestampMixin(object):
+ created_at = Column(DateTime, default=func.now())
+
+ class MyModel(TimestampMixin, Base):
+ __tablename__ = 'test'
+
+ id = Column(Integer, primary_key=True)
+ name = Column(String(1000))
+
+Where above, all declarative classes that include ``TimestampMixin``
+will also have a column ``created_at`` that applies a timestamp to
+all row insertions.
+
+Those familiar with the SQLAlchemy expression language know that
+the object identity of clause elements defines their role in a schema.
+Two ``Table`` objects ``a`` and ``b`` may both have a column called
+``id``, but the way these are differentiated is that ``a.c.id``
+and ``b.c.id`` are two distinct Python objects, referencing their
+parent tables ``a`` and ``b`` respectively.
+
+In the case of the mixin column, it seems that only one
+:class:`.Column` object is explicitly created, yet the ultimate
+``created_at`` column above must exist as a distinct Python object
+for each separate destination class. To accomplish this, the declarative
+extension creates a **copy** of each :class:`.Column` object encountered on
+a class that is detected as a mixin.
+
+This copy mechanism is limited to simple columns that have no foreign
+keys, as a :class:`.ForeignKey` itself contains references to columns
+which can't be properly recreated at this level. For columns that
+have foreign keys, as well as for the variety of mapper-level constructs
+that require destination-explicit context, the
+:class:`~.declared_attr` decorator is provided so that
+patterns common to many classes can be defined as callables::
+
+ from sqlalchemy.ext.declarative import declared_attr
+
+ class ReferenceAddressMixin(object):
+ @declared_attr
+ def address_id(cls):
+ return Column(Integer, ForeignKey('address.id'))
+
+ class User(ReferenceAddressMixin, Base):
+ __tablename__ = 'user'
+ id = Column(Integer, primary_key=True)
+
+Where above, the ``address_id`` class-level callable is executed at the
+point at which the ``User`` class is constructed, and the declarative
+extension can use the resulting :class:`.Column` object as returned by
+the method without the need to copy it.
+
+.. versionchanged:: > 0.6.5
+ Rename 0.6.5 ``sqlalchemy.util.classproperty``
+ into :class:`~.declared_attr`.
+
+Columns generated by :class:`~.declared_attr` can also be
+referenced by ``__mapper_args__`` to a limited degree, currently
+by ``polymorphic_on`` and ``version_id_col``; the declarative extension
+will resolve them at class construction time::
+
+ class MyMixin:
+ @declared_attr
+ def type_(cls):
+ return Column(String(50))
+
+ __mapper_args__= {'polymorphic_on':type_}
+
+ class MyModel(MyMixin, Base):
+ __tablename__='test'
+ id = Column(Integer, primary_key=True)
+
+
+Mixing in Relationships
+~~~~~~~~~~~~~~~~~~~~~~~
+
+Relationships created by :func:`~sqlalchemy.orm.relationship` are provided
+with declarative mixin classes exclusively using the
+:class:`.declared_attr` approach, eliminating any ambiguity
+which could arise when copying a relationship and its possibly column-bound
+contents. Below is an example which combines a foreign key column and a
+relationship so that two classes ``Foo`` and ``Bar`` can both be configured to
+reference a common target class via many-to-one::
+
+ class RefTargetMixin(object):
+ @declared_attr
+ def target_id(cls):
+ return Column('target_id', ForeignKey('target.id'))
+
+ @declared_attr
+ def target(cls):
+ return relationship("Target")
+
+ class Foo(RefTargetMixin, Base):
+ __tablename__ = 'foo'
+ id = Column(Integer, primary_key=True)
+
+ class Bar(RefTargetMixin, Base):
+ __tablename__ = 'bar'
+ id = Column(Integer, primary_key=True)
+
+ class Target(Base):
+ __tablename__ = 'target'
+ id = Column(Integer, primary_key=True)
+
+
+Using Advanced Relationship Arguments (e.g. ``primaryjoin``, etc.)
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+:func:`~sqlalchemy.orm.relationship` definitions which require explicit
+primaryjoin, order_by etc. expressions should in all but the most
+simplistic cases use **late bound** forms
+for these arguments, meaning, using either the string form or a lambda.
+The reason for this is that the related :class:`.Column` objects which are to
+be configured using ``@declared_attr`` are not available to another
+``@declared_attr`` attribute; while the methods will work and return new
+:class:`.Column` objects, those are not the :class:`.Column` objects that
+Declarative will be using as it calls the methods on its own, thus using
+*different* :class:`.Column` objects.
+
+The canonical example is the primaryjoin condition that depends upon
+another mixed-in column::
+
+ class RefTargetMixin(object):
+ @declared_attr
+ def target_id(cls):
+ return Column('target_id', ForeignKey('target.id'))
+
+ @declared_attr
+ def target(cls):
+ return relationship(Target,
+ primaryjoin=Target.id==cls.target_id # this is *incorrect*
+ )
+
+Mapping a class using the above mixin, we will get an error like::
+
+ sqlalchemy.exc.InvalidRequestError: this ForeignKey's parent column is not
+ yet associated with a Table.
+
+This is because the ``target_id`` :class:`.Column` we've called upon in our
+``target()`` method is not the same :class:`.Column` that declarative is
+actually going to map to our table.
+
+The condition above is resolved using a lambda::
+
+ class RefTargetMixin(object):
+ @declared_attr
+ def target_id(cls):
+ return Column('target_id', ForeignKey('target.id'))
+
+ @declared_attr
+ def target(cls):
+ return relationship(Target,
+ primaryjoin=lambda: Target.id==cls.target_id
+ )
+
+or alternatively, the string form (which ultimately generates a lambda)::
+
+ class RefTargetMixin(object):
+ @declared_attr
+ def target_id(cls):
+ return Column('target_id', ForeignKey('target.id'))
+
+ @declared_attr
+ def target(cls):
+ return relationship("Target",
+ primaryjoin="Target.id==%s.target_id" % cls.__name__
+ )
+
+Mixing in deferred(), column_property(), and other MapperProperty classes
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Like :func:`~sqlalchemy.orm.relationship`, all
+:class:`~sqlalchemy.orm.interfaces.MapperProperty` subclasses such as
+:func:`~sqlalchemy.orm.deferred`, :func:`~sqlalchemy.orm.column_property`,
+etc. ultimately involve references to columns, and therefore, when
+used with declarative mixins, have the :class:`.declared_attr`
+requirement so that no reliance on copying is needed::
+
+ class SomethingMixin(object):
+
+ @declared_attr
+ def dprop(cls):
+ return deferred(Column(Integer))
+
+ class Something(SomethingMixin, Base):
+ __tablename__ = "something"
+
+The :func:`.column_property` or other construct may refer
+to other columns from the mixin. These are copied ahead of time before
+the :class:`.declared_attr` is invoked::
+
+ class SomethingMixin(object):
+ x = Column(Integer)
+
+ y = Column(Integer)
+
+ @declared_attr
+ def x_plus_y(cls):
+ return column_property(cls.x + cls.y)
+
+
+.. versionchanged:: 1.0.0 mixin columns are copied to the final mapped class
+ so that :class:`.declared_attr` methods can access the actual column
+ that will be mapped.
+
+Mixing in Association Proxy and Other Attributes
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Mixins can specify user-defined attributes as well as other extension
+units such as :func:`.association_proxy`. The usage of
+:class:`.declared_attr` is required in those cases where the attribute must
+be tailored specifically to the target subclass. An example is when
+constructing multiple :func:`.association_proxy` attributes which each
+target a different type of child object. Below is an
+:func:`.association_proxy` / mixin example which provides a scalar list of
+string values to an implementing class::
+
+ from sqlalchemy import Column, Integer, ForeignKey, String
+ from sqlalchemy.orm import relationship
+ from sqlalchemy.ext.associationproxy import association_proxy
+ from sqlalchemy.ext.declarative import declarative_base, declared_attr
+
+ Base = declarative_base()
+
+ class HasStringCollection(object):
+ @declared_attr
+ def _strings(cls):
+ class StringAttribute(Base):
+ __tablename__ = cls.string_table_name
+ id = Column(Integer, primary_key=True)
+ value = Column(String(50), nullable=False)
+ parent_id = Column(Integer,
+ ForeignKey('%s.id' % cls.__tablename__),
+ nullable=False)
+ def __init__(self, value):
+ self.value = value
+
+ return relationship(StringAttribute)
+
+ @declared_attr
+ def strings(cls):
+ return association_proxy('_strings', 'value')
+
+ class TypeA(HasStringCollection, Base):
+ __tablename__ = 'type_a'
+ string_table_name = 'type_a_strings'
+ id = Column(Integer(), primary_key=True)
+
+ class TypeB(HasStringCollection, Base):
+ __tablename__ = 'type_b'
+ string_table_name = 'type_b_strings'
+ id = Column(Integer(), primary_key=True)
+
+Above, the ``HasStringCollection`` mixin produces a :func:`.relationship`
+which refers to a newly generated class called ``StringAttribute``. The
+``StringAttribute`` class is generated with its own :class:`.Table`
+definition which is local to the parent class making usage of the
+``HasStringCollection`` mixin. It also produces an :func:`.association_proxy`
+object which proxies references to the ``strings`` attribute onto the ``value``
+attribute of each ``StringAttribute`` instance.
+
+``TypeA`` or ``TypeB`` can be instantiated given the constructor
+argument ``strings``, a list of strings::
+
+ ta = TypeA(strings=['foo', 'bar'])
+ tb = TypeA(strings=['bat', 'bar'])
+
+This list will generate a collection
+of ``StringAttribute`` objects, which are persisted into a table that's
+local to either the ``type_a_strings`` or ``type_b_strings`` table::
+
+ >>> print ta._strings
+ [<__main__.StringAttribute object at 0x10151cd90>,
+ <__main__.StringAttribute object at 0x10151ce10>]
+
+When constructing the :func:`.association_proxy`, the
+:class:`.declared_attr` decorator must be used so that a distinct
+:func:`.association_proxy` object is created for each of the ``TypeA``
+and ``TypeB`` classes.
+
+.. versionadded:: 0.8 :class:`.declared_attr` is usable with non-mapped
+ attributes, including user-defined attributes as well as
+ :func:`.association_proxy`.
+
+
+Controlling table inheritance with mixins
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The ``__tablename__`` attribute may be used to provide a function that
+will determine the name of the table used for each class in an inheritance
+hierarchy, as well as whether a class has its own distinct table.
+
+This is achieved using the :class:`.declared_attr` indicator in conjunction
+with a method named ``__tablename__()``. Declarative will always
+invoke :class:`.declared_attr` for the special names
+``__tablename__``, ``__mapper_args__`` and ``__table_args__``
+function **for each mapped class in the hierarchy**. The function therefore
+needs to expect to receive each class individually and to provide the
+correct answer for each.
+
+For example, to create a mixin that gives every class a simple table
+name based on class name::
+
+ from sqlalchemy.ext.declarative import declared_attr
+
+ class Tablename:
+ @declared_attr
+ def __tablename__(cls):
+ return cls.__name__.lower()
+
+ class Person(Tablename, Base):
+ id = Column(Integer, primary_key=True)
+ discriminator = Column('type', String(50))
+ __mapper_args__ = {'polymorphic_on': discriminator}
+
+ class Engineer(Person):
+ __tablename__ = None
+ __mapper_args__ = {'polymorphic_identity': 'engineer'}
+ primary_language = Column(String(50))
+
+Alternatively, we can modify our ``__tablename__`` function to return
+``None`` for subclasses, using :func:`.has_inherited_table`. This has
+the effect of those subclasses being mapped with single table inheritance
+agaisnt the parent::
+
+ from sqlalchemy.ext.declarative import declared_attr
+ from sqlalchemy.ext.declarative import has_inherited_table
+
+ class Tablename(object):
+ @declared_attr
+ def __tablename__(cls):
+ if has_inherited_table(cls):
+ return None
+ return cls.__name__.lower()
+
+ class Person(Tablename, Base):
+ id = Column(Integer, primary_key=True)
+ discriminator = Column('type', String(50))
+ __mapper_args__ = {'polymorphic_on': discriminator}
+
+ class Engineer(Person):
+ primary_language = Column(String(50))
+ __mapper_args__ = {'polymorphic_identity': 'engineer'}
+
+.. _mixin_inheritance_columns:
+
+Mixing in Columns in Inheritance Scenarios
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+In constrast to how ``__tablename__`` and other special names are handled when
+used with :class:`.declared_attr`, when we mix in columns and properties (e.g.
+relationships, column properties, etc.), the function is
+invoked for the **base class only** in the hierarchy. Below, only the
+``Person`` class will receive a column
+called ``id``; the mapping will fail on ``Engineer``, which is not given
+a primary key::
+
+ class HasId(object):
+ @declared_attr
+ def id(cls):
+ return Column('id', Integer, primary_key=True)
+
+ class Person(HasId, Base):
+ __tablename__ = 'person'
+ discriminator = Column('type', String(50))
+ __mapper_args__ = {'polymorphic_on': discriminator}
+
+ class Engineer(Person):
+ __tablename__ = 'engineer'
+ primary_language = Column(String(50))
+ __mapper_args__ = {'polymorphic_identity': 'engineer'}
+
+It is usually the case in joined-table inheritance that we want distinctly
+named columns on each subclass. However in this case, we may want to have
+an ``id`` column on every table, and have them refer to each other via
+foreign key. We can achieve this as a mixin by using the
+:attr:`.declared_attr.cascading` modifier, which indicates that the
+function should be invoked **for each class in the hierarchy**, just like
+it does for ``__tablename__``::
+
+ class HasId(object):
+ @declared_attr.cascading
+ def id(cls):
+ if has_inherited_table(cls):
+ return Column('id',
+ Integer,
+ ForeignKey('person.id'), primary_key=True)
+ else:
+ return Column('id', Integer, primary_key=True)
+
+ class Person(HasId, Base):
+ __tablename__ = 'person'
+ discriminator = Column('type', String(50))
+ __mapper_args__ = {'polymorphic_on': discriminator}
+
+ class Engineer(Person):
+ __tablename__ = 'engineer'
+ primary_language = Column(String(50))
+ __mapper_args__ = {'polymorphic_identity': 'engineer'}
+
+
+.. versionadded:: 1.0.0 added :attr:`.declared_attr.cascading`.
+
+Combining Table/Mapper Arguments from Multiple Mixins
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+In the case of ``__table_args__`` or ``__mapper_args__``
+specified with declarative mixins, you may want to combine
+some parameters from several mixins with those you wish to
+define on the class iteself. The
+:class:`.declared_attr` decorator can be used
+here to create user-defined collation routines that pull
+from multiple collections::
+
+ from sqlalchemy.ext.declarative import declared_attr
+
+ class MySQLSettings(object):
+ __table_args__ = {'mysql_engine':'InnoDB'}
+
+ class MyOtherMixin(object):
+ __table_args__ = {'info':'foo'}
+
+ class MyModel(MySQLSettings, MyOtherMixin, Base):
+ __tablename__='my_model'
+
+ @declared_attr
+ def __table_args__(cls):
+ args = dict()
+ args.update(MySQLSettings.__table_args__)
+ args.update(MyOtherMixin.__table_args__)
+ return args
+
+ id = Column(Integer, primary_key=True)
+
+Creating Indexes with Mixins
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+To define a named, potentially multicolumn :class:`.Index` that applies to all
+tables derived from a mixin, use the "inline" form of :class:`.Index` and
+establish it as part of ``__table_args__``::
+
+ class MyMixin(object):
+ a = Column(Integer)
+ b = Column(Integer)
+
+ @declared_attr
+ def __table_args__(cls):
+ return (Index('test_idx_%s' % cls.__tablename__, 'a', 'b'),)
+
+ class MyModel(MyMixin, Base):
+ __tablename__ = 'atable'
+ c = Column(Integer,primary_key=True)
diff --git a/doc/build/orm/extensions/declarative/relationships.rst b/doc/build/orm/extensions/declarative/relationships.rst
new file mode 100644
index 000000000..fb53c28bb
--- /dev/null
+++ b/doc/build/orm/extensions/declarative/relationships.rst
@@ -0,0 +1,138 @@
+.. _declarative_configuring_relationships:
+
+=========================
+Configuring Relationships
+=========================
+
+Relationships to other classes are done in the usual way, with the added
+feature that the class specified to :func:`~sqlalchemy.orm.relationship`
+may be a string name. The "class registry" associated with ``Base``
+is used at mapper compilation time to resolve the name into the actual
+class object, which is expected to have been defined once the mapper
+configuration is used::
+
+ class User(Base):
+ __tablename__ = 'users'
+
+ id = Column(Integer, primary_key=True)
+ name = Column(String(50))
+ addresses = relationship("Address", backref="user")
+
+ class Address(Base):
+ __tablename__ = 'addresses'
+
+ id = Column(Integer, primary_key=True)
+ email = Column(String(50))
+ user_id = Column(Integer, ForeignKey('users.id'))
+
+Column constructs, since they are just that, are immediately usable,
+as below where we define a primary join condition on the ``Address``
+class using them::
+
+ class Address(Base):
+ __tablename__ = 'addresses'
+
+ id = Column(Integer, primary_key=True)
+ email = Column(String(50))
+ user_id = Column(Integer, ForeignKey('users.id'))
+ user = relationship(User, primaryjoin=user_id == User.id)
+
+In addition to the main argument for :func:`~sqlalchemy.orm.relationship`,
+other arguments which depend upon the columns present on an as-yet
+undefined class may also be specified as strings. These strings are
+evaluated as Python expressions. The full namespace available within
+this evaluation includes all classes mapped for this declarative base,
+as well as the contents of the ``sqlalchemy`` package, including
+expression functions like :func:`~sqlalchemy.sql.expression.desc` and
+:attr:`~sqlalchemy.sql.expression.func`::
+
+ class User(Base):
+ # ....
+ addresses = relationship("Address",
+ order_by="desc(Address.email)",
+ primaryjoin="Address.user_id==User.id")
+
+For the case where more than one module contains a class of the same name,
+string class names can also be specified as module-qualified paths
+within any of these string expressions::
+
+ class User(Base):
+ # ....
+ addresses = relationship("myapp.model.address.Address",
+ order_by="desc(myapp.model.address.Address.email)",
+ primaryjoin="myapp.model.address.Address.user_id=="
+ "myapp.model.user.User.id")
+
+The qualified path can be any partial path that removes ambiguity between
+the names. For example, to disambiguate between
+``myapp.model.address.Address`` and ``myapp.model.lookup.Address``,
+we can specify ``address.Address`` or ``lookup.Address``::
+
+ class User(Base):
+ # ....
+ addresses = relationship("address.Address",
+ order_by="desc(address.Address.email)",
+ primaryjoin="address.Address.user_id=="
+ "User.id")
+
+.. versionadded:: 0.8
+ module-qualified paths can be used when specifying string arguments
+ with Declarative, in order to specify specific modules.
+
+Two alternatives also exist to using string-based attributes. A lambda
+can also be used, which will be evaluated after all mappers have been
+configured::
+
+ class User(Base):
+ # ...
+ addresses = relationship(lambda: Address,
+ order_by=lambda: desc(Address.email),
+ primaryjoin=lambda: Address.user_id==User.id)
+
+Or, the relationship can be added to the class explicitly after the classes
+are available::
+
+ User.addresses = relationship(Address,
+ primaryjoin=Address.user_id==User.id)
+
+
+
+.. _declarative_many_to_many:
+
+Configuring Many-to-Many Relationships
+======================================
+
+Many-to-many relationships are also declared in the same way
+with declarative as with traditional mappings. The
+``secondary`` argument to
+:func:`.relationship` is as usual passed a
+:class:`.Table` object, which is typically declared in the
+traditional way. The :class:`.Table` usually shares
+the :class:`.MetaData` object used by the declarative base::
+
+ keywords = Table(
+ 'keywords', Base.metadata,
+ Column('author_id', Integer, ForeignKey('authors.id')),
+ Column('keyword_id', Integer, ForeignKey('keywords.id'))
+ )
+
+ class Author(Base):
+ __tablename__ = 'authors'
+ id = Column(Integer, primary_key=True)
+ keywords = relationship("Keyword", secondary=keywords)
+
+Like other :func:`~sqlalchemy.orm.relationship` arguments, a string is accepted
+as well, passing the string name of the table as defined in the
+``Base.metadata.tables`` collection::
+
+ class Author(Base):
+ __tablename__ = 'authors'
+ id = Column(Integer, primary_key=True)
+ keywords = relationship("Keyword", secondary="keywords")
+
+As with traditional mapping, its generally not a good idea to use
+a :class:`.Table` as the "secondary" argument which is also mapped to
+a class, unless the :func:`.relationship` is declared with ``viewonly=True``.
+Otherwise, the unit-of-work system may attempt duplicate INSERT and
+DELETE statements against the underlying table.
+
diff --git a/doc/build/orm/extensions/declarative/table_config.rst b/doc/build/orm/extensions/declarative/table_config.rst
new file mode 100644
index 000000000..9a621e6dd
--- /dev/null
+++ b/doc/build/orm/extensions/declarative/table_config.rst
@@ -0,0 +1,143 @@
+.. _declarative_table_args:
+
+===================
+Table Configuration
+===================
+
+Table arguments other than the name, metadata, and mapped Column
+arguments are specified using the ``__table_args__`` class attribute.
+This attribute accommodates both positional as well as keyword
+arguments that are normally sent to the
+:class:`~sqlalchemy.schema.Table` constructor.
+The attribute can be specified in one of two forms. One is as a
+dictionary::
+
+ class MyClass(Base):
+ __tablename__ = 'sometable'
+ __table_args__ = {'mysql_engine':'InnoDB'}
+
+The other, a tuple, where each argument is positional
+(usually constraints)::
+
+ class MyClass(Base):
+ __tablename__ = 'sometable'
+ __table_args__ = (
+ ForeignKeyConstraint(['id'], ['remote_table.id']),
+ UniqueConstraint('foo'),
+ )
+
+Keyword arguments can be specified with the above form by
+specifying the last argument as a dictionary::
+
+ class MyClass(Base):
+ __tablename__ = 'sometable'
+ __table_args__ = (
+ ForeignKeyConstraint(['id'], ['remote_table.id']),
+ UniqueConstraint('foo'),
+ {'autoload':True}
+ )
+
+Using a Hybrid Approach with __table__
+=======================================
+
+As an alternative to ``__tablename__``, a direct
+:class:`~sqlalchemy.schema.Table` construct may be used. The
+:class:`~sqlalchemy.schema.Column` objects, which in this case require
+their names, will be added to the mapping just like a regular mapping
+to a table::
+
+ class MyClass(Base):
+ __table__ = Table('my_table', Base.metadata,
+ Column('id', Integer, primary_key=True),
+ Column('name', String(50))
+ )
+
+``__table__`` provides a more focused point of control for establishing
+table metadata, while still getting most of the benefits of using declarative.
+An application that uses reflection might want to load table metadata elsewhere
+and pass it to declarative classes::
+
+ from sqlalchemy.ext.declarative import declarative_base
+
+ Base = declarative_base()
+ Base.metadata.reflect(some_engine)
+
+ class User(Base):
+ __table__ = metadata.tables['user']
+
+ class Address(Base):
+ __table__ = metadata.tables['address']
+
+Some configuration schemes may find it more appropriate to use ``__table__``,
+such as those which already take advantage of the data-driven nature of
+:class:`.Table` to customize and/or automate schema definition.
+
+Note that when the ``__table__`` approach is used, the object is immediately
+usable as a plain :class:`.Table` within the class declaration body itself,
+as a Python class is only another syntactical block. Below this is illustrated
+by using the ``id`` column in the ``primaryjoin`` condition of a
+:func:`.relationship`::
+
+ class MyClass(Base):
+ __table__ = Table('my_table', Base.metadata,
+ Column('id', Integer, primary_key=True),
+ Column('name', String(50))
+ )
+
+ widgets = relationship(Widget,
+ primaryjoin=Widget.myclass_id==__table__.c.id)
+
+Similarly, mapped attributes which refer to ``__table__`` can be placed inline,
+as below where we assign the ``name`` column to the attribute ``_name``,
+generating a synonym for ``name``::
+
+ from sqlalchemy.ext.declarative import synonym_for
+
+ class MyClass(Base):
+ __table__ = Table('my_table', Base.metadata,
+ Column('id', Integer, primary_key=True),
+ Column('name', String(50))
+ )
+
+ _name = __table__.c.name
+
+ @synonym_for("_name")
+ def name(self):
+ return "Name: %s" % _name
+
+Using Reflection with Declarative
+=================================
+
+It's easy to set up a :class:`.Table` that uses ``autoload=True``
+in conjunction with a mapped class::
+
+ class MyClass(Base):
+ __table__ = Table('mytable', Base.metadata,
+ autoload=True, autoload_with=some_engine)
+
+However, one improvement that can be made here is to not
+require the :class:`.Engine` to be available when classes are
+being first declared. To achieve this, use the
+:class:`.DeferredReflection` mixin, which sets up mappings
+only after a special ``prepare(engine)`` step is called::
+
+ from sqlalchemy.ext.declarative import declarative_base, DeferredReflection
+
+ Base = declarative_base(cls=DeferredReflection)
+
+ class Foo(Base):
+ __tablename__ = 'foo'
+ bars = relationship("Bar")
+
+ class Bar(Base):
+ __tablename__ = 'bar'
+
+ # illustrate overriding of "bar.foo_id" to have
+ # a foreign key constraint otherwise not
+ # reflected, such as when using MySQL
+ foo_id = Column(Integer, ForeignKey('foo.id'))
+
+ Base.prepare(e)
+
+.. versionadded:: 0.8
+ Added :class:`.DeferredReflection`.
diff --git a/doc/build/orm/extensions/index.rst b/doc/build/orm/extensions/index.rst
index 65836f13a..f7f58e381 100644
--- a/doc/build/orm/extensions/index.rst
+++ b/doc/build/orm/extensions/index.rst
@@ -17,7 +17,7 @@ behavior. In particular the "Horizontal Sharding", "Hybrid Attributes", and
associationproxy
automap
- declarative
+ declarative/index
mutable
orderinglist
horizontal_shard