diff options
Diffstat (limited to 'doc/build/orm/extensions')
-rw-r--r-- | doc/build/orm/extensions/declarative.rst | 33 | ||||
-rw-r--r-- | doc/build/orm/extensions/declarative/api.rst | 114 | ||||
-rw-r--r-- | doc/build/orm/extensions/declarative/basic_use.rst | 133 | ||||
-rw-r--r-- | doc/build/orm/extensions/declarative/index.rst | 32 | ||||
-rw-r--r-- | doc/build/orm/extensions/declarative/inheritance.rst | 318 | ||||
-rw-r--r-- | doc/build/orm/extensions/declarative/mixins.rst | 541 | ||||
-rw-r--r-- | doc/build/orm/extensions/declarative/relationships.rst | 138 | ||||
-rw-r--r-- | doc/build/orm/extensions/declarative/table_config.rst | 143 | ||||
-rw-r--r-- | doc/build/orm/extensions/index.rst | 2 |
9 files changed, 1420 insertions, 34 deletions
diff --git a/doc/build/orm/extensions/declarative.rst b/doc/build/orm/extensions/declarative.rst deleted file mode 100644 index 7d9e634b5..000000000 --- a/doc/build/orm/extensions/declarative.rst +++ /dev/null @@ -1,33 +0,0 @@ -.. _declarative_toplevel: - -Declarative -=========== - -.. automodule:: sqlalchemy.ext.declarative - -API Reference -------------- - -.. autofunction:: declarative_base - -.. autofunction:: as_declarative - -.. autoclass:: declared_attr - :members: - -.. autofunction:: sqlalchemy.ext.declarative.api._declarative_constructor - -.. autofunction:: has_inherited_table - -.. autofunction:: synonym_for - -.. autofunction:: comparable_using - -.. autofunction:: instrument_declarative - -.. autoclass:: AbstractConcreteBase - -.. autoclass:: ConcreteBase - -.. autoclass:: DeferredReflection - :members: diff --git a/doc/build/orm/extensions/declarative/api.rst b/doc/build/orm/extensions/declarative/api.rst new file mode 100644 index 000000000..67b66a970 --- /dev/null +++ b/doc/build/orm/extensions/declarative/api.rst @@ -0,0 +1,114 @@ +.. automodule:: sqlalchemy.ext.declarative + +=============== +Declarative API +=============== + +API Reference +============= + +.. autofunction:: declarative_base + +.. autofunction:: as_declarative + +.. autoclass:: declared_attr + :members: + +.. autofunction:: sqlalchemy.ext.declarative.api._declarative_constructor + +.. autofunction:: has_inherited_table + +.. autofunction:: synonym_for + +.. autofunction:: comparable_using + +.. autofunction:: instrument_declarative + +.. autoclass:: AbstractConcreteBase + +.. autoclass:: ConcreteBase + +.. autoclass:: DeferredReflection + :members: + + +Special Directives +------------------ + +``__declare_last__()`` +~~~~~~~~~~~~~~~~~~~~~~ + +The ``__declare_last__()`` hook allows definition of +a class level function that is automatically called by the +:meth:`.MapperEvents.after_configured` event, which occurs after mappings are +assumed to be completed and the 'configure' step has finished:: + + class MyClass(Base): + @classmethod + def __declare_last__(cls): + "" + # do something with mappings + +.. versionadded:: 0.7.3 + +``__declare_first__()`` +~~~~~~~~~~~~~~~~~~~~~~~ + +Like ``__declare_last__()``, but is called at the beginning of mapper +configuration via the :meth:`.MapperEvents.before_configured` event:: + + class MyClass(Base): + @classmethod + def __declare_first__(cls): + "" + # do something before mappings are configured + +.. versionadded:: 0.9.3 + +.. _declarative_abstract: + +``__abstract__`` +~~~~~~~~~~~~~~~~~~~ + +``__abstract__`` causes declarative to skip the production +of a table or mapper for the class entirely. A class can be added within a +hierarchy in the same way as mixin (see :ref:`declarative_mixins`), allowing +subclasses to extend just from the special class:: + + class SomeAbstractBase(Base): + __abstract__ = True + + def some_helpful_method(self): + "" + + @declared_attr + def __mapper_args__(cls): + return {"helpful mapper arguments":True} + + class MyMappedClass(SomeAbstractBase): + "" + +One possible use of ``__abstract__`` is to use a distinct +:class:`.MetaData` for different bases:: + + Base = declarative_base() + + class DefaultBase(Base): + __abstract__ = True + metadata = MetaData() + + class OtherBase(Base): + __abstract__ = True + metadata = MetaData() + +Above, classes which inherit from ``DefaultBase`` will use one +:class:`.MetaData` as the registry of tables, and those which inherit from +``OtherBase`` will use a different one. The tables themselves can then be +created perhaps within distinct databases:: + + DefaultBase.metadata.create_all(some_engine) + OtherBase.metadata_create_all(some_other_engine) + +.. versionadded:: 0.7.3 + + diff --git a/doc/build/orm/extensions/declarative/basic_use.rst b/doc/build/orm/extensions/declarative/basic_use.rst new file mode 100644 index 000000000..10b79e5a6 --- /dev/null +++ b/doc/build/orm/extensions/declarative/basic_use.rst @@ -0,0 +1,133 @@ +========= +Basic Use +========= + +SQLAlchemy object-relational configuration involves the +combination of :class:`.Table`, :func:`.mapper`, and class +objects to define a mapped class. +:mod:`~sqlalchemy.ext.declarative` allows all three to be +expressed at once within the class declaration. As much as +possible, regular SQLAlchemy schema and ORM constructs are +used directly, so that configuration between "classical" ORM +usage and declarative remain highly similar. + +As a simple example:: + + from sqlalchemy.ext.declarative import declarative_base + + Base = declarative_base() + + class SomeClass(Base): + __tablename__ = 'some_table' + id = Column(Integer, primary_key=True) + name = Column(String(50)) + +Above, the :func:`declarative_base` callable returns a new base class from +which all mapped classes should inherit. When the class definition is +completed, a new :class:`.Table` and :func:`.mapper` will have been generated. + +The resulting table and mapper are accessible via +``__table__`` and ``__mapper__`` attributes on the +``SomeClass`` class:: + + # access the mapped Table + SomeClass.__table__ + + # access the Mapper + SomeClass.__mapper__ + +Defining Attributes +=================== + +In the previous example, the :class:`.Column` objects are +automatically named with the name of the attribute to which they are +assigned. + +To name columns explicitly with a name distinct from their mapped attribute, +just give the column a name. Below, column "some_table_id" is mapped to the +"id" attribute of `SomeClass`, but in SQL will be represented as +"some_table_id":: + + class SomeClass(Base): + __tablename__ = 'some_table' + id = Column("some_table_id", Integer, primary_key=True) + +Attributes may be added to the class after its construction, and they will be +added to the underlying :class:`.Table` and +:func:`.mapper` definitions as appropriate:: + + SomeClass.data = Column('data', Unicode) + SomeClass.related = relationship(RelatedInfo) + +Classes which are constructed using declarative can interact freely +with classes that are mapped explicitly with :func:`.mapper`. + +It is recommended, though not required, that all tables +share the same underlying :class:`~sqlalchemy.schema.MetaData` object, +so that string-configured :class:`~sqlalchemy.schema.ForeignKey` +references can be resolved without issue. + +Accessing the MetaData +======================= + +The :func:`declarative_base` base class contains a +:class:`.MetaData` object where newly defined +:class:`.Table` objects are collected. This object is +intended to be accessed directly for +:class:`.MetaData`-specific operations. Such as, to issue +CREATE statements for all tables:: + + engine = create_engine('sqlite://') + Base.metadata.create_all(engine) + +:func:`declarative_base` can also receive a pre-existing +:class:`.MetaData` object, which allows a +declarative setup to be associated with an already +existing traditional collection of :class:`~sqlalchemy.schema.Table` +objects:: + + mymetadata = MetaData() + Base = declarative_base(metadata=mymetadata) + + +Class Constructor +================= + +As a convenience feature, the :func:`declarative_base` sets a default +constructor on classes which takes keyword arguments, and assigns them +to the named attributes:: + + e = Engineer(primary_language='python') + +Mapper Configuration +==================== + +Declarative makes use of the :func:`~.orm.mapper` function internally +when it creates the mapping to the declared table. The options +for :func:`~.orm.mapper` are passed directly through via the +``__mapper_args__`` class attribute. As always, arguments which reference +locally mapped columns can reference them directly from within the +class declaration:: + + from datetime import datetime + + class Widget(Base): + __tablename__ = 'widgets' + + id = Column(Integer, primary_key=True) + timestamp = Column(DateTime, nullable=False) + + __mapper_args__ = { + 'version_id_col': timestamp, + 'version_id_generator': lambda v:datetime.now() + } + + +.. _declarative_sql_expressions: + +Defining SQL Expressions +======================== + +See :ref:`mapper_sql_expressions` for examples on declaratively +mapping attributes to SQL expressions. + diff --git a/doc/build/orm/extensions/declarative/index.rst b/doc/build/orm/extensions/declarative/index.rst new file mode 100644 index 000000000..dc4f392f3 --- /dev/null +++ b/doc/build/orm/extensions/declarative/index.rst @@ -0,0 +1,32 @@ +.. _declarative_toplevel: + +=========== +Declarative +=========== + +The Declarative system is the typically used system provided by the SQLAlchemy +ORM in order to define classes mapped to relational database tables. However, +as noted in :ref:`classical_mapping`, Declarative is in fact a series of +extensions that ride on top of the SQLAlchemy :func:`.mapper` construct. + +While the documentation typically refers to Declarative for most examples, +the following sections will provide detailed information on how the +Declarative API interacts with the basic :func:`.mapper` and Core :class:`.Table` +systems, as well as how sophisticated patterns can be built using systems +such as mixins. + + +.. toctree:: + :maxdepth: 2 + + basic_use + relationships + table_config + inheritance + mixins + api + + + + + diff --git a/doc/build/orm/extensions/declarative/inheritance.rst b/doc/build/orm/extensions/declarative/inheritance.rst new file mode 100644 index 000000000..684b07bfd --- /dev/null +++ b/doc/build/orm/extensions/declarative/inheritance.rst @@ -0,0 +1,318 @@ +.. _declarative_inheritance: + +Inheritance Configuration +========================= + +Declarative supports all three forms of inheritance as intuitively +as possible. The ``inherits`` mapper keyword argument is not needed +as declarative will determine this from the class itself. The various +"polymorphic" keyword arguments are specified using ``__mapper_args__``. + +Joined Table Inheritance +~~~~~~~~~~~~~~~~~~~~~~~~ + +Joined table inheritance is defined as a subclass that defines its own +table:: + + class Person(Base): + __tablename__ = 'people' + id = Column(Integer, primary_key=True) + discriminator = Column('type', String(50)) + __mapper_args__ = {'polymorphic_on': discriminator} + + class Engineer(Person): + __tablename__ = 'engineers' + __mapper_args__ = {'polymorphic_identity': 'engineer'} + id = Column(Integer, ForeignKey('people.id'), primary_key=True) + primary_language = Column(String(50)) + +Note that above, the ``Engineer.id`` attribute, since it shares the +same attribute name as the ``Person.id`` attribute, will in fact +represent the ``people.id`` and ``engineers.id`` columns together, +with the "Engineer.id" column taking precedence if queried directly. +To provide the ``Engineer`` class with an attribute that represents +only the ``engineers.id`` column, give it a different attribute name:: + + class Engineer(Person): + __tablename__ = 'engineers' + __mapper_args__ = {'polymorphic_identity': 'engineer'} + engineer_id = Column('id', Integer, ForeignKey('people.id'), + primary_key=True) + primary_language = Column(String(50)) + + +.. versionchanged:: 0.7 joined table inheritance favors the subclass + column over that of the superclass, such as querying above + for ``Engineer.id``. Prior to 0.7 this was the reverse. + +.. _declarative_single_table: + +Single Table Inheritance +~~~~~~~~~~~~~~~~~~~~~~~~ + +Single table inheritance is defined as a subclass that does not have +its own table; you just leave out the ``__table__`` and ``__tablename__`` +attributes:: + + class Person(Base): + __tablename__ = 'people' + id = Column(Integer, primary_key=True) + discriminator = Column('type', String(50)) + __mapper_args__ = {'polymorphic_on': discriminator} + + class Engineer(Person): + __mapper_args__ = {'polymorphic_identity': 'engineer'} + primary_language = Column(String(50)) + +When the above mappers are configured, the ``Person`` class is mapped +to the ``people`` table *before* the ``primary_language`` column is +defined, and this column will not be included in its own mapping. +When ``Engineer`` then defines the ``primary_language`` column, the +column is added to the ``people`` table so that it is included in the +mapping for ``Engineer`` and is also part of the table's full set of +columns. Columns which are not mapped to ``Person`` are also excluded +from any other single or joined inheriting classes using the +``exclude_properties`` mapper argument. Below, ``Manager`` will have +all the attributes of ``Person`` and ``Manager`` but *not* the +``primary_language`` attribute of ``Engineer``:: + + class Manager(Person): + __mapper_args__ = {'polymorphic_identity': 'manager'} + golf_swing = Column(String(50)) + +The attribute exclusion logic is provided by the +``exclude_properties`` mapper argument, and declarative's default +behavior can be disabled by passing an explicit ``exclude_properties`` +collection (empty or otherwise) to the ``__mapper_args__``. + +Resolving Column Conflicts +^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Note above that the ``primary_language`` and ``golf_swing`` columns +are "moved up" to be applied to ``Person.__table__``, as a result of their +declaration on a subclass that has no table of its own. A tricky case +comes up when two subclasses want to specify *the same* column, as below:: + + class Person(Base): + __tablename__ = 'people' + id = Column(Integer, primary_key=True) + discriminator = Column('type', String(50)) + __mapper_args__ = {'polymorphic_on': discriminator} + + class Engineer(Person): + __mapper_args__ = {'polymorphic_identity': 'engineer'} + start_date = Column(DateTime) + + class Manager(Person): + __mapper_args__ = {'polymorphic_identity': 'manager'} + start_date = Column(DateTime) + +Above, the ``start_date`` column declared on both ``Engineer`` and ``Manager`` +will result in an error:: + + sqlalchemy.exc.ArgumentError: Column 'start_date' on class + <class '__main__.Manager'> conflicts with existing + column 'people.start_date' + +In a situation like this, Declarative can't be sure +of the intent, especially if the ``start_date`` columns had, for example, +different types. A situation like this can be resolved by using +:class:`.declared_attr` to define the :class:`.Column` conditionally, taking +care to return the **existing column** via the parent ``__table__`` if it +already exists:: + + from sqlalchemy.ext.declarative import declared_attr + + class Person(Base): + __tablename__ = 'people' + id = Column(Integer, primary_key=True) + discriminator = Column('type', String(50)) + __mapper_args__ = {'polymorphic_on': discriminator} + + class Engineer(Person): + __mapper_args__ = {'polymorphic_identity': 'engineer'} + + @declared_attr + def start_date(cls): + "Start date column, if not present already." + return Person.__table__.c.get('start_date', Column(DateTime)) + + class Manager(Person): + __mapper_args__ = {'polymorphic_identity': 'manager'} + + @declared_attr + def start_date(cls): + "Start date column, if not present already." + return Person.__table__.c.get('start_date', Column(DateTime)) + +Above, when ``Manager`` is mapped, the ``start_date`` column is +already present on the ``Person`` class. Declarative lets us return +that :class:`.Column` as a result in this case, where it knows to skip +re-assigning the same column. If the mapping is mis-configured such +that the ``start_date`` column is accidentally re-assigned to a +different table (such as, if we changed ``Manager`` to be joined +inheritance without fixing ``start_date``), an error is raised which +indicates an existing :class:`.Column` is trying to be re-assigned to +a different owning :class:`.Table`. + +.. versionadded:: 0.8 :class:`.declared_attr` can be used on a non-mixin + class, and the returned :class:`.Column` or other mapped attribute + will be applied to the mapping as any other attribute. Previously, + the resulting attribute would be ignored, and also result in a warning + being emitted when a subclass was created. + +.. versionadded:: 0.8 :class:`.declared_attr`, when used either with a + mixin or non-mixin declarative class, can return an existing + :class:`.Column` already assigned to the parent :class:`.Table`, + to indicate that the re-assignment of the :class:`.Column` should be + skipped, however should still be mapped on the target class, + in order to resolve duplicate column conflicts. + +The same concept can be used with mixin classes (see +:ref:`declarative_mixins`):: + + class Person(Base): + __tablename__ = 'people' + id = Column(Integer, primary_key=True) + discriminator = Column('type', String(50)) + __mapper_args__ = {'polymorphic_on': discriminator} + + class HasStartDate(object): + @declared_attr + def start_date(cls): + return cls.__table__.c.get('start_date', Column(DateTime)) + + class Engineer(HasStartDate, Person): + __mapper_args__ = {'polymorphic_identity': 'engineer'} + + class Manager(HasStartDate, Person): + __mapper_args__ = {'polymorphic_identity': 'manager'} + +The above mixin checks the local ``__table__`` attribute for the column. +Because we're using single table inheritance, we're sure that in this case, +``cls.__table__`` refers to ``People.__table__``. If we were mixing joined- +and single-table inheritance, we might want our mixin to check more carefully +if ``cls.__table__`` is really the :class:`.Table` we're looking for. + +Concrete Table Inheritance +~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Concrete is defined as a subclass which has its own table and sets the +``concrete`` keyword argument to ``True``:: + + class Person(Base): + __tablename__ = 'people' + id = Column(Integer, primary_key=True) + name = Column(String(50)) + + class Engineer(Person): + __tablename__ = 'engineers' + __mapper_args__ = {'concrete':True} + id = Column(Integer, primary_key=True) + primary_language = Column(String(50)) + name = Column(String(50)) + +Usage of an abstract base class is a little less straightforward as it +requires usage of :func:`~sqlalchemy.orm.util.polymorphic_union`, +which needs to be created with the :class:`.Table` objects +before the class is built:: + + engineers = Table('engineers', Base.metadata, + Column('id', Integer, primary_key=True), + Column('name', String(50)), + Column('primary_language', String(50)) + ) + managers = Table('managers', Base.metadata, + Column('id', Integer, primary_key=True), + Column('name', String(50)), + Column('golf_swing', String(50)) + ) + + punion = polymorphic_union({ + 'engineer':engineers, + 'manager':managers + }, 'type', 'punion') + + class Person(Base): + __table__ = punion + __mapper_args__ = {'polymorphic_on':punion.c.type} + + class Engineer(Person): + __table__ = engineers + __mapper_args__ = {'polymorphic_identity':'engineer', 'concrete':True} + + class Manager(Person): + __table__ = managers + __mapper_args__ = {'polymorphic_identity':'manager', 'concrete':True} + +.. _declarative_concrete_helpers: + +Using the Concrete Helpers +^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Helper classes provides a simpler pattern for concrete inheritance. +With these objects, the ``__declare_first__`` helper is used to configure the +"polymorphic" loader for the mapper after all subclasses have been declared. + +.. versionadded:: 0.7.3 + +An abstract base can be declared using the +:class:`.AbstractConcreteBase` class:: + + from sqlalchemy.ext.declarative import AbstractConcreteBase + + class Employee(AbstractConcreteBase, Base): + pass + +To have a concrete ``employee`` table, use :class:`.ConcreteBase` instead:: + + from sqlalchemy.ext.declarative import ConcreteBase + + class Employee(ConcreteBase, Base): + __tablename__ = 'employee' + employee_id = Column(Integer, primary_key=True) + name = Column(String(50)) + __mapper_args__ = { + 'polymorphic_identity':'employee', + 'concrete':True} + + +Either ``Employee`` base can be used in the normal fashion:: + + class Manager(Employee): + __tablename__ = 'manager' + employee_id = Column(Integer, primary_key=True) + name = Column(String(50)) + manager_data = Column(String(40)) + __mapper_args__ = { + 'polymorphic_identity':'manager', + 'concrete':True} + + class Engineer(Employee): + __tablename__ = 'engineer' + employee_id = Column(Integer, primary_key=True) + name = Column(String(50)) + engineer_info = Column(String(40)) + __mapper_args__ = {'polymorphic_identity':'engineer', + 'concrete':True} + + +The :class:`.AbstractConcreteBase` class is itself mapped, and can be +used as a target of relationships:: + + class Company(Base): + __tablename__ = 'company' + + id = Column(Integer, primary_key=True) + employees = relationship("Employee", + primaryjoin="Company.id == Employee.company_id") + + +.. versionchanged:: 0.9.3 Support for use of :class:`.AbstractConcreteBase` + as the target of a :func:`.relationship` has been improved. + +It can also be queried directly:: + + for employee in session.query(Employee).filter(Employee.name == 'qbert'): + print(employee) + diff --git a/doc/build/orm/extensions/declarative/mixins.rst b/doc/build/orm/extensions/declarative/mixins.rst new file mode 100644 index 000000000..d64477649 --- /dev/null +++ b/doc/build/orm/extensions/declarative/mixins.rst @@ -0,0 +1,541 @@ +.. _declarative_mixins: + +Mixin and Custom Base Classes +============================== + +A common need when using :mod:`~sqlalchemy.ext.declarative` is to +share some functionality, such as a set of common columns, some common +table options, or other mapped properties, across many +classes. The standard Python idioms for this is to have the classes +inherit from a base which includes these common features. + +When using :mod:`~sqlalchemy.ext.declarative`, this idiom is allowed +via the usage of a custom declarative base class, as well as a "mixin" class +which is inherited from in addition to the primary base. Declarative +includes several helper features to make this work in terms of how +mappings are declared. An example of some commonly mixed-in +idioms is below:: + + from sqlalchemy.ext.declarative import declared_attr + + class MyMixin(object): + + @declared_attr + def __tablename__(cls): + return cls.__name__.lower() + + __table_args__ = {'mysql_engine': 'InnoDB'} + __mapper_args__= {'always_refresh': True} + + id = Column(Integer, primary_key=True) + + class MyModel(MyMixin, Base): + name = Column(String(1000)) + +Where above, the class ``MyModel`` will contain an "id" column +as the primary key, a ``__tablename__`` attribute that derives +from the name of the class itself, as well as ``__table_args__`` +and ``__mapper_args__`` defined by the ``MyMixin`` mixin class. + +There's no fixed convention over whether ``MyMixin`` precedes +``Base`` or not. Normal Python method resolution rules apply, and +the above example would work just as well with:: + + class MyModel(Base, MyMixin): + name = Column(String(1000)) + +This works because ``Base`` here doesn't define any of the +variables that ``MyMixin`` defines, i.e. ``__tablename__``, +``__table_args__``, ``id``, etc. If the ``Base`` did define +an attribute of the same name, the class placed first in the +inherits list would determine which attribute is used on the +newly defined class. + +Augmenting the Base +~~~~~~~~~~~~~~~~~~~ + +In addition to using a pure mixin, most of the techniques in this +section can also be applied to the base class itself, for patterns that +should apply to all classes derived from a particular base. This is achieved +using the ``cls`` argument of the :func:`.declarative_base` function:: + + from sqlalchemy.ext.declarative import declared_attr + + class Base(object): + @declared_attr + def __tablename__(cls): + return cls.__name__.lower() + + __table_args__ = {'mysql_engine': 'InnoDB'} + + id = Column(Integer, primary_key=True) + + from sqlalchemy.ext.declarative import declarative_base + + Base = declarative_base(cls=Base) + + class MyModel(Base): + name = Column(String(1000)) + +Where above, ``MyModel`` and all other classes that derive from ``Base`` will +have a table name derived from the class name, an ``id`` primary key column, +as well as the "InnoDB" engine for MySQL. + +Mixing in Columns +~~~~~~~~~~~~~~~~~ + +The most basic way to specify a column on a mixin is by simple +declaration:: + + class TimestampMixin(object): + created_at = Column(DateTime, default=func.now()) + + class MyModel(TimestampMixin, Base): + __tablename__ = 'test' + + id = Column(Integer, primary_key=True) + name = Column(String(1000)) + +Where above, all declarative classes that include ``TimestampMixin`` +will also have a column ``created_at`` that applies a timestamp to +all row insertions. + +Those familiar with the SQLAlchemy expression language know that +the object identity of clause elements defines their role in a schema. +Two ``Table`` objects ``a`` and ``b`` may both have a column called +``id``, but the way these are differentiated is that ``a.c.id`` +and ``b.c.id`` are two distinct Python objects, referencing their +parent tables ``a`` and ``b`` respectively. + +In the case of the mixin column, it seems that only one +:class:`.Column` object is explicitly created, yet the ultimate +``created_at`` column above must exist as a distinct Python object +for each separate destination class. To accomplish this, the declarative +extension creates a **copy** of each :class:`.Column` object encountered on +a class that is detected as a mixin. + +This copy mechanism is limited to simple columns that have no foreign +keys, as a :class:`.ForeignKey` itself contains references to columns +which can't be properly recreated at this level. For columns that +have foreign keys, as well as for the variety of mapper-level constructs +that require destination-explicit context, the +:class:`~.declared_attr` decorator is provided so that +patterns common to many classes can be defined as callables:: + + from sqlalchemy.ext.declarative import declared_attr + + class ReferenceAddressMixin(object): + @declared_attr + def address_id(cls): + return Column(Integer, ForeignKey('address.id')) + + class User(ReferenceAddressMixin, Base): + __tablename__ = 'user' + id = Column(Integer, primary_key=True) + +Where above, the ``address_id`` class-level callable is executed at the +point at which the ``User`` class is constructed, and the declarative +extension can use the resulting :class:`.Column` object as returned by +the method without the need to copy it. + +.. versionchanged:: > 0.6.5 + Rename 0.6.5 ``sqlalchemy.util.classproperty`` + into :class:`~.declared_attr`. + +Columns generated by :class:`~.declared_attr` can also be +referenced by ``__mapper_args__`` to a limited degree, currently +by ``polymorphic_on`` and ``version_id_col``; the declarative extension +will resolve them at class construction time:: + + class MyMixin: + @declared_attr + def type_(cls): + return Column(String(50)) + + __mapper_args__= {'polymorphic_on':type_} + + class MyModel(MyMixin, Base): + __tablename__='test' + id = Column(Integer, primary_key=True) + + +Mixing in Relationships +~~~~~~~~~~~~~~~~~~~~~~~ + +Relationships created by :func:`~sqlalchemy.orm.relationship` are provided +with declarative mixin classes exclusively using the +:class:`.declared_attr` approach, eliminating any ambiguity +which could arise when copying a relationship and its possibly column-bound +contents. Below is an example which combines a foreign key column and a +relationship so that two classes ``Foo`` and ``Bar`` can both be configured to +reference a common target class via many-to-one:: + + class RefTargetMixin(object): + @declared_attr + def target_id(cls): + return Column('target_id', ForeignKey('target.id')) + + @declared_attr + def target(cls): + return relationship("Target") + + class Foo(RefTargetMixin, Base): + __tablename__ = 'foo' + id = Column(Integer, primary_key=True) + + class Bar(RefTargetMixin, Base): + __tablename__ = 'bar' + id = Column(Integer, primary_key=True) + + class Target(Base): + __tablename__ = 'target' + id = Column(Integer, primary_key=True) + + +Using Advanced Relationship Arguments (e.g. ``primaryjoin``, etc.) +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +:func:`~sqlalchemy.orm.relationship` definitions which require explicit +primaryjoin, order_by etc. expressions should in all but the most +simplistic cases use **late bound** forms +for these arguments, meaning, using either the string form or a lambda. +The reason for this is that the related :class:`.Column` objects which are to +be configured using ``@declared_attr`` are not available to another +``@declared_attr`` attribute; while the methods will work and return new +:class:`.Column` objects, those are not the :class:`.Column` objects that +Declarative will be using as it calls the methods on its own, thus using +*different* :class:`.Column` objects. + +The canonical example is the primaryjoin condition that depends upon +another mixed-in column:: + + class RefTargetMixin(object): + @declared_attr + def target_id(cls): + return Column('target_id', ForeignKey('target.id')) + + @declared_attr + def target(cls): + return relationship(Target, + primaryjoin=Target.id==cls.target_id # this is *incorrect* + ) + +Mapping a class using the above mixin, we will get an error like:: + + sqlalchemy.exc.InvalidRequestError: this ForeignKey's parent column is not + yet associated with a Table. + +This is because the ``target_id`` :class:`.Column` we've called upon in our +``target()`` method is not the same :class:`.Column` that declarative is +actually going to map to our table. + +The condition above is resolved using a lambda:: + + class RefTargetMixin(object): + @declared_attr + def target_id(cls): + return Column('target_id', ForeignKey('target.id')) + + @declared_attr + def target(cls): + return relationship(Target, + primaryjoin=lambda: Target.id==cls.target_id + ) + +or alternatively, the string form (which ultimately generates a lambda):: + + class RefTargetMixin(object): + @declared_attr + def target_id(cls): + return Column('target_id', ForeignKey('target.id')) + + @declared_attr + def target(cls): + return relationship("Target", + primaryjoin="Target.id==%s.target_id" % cls.__name__ + ) + +Mixing in deferred(), column_property(), and other MapperProperty classes +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Like :func:`~sqlalchemy.orm.relationship`, all +:class:`~sqlalchemy.orm.interfaces.MapperProperty` subclasses such as +:func:`~sqlalchemy.orm.deferred`, :func:`~sqlalchemy.orm.column_property`, +etc. ultimately involve references to columns, and therefore, when +used with declarative mixins, have the :class:`.declared_attr` +requirement so that no reliance on copying is needed:: + + class SomethingMixin(object): + + @declared_attr + def dprop(cls): + return deferred(Column(Integer)) + + class Something(SomethingMixin, Base): + __tablename__ = "something" + +The :func:`.column_property` or other construct may refer +to other columns from the mixin. These are copied ahead of time before +the :class:`.declared_attr` is invoked:: + + class SomethingMixin(object): + x = Column(Integer) + + y = Column(Integer) + + @declared_attr + def x_plus_y(cls): + return column_property(cls.x + cls.y) + + +.. versionchanged:: 1.0.0 mixin columns are copied to the final mapped class + so that :class:`.declared_attr` methods can access the actual column + that will be mapped. + +Mixing in Association Proxy and Other Attributes +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Mixins can specify user-defined attributes as well as other extension +units such as :func:`.association_proxy`. The usage of +:class:`.declared_attr` is required in those cases where the attribute must +be tailored specifically to the target subclass. An example is when +constructing multiple :func:`.association_proxy` attributes which each +target a different type of child object. Below is an +:func:`.association_proxy` / mixin example which provides a scalar list of +string values to an implementing class:: + + from sqlalchemy import Column, Integer, ForeignKey, String + from sqlalchemy.orm import relationship + from sqlalchemy.ext.associationproxy import association_proxy + from sqlalchemy.ext.declarative import declarative_base, declared_attr + + Base = declarative_base() + + class HasStringCollection(object): + @declared_attr + def _strings(cls): + class StringAttribute(Base): + __tablename__ = cls.string_table_name + id = Column(Integer, primary_key=True) + value = Column(String(50), nullable=False) + parent_id = Column(Integer, + ForeignKey('%s.id' % cls.__tablename__), + nullable=False) + def __init__(self, value): + self.value = value + + return relationship(StringAttribute) + + @declared_attr + def strings(cls): + return association_proxy('_strings', 'value') + + class TypeA(HasStringCollection, Base): + __tablename__ = 'type_a' + string_table_name = 'type_a_strings' + id = Column(Integer(), primary_key=True) + + class TypeB(HasStringCollection, Base): + __tablename__ = 'type_b' + string_table_name = 'type_b_strings' + id = Column(Integer(), primary_key=True) + +Above, the ``HasStringCollection`` mixin produces a :func:`.relationship` +which refers to a newly generated class called ``StringAttribute``. The +``StringAttribute`` class is generated with its own :class:`.Table` +definition which is local to the parent class making usage of the +``HasStringCollection`` mixin. It also produces an :func:`.association_proxy` +object which proxies references to the ``strings`` attribute onto the ``value`` +attribute of each ``StringAttribute`` instance. + +``TypeA`` or ``TypeB`` can be instantiated given the constructor +argument ``strings``, a list of strings:: + + ta = TypeA(strings=['foo', 'bar']) + tb = TypeA(strings=['bat', 'bar']) + +This list will generate a collection +of ``StringAttribute`` objects, which are persisted into a table that's +local to either the ``type_a_strings`` or ``type_b_strings`` table:: + + >>> print ta._strings + [<__main__.StringAttribute object at 0x10151cd90>, + <__main__.StringAttribute object at 0x10151ce10>] + +When constructing the :func:`.association_proxy`, the +:class:`.declared_attr` decorator must be used so that a distinct +:func:`.association_proxy` object is created for each of the ``TypeA`` +and ``TypeB`` classes. + +.. versionadded:: 0.8 :class:`.declared_attr` is usable with non-mapped + attributes, including user-defined attributes as well as + :func:`.association_proxy`. + + +Controlling table inheritance with mixins +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The ``__tablename__`` attribute may be used to provide a function that +will determine the name of the table used for each class in an inheritance +hierarchy, as well as whether a class has its own distinct table. + +This is achieved using the :class:`.declared_attr` indicator in conjunction +with a method named ``__tablename__()``. Declarative will always +invoke :class:`.declared_attr` for the special names +``__tablename__``, ``__mapper_args__`` and ``__table_args__`` +function **for each mapped class in the hierarchy**. The function therefore +needs to expect to receive each class individually and to provide the +correct answer for each. + +For example, to create a mixin that gives every class a simple table +name based on class name:: + + from sqlalchemy.ext.declarative import declared_attr + + class Tablename: + @declared_attr + def __tablename__(cls): + return cls.__name__.lower() + + class Person(Tablename, Base): + id = Column(Integer, primary_key=True) + discriminator = Column('type', String(50)) + __mapper_args__ = {'polymorphic_on': discriminator} + + class Engineer(Person): + __tablename__ = None + __mapper_args__ = {'polymorphic_identity': 'engineer'} + primary_language = Column(String(50)) + +Alternatively, we can modify our ``__tablename__`` function to return +``None`` for subclasses, using :func:`.has_inherited_table`. This has +the effect of those subclasses being mapped with single table inheritance +agaisnt the parent:: + + from sqlalchemy.ext.declarative import declared_attr + from sqlalchemy.ext.declarative import has_inherited_table + + class Tablename(object): + @declared_attr + def __tablename__(cls): + if has_inherited_table(cls): + return None + return cls.__name__.lower() + + class Person(Tablename, Base): + id = Column(Integer, primary_key=True) + discriminator = Column('type', String(50)) + __mapper_args__ = {'polymorphic_on': discriminator} + + class Engineer(Person): + primary_language = Column(String(50)) + __mapper_args__ = {'polymorphic_identity': 'engineer'} + +.. _mixin_inheritance_columns: + +Mixing in Columns in Inheritance Scenarios +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +In constrast to how ``__tablename__`` and other special names are handled when +used with :class:`.declared_attr`, when we mix in columns and properties (e.g. +relationships, column properties, etc.), the function is +invoked for the **base class only** in the hierarchy. Below, only the +``Person`` class will receive a column +called ``id``; the mapping will fail on ``Engineer``, which is not given +a primary key:: + + class HasId(object): + @declared_attr + def id(cls): + return Column('id', Integer, primary_key=True) + + class Person(HasId, Base): + __tablename__ = 'person' + discriminator = Column('type', String(50)) + __mapper_args__ = {'polymorphic_on': discriminator} + + class Engineer(Person): + __tablename__ = 'engineer' + primary_language = Column(String(50)) + __mapper_args__ = {'polymorphic_identity': 'engineer'} + +It is usually the case in joined-table inheritance that we want distinctly +named columns on each subclass. However in this case, we may want to have +an ``id`` column on every table, and have them refer to each other via +foreign key. We can achieve this as a mixin by using the +:attr:`.declared_attr.cascading` modifier, which indicates that the +function should be invoked **for each class in the hierarchy**, just like +it does for ``__tablename__``:: + + class HasId(object): + @declared_attr.cascading + def id(cls): + if has_inherited_table(cls): + return Column('id', + Integer, + ForeignKey('person.id'), primary_key=True) + else: + return Column('id', Integer, primary_key=True) + + class Person(HasId, Base): + __tablename__ = 'person' + discriminator = Column('type', String(50)) + __mapper_args__ = {'polymorphic_on': discriminator} + + class Engineer(Person): + __tablename__ = 'engineer' + primary_language = Column(String(50)) + __mapper_args__ = {'polymorphic_identity': 'engineer'} + + +.. versionadded:: 1.0.0 added :attr:`.declared_attr.cascading`. + +Combining Table/Mapper Arguments from Multiple Mixins +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +In the case of ``__table_args__`` or ``__mapper_args__`` +specified with declarative mixins, you may want to combine +some parameters from several mixins with those you wish to +define on the class iteself. The +:class:`.declared_attr` decorator can be used +here to create user-defined collation routines that pull +from multiple collections:: + + from sqlalchemy.ext.declarative import declared_attr + + class MySQLSettings(object): + __table_args__ = {'mysql_engine':'InnoDB'} + + class MyOtherMixin(object): + __table_args__ = {'info':'foo'} + + class MyModel(MySQLSettings, MyOtherMixin, Base): + __tablename__='my_model' + + @declared_attr + def __table_args__(cls): + args = dict() + args.update(MySQLSettings.__table_args__) + args.update(MyOtherMixin.__table_args__) + return args + + id = Column(Integer, primary_key=True) + +Creating Indexes with Mixins +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +To define a named, potentially multicolumn :class:`.Index` that applies to all +tables derived from a mixin, use the "inline" form of :class:`.Index` and +establish it as part of ``__table_args__``:: + + class MyMixin(object): + a = Column(Integer) + b = Column(Integer) + + @declared_attr + def __table_args__(cls): + return (Index('test_idx_%s' % cls.__tablename__, 'a', 'b'),) + + class MyModel(MyMixin, Base): + __tablename__ = 'atable' + c = Column(Integer,primary_key=True) diff --git a/doc/build/orm/extensions/declarative/relationships.rst b/doc/build/orm/extensions/declarative/relationships.rst new file mode 100644 index 000000000..fb53c28bb --- /dev/null +++ b/doc/build/orm/extensions/declarative/relationships.rst @@ -0,0 +1,138 @@ +.. _declarative_configuring_relationships: + +========================= +Configuring Relationships +========================= + +Relationships to other classes are done in the usual way, with the added +feature that the class specified to :func:`~sqlalchemy.orm.relationship` +may be a string name. The "class registry" associated with ``Base`` +is used at mapper compilation time to resolve the name into the actual +class object, which is expected to have been defined once the mapper +configuration is used:: + + class User(Base): + __tablename__ = 'users' + + id = Column(Integer, primary_key=True) + name = Column(String(50)) + addresses = relationship("Address", backref="user") + + class Address(Base): + __tablename__ = 'addresses' + + id = Column(Integer, primary_key=True) + email = Column(String(50)) + user_id = Column(Integer, ForeignKey('users.id')) + +Column constructs, since they are just that, are immediately usable, +as below where we define a primary join condition on the ``Address`` +class using them:: + + class Address(Base): + __tablename__ = 'addresses' + + id = Column(Integer, primary_key=True) + email = Column(String(50)) + user_id = Column(Integer, ForeignKey('users.id')) + user = relationship(User, primaryjoin=user_id == User.id) + +In addition to the main argument for :func:`~sqlalchemy.orm.relationship`, +other arguments which depend upon the columns present on an as-yet +undefined class may also be specified as strings. These strings are +evaluated as Python expressions. The full namespace available within +this evaluation includes all classes mapped for this declarative base, +as well as the contents of the ``sqlalchemy`` package, including +expression functions like :func:`~sqlalchemy.sql.expression.desc` and +:attr:`~sqlalchemy.sql.expression.func`:: + + class User(Base): + # .... + addresses = relationship("Address", + order_by="desc(Address.email)", + primaryjoin="Address.user_id==User.id") + +For the case where more than one module contains a class of the same name, +string class names can also be specified as module-qualified paths +within any of these string expressions:: + + class User(Base): + # .... + addresses = relationship("myapp.model.address.Address", + order_by="desc(myapp.model.address.Address.email)", + primaryjoin="myapp.model.address.Address.user_id==" + "myapp.model.user.User.id") + +The qualified path can be any partial path that removes ambiguity between +the names. For example, to disambiguate between +``myapp.model.address.Address`` and ``myapp.model.lookup.Address``, +we can specify ``address.Address`` or ``lookup.Address``:: + + class User(Base): + # .... + addresses = relationship("address.Address", + order_by="desc(address.Address.email)", + primaryjoin="address.Address.user_id==" + "User.id") + +.. versionadded:: 0.8 + module-qualified paths can be used when specifying string arguments + with Declarative, in order to specify specific modules. + +Two alternatives also exist to using string-based attributes. A lambda +can also be used, which will be evaluated after all mappers have been +configured:: + + class User(Base): + # ... + addresses = relationship(lambda: Address, + order_by=lambda: desc(Address.email), + primaryjoin=lambda: Address.user_id==User.id) + +Or, the relationship can be added to the class explicitly after the classes +are available:: + + User.addresses = relationship(Address, + primaryjoin=Address.user_id==User.id) + + + +.. _declarative_many_to_many: + +Configuring Many-to-Many Relationships +====================================== + +Many-to-many relationships are also declared in the same way +with declarative as with traditional mappings. The +``secondary`` argument to +:func:`.relationship` is as usual passed a +:class:`.Table` object, which is typically declared in the +traditional way. The :class:`.Table` usually shares +the :class:`.MetaData` object used by the declarative base:: + + keywords = Table( + 'keywords', Base.metadata, + Column('author_id', Integer, ForeignKey('authors.id')), + Column('keyword_id', Integer, ForeignKey('keywords.id')) + ) + + class Author(Base): + __tablename__ = 'authors' + id = Column(Integer, primary_key=True) + keywords = relationship("Keyword", secondary=keywords) + +Like other :func:`~sqlalchemy.orm.relationship` arguments, a string is accepted +as well, passing the string name of the table as defined in the +``Base.metadata.tables`` collection:: + + class Author(Base): + __tablename__ = 'authors' + id = Column(Integer, primary_key=True) + keywords = relationship("Keyword", secondary="keywords") + +As with traditional mapping, its generally not a good idea to use +a :class:`.Table` as the "secondary" argument which is also mapped to +a class, unless the :func:`.relationship` is declared with ``viewonly=True``. +Otherwise, the unit-of-work system may attempt duplicate INSERT and +DELETE statements against the underlying table. + diff --git a/doc/build/orm/extensions/declarative/table_config.rst b/doc/build/orm/extensions/declarative/table_config.rst new file mode 100644 index 000000000..9a621e6dd --- /dev/null +++ b/doc/build/orm/extensions/declarative/table_config.rst @@ -0,0 +1,143 @@ +.. _declarative_table_args: + +=================== +Table Configuration +=================== + +Table arguments other than the name, metadata, and mapped Column +arguments are specified using the ``__table_args__`` class attribute. +This attribute accommodates both positional as well as keyword +arguments that are normally sent to the +:class:`~sqlalchemy.schema.Table` constructor. +The attribute can be specified in one of two forms. One is as a +dictionary:: + + class MyClass(Base): + __tablename__ = 'sometable' + __table_args__ = {'mysql_engine':'InnoDB'} + +The other, a tuple, where each argument is positional +(usually constraints):: + + class MyClass(Base): + __tablename__ = 'sometable' + __table_args__ = ( + ForeignKeyConstraint(['id'], ['remote_table.id']), + UniqueConstraint('foo'), + ) + +Keyword arguments can be specified with the above form by +specifying the last argument as a dictionary:: + + class MyClass(Base): + __tablename__ = 'sometable' + __table_args__ = ( + ForeignKeyConstraint(['id'], ['remote_table.id']), + UniqueConstraint('foo'), + {'autoload':True} + ) + +Using a Hybrid Approach with __table__ +======================================= + +As an alternative to ``__tablename__``, a direct +:class:`~sqlalchemy.schema.Table` construct may be used. The +:class:`~sqlalchemy.schema.Column` objects, which in this case require +their names, will be added to the mapping just like a regular mapping +to a table:: + + class MyClass(Base): + __table__ = Table('my_table', Base.metadata, + Column('id', Integer, primary_key=True), + Column('name', String(50)) + ) + +``__table__`` provides a more focused point of control for establishing +table metadata, while still getting most of the benefits of using declarative. +An application that uses reflection might want to load table metadata elsewhere +and pass it to declarative classes:: + + from sqlalchemy.ext.declarative import declarative_base + + Base = declarative_base() + Base.metadata.reflect(some_engine) + + class User(Base): + __table__ = metadata.tables['user'] + + class Address(Base): + __table__ = metadata.tables['address'] + +Some configuration schemes may find it more appropriate to use ``__table__``, +such as those which already take advantage of the data-driven nature of +:class:`.Table` to customize and/or automate schema definition. + +Note that when the ``__table__`` approach is used, the object is immediately +usable as a plain :class:`.Table` within the class declaration body itself, +as a Python class is only another syntactical block. Below this is illustrated +by using the ``id`` column in the ``primaryjoin`` condition of a +:func:`.relationship`:: + + class MyClass(Base): + __table__ = Table('my_table', Base.metadata, + Column('id', Integer, primary_key=True), + Column('name', String(50)) + ) + + widgets = relationship(Widget, + primaryjoin=Widget.myclass_id==__table__.c.id) + +Similarly, mapped attributes which refer to ``__table__`` can be placed inline, +as below where we assign the ``name`` column to the attribute ``_name``, +generating a synonym for ``name``:: + + from sqlalchemy.ext.declarative import synonym_for + + class MyClass(Base): + __table__ = Table('my_table', Base.metadata, + Column('id', Integer, primary_key=True), + Column('name', String(50)) + ) + + _name = __table__.c.name + + @synonym_for("_name") + def name(self): + return "Name: %s" % _name + +Using Reflection with Declarative +================================= + +It's easy to set up a :class:`.Table` that uses ``autoload=True`` +in conjunction with a mapped class:: + + class MyClass(Base): + __table__ = Table('mytable', Base.metadata, + autoload=True, autoload_with=some_engine) + +However, one improvement that can be made here is to not +require the :class:`.Engine` to be available when classes are +being first declared. To achieve this, use the +:class:`.DeferredReflection` mixin, which sets up mappings +only after a special ``prepare(engine)`` step is called:: + + from sqlalchemy.ext.declarative import declarative_base, DeferredReflection + + Base = declarative_base(cls=DeferredReflection) + + class Foo(Base): + __tablename__ = 'foo' + bars = relationship("Bar") + + class Bar(Base): + __tablename__ = 'bar' + + # illustrate overriding of "bar.foo_id" to have + # a foreign key constraint otherwise not + # reflected, such as when using MySQL + foo_id = Column(Integer, ForeignKey('foo.id')) + + Base.prepare(e) + +.. versionadded:: 0.8 + Added :class:`.DeferredReflection`. diff --git a/doc/build/orm/extensions/index.rst b/doc/build/orm/extensions/index.rst index 65836f13a..f7f58e381 100644 --- a/doc/build/orm/extensions/index.rst +++ b/doc/build/orm/extensions/index.rst @@ -17,7 +17,7 @@ behavior. In particular the "Horizontal Sharding", "Hybrid Attributes", and associationproxy automap - declarative + declarative/index mutable orderinglist horizontal_shard |