summaryrefslogtreecommitdiff
path: root/docs/examples/search_vector_similarity_examples.ipynb
blob: 2b0261097cfae8aa5beff62cef56f5a6c4562e84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Vector Similarity\n",
    "## Adding Vector Fields"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "b'OK'"
      ]
     },
     "execution_count": 1,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import redis\n",
    "from redis.commands.search.field import VectorField\n",
    "from redis.commands.search.query import Query\n",
    "\n",
    "r = redis.Redis(host='localhost', port=36379)\n",
    "\n",
    "schema = (VectorField(\"v\", \"HNSW\", {\"TYPE\": \"FLOAT32\", \"DIM\": 2, \"DISTANCE_METRIC\": \"L2\"}),)\n",
    "r.ft().create_index(schema)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Searching"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Querying vector fields"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "pycharm": {
     "name": "#%%\n"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Result{2 total, docs: [Document {'id': 'a', 'payload': None, '__v_score': '0'}, Document {'id': 'b', 'payload': None, '__v_score': '3.09485009821e+26'}]}"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "r.hset(\"a\", \"v\", \"aaaaaaaa\")\n",
    "r.hset(\"b\", \"v\", \"aaaabaaa\")\n",
    "r.hset(\"c\", \"v\", \"aaaaabaa\")\n",
    "\n",
    "q = Query(\"*=>[KNN 2 @v $vec]\").return_field(\"__v_score\").dialect(2)\n",
    "r.ft().search(q, query_params={\"vec\": \"aaaaaaaa\"})"
   ]
  }
 ],
 "metadata": {
  "interpreter": {
   "hash": "d45c99ba0feda92868abafa8257cbb4709c97f1a0b5dc62bbeebdf89d4fad7fe"
  },
  "kernelspec": {
   "display_name": "Python 3.8.12 64-bit ('venv': venv)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.2"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}