blob: b89b96d4606cf66b2be6ea01ac41d0318b531a28 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
|
101 Aa:Ab:(a+Sb)=S(a+b) axiom 3
102 Ab:(0+Sb)=S(0+b) specification
103 (0+Sb)=S(0+b) specification
104 [ push
105 (0+b)=b premise
106 S(0+b)=Sb add S
107 (0+Sb)=S(0+b) carry over line 103
108 (0+Sb)=Sb transitivity
109 ] pop
110 <(0+b)=b](0+Sb)=Sb> fantasy rule
111 Ab:<(0+b)=b](0+Sb)=Sb> generalization
112 Aa:(a+0)=a axiom 2
113 (0+0)=0 specification
114 Ab:(0+b)=b induction (lines 111, 113)
115 (0+a)=a specification
116 Aa:(0+a)=a generalization
01 Aa:Ab:(a+Sb)=S(a+b) axiom 3
02 Ab:(d+Sb)=S(d+b) specification
03 (d+SSc)=S(d+Sc) specification
04 Ab:(Sd+Sb)=S(Sd+b) specification (line 01)
05 (Sd+Sc)=S(Sd+c) specification
06 S(Sd+c)=(Sd+Sc) symmetry
07 [ push
08 Ad:(d+Sc)=(Sd+c) premise
09 (d+Sc)=(Sd+c) specification
10 S(d+Sc)=S(Sd+c) add S
11 (d+SSc)=S(d+Sc) carry over 03
12 (d+SSc)=S(Sd+c) transitivity
13 S(Sd+c)=(Sd+Sc) carry over 06
14 (d+SSc)=(Sd+Sc) transitivity
15 Ad:(d+SSc)=(Sd+Sc) generalization
16 ] pop
17 <Ad:(d+Sc)=(Sd+c)]Ad:(d+SSc)=(Sd+Sc)> fantasy rule
18 Ac:<Ad:(d+Sc)=(Sd+c)]Ad:(d+SSc)=(Sd+Sc)> generalization
19 (d+S0)=S(d+0) specification (line 02)
20 Aa:(a+0)=a axiom 1
21 (d+0)=d specification
22 S(d+0)=Sd add S
23 (d+S0)=Sd transitivity (lines 19,22)
24 (Sd+0)=Sd specification (line 20)
25 Sd=(Sd+0) symmetry
26 (d+S0)=(Sd+0) transitivity (lines 23,25)
27 Ad:(d+S0)=(Sd+0) generalization
28 Ac:Ad:(d+Sc)=(Sd+c) induction (lines 18,27)
[S can be slipped back and forth in an addition.]
29 Ab:(c+Sb)=S(c+b) specification (line 01)
30 (c+Sd)=S(c+d) specification
31 Ab:(d+Sb)=S(d+b) specification (line 01)
32 (d+Sc)=S(d+c) specification
33 S(d+c)=(d+Sc) symmetry
34 Ad:(d+Sc)=(Sd+c) specification (line 28)
35 (d+Sc)=(Sd+c) specification
36 [ push
37 Ac:(c+d)=(d+c) premise
38 (c+d)=(d+c) specification
39 S(c+d)=S(d+c) add S
40 (c+Sd)=S(c+d) carry over 30
41 (c+Sd)=S(d+c) transitivity
42 S(d+c)=(d+Sc) carry over 33
43 (c+Sd)=(d+Sc) transitivity
44 (d+Sc)=(Sd+c) carry over 35
45 (c+Sd)=(Sd+c) transitivity
46 Ac:(c+Sd)=(Sd+c) generalization
47 ] pop
48 <Ac:(c+d)=(d+c)]Ac:(c+Sd)=(Sd+c)> fantasy rule
49 Ad:<Ac:(c+d)=(d+c)]Ac:(c+Sd)=(Sd+c)> generalization
[If d commutes with every c, then Sd does too.]
50 (c+0)=c specification (line 20)
51 Aa:(0+a)=a carry over 116
52 (0+c)=c specification
53 c=(0+c) symmetry
54 (c+0)=(0+c) transitivity (lines 50,53)
55 Ac:(c+0)=(0+c) generalization
[0 commutes with every c.]
56 Ad:Ac:(c+d)=(d+c) induction (lines 49,55)
[Therefore, every d commmutes with every c.]
|