1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
|
# -*- coding: utf-8 -*-
from __future__ import division, unicode_literals, print_function, absolute_import
from pint.compat import np
from pint.testsuite import QuantityTestCase, helpers
# Following http://docs.scipy.org/doc/numpy/reference/ufuncs.html
if np:
pi = np.pi
@helpers.requires_numpy()
class TestUFuncs(QuantityTestCase):
FORCE_NDARRAY = True
@property
def qless(self):
return np.asarray([1., 2., 3., 4.]) * self.ureg.dimensionless
@property
def qs(self):
return 8 * self.ureg.J
@property
def q1(self):
return np.asarray([1., 2., 3., 4.]) * self.ureg.J
@property
def q2(self):
return 2 * self.q1
@property
def qm(self):
return np.asarray([1., 2., 3., 4.]) * self.ureg.m
@property
def qi(self):
return np.asarray([1 + 1j, 2 + 2j, 3 + 3j, 4 + 4j]) * self.ureg.m
def assertRaisesMsg(self, msg, ExcType, func, *args, **kwargs):
try:
func(*args, **kwargs)
self.assertFalse(True, msg='Exception {} not raised {}'.format(ExcType, msg))
except ExcType as e:
pass
except Exception as e:
self.assertFalse(True, msg='{} not raised but {}\n{}'.format(ExcType, e, msg))
def _test1(self, func, ok_with, raise_with=(), output_units='same', results=None, rtol=1e-6):
"""Test function that takes a single argument and returns Quantity.
:param func: function callable.
:param ok_with: iterables of values that work fine.
:param raise_with: iterables of values that raise exceptions.
:param output_units: units to be used when building results.
'same': ok_with[n].units (default).
is float: ok_with[n].units ** output_units.
None: no output units, the result should be an ndarray.
Other value will be parsed as unit.
:param results: iterable of results.
If None, the result will be obtained by applying
func to each ok_with value
:param rtol: relative tolerance.
"""
if results is None:
results = [None, ] * len(ok_with)
for x1, res in zip(ok_with, results):
err_msg = 'At {} with {}'.format(func.__name__, x1)
if output_units == 'same':
ou = x1.units
elif isinstance(output_units, (int, float)):
ou = x1.units ** output_units
else:
ou = output_units
qm = func(x1)
if res is None:
res = func(x1.magnitude)
if ou is not None:
res = self.Q_(res, ou)
self.assertQuantityAlmostEqual(qm, res, rtol=rtol, msg=err_msg)
for x1 in raise_with:
self.assertRaisesMsg('At {} with {}'.format(func.__name__, x1),
ValueError, func, x1)
def _testn(self, func, ok_with, raise_with=(), results=None):
"""Test function that takes a single argument and returns and ndarray (not a Quantity)
:param func: function callable.
:param ok_with: iterables of values that work fine.
:param raise_with: iterables of values that raise exceptions.
:param results: iterable of results.
If None, the result will be obtained by applying
func to each ok_with value
"""
self._test1(func, ok_with, raise_with, output_units=None, results=results)
def _test1_2o(self, func, ok_with, raise_with=(), output_units=('same', 'same'),
results=None, rtol=1e-6):
"""Test functions that takes a single argument and return two Quantities.
:param func: function callable.
:param ok_with: iterables of values that work fine.
:param raise_with: iterables of values that raise exceptions.
:param output_units: tuple of units to be used when building the result tuple.
'same': ok_with[n].units (default).
is float: ok_with[n].units ** output_units.
None: no output units, the result should be an ndarray.
Other value will be parsed as unit.
:param results: iterable of results.
If None, the result will be obtained by applying
func to each ok_with value
:param rtol: relative tolerance.
"""
if results is None:
results = [None, ] * len(ok_with)
for x1, res in zip(ok_with, results):
err_msg = 'At {} with {}'.format(func.__name__, x1)
qms = func(x1)
if res is None:
res = func(x1.magnitude)
for ndx, (qm, re, ou) in enumerate(zip(qms, res, output_units)):
if ou == 'same':
ou = x1.units
elif isinstance(ou, (int, float)):
ou = x1.units ** ou
if ou is not None:
re = self.Q_(re, ou)
self.assertQuantityAlmostEqual(qm, re, rtol=rtol, msg=err_msg)
for x1 in raise_with:
self.assertRaisesMsg('At {} with {}'.format(func.__name__, x1),
ValueError, func, x1)
def _test2(self, func, x1, ok_with, raise_with=(), output_units='same', rtol=1e-6, convert2=True):
"""Test function that takes two arguments and return a Quantity.
:param func: function callable.
:param x1: first argument of func.
:param ok_with: iterables of values that work fine.
:param raise_with: iterables of values that raise exceptions.
:param output_units: units to be used when building results.
'same': x1.units (default).
'prod': x1.units * ok_with[n].units
'div': x1.units / ok_with[n].units
'second': x1.units * ok_with[n]
None: no output units, the result should be an ndarray.
Other value will be parsed as unit.
:param rtol: relative tolerance.
:param convert2: if the ok_with[n] should be converted to x1.units.
"""
for x2 in ok_with:
err_msg = 'At {} with {} and {}'.format(func.__name__, x1, x2)
if output_units == 'same':
ou = x1.units
elif output_units == 'prod':
ou = x1.units * x2.units
elif output_units == 'div':
ou = x1.units / x2.units
elif output_units == 'second':
ou = x1.units ** x2
else:
ou = output_units
qm = func(x1, x2)
if convert2 and hasattr(x2, 'magnitude'):
m2 = x2.to(getattr(x1, 'units', '')).magnitude
else:
m2 = getattr(x2, 'magnitude', x2)
res = func(x1.magnitude, m2)
if ou is not None:
res = self.Q_(res, ou)
self.assertQuantityAlmostEqual(qm, res, rtol=rtol, msg=err_msg)
for x2 in raise_with:
self.assertRaisesMsg('At {} with {} and {}'.format(func.__name__, x1, x2),
ValueError, func, x1, x2)
def _testn2(self, func, x1, ok_with, raise_with=()):
"""Test function that takes two arguments and return a ndarray.
:param func: function callable.
:param x1: first argument of func.
:param ok_with: iterables of values that work fine.
:param raise_with: iterables of values that raise exceptions.
"""
self._test2(func, x1, ok_with, raise_with, output_units=None)
@helpers.requires_numpy()
class TestMathUfuncs(TestUFuncs):
"""Universal functions (ufunc) > Math operations
http://docs.scipy.org/doc/numpy/reference/ufuncs.html#math-operations
add(x1, x2[, out]) Add arguments element-wise.
subtract(x1, x2[, out]) Subtract arguments, element-wise.
multiply(x1, x2[, out]) Multiply arguments element-wise.
divide(x1, x2[, out]) Divide arguments element-wise.
logaddexp(x1, x2[, out]) Logarithm of the sum of exponentiations of the inputs.
logaddexp2(x1, x2[, out]) Logarithm of the sum of exponentiations of the inputs in base-2.
true_divide(x1, x2[, out]) Returns a true division of the inputs, element-wise.
floor_divide(x1, x2[, out]) Return the largest integer smaller or equal to the division of the inputs.
negative(x[, out]) Returns an array with the negative of each element of the original array.
power(x1, x2[, out]) First array elements raised to powers from second array, element-wise. NOT IMPLEMENTED
remainder(x1, x2[, out]) Return element-wise remainder of division.
mod(x1, x2[, out]) Return element-wise remainder of division.
fmod(x1, x2[, out]) Return the element-wise remainder of division.
absolute(x[, out]) Calculate the absolute value element-wise.
rint(x[, out]) Round elements of the array to the nearest integer.
sign(x[, out]) Returns an element-wise indication of the sign of a number.
conj(x[, out]) Return the complex conjugate, element-wise.
exp(x[, out]) Calculate the exponential of all elements in the input array.
exp2(x[, out]) Calculate 2**p for all p in the input array.
log(x[, out]) Natural logarithm, element-wise.
log2(x[, out]) Base-2 logarithm of x.
log10(x[, out]) Return the base 10 logarithm of the input array, element-wise.
expm1(x[, out]) Calculate exp(x) - 1 for all elements in the array.
log1p(x[, out]) Return the natural logarithm of one plus the input array, element-wise.
sqrt(x[, out]) Return the positive square-root of an array, element-wise.
square(x[, out]) Return the element-wise square of the input.
reciprocal(x[, out]) Return the reciprocal of the argument, element-wise.
ones_like(x[, out]) Returns an array of ones with the same shape and type as a given array.
"""
def test_add(self):
self._test2(np.add,
self.q1,
(self.q2, self.qs),
(self.qm, ))
def test_subtract(self):
self._test2(np.subtract,
self.q1,
(self.q2, self.qs),
(self.qm, ))
def test_multiply(self):
self._test2(np.multiply,
self.q1,
(self.q2, self.qs), (),
'prod')
def test_divide(self):
self._test2(np.divide,
self.q1,
(self.q2, self.qs, self.qless),
(),
'div', convert2=False)
def test_logaddexp(self):
self._test2(np.logaddexp,
self.qless,
(self.qless, ),
(self.q1, ),
'')
def test_logaddexp2(self):
self._test2(np.logaddexp2,
self.qless,
(self.qless, ),
(self.q1, ),
'div')
def test_true_divide(self):
self._test2(np.true_divide,
self.q1,
(self.q2, self.qs, self.qless),
(),
'div', convert2=False)
def test_floor_divide(self):
self._test2(np.floor_divide,
self.q1,
(self.q2, self.qs, self.qless),
(),
'div', convert2=False)
def test_negative(self):
self._test1(np.negative,
(self.qless, self.q1),
())
def test_remainder(self):
self._test2(np.remainder,
self.q1,
(self.q2, self.qs, self.qless),
(),
'same', convert2=False)
def test_mod(self):
self._test2(np.mod,
self.q1,
(self.q2, self.qs, self.qless),
(),
'same', convert2=False)
def test_fmod(self):
self._test2(np.fmod,
self.q1,
(self.q2, self.qs, self.qless),
(),
'same', convert2=False)
def test_absolute(self):
self._test1(np.absolute,
(self.q2, self.qs, self.qless, self.qi),
(),
'same')
def test_rint(self):
self._test1(np.rint,
(self.q2, self.qs, self.qless, self.qi),
(),
'same')
def test_conj(self):
self._test1(np.conj,
(self.q2, self.qs, self.qless, self.qi),
(),
'same')
def test_exp(self):
self._test1(np.exp,
(self.qless, ),
(self.q1, ),
'')
def test_exp2(self):
self._test1(np.exp2,
(self.qless,),
(self.q1, ),
'')
def test_log(self):
self._test1(np.log,
(self.qless,),
(self.q1, ),
'')
def test_log2(self):
self._test1(np.log2,
(self.qless,),
(self.q1, ),
'')
def test_log10(self):
self._test1(np.log10,
(self.qless,),
(self.q1, ),
'')
def test_expm1(self):
self._test1(np.expm1,
(self.qless,),
(self.q1, ),
'')
def test_sqrt(self):
self._test1(np.sqrt,
(self.q2, self.qs, self.qless, self.qi),
(),
0.5)
def test_square(self):
self._test1(np.square,
(self.q2, self.qs, self.qless, self.qi),
(),
2)
def test_reciprocal(self):
self._test1(np.reciprocal,
(self.q2, self.qs, self.qless, self.qi),
(),
-1)
@helpers.requires_numpy()
class TestTrigUfuncs(TestUFuncs):
"""Universal functions (ufunc) > Trigonometric functions
http://docs.scipy.org/doc/numpy/reference/ufuncs.html#trigonometric-functions
sin(x[, out]) Trigonometric sine, element-wise.
cos(x[, out]) Cosine elementwise.
tan(x[, out]) Compute tangent element-wise.
arcsin(x[, out]) Inverse sine, element-wise.
arccos(x[, out]) Trigonometric inverse cosine, element-wise.
arctan(x[, out]) Trigonometric inverse tangent, element-wise.
arctan2(x1, x2[, out]) Element-wise arc tangent of x1/x2 choosing the quadrant correctly.
hypot(x1, x2[, out]) Given the “legs” of a right triangle, return its hypotenuse.
sinh(x[, out]) Hyperbolic sine, element-wise.
cosh(x[, out]) Hyperbolic cosine, element-wise.
tanh(x[, out]) Compute hyperbolic tangent element-wise.
arcsinh(x[, out]) Inverse hyperbolic sine elementwise.
arccosh(x[, out]) Inverse hyperbolic cosine, elementwise.
arctanh(x[, out]) Inverse hyperbolic tangent elementwise.
deg2rad(x[, out]) Convert angles from degrees to radians.
rad2deg(x[, out]) Convert angles from radians to degrees.
"""
def test_sin(self):
self._test1(np.sin, (np.arange(0, pi/2, pi/4) * self.ureg.dimensionless,
np.arange(0, pi/2, pi/4) * self.ureg.radian,
np.arange(0, pi/2, pi/4) * self.ureg.mm / self.ureg.m
), (1*self.ureg.m, ), '', results=(None, None, np.sin(np.arange(0, pi/2, pi/4)*0.001)))
self._test1(np.sin, (np.rad2deg(np.arange(0, pi/2, pi/4)) * self.ureg.degrees,
), results=(np.sin(np.arange(0, pi/2, pi/4)), ))
def test_cos(self):
self._test1(np.cos, (np.arange(0, pi/2, pi/4) * self.ureg.dimensionless,
np.arange(0, pi/2, pi/4) * self.ureg.radian,
np.arange(0, pi/2, pi/4) * self.ureg.mm / self.ureg.m,
), (1*self.ureg.m, ), '',
results=(None,
None,
np.cos(np.arange(0, pi/2, pi/4)*0.001),
)
)
self._test1(np.cos,
(np.rad2deg(np.arange(0, pi/2, pi/4)) * self.ureg.degrees,
),
results=(np.cos(np.arange(0, pi/2, pi/4)), )
)
def test_tan(self):
self._test1(np.tan, (np.arange(0, pi/2, pi/4) * self.ureg.dimensionless,
np.arange(0, pi/2, pi/4) * self.ureg.radian,
np.arange(0, pi/2, pi/4) * self.ureg.mm / self.ureg.m
), (1*self.ureg.m, ), '', results=(None, None, np.tan(np.arange(0, pi/2, pi/4)*0.001)))
self._test1(np.tan, (np.rad2deg(np.arange(0, pi/2, pi/4)) * self.ureg.degrees,
), results=(np.tan(np.arange(0, pi/2, pi/4)), ))
def test_arcsin(self):
self._test1(np.arcsin, (np.arange(0, .9, .1) * self.ureg.dimensionless,
np.arange(0, .9, .1) * self.ureg.m / self.ureg.m
), (1*self.ureg.m, ), 'radian')
def test_arccos(self):
x = np.arange(0, .9, .1) * self.ureg.m
self._test1(np.arccos, (np.arange(0, .9, .1) * self.ureg.dimensionless,
np.arange(0, .9, .1) * self.ureg.m / self.ureg.m
), (1*self.ureg.m, ), 'radian')
def test_arctan(self):
self._test1(np.arctan, (np.arange(0, .9, .1) * self.ureg.dimensionless,
np.arange(0, .9, .1) * self.ureg.m / self.ureg.m
), (1*self.ureg.m, ), 'radian')
def test_arctan2(self):
m = self.ureg.m
j = self.ureg.J
km = self.ureg.km
self._test2(np.arctan2, np.arange(0, .9, .1) * m,
(np.arange(0, .9, .1) * m, np.arange(.9, 0., -.1) * m,
np.arange(0, .9, .1) * km, np.arange(.9, 0., -.1) * km,
),
raise_with=np.arange(0, .9, .1) * j,
output_units='radian')
def test_hypot(self):
self.assertTrue(np.hypot(3. * self.ureg.m, 4. * self.ureg.m) == 5. * self.ureg.m)
self.assertTrue(np.hypot(3. * self.ureg.m, 400. * self.ureg.cm) == 5. * self.ureg.m)
self.assertRaises(ValueError, np.hypot, 1. * self.ureg.m, 2. * self.ureg.J)
def test_sinh(self):
self._test1(np.sinh, (np.arange(0, pi/2, pi/4) * self.ureg.dimensionless,
np.arange(0, pi/2, pi/4) * self.ureg.radian,
np.arange(0, pi/2, pi/4) * self.ureg.mm / self.ureg.m
), (1*self.ureg.m, ), '', results=(None, None, np.sinh(np.arange(0, pi/2, pi/4)*0.001)))
self._test1(np.sinh, (np.rad2deg(np.arange(0, pi/2, pi/4)) * self.ureg.degrees,
), results=(np.sinh(np.arange(0, pi/2, pi/4)), ))
def test_cosh(self):
self._test1(np.cosh, (np.arange(0, pi/2, pi/4) * self.ureg.dimensionless,
np.arange(0, pi/2, pi/4) * self.ureg.radian,
np.arange(0, pi/2, pi/4) * self.ureg.mm / self.ureg.m
), (1*self.ureg.m, ), '', results=(None, None, np.cosh(np.arange(0, pi/2, pi/4)*0.001)))
self._test1(np.cosh, (np.rad2deg(np.arange(0, pi/2, pi/4)) * self.ureg.degrees,
), results=(np.cosh(np.arange(0, pi/2, pi/4)), ))
def test_tanh(self):
self._test1(np.tanh, (np.arange(0, pi/2, pi/4) * self.ureg.dimensionless,
np.arange(0, pi/2, pi/4) * self.ureg.radian,
np.arange(0, pi/2, pi/4) * self.ureg.mm / self.ureg.m
), (1*self.ureg.m, ), '', results=(None, None, np.tanh(np.arange(0, pi/2, pi/4)*0.001)))
self._test1(np.tanh, (np.rad2deg(np.arange(0, pi/2, pi/4)) * self.ureg.degrees,
), results=(np.tanh(np.arange(0, pi/2, pi/4)), ))
def test_arcsinh(self):
self._test1(np.arcsinh, (np.arange(0, .9, .1) * self.ureg.dimensionless,
np.arange(0, .9, .1) * self.ureg.m / self.ureg.m
), (1*self.ureg.m, ), 'radian')
def test_arccosh(self):
self._test1(np.arccosh, (np.arange(1., 1.9, .1) * self.ureg.dimensionless,
np.arange(1., 1.9, .1) * self.ureg.m / self.ureg.m
), (1*self.ureg.m, ), 'radian')
def test_arctanh(self):
self._test1(np.arctanh, (np.arange(0, .9, .1) * self.ureg.dimensionless,
np.arange(0, .9, .1) * self.ureg.m / self.ureg.m
), (.1 * self.ureg.m, ), 'radian')
def test_deg2rad(self):
self._test1(np.deg2rad, (np.arange(0, pi/2, pi/4) * self.ureg.degrees,
), (1*self.ureg.m, ), 'radians')
def test_rad2deg(self):
self._test1(np.rad2deg,
(np.arange(0, pi/2, pi/4) * self.ureg.dimensionless,
np.arange(0, pi/2, pi/4) * self.ureg.radian,
np.arange(0, pi/2, pi/4) * self.ureg.mm / self.ureg.m,
),
(1*self.ureg.m, ), 'degree',
results=(None,
None,
np.rad2deg(np.arange(0, pi/2, pi/4)*0.001) * self.ureg.degree,
))
class TestComparisonUfuncs(TestUFuncs):
"""Universal functions (ufunc) > Comparison functions
http://docs.scipy.org/doc/numpy/reference/ufuncs.html#comparison-functions
greater(x1, x2[, out]) Return the truth value of (x1 > x2) element-wise.
greater_equal(x1, x2[, out]) Return the truth value of (x1 >= x2) element-wise.
less(x1, x2[, out]) Return the truth value of (x1 < x2) element-wise.
less_equal(x1, x2[, out]) Return the truth value of (x1 =< x2) element-wise.
not_equal(x1, x2[, out]) Return (x1 != x2) element-wise.
equal(x1, x2[, out]) Return (x1 == x2) element-wise.
"""
def test_greater(self):
self._testn2(np.greater,
self.q1,
(self.q2, ),
(self.qm, ))
def test_greater_equal(self):
self._testn2(np.greater_equal,
self.q1,
(self.q2, ),
(self.qm, ))
def test_less(self):
self._testn2(np.less,
self.q1,
(self.q2, ),
(self.qm, ))
def test_less_equal(self):
self._testn2(np.less_equal,
self.q1,
(self.q2, ),
(self.qm, ))
def test_not_equal(self):
self._testn2(np.not_equal,
self.q1,
(self.q2, ),
(self.qm, ))
def test_equal(self):
self._testn2(np.equal,
self.q1,
(self.q2, ),
(self.qm, ))
class TestFloatingUfuncs(TestUFuncs):
"""Universal functions (ufunc) > Floating functions
http://docs.scipy.org/doc/numpy/reference/ufuncs.html#floating-functions
isreal(x) Returns a bool array, where True if input element is real.
iscomplex(x) Returns a bool array, where True if input element is complex.
isfinite(x[, out]) Test element-wise for finite-ness (not infinity or not Not a Number).
isinf(x[, out]) Test element-wise for positive or negative infinity.
isnan(x[, out]) Test element-wise for Not a Number (NaN), return result as a bool array.
signbit(x[, out]) Returns element-wise True where signbit is set (less than zero).
copysign(x1, x2[, out]) Change the sign of x1 to that of x2, element-wise.
nextafter(x1, x2[, out]) Return the next representable floating-point value after x1 in the direction of x2 element-wise.
modf(x[, out1, out2]) Return the fractional and integral parts of an array, element-wise.
ldexp(x1, x2[, out]) Compute y = x1 * 2**x2.
frexp(x[, out1, out2]) Split the number, x, into a normalized fraction (y1) and exponent (y2)
fmod(x1, x2[, out]) Return the element-wise remainder of division.
floor(x[, out]) Return the floor of the input, element-wise.
ceil(x[, out]) Return the ceiling of the input, element-wise.
trunc(x[, out]) Return the truncated value of the input, element-wise.
"""
def test_isreal(self):
self._testn(np.isreal,
(self.q1, self.qm, self.qless))
def test_iscomplex(self):
self._testn(np.iscomplex,
(self.q1, self.qm, self.qless))
def test_isfinite(self):
self._testn(np.isfinite,
(self.q1, self.qm, self.qless))
def test_isinf(self):
self._testn(np.isinf,
(self.q1, self.qm, self.qless))
def test_isnan(self):
self._testn(np.isnan,
(self.q1, self.qm, self.qless))
def test_signbit(self):
self._testn(np.signbit,
(self.q1, self.qm, self.qless))
def test_copysign(self):
self._test2(np.copysign,
self.q1,
(self.q2, self.qs),
(self.qm, ))
def test_nextafter(self):
self._test2(np.nextafter,
self.q1,
(self.q2, self.qs),
(self.qm, ))
def test_modf(self):
self._test1_2o(np.modf,
(self.q2, self.qs),
)
def test_ldexp(self):
x1, x2 = np.frexp(self.q2)
self._test2(np.ldexp,
x1,
(x2, ))
def test_frexp(self):
self._test1_2o(np.frexp,
(self.q2, self.qs),
output_units=('same', None))
def test_fmod(self):
# See TestMathUfuncs.test_fmod
pass
def test_floor(self):
self._test1(np.floor,
(self.q1, self.qm, self.qless))
def test_ceil(self):
self._test1(np.ceil,
(self.q1, self.qm, self.qless))
def test_trunc(self):
self._test1(np.trunc,
(self.q1, self.qm, self.qless))
|