summaryrefslogtreecommitdiff
path: root/numpy/fft/tests/test_pocketfft.py
blob: 14f92c0817626aba8d4d675b2c4dc123bf38ad4d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import numpy as np
import pytest
from numpy.random import random
from numpy.testing import (
        assert_array_equal, assert_raises, assert_allclose
        )
import threading
import sys
import queue


def fft1(x):
    L = len(x)
    phase = -2j*np.pi*(np.arange(L)/float(L))
    phase = np.arange(L).reshape(-1, 1) * phase
    return np.sum(x*np.exp(phase), axis=1)


class TestFFTShift:

    def test_fft_n(self):
        assert_raises(ValueError, np.fft.fft, [1, 2, 3], 0)


class TestFFT1D:

    def test_identity(self):
        maxlen = 512
        x = random(maxlen) + 1j*random(maxlen)
        xr = random(maxlen)
        for i in range(1,maxlen):
            assert_allclose(np.fft.ifft(np.fft.fft(x[0:i])), x[0:i],
                            atol=1e-12)
            assert_allclose(np.fft.irfft(np.fft.rfft(xr[0:i]),i),
                            xr[0:i], atol=1e-12)

    def test_fft(self):
        x = random(30) + 1j*random(30)
        assert_allclose(fft1(x), np.fft.fft(x), atol=1e-6)
        assert_allclose(fft1(x) / np.sqrt(30),
                        np.fft.fft(x, norm="ortho"), atol=1e-6)

    @pytest.mark.parametrize('norm', (None, 'ortho'))
    def test_ifft(self, norm):
        x = random(30) + 1j*random(30)
        assert_allclose(
            x, np.fft.ifft(np.fft.fft(x, norm=norm), norm=norm),
            atol=1e-6)
        # Ensure we get the correct error message
        with pytest.raises(ValueError,
                           match='Invalid number of FFT data points'):
            np.fft.ifft([], norm=norm)

    def test_fft2(self):
        x = random((30, 20)) + 1j*random((30, 20))
        assert_allclose(np.fft.fft(np.fft.fft(x, axis=1), axis=0),
                        np.fft.fft2(x), atol=1e-6)
        assert_allclose(np.fft.fft2(x) / np.sqrt(30 * 20),
                        np.fft.fft2(x, norm="ortho"), atol=1e-6)

    def test_ifft2(self):
        x = random((30, 20)) + 1j*random((30, 20))
        assert_allclose(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0),
                        np.fft.ifft2(x), atol=1e-6)
        assert_allclose(np.fft.ifft2(x) * np.sqrt(30 * 20),
                        np.fft.ifft2(x, norm="ortho"), atol=1e-6)

    def test_fftn(self):
        x = random((30, 20, 10)) + 1j*random((30, 20, 10))
        assert_allclose(
            np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0),
            np.fft.fftn(x), atol=1e-6)
        assert_allclose(np.fft.fftn(x) / np.sqrt(30 * 20 * 10),
                        np.fft.fftn(x, norm="ortho"), atol=1e-6)

    def test_ifftn(self):
        x = random((30, 20, 10)) + 1j*random((30, 20, 10))
        assert_allclose(
            np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0),
            np.fft.ifftn(x), atol=1e-6)
        assert_allclose(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10),
                        np.fft.ifftn(x, norm="ortho"), atol=1e-6)

    def test_rfft(self):
        x = random(30)
        for n in [x.size, 2*x.size]:
            for norm in [None, 'ortho']:
                assert_allclose(
                    np.fft.fft(x, n=n, norm=norm)[:(n//2 + 1)],
                    np.fft.rfft(x, n=n, norm=norm), atol=1e-6)
            assert_allclose(
                np.fft.rfft(x, n=n) / np.sqrt(n),
                np.fft.rfft(x, n=n, norm="ortho"), atol=1e-6)

    def test_irfft(self):
        x = random(30)
        assert_allclose(x, np.fft.irfft(np.fft.rfft(x)), atol=1e-6)
        assert_allclose(
            x, np.fft.irfft(np.fft.rfft(x, norm="ortho"), norm="ortho"), atol=1e-6)

    def test_rfft2(self):
        x = random((30, 20))
        assert_allclose(np.fft.fft2(x)[:, :11], np.fft.rfft2(x), atol=1e-6)
        assert_allclose(np.fft.rfft2(x) / np.sqrt(30 * 20),
                        np.fft.rfft2(x, norm="ortho"), atol=1e-6)

    def test_irfft2(self):
        x = random((30, 20))
        assert_allclose(x, np.fft.irfft2(np.fft.rfft2(x)), atol=1e-6)
        assert_allclose(
            x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"), norm="ortho"), atol=1e-6)

    def test_rfftn(self):
        x = random((30, 20, 10))
        assert_allclose(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x), atol=1e-6)
        assert_allclose(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10),
                        np.fft.rfftn(x, norm="ortho"), atol=1e-6)

    def test_irfftn(self):
        x = random((30, 20, 10))
        assert_allclose(x, np.fft.irfftn(np.fft.rfftn(x)), atol=1e-6)
        assert_allclose(
            x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"), norm="ortho"), atol=1e-6)

    def test_hfft(self):
        x = random(14) + 1j*random(14)
        x_herm = np.concatenate((random(1), x, random(1)))
        x = np.concatenate((x_herm, x[::-1].conj()))
        assert_allclose(np.fft.fft(x), np.fft.hfft(x_herm), atol=1e-6)
        assert_allclose(np.fft.hfft(x_herm) / np.sqrt(30),
                        np.fft.hfft(x_herm, norm="ortho"), atol=1e-6)

    def test_ihttf(self):
        x = random(14) + 1j*random(14)
        x_herm = np.concatenate((random(1), x, random(1)))
        x = np.concatenate((x_herm, x[::-1].conj()))
        assert_allclose(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)), atol=1e-6)
        assert_allclose(
            x_herm, np.fft.ihfft(np.fft.hfft(x_herm, norm="ortho"),
                                 norm="ortho"), atol=1e-6)

    @pytest.mark.parametrize("op", [np.fft.fftn, np.fft.ifftn,
                                    np.fft.rfftn, np.fft.irfftn])
    def test_axes(self, op):
        x = random((30, 20, 10))
        axes = [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
        for a in axes:
            op_tr = op(np.transpose(x, a))
            tr_op = np.transpose(op(x, axes=a), a)
            assert_allclose(op_tr, tr_op, atol=1e-6)

    def test_all_1d_norm_preserving(self):
        # verify that round-trip transforms are norm-preserving
        x = random(30)
        x_norm = np.linalg.norm(x)
        n = x.size * 2
        func_pairs = [(np.fft.fft, np.fft.ifft),
                      (np.fft.rfft, np.fft.irfft),
                      # hfft: order so the first function takes x.size samples
                      #       (necessary for comparison to x_norm above)
                      (np.fft.ihfft, np.fft.hfft),
                      ]
        for forw, back in func_pairs:
            for n in [x.size, 2*x.size]:
                for norm in [None, 'ortho']:
                    tmp = forw(x, n=n, norm=norm)
                    tmp = back(tmp, n=n, norm=norm)
                    assert_allclose(x_norm,
                                    np.linalg.norm(tmp), atol=1e-6)

    @pytest.mark.parametrize("dtype", [np.half, np.single, np.double,
                                       np.longdouble])
    def test_dtypes(self, dtype):
        # make sure that all input precisions are accepted and internally
        # converted to 64bit
        x = random(30).astype(dtype)
        assert_allclose(np.fft.ifft(np.fft.fft(x)), x, atol=1e-6)
        assert_allclose(np.fft.irfft(np.fft.rfft(x)), x, atol=1e-6)


@pytest.mark.parametrize(
        "dtype",
        [np.float32, np.float64, np.complex64, np.complex128])
@pytest.mark.parametrize("order", ["F", 'non-contiguous'])
@pytest.mark.parametrize(
        "fft",
        [np.fft.fft, np.fft.fft2, np.fft.fftn,
         np.fft.ifft, np.fft.ifft2, np.fft.ifftn])
def test_fft_with_order(dtype, order, fft):
    # Check that FFT/IFFT produces identical results for C, Fortran and
    # non contiguous arrays
    rng = np.random.RandomState(42)
    X = rng.rand(8, 7, 13).astype(dtype, copy=False)
    # See discussion in pull/14178
    _tol = 8.0 * np.sqrt(np.log2(X.size)) * np.finfo(X.dtype).eps
    if order == 'F':
        Y = np.asfortranarray(X)
    else:
        # Make a non contiguous array
        Y = X[::-1]
        X = np.ascontiguousarray(X[::-1])

    if fft.__name__.endswith('fft'):
        for axis in range(3):
            X_res = fft(X, axis=axis)
            Y_res = fft(Y, axis=axis)
            assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
    elif fft.__name__.endswith(('fft2', 'fftn')):
        axes = [(0, 1), (1, 2), (0, 2)]
        if fft.__name__.endswith('fftn'):
            axes.extend([(0,), (1,), (2,), None])
        for ax in axes:
            X_res = fft(X, axes=ax)
            Y_res = fft(Y, axes=ax)
            assert_allclose(X_res, Y_res, atol=_tol, rtol=_tol)
    else:
        raise ValueError()


class TestFFTThreadSafe:
    threads = 16
    input_shape = (800, 200)

    def _test_mtsame(self, func, *args):
        def worker(args, q):
            q.put(func(*args))

        q = queue.Queue()
        expected = func(*args)

        # Spin off a bunch of threads to call the same function simultaneously
        t = [threading.Thread(target=worker, args=(args, q))
             for i in range(self.threads)]
        [x.start() for x in t]

        [x.join() for x in t]
        # Make sure all threads returned the correct value
        for i in range(self.threads):
            assert_array_equal(q.get(timeout=5), expected,
                'Function returned wrong value in multithreaded context')

    def test_fft(self):
        a = np.ones(self.input_shape) * 1+0j
        self._test_mtsame(np.fft.fft, a)

    def test_ifft(self):
        a = np.ones(self.input_shape) * 1+0j
        self._test_mtsame(np.fft.ifft, a)

    def test_rfft(self):
        a = np.ones(self.input_shape)
        self._test_mtsame(np.fft.rfft, a)

    def test_irfft(self):
        a = np.ones(self.input_shape) * 1+0j
        self._test_mtsame(np.fft.irfft, a)