diff options
author | Jarrod Millman <millman@berkeley.edu> | 2008-08-08 04:33:45 +0000 |
---|---|---|
committer | Jarrod Millman <millman@berkeley.edu> | 2008-08-08 04:33:45 +0000 |
commit | 70ed0f238156680efba9b4028810f3aed486357b (patch) | |
tree | e5e0f42e586156ed74128cff0fe84404398b918b /numpy/ma/tests/test_extras.py | |
parent | 0da812e06828be6749b1840b48c4f100dc3dfd68 (diff) | |
download | numpy-70ed0f238156680efba9b4028810f3aed486357b.tar.gz |
ran reindent
Diffstat (limited to 'numpy/ma/tests/test_extras.py')
-rw-r--r-- | numpy/ma/tests/test_extras.py | 14 |
1 files changed, 7 insertions, 7 deletions
diff --git a/numpy/ma/tests/test_extras.py b/numpy/ma/tests/test_extras.py index 9fd501aaa..f6105f843 100644 --- a/numpy/ma/tests/test_extras.py +++ b/numpy/ma/tests/test_extras.py @@ -48,7 +48,7 @@ class TestAverage(TestCase): y = array([arange(6, dtype=float_), 2.0*arange(6)]) assert_equal(average(y, None), np.add.reduce(np.arange(6))*3./12.) assert_equal(average(y, axis=0), np.arange(6) * 3./2.) - assert_equal(average(y, axis=1), + assert_equal(average(y, axis=1), [average(x,axis=0), average(x,axis=0) * 2.0]) assert_equal(average(y, None, weights=w2), 20./6.) assert_equal(average(y, axis=0, weights=w2), @@ -395,7 +395,7 @@ class TestCov(TestCase): # 2 1D variables w/ missing values nx = x[1:-1] assert_almost_equal(np.cov(nx, nx[::-1]), cov(x, x[::-1])) - assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False), + assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False), cov(x, x[::-1], rowvar=False)) assert_almost_equal(np.cov(nx, nx[::-1], rowvar=False, bias=True), cov(x, x[::-1], rowvar=False, bias=True)) @@ -409,13 +409,13 @@ class TestCov(TestCase): frac = np.dot(valid, valid.T) xf = (x - x.mean(1)[:,None]).filled(0) assert_almost_equal(cov(x), np.cov(xf) * (x.shape[1]-1) / (frac - 1.)) - assert_almost_equal(cov(x, bias=True), + assert_almost_equal(cov(x, bias=True), np.cov(xf, bias=True) * x.shape[1] / frac) frac = np.dot(valid.T, valid) xf = (x - x.mean(0)).filled(0) - assert_almost_equal(cov(x, rowvar=False), + assert_almost_equal(cov(x, rowvar=False), np.cov(xf, rowvar=False) * (x.shape[0]-1)/(frac - 1.)) - assert_almost_equal(cov(x, rowvar=False, bias=True), + assert_almost_equal(cov(x, rowvar=False, bias=True), np.cov(xf, rowvar=False, bias=True) * x.shape[0]/frac) @@ -461,7 +461,7 @@ class TestCorrcoef(TestCase): # 2 1D variables w/ missing values nx = x[1:-1] assert_almost_equal(np.corrcoef(nx, nx[::-1]), corrcoef(x, x[::-1])) - assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False), + assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False), corrcoef(x, x[::-1], rowvar=False)) assert_almost_equal(np.corrcoef(nx, nx[::-1], rowvar=False, bias=True), corrcoef(x, x[::-1], rowvar=False, bias=True)) @@ -471,7 +471,7 @@ class TestCorrcoef(TestCase): x = self.data x[-1] = masked x = x.reshape(3,4) - + test = corrcoef(x) control = np.corrcoef(x) assert_almost_equal(test[:-1,:-1], control[:-1,:-1]) |