summaryrefslogtreecommitdiff
path: root/numpy/core/_asarray.py
diff options
context:
space:
mode:
authorEric Wieser <wieser.eric@gmail.com>2019-04-13 17:10:35 -0700
committerEric Wieser <wieser.eric@gmail.com>2019-04-13 17:40:43 -0700
commit82641c61b1a2d6d1b8cccce5a65f4215c94b99b2 (patch)
treefda5a1cb1cad2b7ef691a49c071e4ab6c02d8a05 /numpy/core/_asarray.py
parentb18e32efc3f5b77630a1d4f05399fc15c69831b3 (diff)
downloadnumpy-82641c61b1a2d6d1b8cccce5a65f4215c94b99b2.tar.gz
MAINT: Move asarray helpers into their own module
This is a direct move, with some tweaks to imports. This breaks a cyclic imports between `core.numeric` and `core.fromnumeric`. This doesn't affect the value of `np.core.numeric.__all__` which keeps code doing `from numpy.core.numeric import *` working.
Diffstat (limited to 'numpy/core/_asarray.py')
-rw-r--r--numpy/core/_asarray.py319
1 files changed, 319 insertions, 0 deletions
diff --git a/numpy/core/_asarray.py b/numpy/core/_asarray.py
new file mode 100644
index 000000000..fbb7ffa9d
--- /dev/null
+++ b/numpy/core/_asarray.py
@@ -0,0 +1,319 @@
+"""
+Functions in the ``as*array`` family that promote array-likes into arrays.
+
+`require` fits this category despite its name not matching this pattern.
+"""
+from __future__ import division, absolute_import, print_function
+
+from .overrides import set_module
+from .multiarray import array
+
+
+__all__ = [
+ "asarray", "asanyarray", "ascontiguousarray", "asfortranarray", "require",
+]
+
+@set_module('numpy')
+def asarray(a, dtype=None, order=None):
+ """Convert the input to an array.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data, in any form that can be converted to an array. This
+ includes lists, lists of tuples, tuples, tuples of tuples, tuples
+ of lists and ndarrays.
+ dtype : data-type, optional
+ By default, the data-type is inferred from the input data.
+ order : {'C', 'F'}, optional
+ Whether to use row-major (C-style) or
+ column-major (Fortran-style) memory representation.
+ Defaults to 'C'.
+
+ Returns
+ -------
+ out : ndarray
+ Array interpretation of `a`. No copy is performed if the input
+ is already an ndarray with matching dtype and order. If `a` is a
+ subclass of ndarray, a base class ndarray is returned.
+
+ See Also
+ --------
+ asanyarray : Similar function which passes through subclasses.
+ ascontiguousarray : Convert input to a contiguous array.
+ asfarray : Convert input to a floating point ndarray.
+ asfortranarray : Convert input to an ndarray with column-major
+ memory order.
+ asarray_chkfinite : Similar function which checks input for NaNs and Infs.
+ fromiter : Create an array from an iterator.
+ fromfunction : Construct an array by executing a function on grid
+ positions.
+
+ Examples
+ --------
+ Convert a list into an array:
+
+ >>> a = [1, 2]
+ >>> np.asarray(a)
+ array([1, 2])
+
+ Existing arrays are not copied:
+
+ >>> a = np.array([1, 2])
+ >>> np.asarray(a) is a
+ True
+
+ If `dtype` is set, array is copied only if dtype does not match:
+
+ >>> a = np.array([1, 2], dtype=np.float32)
+ >>> np.asarray(a, dtype=np.float32) is a
+ True
+ >>> np.asarray(a, dtype=np.float64) is a
+ False
+
+ Contrary to `asanyarray`, ndarray subclasses are not passed through:
+
+ >>> issubclass(np.recarray, np.ndarray)
+ True
+ >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray)
+ >>> np.asarray(a) is a
+ False
+ >>> np.asanyarray(a) is a
+ True
+
+ """
+ return array(a, dtype, copy=False, order=order)
+
+
+@set_module('numpy')
+def asanyarray(a, dtype=None, order=None):
+ """Convert the input to an ndarray, but pass ndarray subclasses through.
+
+ Parameters
+ ----------
+ a : array_like
+ Input data, in any form that can be converted to an array. This
+ includes scalars, lists, lists of tuples, tuples, tuples of tuples,
+ tuples of lists, and ndarrays.
+ dtype : data-type, optional
+ By default, the data-type is inferred from the input data.
+ order : {'C', 'F'}, optional
+ Whether to use row-major (C-style) or column-major
+ (Fortran-style) memory representation. Defaults to 'C'.
+
+ Returns
+ -------
+ out : ndarray or an ndarray subclass
+ Array interpretation of `a`. If `a` is an ndarray or a subclass
+ of ndarray, it is returned as-is and no copy is performed.
+
+ See Also
+ --------
+ asarray : Similar function which always returns ndarrays.
+ ascontiguousarray : Convert input to a contiguous array.
+ asfarray : Convert input to a floating point ndarray.
+ asfortranarray : Convert input to an ndarray with column-major
+ memory order.
+ asarray_chkfinite : Similar function which checks input for NaNs and
+ Infs.
+ fromiter : Create an array from an iterator.
+ fromfunction : Construct an array by executing a function on grid
+ positions.
+
+ Examples
+ --------
+ Convert a list into an array:
+
+ >>> a = [1, 2]
+ >>> np.asanyarray(a)
+ array([1, 2])
+
+ Instances of `ndarray` subclasses are passed through as-is:
+
+ >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray)
+ >>> np.asanyarray(a) is a
+ True
+
+ """
+ return array(a, dtype, copy=False, order=order, subok=True)
+
+
+@set_module('numpy')
+def ascontiguousarray(a, dtype=None):
+ """
+ Return a contiguous array (ndim >= 1) in memory (C order).
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ dtype : str or dtype object, optional
+ Data-type of returned array.
+
+ Returns
+ -------
+ out : ndarray
+ Contiguous array of same shape and content as `a`, with type `dtype`
+ if specified.
+
+ See Also
+ --------
+ asfortranarray : Convert input to an ndarray with column-major
+ memory order.
+ require : Return an ndarray that satisfies requirements.
+ ndarray.flags : Information about the memory layout of the array.
+
+ Examples
+ --------
+ >>> x = np.arange(6).reshape(2,3)
+ >>> np.ascontiguousarray(x, dtype=np.float32)
+ array([[0., 1., 2.],
+ [3., 4., 5.]], dtype=float32)
+ >>> x.flags['C_CONTIGUOUS']
+ True
+
+ Note: This function returns an array with at least one-dimension (1-d)
+ so it will not preserve 0-d arrays.
+
+ """
+ return array(a, dtype, copy=False, order='C', ndmin=1)
+
+
+@set_module('numpy')
+def asfortranarray(a, dtype=None):
+ """
+ Return an array (ndim >= 1) laid out in Fortran order in memory.
+
+ Parameters
+ ----------
+ a : array_like
+ Input array.
+ dtype : str or dtype object, optional
+ By default, the data-type is inferred from the input data.
+
+ Returns
+ -------
+ out : ndarray
+ The input `a` in Fortran, or column-major, order.
+
+ See Also
+ --------
+ ascontiguousarray : Convert input to a contiguous (C order) array.
+ asanyarray : Convert input to an ndarray with either row or
+ column-major memory order.
+ require : Return an ndarray that satisfies requirements.
+ ndarray.flags : Information about the memory layout of the array.
+
+ Examples
+ --------
+ >>> x = np.arange(6).reshape(2,3)
+ >>> y = np.asfortranarray(x)
+ >>> x.flags['F_CONTIGUOUS']
+ False
+ >>> y.flags['F_CONTIGUOUS']
+ True
+
+ Note: This function returns an array with at least one-dimension (1-d)
+ so it will not preserve 0-d arrays.
+
+ """
+ return array(a, dtype, copy=False, order='F', ndmin=1)
+
+
+@set_module('numpy')
+def require(a, dtype=None, requirements=None):
+ """
+ Return an ndarray of the provided type that satisfies requirements.
+
+ This function is useful to be sure that an array with the correct flags
+ is returned for passing to compiled code (perhaps through ctypes).
+
+ Parameters
+ ----------
+ a : array_like
+ The object to be converted to a type-and-requirement-satisfying array.
+ dtype : data-type
+ The required data-type. If None preserve the current dtype. If your
+ application requires the data to be in native byteorder, include
+ a byteorder specification as a part of the dtype specification.
+ requirements : str or list of str
+ The requirements list can be any of the following
+
+ * 'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array
+ * 'C_CONTIGUOUS' ('C') - ensure a C-contiguous array
+ * 'ALIGNED' ('A') - ensure a data-type aligned array
+ * 'WRITEABLE' ('W') - ensure a writable array
+ * 'OWNDATA' ('O') - ensure an array that owns its own data
+ * 'ENSUREARRAY', ('E') - ensure a base array, instead of a subclass
+
+ See Also
+ --------
+ asarray : Convert input to an ndarray.
+ asanyarray : Convert to an ndarray, but pass through ndarray subclasses.
+ ascontiguousarray : Convert input to a contiguous array.
+ asfortranarray : Convert input to an ndarray with column-major
+ memory order.
+ ndarray.flags : Information about the memory layout of the array.
+
+ Notes
+ -----
+ The returned array will be guaranteed to have the listed requirements
+ by making a copy if needed.
+
+ Examples
+ --------
+ >>> x = np.arange(6).reshape(2,3)
+ >>> x.flags
+ C_CONTIGUOUS : True
+ F_CONTIGUOUS : False
+ OWNDATA : False
+ WRITEABLE : True
+ ALIGNED : True
+ WRITEBACKIFCOPY : False
+ UPDATEIFCOPY : False
+
+ >>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F'])
+ >>> y.flags
+ C_CONTIGUOUS : False
+ F_CONTIGUOUS : True
+ OWNDATA : True
+ WRITEABLE : True
+ ALIGNED : True
+ WRITEBACKIFCOPY : False
+ UPDATEIFCOPY : False
+
+ """
+ possible_flags = {'C': 'C', 'C_CONTIGUOUS': 'C', 'CONTIGUOUS': 'C',
+ 'F': 'F', 'F_CONTIGUOUS': 'F', 'FORTRAN': 'F',
+ 'A': 'A', 'ALIGNED': 'A',
+ 'W': 'W', 'WRITEABLE': 'W',
+ 'O': 'O', 'OWNDATA': 'O',
+ 'E': 'E', 'ENSUREARRAY': 'E'}
+ if not requirements:
+ return asanyarray(a, dtype=dtype)
+ else:
+ requirements = {possible_flags[x.upper()] for x in requirements}
+
+ if 'E' in requirements:
+ requirements.remove('E')
+ subok = False
+ else:
+ subok = True
+
+ order = 'A'
+ if requirements >= {'C', 'F'}:
+ raise ValueError('Cannot specify both "C" and "F" order')
+ elif 'F' in requirements:
+ order = 'F'
+ requirements.remove('F')
+ elif 'C' in requirements:
+ order = 'C'
+ requirements.remove('C')
+
+ arr = array(a, dtype=dtype, order=order, copy=False, subok=subok)
+
+ for prop in requirements:
+ if not arr.flags[prop]:
+ arr = arr.copy(order)
+ break
+ return arr