diff options
author | Eric Wieser <wieser.eric@gmail.com> | 2019-04-13 17:10:35 -0700 |
---|---|---|
committer | Eric Wieser <wieser.eric@gmail.com> | 2019-04-13 17:40:43 -0700 |
commit | 82641c61b1a2d6d1b8cccce5a65f4215c94b99b2 (patch) | |
tree | fda5a1cb1cad2b7ef691a49c071e4ab6c02d8a05 /numpy/core/_asarray.py | |
parent | b18e32efc3f5b77630a1d4f05399fc15c69831b3 (diff) | |
download | numpy-82641c61b1a2d6d1b8cccce5a65f4215c94b99b2.tar.gz |
MAINT: Move asarray helpers into their own module
This is a direct move, with some tweaks to imports.
This breaks a cyclic imports between `core.numeric` and `core.fromnumeric`.
This doesn't affect the value of `np.core.numeric.__all__` which keeps code doing `from numpy.core.numeric import *` working.
Diffstat (limited to 'numpy/core/_asarray.py')
-rw-r--r-- | numpy/core/_asarray.py | 319 |
1 files changed, 319 insertions, 0 deletions
diff --git a/numpy/core/_asarray.py b/numpy/core/_asarray.py new file mode 100644 index 000000000..fbb7ffa9d --- /dev/null +++ b/numpy/core/_asarray.py @@ -0,0 +1,319 @@ +""" +Functions in the ``as*array`` family that promote array-likes into arrays. + +`require` fits this category despite its name not matching this pattern. +""" +from __future__ import division, absolute_import, print_function + +from .overrides import set_module +from .multiarray import array + + +__all__ = [ + "asarray", "asanyarray", "ascontiguousarray", "asfortranarray", "require", +] + +@set_module('numpy') +def asarray(a, dtype=None, order=None): + """Convert the input to an array. + + Parameters + ---------- + a : array_like + Input data, in any form that can be converted to an array. This + includes lists, lists of tuples, tuples, tuples of tuples, tuples + of lists and ndarrays. + dtype : data-type, optional + By default, the data-type is inferred from the input data. + order : {'C', 'F'}, optional + Whether to use row-major (C-style) or + column-major (Fortran-style) memory representation. + Defaults to 'C'. + + Returns + ------- + out : ndarray + Array interpretation of `a`. No copy is performed if the input + is already an ndarray with matching dtype and order. If `a` is a + subclass of ndarray, a base class ndarray is returned. + + See Also + -------- + asanyarray : Similar function which passes through subclasses. + ascontiguousarray : Convert input to a contiguous array. + asfarray : Convert input to a floating point ndarray. + asfortranarray : Convert input to an ndarray with column-major + memory order. + asarray_chkfinite : Similar function which checks input for NaNs and Infs. + fromiter : Create an array from an iterator. + fromfunction : Construct an array by executing a function on grid + positions. + + Examples + -------- + Convert a list into an array: + + >>> a = [1, 2] + >>> np.asarray(a) + array([1, 2]) + + Existing arrays are not copied: + + >>> a = np.array([1, 2]) + >>> np.asarray(a) is a + True + + If `dtype` is set, array is copied only if dtype does not match: + + >>> a = np.array([1, 2], dtype=np.float32) + >>> np.asarray(a, dtype=np.float32) is a + True + >>> np.asarray(a, dtype=np.float64) is a + False + + Contrary to `asanyarray`, ndarray subclasses are not passed through: + + >>> issubclass(np.recarray, np.ndarray) + True + >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) + >>> np.asarray(a) is a + False + >>> np.asanyarray(a) is a + True + + """ + return array(a, dtype, copy=False, order=order) + + +@set_module('numpy') +def asanyarray(a, dtype=None, order=None): + """Convert the input to an ndarray, but pass ndarray subclasses through. + + Parameters + ---------- + a : array_like + Input data, in any form that can be converted to an array. This + includes scalars, lists, lists of tuples, tuples, tuples of tuples, + tuples of lists, and ndarrays. + dtype : data-type, optional + By default, the data-type is inferred from the input data. + order : {'C', 'F'}, optional + Whether to use row-major (C-style) or column-major + (Fortran-style) memory representation. Defaults to 'C'. + + Returns + ------- + out : ndarray or an ndarray subclass + Array interpretation of `a`. If `a` is an ndarray or a subclass + of ndarray, it is returned as-is and no copy is performed. + + See Also + -------- + asarray : Similar function which always returns ndarrays. + ascontiguousarray : Convert input to a contiguous array. + asfarray : Convert input to a floating point ndarray. + asfortranarray : Convert input to an ndarray with column-major + memory order. + asarray_chkfinite : Similar function which checks input for NaNs and + Infs. + fromiter : Create an array from an iterator. + fromfunction : Construct an array by executing a function on grid + positions. + + Examples + -------- + Convert a list into an array: + + >>> a = [1, 2] + >>> np.asanyarray(a) + array([1, 2]) + + Instances of `ndarray` subclasses are passed through as-is: + + >>> a = np.array([(1.0, 2), (3.0, 4)], dtype='f4,i4').view(np.recarray) + >>> np.asanyarray(a) is a + True + + """ + return array(a, dtype, copy=False, order=order, subok=True) + + +@set_module('numpy') +def ascontiguousarray(a, dtype=None): + """ + Return a contiguous array (ndim >= 1) in memory (C order). + + Parameters + ---------- + a : array_like + Input array. + dtype : str or dtype object, optional + Data-type of returned array. + + Returns + ------- + out : ndarray + Contiguous array of same shape and content as `a`, with type `dtype` + if specified. + + See Also + -------- + asfortranarray : Convert input to an ndarray with column-major + memory order. + require : Return an ndarray that satisfies requirements. + ndarray.flags : Information about the memory layout of the array. + + Examples + -------- + >>> x = np.arange(6).reshape(2,3) + >>> np.ascontiguousarray(x, dtype=np.float32) + array([[0., 1., 2.], + [3., 4., 5.]], dtype=float32) + >>> x.flags['C_CONTIGUOUS'] + True + + Note: This function returns an array with at least one-dimension (1-d) + so it will not preserve 0-d arrays. + + """ + return array(a, dtype, copy=False, order='C', ndmin=1) + + +@set_module('numpy') +def asfortranarray(a, dtype=None): + """ + Return an array (ndim >= 1) laid out in Fortran order in memory. + + Parameters + ---------- + a : array_like + Input array. + dtype : str or dtype object, optional + By default, the data-type is inferred from the input data. + + Returns + ------- + out : ndarray + The input `a` in Fortran, or column-major, order. + + See Also + -------- + ascontiguousarray : Convert input to a contiguous (C order) array. + asanyarray : Convert input to an ndarray with either row or + column-major memory order. + require : Return an ndarray that satisfies requirements. + ndarray.flags : Information about the memory layout of the array. + + Examples + -------- + >>> x = np.arange(6).reshape(2,3) + >>> y = np.asfortranarray(x) + >>> x.flags['F_CONTIGUOUS'] + False + >>> y.flags['F_CONTIGUOUS'] + True + + Note: This function returns an array with at least one-dimension (1-d) + so it will not preserve 0-d arrays. + + """ + return array(a, dtype, copy=False, order='F', ndmin=1) + + +@set_module('numpy') +def require(a, dtype=None, requirements=None): + """ + Return an ndarray of the provided type that satisfies requirements. + + This function is useful to be sure that an array with the correct flags + is returned for passing to compiled code (perhaps through ctypes). + + Parameters + ---------- + a : array_like + The object to be converted to a type-and-requirement-satisfying array. + dtype : data-type + The required data-type. If None preserve the current dtype. If your + application requires the data to be in native byteorder, include + a byteorder specification as a part of the dtype specification. + requirements : str or list of str + The requirements list can be any of the following + + * 'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array + * 'C_CONTIGUOUS' ('C') - ensure a C-contiguous array + * 'ALIGNED' ('A') - ensure a data-type aligned array + * 'WRITEABLE' ('W') - ensure a writable array + * 'OWNDATA' ('O') - ensure an array that owns its own data + * 'ENSUREARRAY', ('E') - ensure a base array, instead of a subclass + + See Also + -------- + asarray : Convert input to an ndarray. + asanyarray : Convert to an ndarray, but pass through ndarray subclasses. + ascontiguousarray : Convert input to a contiguous array. + asfortranarray : Convert input to an ndarray with column-major + memory order. + ndarray.flags : Information about the memory layout of the array. + + Notes + ----- + The returned array will be guaranteed to have the listed requirements + by making a copy if needed. + + Examples + -------- + >>> x = np.arange(6).reshape(2,3) + >>> x.flags + C_CONTIGUOUS : True + F_CONTIGUOUS : False + OWNDATA : False + WRITEABLE : True + ALIGNED : True + WRITEBACKIFCOPY : False + UPDATEIFCOPY : False + + >>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F']) + >>> y.flags + C_CONTIGUOUS : False + F_CONTIGUOUS : True + OWNDATA : True + WRITEABLE : True + ALIGNED : True + WRITEBACKIFCOPY : False + UPDATEIFCOPY : False + + """ + possible_flags = {'C': 'C', 'C_CONTIGUOUS': 'C', 'CONTIGUOUS': 'C', + 'F': 'F', 'F_CONTIGUOUS': 'F', 'FORTRAN': 'F', + 'A': 'A', 'ALIGNED': 'A', + 'W': 'W', 'WRITEABLE': 'W', + 'O': 'O', 'OWNDATA': 'O', + 'E': 'E', 'ENSUREARRAY': 'E'} + if not requirements: + return asanyarray(a, dtype=dtype) + else: + requirements = {possible_flags[x.upper()] for x in requirements} + + if 'E' in requirements: + requirements.remove('E') + subok = False + else: + subok = True + + order = 'A' + if requirements >= {'C', 'F'}: + raise ValueError('Cannot specify both "C" and "F" order') + elif 'F' in requirements: + order = 'F' + requirements.remove('F') + elif 'C' in requirements: + order = 'C' + requirements.remove('C') + + arr = array(a, dtype=dtype, order=order, copy=False, subok=subok) + + for prop in requirements: + if not arr.flags[prop]: + arr = arr.copy(order) + break + return arr |