summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorEric Wieser <wieser.eric@gmail.com>2017-11-13 23:45:45 -0800
committerEric Wieser <wieser.eric@gmail.com>2017-11-13 23:45:45 -0800
commitac6b1a902b99e340cf7eeeeb7392c91e38db9dd8 (patch)
tree589c9f85e52a75a16ed949c14bfa39777e651fc4
parentbd80585cdae1d43fabb30ae0e184c2e40deb11e6 (diff)
downloadnumpy-ac6b1a902b99e340cf7eeeeb7392c91e38db9dd8.tar.gz
ENH: don't show boolean dtype, as it is implied
-rw-r--r--doc/source/reference/arrays.indexing.rst2
-rw-r--r--doc/source/reference/maskedarray.baseclass.rst2
-rw-r--r--doc/source/reference/maskedarray.generic.rst2
-rw-r--r--doc/source/user/quickstart.rst4
-rw-r--r--numpy/add_newdocs.py2
-rw-r--r--numpy/core/arrayprint.py4
-rw-r--r--numpy/core/code_generators/ufunc_docstrings.py56
-rw-r--r--numpy/core/defchararray.py4
-rw-r--r--numpy/core/fromnumeric.py10
-rw-r--r--numpy/core/numeric.py4
-rw-r--r--numpy/core/tests/test_arrayprint.py10
-rw-r--r--numpy/doc/constants.py12
-rw-r--r--numpy/doc/glossary.py2
-rw-r--r--numpy/doc/indexing.py2
-rw-r--r--numpy/doc/structured_arrays.py2
-rw-r--r--numpy/lib/arraysetops.py12
-rw-r--r--numpy/lib/function_base.py2
-rw-r--r--numpy/lib/type_check.py4
-rw-r--r--numpy/lib/ufunclike.py4
-rw-r--r--numpy/ma/README.txt4
-rw-r--r--numpy/ma/core.py32
-rw-r--r--numpy/matrixlib/defmatrix.py6
-rw-r--r--numpy/random/mtrand/mtrand.pyx2
23 files changed, 93 insertions, 91 deletions
diff --git a/doc/source/reference/arrays.indexing.rst b/doc/source/reference/arrays.indexing.rst
index c41a8df56..b5a44c22a 100644
--- a/doc/source/reference/arrays.indexing.rst
+++ b/doc/source/reference/arrays.indexing.rst
@@ -431,7 +431,7 @@ also supports boolean arrays and will work without any surprises.
... [ 9, 10, 11]])
>>> rows = (x.sum(-1) % 2) == 0
>>> rows
- array([False, True, False, True], dtype=bool)
+ array([False, True, False, True])
>>> columns = [0, 2]
>>> x[np.ix_(rows, columns)]
array([[ 3, 5],
diff --git a/doc/source/reference/maskedarray.baseclass.rst b/doc/source/reference/maskedarray.baseclass.rst
index f35b0ea88..427ad1536 100644
--- a/doc/source/reference/maskedarray.baseclass.rst
+++ b/doc/source/reference/maskedarray.baseclass.rst
@@ -99,7 +99,7 @@ Attributes and properties of masked arrays
... mask=[(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)],
... dtype=[('a', int), ('b', int)])
>>> x.recordmask
- array([False, False, True, False, False], dtype=bool)
+ array([False, False, True, False, False])
.. attribute:: MaskedArray.fill_value
diff --git a/doc/source/reference/maskedarray.generic.rst b/doc/source/reference/maskedarray.generic.rst
index 1fee9a74a..07ad6c292 100644
--- a/doc/source/reference/maskedarray.generic.rst
+++ b/doc/source/reference/maskedarray.generic.rst
@@ -394,7 +394,7 @@ required to ensure propagation of any modification of the mask to the original.
mask = [False False False],
fill_value = 999999)
>>> x.mask
- array([False, True, False, False, True], dtype=bool)
+ array([False, True, False, False, True])
>>> x.data
array([ 1, -1, 3, 4, 5])
diff --git a/doc/source/user/quickstart.rst b/doc/source/user/quickstart.rst
index 4a10faae8..67f45a50f 100644
--- a/doc/source/user/quickstart.rst
+++ b/doc/source/user/quickstart.rst
@@ -293,7 +293,7 @@ created and filled with the result.
>>> 10*np.sin(a)
array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854])
>>> a<35
- array([ True, True, False, False], dtype=bool)
+ array([ True, True, False, False])
Unlike in many matrix languages, the product operator ``*`` operates
elementwise in NumPy arrays. The matrix product can be performed using
@@ -1176,7 +1176,7 @@ boolean arrays that have *the same shape* as the original array::
>>> b # b is a boolean with a's shape
array([[False, False, False, False],
[False, True, True, True],
- [ True, True, True, True]], dtype=bool)
+ [ True, True, True, True]])
>>> a[b] # 1d array with the selected elements
array([ 5, 6, 7, 8, 9, 10, 11])
diff --git a/numpy/add_newdocs.py b/numpy/add_newdocs.py
index 595bede06..341f591d0 100644
--- a/numpy/add_newdocs.py
+++ b/numpy/add_newdocs.py
@@ -1512,7 +1512,7 @@ add_newdoc('numpy.core.multiarray', 'where',
>>> ix
array([[False, False, False],
[ True, True, False],
- [False, True, False]], dtype=bool)
+ [False, True, False]])
>>> np.where(ix)
(array([1, 1, 2]), array([0, 1, 1]))
diff --git a/numpy/core/arrayprint.py b/numpy/core/arrayprint.py
index 8435574bf..55682f393 100644
--- a/numpy/core/arrayprint.py
+++ b/numpy/core/arrayprint.py
@@ -1129,7 +1129,7 @@ def _void_scalar_repr(x):
return StructureFormat.from_data(array(x), **_format_options)(x)
-_typelessdata = [int_, float_, complex_]
+_typelessdata = [int_, float_, complex_, bool_]
if issubclass(intc, int):
_typelessdata.append(intc)
if issubclass(longlong, int):
@@ -1162,6 +1162,8 @@ def dtype_is_implied(dtype):
array([1, 2, 3], dtype=np.int8)
"""
dtype = np.dtype(dtype)
+ if _format_options['legacy'] and dtype.type == bool_:
+ return False
return dtype.type in _typelessdata
diff --git a/numpy/core/code_generators/ufunc_docstrings.py b/numpy/core/code_generators/ufunc_docstrings.py
index 6aae57234..5626f50d8 100644
--- a/numpy/core/code_generators/ufunc_docstrings.py
+++ b/numpy/core/code_generators/ufunc_docstrings.py
@@ -573,7 +573,7 @@ add_newdoc('numpy.core.umath', 'bitwise_and',
>>> np.bitwise_and(np.array([2,5,255]), np.array([3,14,16]))
array([ 2, 4, 16])
>>> np.bitwise_and([True, True], [False, True])
- array([False, True], dtype=bool)
+ array([False, True])
""")
@@ -630,7 +630,7 @@ add_newdoc('numpy.core.umath', 'bitwise_or',
... np.array([4, 4, 4, 2147483647L], dtype=np.int32))
array([ 6, 5, 255, 2147483647])
>>> np.bitwise_or([True, True], [False, True])
- array([ True, True], dtype=bool)
+ array([ True, True])
""")
@@ -680,7 +680,7 @@ add_newdoc('numpy.core.umath', 'bitwise_xor',
>>> np.bitwise_xor([31,3], [5,6])
array([26, 5])
>>> np.bitwise_xor([True, True], [False, True])
- array([ True, False], dtype=bool)
+ array([ True, False])
""")
@@ -1057,13 +1057,13 @@ add_newdoc('numpy.core.umath', 'equal',
Examples
--------
>>> np.equal([0, 1, 3], np.arange(3))
- array([ True, True, False], dtype=bool)
+ array([ True, True, False])
What is compared are values, not types. So an int (1) and an array of
length one can evaluate as True:
>>> np.equal(1, np.ones(1))
- array([ True], dtype=bool)
+ array([ True])
""")
@@ -1389,14 +1389,14 @@ add_newdoc('numpy.core.umath', 'greater',
Examples
--------
>>> np.greater([4,2],[2,2])
- array([ True, False], dtype=bool)
+ array([ True, False])
If the inputs are ndarrays, then np.greater is equivalent to '>'.
>>> a = np.array([4,2])
>>> b = np.array([2,2])
>>> a > b
- array([ True, False], dtype=bool)
+ array([ True, False])
""")
@@ -1424,7 +1424,7 @@ add_newdoc('numpy.core.umath', 'greater_equal',
Examples
--------
>>> np.greater_equal([4, 2, 1], [2, 2, 2])
- array([ True, True, False], dtype=bool)
+ array([ True, True, False])
""")
@@ -1541,7 +1541,7 @@ add_newdoc('numpy.core.umath', 'invert',
Booleans are accepted as well:
>>> np.invert(array([True, False]))
- array([False, True], dtype=bool)
+ array([False, True])
""")
@@ -1599,7 +1599,7 @@ add_newdoc('numpy.core.umath', 'isfinite',
>>> np.isfinite(np.NINF)
False
>>> np.isfinite([np.log(-1.),1.,np.log(0)])
- array([False, True, False], dtype=bool)
+ array([False, True, False])
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
@@ -1661,7 +1661,7 @@ add_newdoc('numpy.core.umath', 'isinf',
>>> np.isinf(np.NINF)
True
>>> np.isinf([np.inf, -np.inf, 1.0, np.nan])
- array([ True, True, False, False], dtype=bool)
+ array([ True, True, False, False])
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
@@ -1709,7 +1709,7 @@ add_newdoc('numpy.core.umath', 'isnan',
>>> np.isnan(np.inf)
False
>>> np.isnan([np.log(-1.),1.,np.log(0)])
- array([ True, False, False], dtype=bool)
+ array([ True, False, False])
""")
@@ -1745,7 +1745,7 @@ add_newdoc('numpy.core.umath', 'isnat',
>>> np.isnat(np.datetime64("2016-01-01"))
False
>>> np.isnat(np.array(["NaT", "2016-01-01"], dtype="datetime64[ns]"))
- array([ True, False], dtype=bool)
+ array([ True, False])
""")
@@ -1814,7 +1814,7 @@ add_newdoc('numpy.core.umath', 'less',
Examples
--------
>>> np.less([1, 2], [2, 2])
- array([ True, False], dtype=bool)
+ array([ True, False])
""")
@@ -1842,7 +1842,7 @@ add_newdoc('numpy.core.umath', 'less_equal',
Examples
--------
>>> np.less_equal([4, 2, 1], [2, 2, 2])
- array([False, True, True], dtype=bool)
+ array([False, True, True])
""")
@@ -2155,11 +2155,11 @@ add_newdoc('numpy.core.umath', 'logical_and',
>>> np.logical_and(True, False)
False
>>> np.logical_and([True, False], [False, False])
- array([False, False], dtype=bool)
+ array([False, False])
>>> x = np.arange(5)
>>> np.logical_and(x>1, x<4)
- array([False, False, True, True, False], dtype=bool)
+ array([False, False, True, True, False])
""")
@@ -2188,11 +2188,11 @@ add_newdoc('numpy.core.umath', 'logical_not',
>>> np.logical_not(3)
False
>>> np.logical_not([True, False, 0, 1])
- array([False, True, True, False], dtype=bool)
+ array([False, True, True, False])
>>> x = np.arange(5)
>>> np.logical_not(x<3)
- array([False, False, False, True, True], dtype=bool)
+ array([False, False, False, True, True])
""")
@@ -2223,11 +2223,11 @@ add_newdoc('numpy.core.umath', 'logical_or',
>>> np.logical_or(True, False)
True
>>> np.logical_or([True, False], [False, False])
- array([ True, False], dtype=bool)
+ array([ True, False])
>>> x = np.arange(5)
>>> np.logical_or(x < 1, x > 3)
- array([ True, False, False, False, True], dtype=bool)
+ array([ True, False, False, False, True])
""")
@@ -2258,17 +2258,17 @@ add_newdoc('numpy.core.umath', 'logical_xor',
>>> np.logical_xor(True, False)
True
>>> np.logical_xor([True, True, False, False], [True, False, True, False])
- array([False, True, True, False], dtype=bool)
+ array([False, True, True, False])
>>> x = np.arange(5)
>>> np.logical_xor(x < 1, x > 3)
- array([ True, False, False, False, True], dtype=bool)
+ array([ True, False, False, False, True])
Simple example showing support of broadcasting
>>> np.logical_xor(0, np.eye(2))
array([[ True, False],
- [False, True]], dtype=bool)
+ [False, True]])
""")
@@ -2647,10 +2647,10 @@ add_newdoc('numpy.core.umath', 'not_equal',
Examples
--------
>>> np.not_equal([1.,2.], [1., 3.])
- array([False, True], dtype=bool)
+ array([False, True])
>>> np.not_equal([1, 2], [[1, 3],[1, 4]])
array([[False, True],
- [False, True]], dtype=bool)
+ [False, True]])
""")
@@ -3102,7 +3102,7 @@ add_newdoc('numpy.core.umath', 'signbit',
>>> np.signbit(-1.2)
True
>>> np.signbit(np.array([1, -2.3, 2.1]))
- array([False, True, False], dtype=bool)
+ array([False, True, False])
""")
@@ -3166,7 +3166,7 @@ add_newdoc('numpy.core.umath', 'nextafter',
>>> np.nextafter(1, 2) == eps + 1
True
>>> np.nextafter([1, 2], [2, 1]) == [eps + 1, 2 - eps]
- array([ True, True], dtype=bool)
+ array([ True, True])
""")
diff --git a/numpy/core/defchararray.py b/numpy/core/defchararray.py
index e5f685369..6d0a0add5 100644
--- a/numpy/core/defchararray.py
+++ b/numpy/core/defchararray.py
@@ -575,9 +575,9 @@ def endswith(a, suffix, start=0, end=None):
array(['foo', 'bar'],
dtype='|S3')
>>> np.char.endswith(s, 'ar')
- array([False, True], dtype=bool)
+ array([False, True])
>>> np.char.endswith(s, 'a', start=1, end=2)
- array([False, True], dtype=bool)
+ array([False, True])
"""
return _vec_string(
diff --git a/numpy/core/fromnumeric.py b/numpy/core/fromnumeric.py
index ebeea6319..568d39781 100644
--- a/numpy/core/fromnumeric.py
+++ b/numpy/core/fromnumeric.py
@@ -1567,7 +1567,7 @@ def nonzero(a):
>>> a > 3
array([[False, False, False],
[ True, True, True],
- [ True, True, True]], dtype=bool)
+ [ True, True, True]])
>>> np.nonzero(a > 3)
(array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))
@@ -1962,7 +1962,7 @@ def any(a, axis=None, out=None, keepdims=np._NoValue):
True
>>> np.any([[True, False], [False, False]], axis=0)
- array([ True, False], dtype=bool)
+ array([ True, False])
>>> np.any([-1, 0, 5])
True
@@ -1973,7 +1973,7 @@ def any(a, axis=None, out=None, keepdims=np._NoValue):
>>> o=np.array([False])
>>> z=np.any([-1, 4, 5], out=o)
>>> z, o
- (array([ True], dtype=bool), array([ True], dtype=bool))
+ (array([ True]), array([ True]))
>>> # Check now that z is a reference to o
>>> z is o
True
@@ -2047,7 +2047,7 @@ def all(a, axis=None, out=None, keepdims=np._NoValue):
False
>>> np.all([[True,False],[True,True]], axis=0)
- array([ True, False], dtype=bool)
+ array([ True, False])
>>> np.all([-1, 4, 5])
True
@@ -2058,7 +2058,7 @@ def all(a, axis=None, out=None, keepdims=np._NoValue):
>>> o=np.array([False])
>>> z=np.all([-1, 4, 5], out=o)
>>> id(z), id(o), z # doctest: +SKIP
- (28293632, 28293632, array([ True], dtype=bool))
+ (28293632, 28293632, array([ True]))
"""
arr = asanyarray(a)
diff --git a/numpy/core/numeric.py b/numpy/core/numeric.py
index 25f4d6c35..ac64b0537 100644
--- a/numpy/core/numeric.py
+++ b/numpy/core/numeric.py
@@ -1193,7 +1193,7 @@ def tensordot(a, b, axes=2):
[ True, True],
[ True, True],
[ True, True],
- [ True, True]], dtype=bool)
+ [ True, True]])
An extended example taking advantage of the overloading of + and \\*:
@@ -1901,7 +1901,7 @@ def fromfunction(function, shape, **kwargs):
>>> np.fromfunction(lambda i, j: i == j, (3, 3), dtype=int)
array([[ True, False, False],
[False, True, False],
- [False, False, True]], dtype=bool)
+ [False, False, True]])
>>> np.fromfunction(lambda i, j: i + j, (3, 3), dtype=int)
array([[0, 1, 2],
diff --git a/numpy/core/tests/test_arrayprint.py b/numpy/core/tests/test_arrayprint.py
index 62b5cf580..cf5c14435 100644
--- a/numpy/core/tests/test_arrayprint.py
+++ b/numpy/core/tests/test_arrayprint.py
@@ -317,15 +317,15 @@ class TestPrintOptions(object):
def test_bool_spacing(self):
assert_equal(repr(np.array([True, True])),
- 'array([ True, True], dtype=bool)')
+ 'array([ True, True])')
assert_equal(repr(np.array([True, False])),
- 'array([ True, False], dtype=bool)')
+ 'array([ True, False])')
assert_equal(repr(np.array([True])),
- 'array([ True], dtype=bool)')
+ 'array([ True])')
assert_equal(repr(np.array(True)),
- 'array(True, dtype=bool)')
+ 'array(True)')
assert_equal(repr(np.array(False)),
- 'array(False, dtype=bool)')
+ 'array(False)')
def test_sign_spacing(self):
a = np.arange(4.)
diff --git a/numpy/doc/constants.py b/numpy/doc/constants.py
index f9fccabfb..6246813b7 100644
--- a/numpy/doc/constants.py
+++ b/numpy/doc/constants.py
@@ -133,11 +133,11 @@ add_newdoc('numpy', 'NZERO',
0.0
>>> np.isfinite([np.NZERO])
- array([ True], dtype=bool)
+ array([ True])
>>> np.isnan([np.NZERO])
- array([False], dtype=bool)
+ array([False])
>>> np.isinf([np.NZERO])
- array([False], dtype=bool)
+ array([False])
""")
@@ -204,11 +204,11 @@ add_newdoc('numpy', 'PZERO',
-0.0
>>> np.isfinite([np.PZERO])
- array([ True], dtype=bool)
+ array([ True])
>>> np.isnan([np.PZERO])
- array([False], dtype=bool)
+ array([False])
>>> np.isinf([np.PZERO])
- array([False], dtype=bool)
+ array([False])
""")
diff --git a/numpy/doc/glossary.py b/numpy/doc/glossary.py
index d28ece428..9b7d613ba 100644
--- a/numpy/doc/glossary.py
+++ b/numpy/doc/glossary.py
@@ -233,7 +233,7 @@ Glossary
>>> mask = (x > 2)
>>> mask
- array([False, False, False, True, True], dtype=bool)
+ array([False, False, False, True, True])
>>> x[mask] = -1
>>> x
diff --git a/numpy/doc/indexing.py b/numpy/doc/indexing.py
index b286a904d..5f5033117 100644
--- a/numpy/doc/indexing.py
+++ b/numpy/doc/indexing.py
@@ -240,7 +240,7 @@ The result will be multidimensional if y has more dimensions than b.
For example: ::
>>> b[:,5] # use a 1-D boolean whose first dim agrees with the first dim of y
- array([False, False, False, True, True], dtype=bool)
+ array([False, False, False, True, True])
>>> y[b[:,5]]
array([[21, 22, 23, 24, 25, 26, 27],
[28, 29, 30, 31, 32, 33, 34]])
diff --git a/numpy/doc/structured_arrays.py b/numpy/doc/structured_arrays.py
index 65558a5a0..02581d01b 100644
--- a/numpy/doc/structured_arrays.py
+++ b/numpy/doc/structured_arrays.py
@@ -480,7 +480,7 @@ the same order::
>>> a = np.zeros(2, dtype=[('a', 'i4'), ('b', 'i4')])
>>> b = np.ones(2, dtype=[('a', 'i4'), ('b', 'i4')])
>>> a == b
- array([False, False], dtype=bool)
+ array([False, False])
Currently, if the dtypes of two void structured arrays are not equivalent the
comparison fails, returning the scalar value ``False``. This behavior is
diff --git a/numpy/lib/arraysetops.py b/numpy/lib/arraysetops.py
index ededb9dd0..59b54eb38 100644
--- a/numpy/lib/arraysetops.py
+++ b/numpy/lib/arraysetops.py
@@ -435,12 +435,12 @@ def in1d(ar1, ar2, assume_unique=False, invert=False):
>>> states = [0, 2]
>>> mask = np.in1d(test, states)
>>> mask
- array([ True, False, True, False, True], dtype=bool)
+ array([ True, False, True, False, True])
>>> test[mask]
array([0, 2, 0])
>>> mask = np.in1d(test, states, invert=True)
>>> mask
- array([False, True, False, True, False], dtype=bool)
+ array([False, True, False, True, False])
>>> test[mask]
array([1, 5])
"""
@@ -546,13 +546,13 @@ def isin(element, test_elements, assume_unique=False, invert=False):
>>> mask = np.isin(element, test_elements)
>>> mask
array([[ False, True],
- [ True, False]], dtype=bool)
+ [ True, False]])
>>> element[mask]
array([2, 4])
>>> mask = np.isin(element, test_elements, invert=True)
>>> mask
array([[ True, False],
- [ False, True]], dtype=bool)
+ [ False, True]])
>>> element[mask]
array([0, 6])
@@ -562,13 +562,13 @@ def isin(element, test_elements, assume_unique=False, invert=False):
>>> test_set = {1, 2, 4, 8}
>>> np.isin(element, test_set)
array([[ False, False],
- [ False, False]], dtype=bool)
+ [ False, False]])
Casting the set to a list gives the expected result:
>>> np.isin(element, list(test_set))
array([[ False, True],
- [ True, False]], dtype=bool)
+ [ True, False]])
"""
element = np.asarray(element)
return in1d(element, test_elements, assume_unique=assume_unique,
diff --git a/numpy/lib/function_base.py b/numpy/lib/function_base.py
index 498853d32..c9a23350d 100644
--- a/numpy/lib/function_base.py
+++ b/numpy/lib/function_base.py
@@ -2333,7 +2333,7 @@ def extract(condition, arr):
>>> condition
array([[ True, False, False, True],
[False, False, True, False],
- [False, True, False, False]], dtype=bool)
+ [False, True, False, False]])
>>> np.extract(condition, arr)
array([0, 3, 6, 9])
diff --git a/numpy/lib/type_check.py b/numpy/lib/type_check.py
index e6aae8ddd..5c7528d4f 100644
--- a/numpy/lib/type_check.py
+++ b/numpy/lib/type_check.py
@@ -208,7 +208,7 @@ def iscomplex(x):
Examples
--------
>>> np.iscomplex([1+1j, 1+0j, 4.5, 3, 2, 2j])
- array([ True, False, False, False, False, True], dtype=bool)
+ array([ True, False, False, False, False, True])
"""
ax = asanyarray(x)
@@ -242,7 +242,7 @@ def isreal(x):
Examples
--------
>>> np.isreal([1+1j, 1+0j, 4.5, 3, 2, 2j])
- array([False, True, True, True, True, False], dtype=bool)
+ array([False, True, True, True, True, False])
"""
return imag(x) == 0
diff --git a/numpy/lib/ufunclike.py b/numpy/lib/ufunclike.py
index ad7c85e59..e0bd95182 100644
--- a/numpy/lib/ufunclike.py
+++ b/numpy/lib/ufunclike.py
@@ -128,7 +128,7 @@ def isposinf(x, out=None):
>>> np.isposinf(np.NINF)
array(False, dtype=bool)
>>> np.isposinf([-np.inf, 0., np.inf])
- array([False, False, True], dtype=bool)
+ array([False, False, True])
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
@@ -189,7 +189,7 @@ def isneginf(x, out=None):
>>> np.isneginf(np.PINF)
array(False, dtype=bool)
>>> np.isneginf([-np.inf, 0., np.inf])
- array([ True, False, False], dtype=bool)
+ array([ True, False, False])
>>> x = np.array([-np.inf, 0., np.inf])
>>> y = np.array([2, 2, 2])
diff --git a/numpy/ma/README.txt b/numpy/ma/README.txt
index 2e2a803d4..ef9635e57 100644
--- a/numpy/ma/README.txt
+++ b/numpy/ma/README.txt
@@ -104,9 +104,9 @@ array(data =
[False False True False False],
fill_value=?)
>>> old_ma.getmask(x) == new_ma.getmask(x)
-array([True, True, True, True, True], dtype=bool)
+array([True, True, True, True, True])
>>> old_ma.getmask(y) == new_ma.getmask(y)
-array([True, True, False, True, True], dtype=bool)
+array([True, True, False, True, True])
>>> old_ma.getmask(y)
False
diff --git a/numpy/ma/core.py b/numpy/ma/core.py
index 0d02bb315..0d6702790 100644
--- a/numpy/ma/core.py
+++ b/numpy/ma/core.py
@@ -1383,13 +1383,13 @@ def getmask(a):
fill_value=999999)
>>> ma.getmask(a)
array([[False, True],
- [False, False]], dtype=bool)
+ [False, False]])
Equivalently use the `MaskedArray` `mask` attribute.
>>> a.mask
array([[False, True],
- [False, False]], dtype=bool)
+ [False, False]])
Result when mask == `nomask`
@@ -1447,7 +1447,7 @@ def getmaskarray(arr):
fill_value=999999)
>>> ma.getmaskarray(a)
array([[False, True],
- [False, False]], dtype=bool)
+ [False, False]])
Result when mask == ``nomask``
@@ -1461,7 +1461,7 @@ def getmaskarray(arr):
fill_value=999999)
>>> >ma.getmaskarray(b)
array([[False, False],
- [False, False]], dtype=bool)
+ [False, False]])
"""
mask = getmask(arr)
@@ -1513,7 +1513,7 @@ def is_mask(m):
False
>>> m = np.array([False, True, False])
>>> m
- array([False, True, False], dtype=bool)
+ array([False, True, False])
>>> ma.is_mask(m)
True
@@ -1581,13 +1581,13 @@ def make_mask(m, copy=False, shrink=True, dtype=MaskType):
>>> import numpy.ma as ma
>>> m = [True, False, True, True]
>>> ma.make_mask(m)
- array([ True, False, True, True], dtype=bool)
+ array([ True, False, True, True])
>>> m = [1, 0, 1, 1]
>>> ma.make_mask(m)
- array([ True, False, True, True], dtype=bool)
+ array([ True, False, True, True])
>>> m = [1, 0, 2, -3]
>>> ma.make_mask(m)
- array([ True, False, True, True], dtype=bool)
+ array([ True, False, True, True])
Effect of the `shrink` parameter.
@@ -1597,7 +1597,7 @@ def make_mask(m, copy=False, shrink=True, dtype=MaskType):
>>> ma.make_mask(m)
False
>>> ma.make_mask(m, shrink=False)
- array([False, False, False, False], dtype=bool)
+ array([False, False, False, False])
Using a flexible `dtype`.
@@ -1667,7 +1667,7 @@ def make_mask_none(newshape, dtype=None):
--------
>>> import numpy.ma as ma
>>> ma.make_mask_none((3,))
- array([False, False, False], dtype=bool)
+ array([False, False, False])
Defining a more complex dtype.
@@ -1720,7 +1720,7 @@ def mask_or(m1, m2, copy=False, shrink=True):
>>> m1 = np.ma.make_mask([0, 1, 1, 0])
>>> m2 = np.ma.make_mask([1, 0, 0, 0])
>>> np.ma.mask_or(m1, m2)
- array([ True, True, True, False], dtype=bool)
+ array([ True, True, True, False])
"""
@@ -1770,18 +1770,18 @@ def flatten_mask(mask):
Examples
--------
- >>> mask = np.array([0, 0, 1], dtype=bool)
+ >>> mask = np.array([0, 0, 1])
>>> flatten_mask(mask)
- array([False, False, True], dtype=bool)
+ array([False, False, True])
>>> mask = np.array([(0, 0), (0, 1)], dtype=[('a', bool), ('b', bool)])
>>> flatten_mask(mask)
- array([False, False, False, True], dtype=bool)
+ array([False, False, False, True])
>>> mdtype = [('a', bool), ('b', [('ba', bool), ('bb', bool)])]
>>> mask = np.array([(0, (0, 0)), (0, (0, 1))], dtype=mdtype)
>>> flatten_mask(mask)
- array([False, False, False, False, False, True], dtype=bool)
+ array([False, False, False, False, False, True])
"""
@@ -3551,7 +3551,7 @@ class MaskedArray(ndarray):
>>> x = np.ma.array([[1,2 ], [3, 4]], mask=[0]*4)
>>> x.mask
array([[False, False],
- [False, False]], dtype=bool)
+ [False, False]])
>>> x.shrink_mask()
>>> x.mask
False
diff --git a/numpy/matrixlib/defmatrix.py b/numpy/matrixlib/defmatrix.py
index e016b5f4c..08e867dea 100644
--- a/numpy/matrixlib/defmatrix.py
+++ b/numpy/matrixlib/defmatrix.py
@@ -699,15 +699,15 @@ class matrix(N.ndarray):
>>> (x == y)
matrix([[ True, True, True, True],
[False, False, False, False],
- [False, False, False, False]], dtype=bool)
+ [False, False, False, False]])
>>> (x == y).all()
False
>>> (x == y).all(0)
- matrix([[False, False, False, False]], dtype=bool)
+ matrix([[False, False, False, False]])
>>> (x == y).all(1)
matrix([[ True],
[False],
- [False]], dtype=bool)
+ [False]])
"""
return N.ndarray.all(self, axis, out, keepdims=True)._collapse(axis)
diff --git a/numpy/random/mtrand/mtrand.pyx b/numpy/random/mtrand/mtrand.pyx
index bf6d7e95a..501c1e5b3 100644
--- a/numpy/random/mtrand/mtrand.pyx
+++ b/numpy/random/mtrand/mtrand.pyx
@@ -902,7 +902,7 @@ cdef class RandomState:
array([[[ True, True],
[ True, True]],
[[ True, True],
- [ True, True]]], dtype=bool)
+ [ True, True]]])
"""
return disc0_array(self.internal_state, rk_long, size, self.lock)