summaryrefslogtreecommitdiff
path: root/networkx/algorithms/tests/test_euler.py
blob: 08eaf7fccc668da8534ab233a86b139937ec23aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import collections

import pytest

import networkx as nx


class TestIsEulerian:
    def test_is_eulerian(self):
        assert nx.is_eulerian(nx.complete_graph(5))
        assert nx.is_eulerian(nx.complete_graph(7))
        assert nx.is_eulerian(nx.hypercube_graph(4))
        assert nx.is_eulerian(nx.hypercube_graph(6))

        assert not nx.is_eulerian(nx.complete_graph(4))
        assert not nx.is_eulerian(nx.complete_graph(6))
        assert not nx.is_eulerian(nx.hypercube_graph(3))
        assert not nx.is_eulerian(nx.hypercube_graph(5))

        assert not nx.is_eulerian(nx.petersen_graph())
        assert not nx.is_eulerian(nx.path_graph(4))

    def test_is_eulerian2(self):
        # not connected
        G = nx.Graph()
        G.add_nodes_from([1, 2, 3])
        assert not nx.is_eulerian(G)
        # not strongly connected
        G = nx.DiGraph()
        G.add_nodes_from([1, 2, 3])
        assert not nx.is_eulerian(G)
        G = nx.MultiDiGraph()
        G.add_edge(1, 2)
        G.add_edge(2, 3)
        G.add_edge(2, 3)
        G.add_edge(3, 1)
        assert not nx.is_eulerian(G)


class TestEulerianCircuit:
    def test_eulerian_circuit_cycle(self):
        G = nx.cycle_graph(4)

        edges = list(nx.eulerian_circuit(G, source=0))
        nodes = [u for u, v in edges]
        assert nodes == [0, 3, 2, 1]
        assert edges == [(0, 3), (3, 2), (2, 1), (1, 0)]

        edges = list(nx.eulerian_circuit(G, source=1))
        nodes = [u for u, v in edges]
        assert nodes == [1, 2, 3, 0]
        assert edges == [(1, 2), (2, 3), (3, 0), (0, 1)]

        G = nx.complete_graph(3)

        edges = list(nx.eulerian_circuit(G, source=0))
        nodes = [u for u, v in edges]
        assert nodes == [0, 2, 1]
        assert edges == [(0, 2), (2, 1), (1, 0)]

        edges = list(nx.eulerian_circuit(G, source=1))
        nodes = [u for u, v in edges]
        assert nodes == [1, 2, 0]
        assert edges == [(1, 2), (2, 0), (0, 1)]

    def test_eulerian_circuit_digraph(self):
        G = nx.DiGraph()
        nx.add_cycle(G, [0, 1, 2, 3])

        edges = list(nx.eulerian_circuit(G, source=0))
        nodes = [u for u, v in edges]
        assert nodes == [0, 1, 2, 3]
        assert edges == [(0, 1), (1, 2), (2, 3), (3, 0)]

        edges = list(nx.eulerian_circuit(G, source=1))
        nodes = [u for u, v in edges]
        assert nodes == [1, 2, 3, 0]
        assert edges == [(1, 2), (2, 3), (3, 0), (0, 1)]

    def test_multigraph(self):
        G = nx.MultiGraph()
        nx.add_cycle(G, [0, 1, 2, 3])
        G.add_edge(1, 2)
        G.add_edge(1, 2)
        edges = list(nx.eulerian_circuit(G, source=0))
        nodes = [u for u, v in edges]
        assert nodes == [0, 3, 2, 1, 2, 1]
        assert edges == [(0, 3), (3, 2), (2, 1), (1, 2), (2, 1), (1, 0)]

    def test_multigraph_with_keys(self):
        G = nx.MultiGraph()
        nx.add_cycle(G, [0, 1, 2, 3])
        G.add_edge(1, 2)
        G.add_edge(1, 2)
        edges = list(nx.eulerian_circuit(G, source=0, keys=True))
        nodes = [u for u, v, k in edges]
        assert nodes == [0, 3, 2, 1, 2, 1]
        assert edges[:2] == [(0, 3, 0), (3, 2, 0)]
        assert collections.Counter(edges[2:5]) == collections.Counter(
            [(2, 1, 0), (1, 2, 1), (2, 1, 2)]
        )
        assert edges[5:] == [(1, 0, 0)]

    def test_not_eulerian(self):
        with pytest.raises(nx.NetworkXError):
            f = list(nx.eulerian_circuit(nx.complete_graph(4)))


class TestIsSemiEulerian:
    def test_is_semieulerian(self):
        # Test graphs with Eulerian paths but no cycles return True.
        assert nx.is_semieulerian(nx.path_graph(4))
        G = nx.path_graph(6, create_using=nx.DiGraph)
        assert nx.is_semieulerian(G)

        # Test graphs with Eulerian cycles return False.
        assert not nx.is_semieulerian(nx.complete_graph(5))
        assert not nx.is_semieulerian(nx.complete_graph(7))
        assert not nx.is_semieulerian(nx.hypercube_graph(4))
        assert not nx.is_semieulerian(nx.hypercube_graph(6))


class TestHasEulerianPath:
    def test_has_eulerian_path_cyclic(self):
        # Test graphs with Eulerian cycles return True.
        assert nx.has_eulerian_path(nx.complete_graph(5))
        assert nx.has_eulerian_path(nx.complete_graph(7))
        assert nx.has_eulerian_path(nx.hypercube_graph(4))
        assert nx.has_eulerian_path(nx.hypercube_graph(6))

    def test_has_eulerian_path_non_cyclic(self):
        # Test graphs with Eulerian paths but no cycles return True.
        assert nx.has_eulerian_path(nx.path_graph(4))
        G = nx.path_graph(6, create_using=nx.DiGraph)
        assert nx.has_eulerian_path(G)

    def test_has_eulerian_path_directed_graph(self):
        # Test directed graphs and returns False
        G = nx.DiGraph()
        G.add_edges_from([(0, 1), (1, 2), (0, 2)])
        assert not nx.has_eulerian_path(G)

        # Test directed graphs without isolated node returns True
        G = nx.DiGraph()
        G.add_edges_from([(0, 1), (1, 2), (2, 0)])
        assert nx.has_eulerian_path(G)

        # Test directed graphs with isolated node returns False
        G.add_node(3)
        assert not nx.has_eulerian_path(G)

    @pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph()))
    def test_has_eulerian_path_not_weakly_connected(self, G):
        G.add_edges_from([(0, 1), (2, 3), (3, 2)])
        assert not nx.has_eulerian_path(G)

    @pytest.mark.parametrize("G", (nx.Graph(), nx.DiGraph()))
    def test_has_eulerian_path_unbalancedins_more_than_one(self, G):
        G.add_edges_from([(0, 1), (2, 3)])
        assert not nx.has_eulerian_path(G)


class TestFindPathStart:
    def testfind_path_start(self):
        find_path_start = nx.algorithms.euler._find_path_start
        # Test digraphs return correct starting node.
        G = nx.path_graph(6, create_using=nx.DiGraph)
        assert find_path_start(G) == 0
        edges = [(0, 1), (1, 2), (2, 0), (4, 0)]
        assert find_path_start(nx.DiGraph(edges)) == 4

        # Test graph with no Eulerian path return None.
        edges = [(0, 1), (1, 2), (2, 3), (2, 4)]
        assert find_path_start(nx.DiGraph(edges)) is None


class TestEulerianPath:
    def test_eulerian_path(self):
        x = [(4, 0), (0, 1), (1, 2), (2, 0)]
        for e1, e2 in zip(x, nx.eulerian_path(nx.DiGraph(x))):
            assert e1 == e2

    def test_eulerian_path_straight_link(self):
        G = nx.DiGraph()
        result = [(1, 2), (2, 3), (3, 4), (4, 5)]
        G.add_edges_from(result)
        assert result == list(nx.eulerian_path(G))
        assert result == list(nx.eulerian_path(G, source=1))
        with pytest.raises(nx.NetworkXError):
            list(nx.eulerian_path(G, source=3))
        with pytest.raises(nx.NetworkXError):
            list(nx.eulerian_path(G, source=4))
        with pytest.raises(nx.NetworkXError):
            list(nx.eulerian_path(G, source=5))

    def test_eulerian_path_multigraph(self):
        G = nx.MultiDiGraph()
        result = [(2, 1), (1, 2), (2, 1), (1, 2), (2, 3), (3, 4), (4, 3)]
        G.add_edges_from(result)
        assert result == list(nx.eulerian_path(G))
        assert result == list(nx.eulerian_path(G, source=2))
        with pytest.raises(nx.NetworkXError):
            list(nx.eulerian_path(G, source=3))
        with pytest.raises(nx.NetworkXError):
            list(nx.eulerian_path(G, source=4))

    def test_eulerian_path_eulerian_circuit(self):
        G = nx.DiGraph()
        result = [(1, 2), (2, 3), (3, 4), (4, 1)]
        result2 = [(2, 3), (3, 4), (4, 1), (1, 2)]
        result3 = [(3, 4), (4, 1), (1, 2), (2, 3)]
        G.add_edges_from(result)
        assert result == list(nx.eulerian_path(G))
        assert result == list(nx.eulerian_path(G, source=1))
        assert result2 == list(nx.eulerian_path(G, source=2))
        assert result3 == list(nx.eulerian_path(G, source=3))

    def test_eulerian_path_undirected(self):
        G = nx.Graph()
        result = [(1, 2), (2, 3), (3, 4), (4, 5)]
        result2 = [(5, 4), (4, 3), (3, 2), (2, 1)]
        G.add_edges_from(result)
        assert list(nx.eulerian_path(G)) in (result, result2)
        assert result == list(nx.eulerian_path(G, source=1))
        assert result2 == list(nx.eulerian_path(G, source=5))
        with pytest.raises(nx.NetworkXError):
            list(nx.eulerian_path(G, source=3))
        with pytest.raises(nx.NetworkXError):
            list(nx.eulerian_path(G, source=2))

    def test_eulerian_path_multigraph_undirected(self):
        G = nx.MultiGraph()
        result = [(2, 1), (1, 2), (2, 1), (1, 2), (2, 3), (3, 4)]
        G.add_edges_from(result)
        assert result == list(nx.eulerian_path(G))
        assert result == list(nx.eulerian_path(G, source=2))
        with pytest.raises(nx.NetworkXError):
            list(nx.eulerian_path(G, source=3))
        with pytest.raises(nx.NetworkXError):
            list(nx.eulerian_path(G, source=1))

    @pytest.mark.parametrize(
        ("graph_type", "result"),
        (
            (nx.MultiGraph, [(0, 1, 0), (1, 0, 1)]),
            (nx.MultiDiGraph, [(0, 1, 0), (1, 0, 0)]),
        ),
    )
    def test_eulerian_with_keys(self, graph_type, result):
        G = graph_type([(0, 1), (1, 0)])
        answer = nx.eulerian_path(G, keys=True)
        assert list(answer) == result


class TestEulerize:
    def test_disconnected(self):
        with pytest.raises(nx.NetworkXError):
            G = nx.from_edgelist([(0, 1), (2, 3)])
            nx.eulerize(G)

    def test_null_graph(self):
        with pytest.raises(nx.NetworkXPointlessConcept):
            nx.eulerize(nx.Graph())

    def test_null_multigraph(self):
        with pytest.raises(nx.NetworkXPointlessConcept):
            nx.eulerize(nx.MultiGraph())

    def test_on_empty_graph(self):
        with pytest.raises(nx.NetworkXError):
            nx.eulerize(nx.empty_graph(3))

    def test_on_eulerian(self):
        G = nx.cycle_graph(3)
        H = nx.eulerize(G)
        assert nx.is_isomorphic(G, H)

    def test_on_eulerian_multigraph(self):
        G = nx.MultiGraph(nx.cycle_graph(3))
        G.add_edge(0, 1)
        H = nx.eulerize(G)
        assert nx.is_eulerian(H)

    def test_on_complete_graph(self):
        G = nx.complete_graph(4)
        assert nx.is_eulerian(nx.eulerize(G))
        assert nx.is_eulerian(nx.eulerize(nx.MultiGraph(G)))

    def test_on_non_eulerian_graph(self):
        G = nx.cycle_graph(18)
        G.add_edge(0, 18)
        G.add_edge(18, 19)
        G.add_edge(17, 19)
        G.add_edge(4, 20)
        G.add_edge(20, 21)
        G.add_edge(21, 22)
        G.add_edge(22, 23)
        G.add_edge(23, 24)
        G.add_edge(24, 25)
        G.add_edge(25, 26)
        G.add_edge(26, 27)
        G.add_edge(27, 28)
        G.add_edge(28, 13)
        assert not nx.is_eulerian(G)
        G = nx.eulerize(G)
        assert nx.is_eulerian(G)
        assert nx.number_of_edges(G) == 39