summaryrefslogtreecommitdiff
path: root/_modules/networkx/algorithms/shortest_paths/weighted.html
blob: a2e23f33dc8867ac159f6fad828e402a1cf63dd9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007

<!DOCTYPE html>

<html lang="en">
  <head>
    <meta charset="utf-8" />
    <meta name="viewport" content="width=device-width, initial-scale=1.0" />
    <title>networkx.algorithms.shortest_paths.weighted &#8212; NetworkX 3.0rc2.dev0 documentation</title>
  
  
  
  <script data-cfasync="false">
    document.documentElement.dataset.mode = localStorage.getItem("mode") || "light";
    document.documentElement.dataset.theme = localStorage.getItem("theme") || "light";
  </script>
  
  <!-- Loaded before other Sphinx assets -->
  <link href="../../../../_static/styles/theme.css?digest=796348d33e8b1d947c94" rel="stylesheet">
<link href="../../../../_static/styles/bootstrap.css?digest=796348d33e8b1d947c94" rel="stylesheet">
<link href="../../../../_static/styles/pydata-sphinx-theme.css?digest=796348d33e8b1d947c94" rel="stylesheet">

  
  <link href="../../../../_static/vendor/fontawesome/6.1.2/css/all.min.css?digest=796348d33e8b1d947c94" rel="stylesheet">
  <link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-solid-900.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-brands-400.woff2">
<link rel="preload" as="font" type="font/woff2" crossorigin href="../../../../_static/vendor/fontawesome/6.1.2/webfonts/fa-regular-400.woff2">

    <link rel="stylesheet" type="text/css" href="../../../../_static/pygments.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/custom.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery-binder.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery-dataframe.css" />
    <link rel="stylesheet" type="text/css" href="../../../../_static/sg_gallery-rendered-html.css" />
  
  <!-- Pre-loaded scripts that we'll load fully later -->
  <link rel="preload" as="script" href="../../../../_static/scripts/bootstrap.js?digest=796348d33e8b1d947c94">
<link rel="preload" as="script" href="../../../../_static/scripts/pydata-sphinx-theme.js?digest=796348d33e8b1d947c94">

    <script data-url_root="../../../../" id="documentation_options" src="../../../../_static/documentation_options.js"></script>
    <script src="../../../../_static/jquery.js"></script>
    <script src="../../../../_static/underscore.js"></script>
    <script src="../../../../_static/_sphinx_javascript_frameworks_compat.js"></script>
    <script src="../../../../_static/doctools.js"></script>
    <script src="../../../../_static/sphinx_highlight.js"></script>
    <script src="../../../../_static/copybutton.js"></script>
    <script>DOCUMENTATION_OPTIONS.pagename = '_modules/networkx/algorithms/shortest_paths/weighted';</script>
    <link rel="canonical" href="https://networkx.org/documentation/stable/_modules/networkx/algorithms/shortest_paths/weighted.html" />
    <link rel="search" type="application/opensearchdescription+xml"
          title="Search within NetworkX 3.0rc2.dev0 documentation"
          href="../../../../_static/opensearch.xml"/>
    <link rel="index" title="Index" href="../../../../genindex.html" />
    <link rel="search" title="Search" href="../../../../search.html" />
  <meta name="viewport" content="width=device-width, initial-scale=1" />
  <meta name="docsearch:language" content="en">
  </head>
  
  
  <body data-spy="scroll" data-target="#bd-toc-nav" data-offset="180" data-default-mode="light">

  
  
  <a class="skip-link" href="#main-content">Skip to main content</a> 
<div class="container-fluid version-alert devbar">
  <div class="row no-gutters">
    <div class="col-12 text-center">
      This page is documentation for a DEVELOPMENT / PRE-RELEASE version.
      <a
        class="btn version-stable font-weight-bold ml-3 my-3 align-baseline"
        href="https://networkx.org/documentation/stable/"
        >Switch to stable version</a
      >
    </div>
  </div>
</div>


  
  <input type="checkbox" class="sidebar-toggle" name="__primary" id="__primary">
  <label class="overlay overlay-primary" for="__primary"></label>

  
  <input type="checkbox" class="sidebar-toggle" name="__secondary" id="__secondary">
  <label class="overlay overlay-secondary" for="__secondary"></label>

  
  <div class="search-button__wrapper">
    <div class="search-button__overlay"></div>
    <div class="search-button__search-container">
      
<form class="bd-search d-flex align-items-center" action="../../../../search.html" method="get">
  <i class="fa-solid fa-magnifying-glass"></i>
  <input type="search" class="form-control" name="q" id="search-input" placeholder="Search the docs ..." aria-label="Search the docs ..." autocomplete="off" autocorrect="off" autocapitalize="off" spellcheck="false">
  <span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
    </div>
  </div>

  
  <nav class="bd-header navbar navbar-expand-lg bd-navbar" id="navbar-main"><div class="bd-header__inner bd-page-width">
  <label class="sidebar-toggle primary-toggle" for="__primary">
      <span class="fa-solid fa-bars"></span>
  </label>
  <div id="navbar-start">
    
    
  


<a class="navbar-brand logo" href="../../../../index.html">

  
  
  
  
  
  
  

  
    <img src="../../../../_static/networkx_banner.svg" class="logo__image only-light" alt="Logo image">
    <img src="../../../../_static/networkx_banner.svg" class="logo__image only-dark" alt="Logo image">
  
  
</a>
    
  </div>

  
  <div class="col-lg-9 navbar-header-items">
    <div id="navbar-center" class="mr-auto">
      
      <div class="navbar-center-item">
        <nav class="navbar-nav">
    <p class="sidebar-header-items__title" role="heading" aria-level="1" aria-label="Site Navigation">
        Site Navigation
    </p>
    <ul id="navbar-main-elements" class="navbar-nav">
        
                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../install.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../tutorial.html">
                        Tutorial
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../reference/index.html">
                        Reference
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../auto_examples/index.html">
                        Gallery
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../developer/index.html">
                        Developer
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../release/index.html">
                        Releases
                      </a>
                    </li>
                

                <li class="nav-item">
                  <a class="nav-link nav-external" href="https://networkx.org/nx-guides/">
                    Guides
                  </a>
                </li>
                
    </ul>
</nav>
      </div>
      
    </div>

    <div id="navbar-end">
      
        <div class="navbar-end-item navbar-persistent--container">
          
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-toggle="tooltip">
  <i class="fa-solid fa-magnifying-glass"></i>
</button>
        </div>
      
      
      <div class="navbar-end-item">
        <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-toggle="tooltip">
    <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span>
    <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span>
    <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span>
</button>
      </div>
      
      <div class="navbar-end-item">
        <ul id="navbar-icon-links" class="navbar-nav" aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://networkx.org" title="Home Page" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fas fa-home"></i></span>
            <label class="sr-only">Home Page</label></a>
        </li>
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://github.com/networkx/networkx" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fab fa-github-square"></i></span>
            <label class="sr-only">GitHub</label></a>
        </li>
      </ul>
      </div>
      
      <div class="navbar-end-item">
        <ul class="navbar-nav">
  <li class="mr-2 dropdown">
    <button
      type="button"
      class="btn btn-version btn-sm navbar-btn dropdown-toggle"
      id="dLabelMore"
      data-toggle="dropdown"
    >
      v3.0rc2.dev0
      <span class="caret"></span>
    </button>
    <ul class="dropdown-menu" aria-labelledby="dLabelMore">
      <li>
        <a href="https://networkx.org/documentation/latest/index.html"
          >devel (latest)</a
        >
      </li>
      <li>
        <a href="https://networkx.org/documentation/stable/index.html"
          >current (stable)</a
        >
      </li>
    </ul>
  </li>
</ul>
      </div>
      
    </div>
  </div>


  
  
    <div class="navbar-persistent--mobile">
<button class="btn btn-sm navbar-btn search-button search-button__button" title="Search" aria-label="Search" data-toggle="tooltip">
  <i class="fa-solid fa-magnifying-glass"></i>
</button>
    </div>
  

  
  <label class="sidebar-toggle secondary-toggle" for="__secondary">
      <span class="fa-solid fa-outdent"></span>
  </label>
  

</div>
  </nav>
  

  <div class="bd-container">
    <div class="bd-container__inner bd-page-width">
      
      <div class="bd-sidebar-primary bd-sidebar">
        
  
  <div class="sidebar-header-items sidebar-primary__section">
    
    
      <div class="sidebar-header-items__center">
      
      <div class="navbar-center-item">
        <nav class="navbar-nav">
    <p class="sidebar-header-items__title" role="heading" aria-level="1" aria-label="Site Navigation">
        Site Navigation
    </p>
    <ul id="navbar-main-elements" class="navbar-nav">
        
                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../install.html">
                        Install
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../tutorial.html">
                        Tutorial
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../reference/index.html">
                        Reference
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../auto_examples/index.html">
                        Gallery
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../developer/index.html">
                        Developer
                      </a>
                    </li>
                

                    <li class="nav-item">
                      <a class="nav-link nav-internal" href="../../../../release/index.html">
                        Releases
                      </a>
                    </li>
                

                <li class="nav-item">
                  <a class="nav-link nav-external" href="https://networkx.org/nx-guides/">
                    Guides
                  </a>
                </li>
                
    </ul>
</nav>
      </div>
      
      </div>
    

    
    
    <div class="sidebar-header-items__end">
      
      <div class="navbar-end-item">
        <button class="theme-switch-button btn btn-sm btn-outline-primary navbar-btn rounded-circle" title="light/dark" aria-label="light/dark" data-toggle="tooltip">
    <span class="theme-switch" data-mode="light"><i class="fa-solid fa-sun"></i></span>
    <span class="theme-switch" data-mode="dark"><i class="fa-solid fa-moon"></i></span>
    <span class="theme-switch" data-mode="auto"><i class="fa-solid fa-circle-half-stroke"></i></span>
</button>
      </div>
      
      <div class="navbar-end-item">
        <ul id="navbar-icon-links" class="navbar-nav" aria-label="Icon Links">
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://networkx.org" title="Home Page" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fas fa-home"></i></span>
            <label class="sr-only">Home Page</label></a>
        </li>
        <li class="nav-item">
          
          
          
          
          
          
          
          <a href="https://github.com/networkx/networkx" title="GitHub" class="nav-link" rel="noopener" target="_blank" data-toggle="tooltip"><span><i class="fab fa-github-square"></i></span>
            <label class="sr-only">GitHub</label></a>
        </li>
      </ul>
      </div>
      
      <div class="navbar-end-item">
        <ul class="navbar-nav">
  <li class="mr-2 dropdown">
    <button
      type="button"
      class="btn btn-version btn-sm navbar-btn dropdown-toggle"
      id="dLabelMore"
      data-toggle="dropdown"
    >
      v3.0rc2.dev0
      <span class="caret"></span>
    </button>
    <ul class="dropdown-menu" aria-labelledby="dLabelMore">
      <li>
        <a href="https://networkx.org/documentation/latest/index.html"
          >devel (latest)</a
        >
      </li>
      <li>
        <a href="https://networkx.org/documentation/stable/index.html"
          >current (stable)</a
        >
      </li>
    </ul>
  </li>
</ul>
      </div>
      
    </div>
    
  </div>

  
  <div class="sidebar-start-items sidebar-primary__section">
    <div class="sidebar-start-items__item">
    </div>
  </div>
  

  
  <div class="sidebar-end-items sidebar-primary__section">
    <div class="sidebar-end-items__item">
    </div>
  </div>

  
  <div id="rtd-footer-container"></div>

      </div>
      <main id="main-content" class="bd-main">
        
        
        <div class="bd-content">
          <div class="bd-article-container">
            
            <div class="bd-header-article">
                
            </div>
            
            
            <article class="bd-article" role="main">
              
  <h1>Source code for networkx.algorithms.shortest_paths.weighted</h1><div class="highlight"><pre>
<span></span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd">Shortest path algorithms for weighted graphs.</span>
<span class="sd">&quot;&quot;&quot;</span>

<span class="kn">from</span> <span class="nn">collections</span> <span class="kn">import</span> <span class="n">deque</span>
<span class="kn">from</span> <span class="nn">heapq</span> <span class="kn">import</span> <span class="n">heappop</span><span class="p">,</span> <span class="n">heappush</span>
<span class="kn">from</span> <span class="nn">itertools</span> <span class="kn">import</span> <span class="n">count</span>

<span class="kn">import</span> <span class="nn">networkx</span> <span class="k">as</span> <span class="nn">nx</span>
<span class="kn">from</span> <span class="nn">networkx.algorithms.shortest_paths.generic</span> <span class="kn">import</span> <span class="n">_build_paths_from_predecessors</span>

<span class="n">__all__</span> <span class="o">=</span> <span class="p">[</span>
    <span class="s2">&quot;dijkstra_path&quot;</span><span class="p">,</span>
    <span class="s2">&quot;dijkstra_path_length&quot;</span><span class="p">,</span>
    <span class="s2">&quot;bidirectional_dijkstra&quot;</span><span class="p">,</span>
    <span class="s2">&quot;single_source_dijkstra&quot;</span><span class="p">,</span>
    <span class="s2">&quot;single_source_dijkstra_path&quot;</span><span class="p">,</span>
    <span class="s2">&quot;single_source_dijkstra_path_length&quot;</span><span class="p">,</span>
    <span class="s2">&quot;multi_source_dijkstra&quot;</span><span class="p">,</span>
    <span class="s2">&quot;multi_source_dijkstra_path&quot;</span><span class="p">,</span>
    <span class="s2">&quot;multi_source_dijkstra_path_length&quot;</span><span class="p">,</span>
    <span class="s2">&quot;all_pairs_dijkstra&quot;</span><span class="p">,</span>
    <span class="s2">&quot;all_pairs_dijkstra_path&quot;</span><span class="p">,</span>
    <span class="s2">&quot;all_pairs_dijkstra_path_length&quot;</span><span class="p">,</span>
    <span class="s2">&quot;dijkstra_predecessor_and_distance&quot;</span><span class="p">,</span>
    <span class="s2">&quot;bellman_ford_path&quot;</span><span class="p">,</span>
    <span class="s2">&quot;bellman_ford_path_length&quot;</span><span class="p">,</span>
    <span class="s2">&quot;single_source_bellman_ford&quot;</span><span class="p">,</span>
    <span class="s2">&quot;single_source_bellman_ford_path&quot;</span><span class="p">,</span>
    <span class="s2">&quot;single_source_bellman_ford_path_length&quot;</span><span class="p">,</span>
    <span class="s2">&quot;all_pairs_bellman_ford_path&quot;</span><span class="p">,</span>
    <span class="s2">&quot;all_pairs_bellman_ford_path_length&quot;</span><span class="p">,</span>
    <span class="s2">&quot;bellman_ford_predecessor_and_distance&quot;</span><span class="p">,</span>
    <span class="s2">&quot;negative_edge_cycle&quot;</span><span class="p">,</span>
    <span class="s2">&quot;find_negative_cycle&quot;</span><span class="p">,</span>
    <span class="s2">&quot;goldberg_radzik&quot;</span><span class="p">,</span>
    <span class="s2">&quot;johnson&quot;</span><span class="p">,</span>
<span class="p">]</span>


<span class="k">def</span> <span class="nf">_weight_function</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Returns a function that returns the weight of an edge.</span>

<span class="sd">    The returned function is specifically suitable for input to</span>
<span class="sd">    functions :func:`_dijkstra` and :func:`_bellman_ford_relaxation`.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph.</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If it is callable, `weight` itself is returned. If it is a string,</span>
<span class="sd">        it is assumed to be the name of the edge attribute that represents</span>
<span class="sd">        the weight of an edge. In that case, a function is returned that</span>
<span class="sd">        gets the edge weight according to the specified edge attribute.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    function</span>
<span class="sd">        This function returns a callable that accepts exactly three inputs:</span>
<span class="sd">        a node, an node adjacent to the first one, and the edge attribute</span>
<span class="sd">        dictionary for the eedge joining those nodes. That function returns</span>
<span class="sd">        a number representing the weight of an edge.</span>

<span class="sd">    If `G` is a multigraph, and `weight` is not callable, the</span>
<span class="sd">    minimum edge weight over all parallel edges is returned. If any edge</span>
<span class="sd">    does not have an attribute with key `weight`, it is assumed to</span>
<span class="sd">    have weight one.</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">callable</span><span class="p">(</span><span class="n">weight</span><span class="p">):</span>
        <span class="k">return</span> <span class="n">weight</span>
    <span class="c1"># If the weight keyword argument is not callable, we assume it is a</span>
    <span class="c1"># string representing the edge attribute containing the weight of</span>
    <span class="c1"># the edge.</span>
    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">is_multigraph</span><span class="p">():</span>
        <span class="k">return</span> <span class="k">lambda</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span><span class="p">:</span> <span class="nb">min</span><span class="p">(</span><span class="n">attr</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="k">for</span> <span class="n">attr</span> <span class="ow">in</span> <span class="n">d</span><span class="o">.</span><span class="n">values</span><span class="p">())</span>
    <span class="k">return</span> <span class="k">lambda</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">data</span><span class="p">:</span> <span class="n">data</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">weight</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>


<div class="viewcode-block" id="dijkstra_path"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.dijkstra_path.html#networkx.algorithms.shortest_paths.weighted.dijkstra_path">[docs]</a><span class="k">def</span> <span class="nf">dijkstra_path</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">target</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Returns the shortest weighted path from source to target in G.</span>

<span class="sd">    Uses Dijkstra&#39;s Method to compute the shortest weighted path</span>
<span class="sd">    between two nodes in a graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    source : node</span>
<span class="sd">        Starting node</span>

<span class="sd">    target : node</span>
<span class="sd">        Ending node</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number or None to indicate a hidden edge.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    path : list</span>
<span class="sd">        List of nodes in a shortest path.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If `source` is not in `G`.</span>

<span class="sd">    NetworkXNoPath</span>
<span class="sd">        If no path exists between source and target.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; print(nx.dijkstra_path(G, 0, 4))</span>
<span class="sd">    [0, 1, 2, 3, 4]</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    The weight function can be used to hide edges by returning None.</span>
<span class="sd">    So ``weight = lambda u, v, d: 1 if d[&#39;color&#39;]==&quot;red&quot; else None``</span>
<span class="sd">    will find the shortest red path.</span>

<span class="sd">    The weight function can be used to include node weights.</span>

<span class="sd">    &gt;&gt;&gt; def func(u, v, d):</span>
<span class="sd">    ...     node_u_wt = G.nodes[u].get(&quot;node_weight&quot;, 1)</span>
<span class="sd">    ...     node_v_wt = G.nodes[v].get(&quot;node_weight&quot;, 1)</span>
<span class="sd">    ...     edge_wt = d.get(&quot;weight&quot;, 1)</span>
<span class="sd">    ...     return node_u_wt / 2 + node_v_wt / 2 + edge_wt</span>

<span class="sd">    In this example we take the average of start and end node</span>
<span class="sd">    weights of an edge and add it to the weight of the edge.</span>

<span class="sd">    The function :func:`single_source_dijkstra` computes both</span>
<span class="sd">    path and length-of-path if you need both, use that.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    bidirectional_dijkstra</span>
<span class="sd">    bellman_ford_path</span>
<span class="sd">    single_source_dijkstra</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="p">(</span><span class="n">length</span><span class="p">,</span> <span class="n">path</span><span class="p">)</span> <span class="o">=</span> <span class="n">single_source_dijkstra</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="n">target</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">path</span></div>


<div class="viewcode-block" id="dijkstra_path_length"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.dijkstra_path_length.html#networkx.algorithms.shortest_paths.weighted.dijkstra_path_length">[docs]</a><span class="k">def</span> <span class="nf">dijkstra_path_length</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">target</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Returns the shortest weighted path length in G from source to target.</span>

<span class="sd">    Uses Dijkstra&#39;s Method to compute the shortest weighted path length</span>
<span class="sd">    between two nodes in a graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    source : node label</span>
<span class="sd">        starting node for path</span>

<span class="sd">    target : node label</span>
<span class="sd">        ending node for path</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number or None to indicate a hidden edge.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    length : number</span>
<span class="sd">        Shortest path length.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If `source` is not in `G`.</span>

<span class="sd">    NetworkXNoPath</span>
<span class="sd">        If no path exists between source and target.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; nx.dijkstra_path_length(G, 0, 4)</span>
<span class="sd">    4</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    The weight function can be used to hide edges by returning None.</span>
<span class="sd">    So ``weight = lambda u, v, d: 1 if d[&#39;color&#39;]==&quot;red&quot; else None``</span>
<span class="sd">    will find the shortest red path.</span>

<span class="sd">    The function :func:`single_source_dijkstra` computes both</span>
<span class="sd">    path and length-of-path if you need both, use that.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    bidirectional_dijkstra</span>
<span class="sd">    bellman_ford_path_length</span>
<span class="sd">    single_source_dijkstra</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">source</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NodeNotFound</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Node </span><span class="si">{</span><span class="n">source</span><span class="si">}</span><span class="s2"> not found in graph&quot;</span><span class="p">)</span>
    <span class="k">if</span> <span class="n">source</span> <span class="o">==</span> <span class="n">target</span><span class="p">:</span>
        <span class="k">return</span> <span class="mi">0</span>
    <span class="n">weight</span> <span class="o">=</span> <span class="n">_weight_function</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>
    <span class="n">length</span> <span class="o">=</span> <span class="n">_dijkstra</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="n">target</span><span class="p">)</span>
    <span class="k">try</span><span class="p">:</span>
        <span class="k">return</span> <span class="n">length</span><span class="p">[</span><span class="n">target</span><span class="p">]</span>
    <span class="k">except</span> <span class="ne">KeyError</span> <span class="k">as</span> <span class="n">err</span><span class="p">:</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXNoPath</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Node </span><span class="si">{</span><span class="n">target</span><span class="si">}</span><span class="s2"> not reachable from </span><span class="si">{</span><span class="n">source</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span> <span class="kn">from</span> <span class="nn">err</span></div>


<div class="viewcode-block" id="single_source_dijkstra_path"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.single_source_dijkstra_path.html#networkx.algorithms.shortest_paths.weighted.single_source_dijkstra_path">[docs]</a><span class="k">def</span> <span class="nf">single_source_dijkstra_path</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Find shortest weighted paths in G from a source node.</span>

<span class="sd">    Compute shortest path between source and all other reachable</span>
<span class="sd">    nodes for a weighted graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    source : node</span>
<span class="sd">        Starting node for path.</span>

<span class="sd">    cutoff : integer or float, optional</span>
<span class="sd">        Length (sum of edge weights) at which the search is stopped.</span>
<span class="sd">        If cutoff is provided, only return paths with summed weight &lt;= cutoff.</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number or None to indicate a hidden edge.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    paths : dictionary</span>
<span class="sd">        Dictionary of shortest path lengths keyed by target.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If `source` is not in `G`.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; path = nx.single_source_dijkstra_path(G, 0)</span>
<span class="sd">    &gt;&gt;&gt; path[4]</span>
<span class="sd">    [0, 1, 2, 3, 4]</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    The weight function can be used to hide edges by returning None.</span>
<span class="sd">    So ``weight = lambda u, v, d: 1 if d[&#39;color&#39;]==&quot;red&quot; else None``</span>
<span class="sd">    will find the shortest red path.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    single_source_dijkstra, single_source_bellman_ford</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">return</span> <span class="n">multi_source_dijkstra_path</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="p">{</span><span class="n">source</span><span class="p">},</span> <span class="n">cutoff</span><span class="o">=</span><span class="n">cutoff</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">)</span></div>


<div class="viewcode-block" id="single_source_dijkstra_path_length"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.single_source_dijkstra_path_length.html#networkx.algorithms.shortest_paths.weighted.single_source_dijkstra_path_length">[docs]</a><span class="k">def</span> <span class="nf">single_source_dijkstra_path_length</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Find shortest weighted path lengths in G from a source node.</span>

<span class="sd">    Compute the shortest path length between source and all other</span>
<span class="sd">    reachable nodes for a weighted graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    source : node label</span>
<span class="sd">        Starting node for path</span>

<span class="sd">    cutoff : integer or float, optional</span>
<span class="sd">        Length (sum of edge weights) at which the search is stopped.</span>
<span class="sd">        If cutoff is provided, only return paths with summed weight &lt;= cutoff.</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number or None to indicate a hidden edge.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    length : dict</span>
<span class="sd">        Dict keyed by node to shortest path length from source.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If `source` is not in `G`.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; length = nx.single_source_dijkstra_path_length(G, 0)</span>
<span class="sd">    &gt;&gt;&gt; length[4]</span>
<span class="sd">    4</span>
<span class="sd">    &gt;&gt;&gt; for node in [0, 1, 2, 3, 4]:</span>
<span class="sd">    ...     print(f&quot;{node}: {length[node]}&quot;)</span>
<span class="sd">    0: 0</span>
<span class="sd">    1: 1</span>
<span class="sd">    2: 2</span>
<span class="sd">    3: 3</span>
<span class="sd">    4: 4</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    The weight function can be used to hide edges by returning None.</span>
<span class="sd">    So ``weight = lambda u, v, d: 1 if d[&#39;color&#39;]==&quot;red&quot; else None``</span>
<span class="sd">    will find the shortest red path.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    single_source_dijkstra, single_source_bellman_ford_path_length</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">return</span> <span class="n">multi_source_dijkstra_path_length</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="p">{</span><span class="n">source</span><span class="p">},</span> <span class="n">cutoff</span><span class="o">=</span><span class="n">cutoff</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">)</span></div>


<div class="viewcode-block" id="single_source_dijkstra"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.single_source_dijkstra.html#networkx.algorithms.shortest_paths.weighted.single_source_dijkstra">[docs]</a><span class="k">def</span> <span class="nf">single_source_dijkstra</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Find shortest weighted paths and lengths from a source node.</span>

<span class="sd">    Compute the shortest path length between source and all other</span>
<span class="sd">    reachable nodes for a weighted graph.</span>

<span class="sd">    Uses Dijkstra&#39;s algorithm to compute shortest paths and lengths</span>
<span class="sd">    between a source and all other reachable nodes in a weighted graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    source : node label</span>
<span class="sd">        Starting node for path</span>

<span class="sd">    target : node label, optional</span>
<span class="sd">        Ending node for path</span>

<span class="sd">    cutoff : integer or float, optional</span>
<span class="sd">        Length (sum of edge weights) at which the search is stopped.</span>
<span class="sd">        If cutoff is provided, only return paths with summed weight &lt;= cutoff.</span>


<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number or None to indicate a hidden edge.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    distance, path : pair of dictionaries, or numeric and list.</span>
<span class="sd">        If target is None, paths and lengths to all nodes are computed.</span>
<span class="sd">        The return value is a tuple of two dictionaries keyed by target nodes.</span>
<span class="sd">        The first dictionary stores distance to each target node.</span>
<span class="sd">        The second stores the path to each target node.</span>
<span class="sd">        If target is not None, returns a tuple (distance, path), where</span>
<span class="sd">        distance is the distance from source to target and path is a list</span>
<span class="sd">        representing the path from source to target.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If `source` is not in `G`.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; length, path = nx.single_source_dijkstra(G, 0)</span>
<span class="sd">    &gt;&gt;&gt; length[4]</span>
<span class="sd">    4</span>
<span class="sd">    &gt;&gt;&gt; for node in [0, 1, 2, 3, 4]:</span>
<span class="sd">    ...     print(f&quot;{node}: {length[node]}&quot;)</span>
<span class="sd">    0: 0</span>
<span class="sd">    1: 1</span>
<span class="sd">    2: 2</span>
<span class="sd">    3: 3</span>
<span class="sd">    4: 4</span>
<span class="sd">    &gt;&gt;&gt; path[4]</span>
<span class="sd">    [0, 1, 2, 3, 4]</span>
<span class="sd">    &gt;&gt;&gt; length, path = nx.single_source_dijkstra(G, 0, 1)</span>
<span class="sd">    &gt;&gt;&gt; length</span>
<span class="sd">    1</span>
<span class="sd">    &gt;&gt;&gt; path</span>
<span class="sd">    [0, 1]</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    The weight function can be used to hide edges by returning None.</span>
<span class="sd">    So ``weight = lambda u, v, d: 1 if d[&#39;color&#39;]==&quot;red&quot; else None``</span>
<span class="sd">    will find the shortest red path.</span>

<span class="sd">    Based on the Python cookbook recipe (119466) at</span>
<span class="sd">    https://code.activestate.com/recipes/119466/</span>

<span class="sd">    This algorithm is not guaranteed to work if edge weights</span>
<span class="sd">    are negative or are floating point numbers</span>
<span class="sd">    (overflows and roundoff errors can cause problems).</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    single_source_dijkstra_path</span>
<span class="sd">    single_source_dijkstra_path_length</span>
<span class="sd">    single_source_bellman_ford</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">return</span> <span class="n">multi_source_dijkstra</span><span class="p">(</span>
        <span class="n">G</span><span class="p">,</span> <span class="p">{</span><span class="n">source</span><span class="p">},</span> <span class="n">cutoff</span><span class="o">=</span><span class="n">cutoff</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="n">target</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span>
    <span class="p">)</span></div>


<div class="viewcode-block" id="multi_source_dijkstra_path"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.multi_source_dijkstra_path.html#networkx.algorithms.shortest_paths.weighted.multi_source_dijkstra_path">[docs]</a><span class="k">def</span> <span class="nf">multi_source_dijkstra_path</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">sources</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Find shortest weighted paths in G from a given set of source</span>
<span class="sd">    nodes.</span>

<span class="sd">    Compute shortest path between any of the source nodes and all other</span>
<span class="sd">    reachable nodes for a weighted graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    sources : non-empty set of nodes</span>
<span class="sd">        Starting nodes for paths. If this is just a set containing a</span>
<span class="sd">        single node, then all paths computed by this function will start</span>
<span class="sd">        from that node. If there are two or more nodes in the set, the</span>
<span class="sd">        computed paths may begin from any one of the start nodes.</span>

<span class="sd">    cutoff : integer or float, optional</span>
<span class="sd">        Length (sum of edge weights) at which the search is stopped.</span>
<span class="sd">        If cutoff is provided, only return paths with summed weight &lt;= cutoff.</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number or None to indicate a hidden edge.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    paths : dictionary</span>
<span class="sd">        Dictionary of shortest paths keyed by target.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; path = nx.multi_source_dijkstra_path(G, {0, 4})</span>
<span class="sd">    &gt;&gt;&gt; path[1]</span>
<span class="sd">    [0, 1]</span>
<span class="sd">    &gt;&gt;&gt; path[3]</span>
<span class="sd">    [4, 3]</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    The weight function can be used to hide edges by returning None.</span>
<span class="sd">    So ``weight = lambda u, v, d: 1 if d[&#39;color&#39;]==&quot;red&quot; else None``</span>
<span class="sd">    will find the shortest red path.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    ValueError</span>
<span class="sd">        If `sources` is empty.</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If any of `sources` is not in `G`.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    multi_source_dijkstra, multi_source_bellman_ford</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">length</span><span class="p">,</span> <span class="n">path</span> <span class="o">=</span> <span class="n">multi_source_dijkstra</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">sources</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="n">cutoff</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">path</span></div>


<div class="viewcode-block" id="multi_source_dijkstra_path_length"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.multi_source_dijkstra_path_length.html#networkx.algorithms.shortest_paths.weighted.multi_source_dijkstra_path_length">[docs]</a><span class="k">def</span> <span class="nf">multi_source_dijkstra_path_length</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">sources</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Find shortest weighted path lengths in G from a given set of</span>
<span class="sd">    source nodes.</span>

<span class="sd">    Compute the shortest path length between any of the source nodes and</span>
<span class="sd">    all other reachable nodes for a weighted graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    sources : non-empty set of nodes</span>
<span class="sd">        Starting nodes for paths. If this is just a set containing a</span>
<span class="sd">        single node, then all paths computed by this function will start</span>
<span class="sd">        from that node. If there are two or more nodes in the set, the</span>
<span class="sd">        computed paths may begin from any one of the start nodes.</span>

<span class="sd">    cutoff : integer or float, optional</span>
<span class="sd">        Length (sum of edge weights) at which the search is stopped.</span>
<span class="sd">        If cutoff is provided, only return paths with summed weight &lt;= cutoff.</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number or None to indicate a hidden edge.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    length : dict</span>
<span class="sd">        Dict keyed by node to shortest path length to nearest source.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; length = nx.multi_source_dijkstra_path_length(G, {0, 4})</span>
<span class="sd">    &gt;&gt;&gt; for node in [0, 1, 2, 3, 4]:</span>
<span class="sd">    ...     print(f&quot;{node}: {length[node]}&quot;)</span>
<span class="sd">    0: 0</span>
<span class="sd">    1: 1</span>
<span class="sd">    2: 2</span>
<span class="sd">    3: 1</span>
<span class="sd">    4: 0</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    The weight function can be used to hide edges by returning None.</span>
<span class="sd">    So ``weight = lambda u, v, d: 1 if d[&#39;color&#39;]==&quot;red&quot; else None``</span>
<span class="sd">    will find the shortest red path.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    ValueError</span>
<span class="sd">        If `sources` is empty.</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If any of `sources` is not in `G`.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    multi_source_dijkstra</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="ow">not</span> <span class="n">sources</span><span class="p">:</span>
        <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;sources must not be empty&quot;</span><span class="p">)</span>
    <span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="n">sources</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">s</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NodeNotFound</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Node </span><span class="si">{</span><span class="n">s</span><span class="si">}</span><span class="s2"> not found in graph&quot;</span><span class="p">)</span>
    <span class="n">weight</span> <span class="o">=</span> <span class="n">_weight_function</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">_dijkstra_multisource</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">sources</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="n">cutoff</span><span class="p">)</span></div>


<div class="viewcode-block" id="multi_source_dijkstra"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.multi_source_dijkstra.html#networkx.algorithms.shortest_paths.weighted.multi_source_dijkstra">[docs]</a><span class="k">def</span> <span class="nf">multi_source_dijkstra</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">sources</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Find shortest weighted paths and lengths from a given set of</span>
<span class="sd">    source nodes.</span>

<span class="sd">    Uses Dijkstra&#39;s algorithm to compute the shortest paths and lengths</span>
<span class="sd">    between one of the source nodes and the given `target`, or all other</span>
<span class="sd">    reachable nodes if not specified, for a weighted graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    sources : non-empty set of nodes</span>
<span class="sd">        Starting nodes for paths. If this is just a set containing a</span>
<span class="sd">        single node, then all paths computed by this function will start</span>
<span class="sd">        from that node. If there are two or more nodes in the set, the</span>
<span class="sd">        computed paths may begin from any one of the start nodes.</span>

<span class="sd">    target : node label, optional</span>
<span class="sd">        Ending node for path</span>

<span class="sd">    cutoff : integer or float, optional</span>
<span class="sd">        Length (sum of edge weights) at which the search is stopped.</span>
<span class="sd">        If cutoff is provided, only return paths with summed weight &lt;= cutoff.</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number or None to indicate a hidden edge.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    distance, path : pair of dictionaries, or numeric and list</span>
<span class="sd">        If target is None, returns a tuple of two dictionaries keyed by node.</span>
<span class="sd">        The first dictionary stores distance from one of the source nodes.</span>
<span class="sd">        The second stores the path from one of the sources to that node.</span>
<span class="sd">        If target is not None, returns a tuple of (distance, path) where</span>
<span class="sd">        distance is the distance from source to target and path is a list</span>
<span class="sd">        representing the path from source to target.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; length, path = nx.multi_source_dijkstra(G, {0, 4})</span>
<span class="sd">    &gt;&gt;&gt; for node in [0, 1, 2, 3, 4]:</span>
<span class="sd">    ...     print(f&quot;{node}: {length[node]}&quot;)</span>
<span class="sd">    0: 0</span>
<span class="sd">    1: 1</span>
<span class="sd">    2: 2</span>
<span class="sd">    3: 1</span>
<span class="sd">    4: 0</span>
<span class="sd">    &gt;&gt;&gt; path[1]</span>
<span class="sd">    [0, 1]</span>
<span class="sd">    &gt;&gt;&gt; path[3]</span>
<span class="sd">    [4, 3]</span>

<span class="sd">    &gt;&gt;&gt; length, path = nx.multi_source_dijkstra(G, {0, 4}, 1)</span>
<span class="sd">    &gt;&gt;&gt; length</span>
<span class="sd">    1</span>
<span class="sd">    &gt;&gt;&gt; path</span>
<span class="sd">    [0, 1]</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    The weight function can be used to hide edges by returning None.</span>
<span class="sd">    So ``weight = lambda u, v, d: 1 if d[&#39;color&#39;]==&quot;red&quot; else None``</span>
<span class="sd">    will find the shortest red path.</span>

<span class="sd">    Based on the Python cookbook recipe (119466) at</span>
<span class="sd">    https://code.activestate.com/recipes/119466/</span>

<span class="sd">    This algorithm is not guaranteed to work if edge weights</span>
<span class="sd">    are negative or are floating point numbers</span>
<span class="sd">    (overflows and roundoff errors can cause problems).</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    ValueError</span>
<span class="sd">        If `sources` is empty.</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If any of `sources` is not in `G`.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    multi_source_dijkstra_path</span>
<span class="sd">    multi_source_dijkstra_path_length</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="ow">not</span> <span class="n">sources</span><span class="p">:</span>
        <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;sources must not be empty&quot;</span><span class="p">)</span>
    <span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="n">sources</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">s</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NodeNotFound</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Node </span><span class="si">{</span><span class="n">s</span><span class="si">}</span><span class="s2"> not found in graph&quot;</span><span class="p">)</span>
    <span class="k">if</span> <span class="n">target</span> <span class="ow">in</span> <span class="n">sources</span><span class="p">:</span>
        <span class="k">return</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="p">[</span><span class="n">target</span><span class="p">])</span>
    <span class="n">weight</span> <span class="o">=</span> <span class="n">_weight_function</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>
    <span class="n">paths</span> <span class="o">=</span> <span class="p">{</span><span class="n">source</span><span class="p">:</span> <span class="p">[</span><span class="n">source</span><span class="p">]</span> <span class="k">for</span> <span class="n">source</span> <span class="ow">in</span> <span class="n">sources</span><span class="p">}</span>  <span class="c1"># dictionary of paths</span>
    <span class="n">dist</span> <span class="o">=</span> <span class="n">_dijkstra_multisource</span><span class="p">(</span>
        <span class="n">G</span><span class="p">,</span> <span class="n">sources</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">paths</span><span class="o">=</span><span class="n">paths</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="n">cutoff</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="n">target</span>
    <span class="p">)</span>
    <span class="k">if</span> <span class="n">target</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="k">return</span> <span class="p">(</span><span class="n">dist</span><span class="p">,</span> <span class="n">paths</span><span class="p">)</span>
    <span class="k">try</span><span class="p">:</span>
        <span class="k">return</span> <span class="p">(</span><span class="n">dist</span><span class="p">[</span><span class="n">target</span><span class="p">],</span> <span class="n">paths</span><span class="p">[</span><span class="n">target</span><span class="p">])</span>
    <span class="k">except</span> <span class="ne">KeyError</span> <span class="k">as</span> <span class="n">err</span><span class="p">:</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXNoPath</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;No path to </span><span class="si">{</span><span class="n">target</span><span class="si">}</span><span class="s2">.&quot;</span><span class="p">)</span> <span class="kn">from</span> <span class="nn">err</span></div>


<span class="k">def</span> <span class="nf">_dijkstra</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">pred</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">paths</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="kc">None</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Uses Dijkstra&#39;s algorithm to find shortest weighted paths from a</span>
<span class="sd">    single source.</span>

<span class="sd">    This is a convenience function for :func:`_dijkstra_multisource`</span>
<span class="sd">    with all the arguments the same, except the keyword argument</span>
<span class="sd">    `sources` set to ``[source]``.</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">return</span> <span class="n">_dijkstra_multisource</span><span class="p">(</span>
        <span class="n">G</span><span class="p">,</span> <span class="p">[</span><span class="n">source</span><span class="p">],</span> <span class="n">weight</span><span class="p">,</span> <span class="n">pred</span><span class="o">=</span><span class="n">pred</span><span class="p">,</span> <span class="n">paths</span><span class="o">=</span><span class="n">paths</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="n">cutoff</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="n">target</span>
    <span class="p">)</span>


<span class="k">def</span> <span class="nf">_dijkstra_multisource</span><span class="p">(</span>
    <span class="n">G</span><span class="p">,</span> <span class="n">sources</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">pred</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">paths</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="kc">None</span>
<span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Uses Dijkstra&#39;s algorithm to find shortest weighted paths</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    sources : non-empty iterable of nodes</span>
<span class="sd">        Starting nodes for paths. If this is just an iterable containing</span>
<span class="sd">        a single node, then all paths computed by this function will</span>
<span class="sd">        start from that node. If there are two or more nodes in this</span>
<span class="sd">        iterable, the computed paths may begin from any one of the start</span>
<span class="sd">        nodes.</span>

<span class="sd">    weight: function</span>
<span class="sd">        Function with (u, v, data) input that returns that edge&#39;s weight</span>
<span class="sd">        or None to indicate a hidden edge</span>

<span class="sd">    pred: dict of lists, optional(default=None)</span>
<span class="sd">        dict to store a list of predecessors keyed by that node</span>
<span class="sd">        If None, predecessors are not stored.</span>

<span class="sd">    paths: dict, optional (default=None)</span>
<span class="sd">        dict to store the path list from source to each node, keyed by node.</span>
<span class="sd">        If None, paths are not stored.</span>

<span class="sd">    target : node label, optional</span>
<span class="sd">        Ending node for path. Search is halted when target is found.</span>

<span class="sd">    cutoff : integer or float, optional</span>
<span class="sd">        Length (sum of edge weights) at which the search is stopped.</span>
<span class="sd">        If cutoff is provided, only return paths with summed weight &lt;= cutoff.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    distance : dictionary</span>
<span class="sd">        A mapping from node to shortest distance to that node from one</span>
<span class="sd">        of the source nodes.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If any of `sources` is not in `G`.</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    The optional predecessor and path dictionaries can be accessed by</span>
<span class="sd">    the caller through the original pred and paths objects passed</span>
<span class="sd">    as arguments. No need to explicitly return pred or paths.</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">G_succ</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">_adj</span>  <span class="c1"># For speed-up (and works for both directed and undirected graphs)</span>

    <span class="n">push</span> <span class="o">=</span> <span class="n">heappush</span>
    <span class="n">pop</span> <span class="o">=</span> <span class="n">heappop</span>
    <span class="n">dist</span> <span class="o">=</span> <span class="p">{}</span>  <span class="c1"># dictionary of final distances</span>
    <span class="n">seen</span> <span class="o">=</span> <span class="p">{}</span>
    <span class="c1"># fringe is heapq with 3-tuples (distance,c,node)</span>
    <span class="c1"># use the count c to avoid comparing nodes (may not be able to)</span>
    <span class="n">c</span> <span class="o">=</span> <span class="n">count</span><span class="p">()</span>
    <span class="n">fringe</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="k">for</span> <span class="n">source</span> <span class="ow">in</span> <span class="n">sources</span><span class="p">:</span>
        <span class="n">seen</span><span class="p">[</span><span class="n">source</span><span class="p">]</span> <span class="o">=</span> <span class="mi">0</span>
        <span class="n">push</span><span class="p">(</span><span class="n">fringe</span><span class="p">,</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">next</span><span class="p">(</span><span class="n">c</span><span class="p">),</span> <span class="n">source</span><span class="p">))</span>
    <span class="k">while</span> <span class="n">fringe</span><span class="p">:</span>
        <span class="p">(</span><span class="n">d</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span> <span class="o">=</span> <span class="n">pop</span><span class="p">(</span><span class="n">fringe</span><span class="p">)</span>
        <span class="k">if</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">dist</span><span class="p">:</span>
            <span class="k">continue</span>  <span class="c1"># already searched this node.</span>
        <span class="n">dist</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">=</span> <span class="n">d</span>
        <span class="k">if</span> <span class="n">v</span> <span class="o">==</span> <span class="n">target</span><span class="p">:</span>
            <span class="k">break</span>
        <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">e</span> <span class="ow">in</span> <span class="n">G_succ</span><span class="p">[</span><span class="n">v</span><span class="p">]</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
            <span class="n">cost</span> <span class="o">=</span> <span class="n">weight</span><span class="p">(</span><span class="n">v</span><span class="p">,</span> <span class="n">u</span><span class="p">,</span> <span class="n">e</span><span class="p">)</span>
            <span class="k">if</span> <span class="n">cost</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
                <span class="k">continue</span>
            <span class="n">vu_dist</span> <span class="o">=</span> <span class="n">dist</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">+</span> <span class="n">cost</span>
            <span class="k">if</span> <span class="n">cutoff</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
                <span class="k">if</span> <span class="n">vu_dist</span> <span class="o">&gt;</span> <span class="n">cutoff</span><span class="p">:</span>
                    <span class="k">continue</span>
            <span class="k">if</span> <span class="n">u</span> <span class="ow">in</span> <span class="n">dist</span><span class="p">:</span>
                <span class="n">u_dist</span> <span class="o">=</span> <span class="n">dist</span><span class="p">[</span><span class="n">u</span><span class="p">]</span>
                <span class="k">if</span> <span class="n">vu_dist</span> <span class="o">&lt;</span> <span class="n">u_dist</span><span class="p">:</span>
                    <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;Contradictory paths found:&quot;</span><span class="p">,</span> <span class="s2">&quot;negative weights?&quot;</span><span class="p">)</span>
                <span class="k">elif</span> <span class="n">pred</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">vu_dist</span> <span class="o">==</span> <span class="n">u_dist</span><span class="p">:</span>
                    <span class="n">pred</span><span class="p">[</span><span class="n">u</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
            <span class="k">elif</span> <span class="n">u</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">seen</span> <span class="ow">or</span> <span class="n">vu_dist</span> <span class="o">&lt;</span> <span class="n">seen</span><span class="p">[</span><span class="n">u</span><span class="p">]:</span>
                <span class="n">seen</span><span class="p">[</span><span class="n">u</span><span class="p">]</span> <span class="o">=</span> <span class="n">vu_dist</span>
                <span class="n">push</span><span class="p">(</span><span class="n">fringe</span><span class="p">,</span> <span class="p">(</span><span class="n">vu_dist</span><span class="p">,</span> <span class="nb">next</span><span class="p">(</span><span class="n">c</span><span class="p">),</span> <span class="n">u</span><span class="p">))</span>
                <span class="k">if</span> <span class="n">paths</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
                    <span class="n">paths</span><span class="p">[</span><span class="n">u</span><span class="p">]</span> <span class="o">=</span> <span class="n">paths</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">+</span> <span class="p">[</span><span class="n">u</span><span class="p">]</span>
                <span class="k">if</span> <span class="n">pred</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
                    <span class="n">pred</span><span class="p">[</span><span class="n">u</span><span class="p">]</span> <span class="o">=</span> <span class="p">[</span><span class="n">v</span><span class="p">]</span>
            <span class="k">elif</span> <span class="n">vu_dist</span> <span class="o">==</span> <span class="n">seen</span><span class="p">[</span><span class="n">u</span><span class="p">]:</span>
                <span class="k">if</span> <span class="n">pred</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
                    <span class="n">pred</span><span class="p">[</span><span class="n">u</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>

    <span class="c1"># The optional predecessor and path dictionaries can be accessed</span>
    <span class="c1"># by the caller via the pred and paths objects passed as arguments.</span>
    <span class="k">return</span> <span class="n">dist</span>


<div class="viewcode-block" id="dijkstra_predecessor_and_distance"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.dijkstra_predecessor_and_distance.html#networkx.algorithms.shortest_paths.weighted.dijkstra_predecessor_and_distance">[docs]</a><span class="k">def</span> <span class="nf">dijkstra_predecessor_and_distance</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Compute weighted shortest path length and predecessors.</span>

<span class="sd">    Uses Dijkstra&#39;s Method to obtain the shortest weighted paths</span>
<span class="sd">    and return dictionaries of predecessors for each node and</span>
<span class="sd">    distance for each node from the `source`.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    source : node label</span>
<span class="sd">        Starting node for path</span>

<span class="sd">    cutoff : integer or float, optional</span>
<span class="sd">        Length (sum of edge weights) at which the search is stopped.</span>
<span class="sd">        If cutoff is provided, only return paths with summed weight &lt;= cutoff.</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number or None to indicate a hidden edge.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    pred, distance : dictionaries</span>
<span class="sd">        Returns two dictionaries representing a list of predecessors</span>
<span class="sd">        of a node and the distance to each node.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If `source` is not in `G`.</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    The list of predecessors contains more than one element only when</span>
<span class="sd">    there are more than one shortest paths to the key node.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5, create_using=nx.DiGraph())</span>
<span class="sd">    &gt;&gt;&gt; pred, dist = nx.dijkstra_predecessor_and_distance(G, 0)</span>
<span class="sd">    &gt;&gt;&gt; sorted(pred.items())</span>
<span class="sd">    [(0, []), (1, [0]), (2, [1]), (3, [2]), (4, [3])]</span>
<span class="sd">    &gt;&gt;&gt; sorted(dist.items())</span>
<span class="sd">    [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]</span>

<span class="sd">    &gt;&gt;&gt; pred, dist = nx.dijkstra_predecessor_and_distance(G, 0, 1)</span>
<span class="sd">    &gt;&gt;&gt; sorted(pred.items())</span>
<span class="sd">    [(0, []), (1, [0])]</span>
<span class="sd">    &gt;&gt;&gt; sorted(dist.items())</span>
<span class="sd">    [(0, 0), (1, 1)]</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">source</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NodeNotFound</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Node </span><span class="si">{</span><span class="n">source</span><span class="si">}</span><span class="s2"> is not found in the graph&quot;</span><span class="p">)</span>
    <span class="n">weight</span> <span class="o">=</span> <span class="n">_weight_function</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>
    <span class="n">pred</span> <span class="o">=</span> <span class="p">{</span><span class="n">source</span><span class="p">:</span> <span class="p">[]}</span>  <span class="c1"># dictionary of predecessors</span>
    <span class="k">return</span> <span class="p">(</span><span class="n">pred</span><span class="p">,</span> <span class="n">_dijkstra</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">weight</span><span class="p">,</span> <span class="n">pred</span><span class="o">=</span><span class="n">pred</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="n">cutoff</span><span class="p">))</span></div>


<div class="viewcode-block" id="all_pairs_dijkstra"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.all_pairs_dijkstra.html#networkx.algorithms.shortest_paths.weighted.all_pairs_dijkstra">[docs]</a><span class="k">def</span> <span class="nf">all_pairs_dijkstra</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Find shortest weighted paths and lengths between all nodes.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    cutoff : integer or float, optional</span>
<span class="sd">        Length (sum of edge weights) at which the search is stopped.</span>
<span class="sd">        If cutoff is provided, only return paths with summed weight &lt;= cutoff.</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edge[u][v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number or None to indicate a hidden edge.</span>

<span class="sd">    Yields</span>
<span class="sd">    ------</span>
<span class="sd">    (node, (distance, path)) : (node obj, (dict, dict))</span>
<span class="sd">        Each source node has two associated dicts. The first holds distance</span>
<span class="sd">        keyed by target and the second holds paths keyed by target.</span>
<span class="sd">        (See single_source_dijkstra for the source/target node terminology.)</span>
<span class="sd">        If desired you can apply `dict()` to this function to create a dict</span>
<span class="sd">        keyed by source node to the two dicts.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; len_path = dict(nx.all_pairs_dijkstra(G))</span>
<span class="sd">    &gt;&gt;&gt; len_path[3][0][1]</span>
<span class="sd">    2</span>
<span class="sd">    &gt;&gt;&gt; for node in [0, 1, 2, 3, 4]:</span>
<span class="sd">    ...     print(f&quot;3 - {node}: {len_path[3][0][node]}&quot;)</span>
<span class="sd">    3 - 0: 3</span>
<span class="sd">    3 - 1: 2</span>
<span class="sd">    3 - 2: 1</span>
<span class="sd">    3 - 3: 0</span>
<span class="sd">    3 - 4: 1</span>
<span class="sd">    &gt;&gt;&gt; len_path[3][1][1]</span>
<span class="sd">    [3, 2, 1]</span>
<span class="sd">    &gt;&gt;&gt; for n, (dist, path) in nx.all_pairs_dijkstra(G):</span>
<span class="sd">    ...     print(path[1])</span>
<span class="sd">    [0, 1]</span>
<span class="sd">    [1]</span>
<span class="sd">    [2, 1]</span>
<span class="sd">    [3, 2, 1]</span>
<span class="sd">    [4, 3, 2, 1]</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    The yielded dicts only have keys for reachable nodes.</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
        <span class="n">dist</span><span class="p">,</span> <span class="n">path</span> <span class="o">=</span> <span class="n">single_source_dijkstra</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="n">cutoff</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">)</span>
        <span class="k">yield</span> <span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="p">(</span><span class="n">dist</span><span class="p">,</span> <span class="n">path</span><span class="p">))</span></div>


<div class="viewcode-block" id="all_pairs_dijkstra_path_length"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.all_pairs_dijkstra_path_length.html#networkx.algorithms.shortest_paths.weighted.all_pairs_dijkstra_path_length">[docs]</a><span class="k">def</span> <span class="nf">all_pairs_dijkstra_path_length</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Compute shortest path lengths between all nodes in a weighted graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    cutoff : integer or float, optional</span>
<span class="sd">        Length (sum of edge weights) at which the search is stopped.</span>
<span class="sd">        If cutoff is provided, only return paths with summed weight &lt;= cutoff.</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number or None to indicate a hidden edge.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    distance : iterator</span>
<span class="sd">        (source, dictionary) iterator with dictionary keyed by target and</span>
<span class="sd">        shortest path length as the key value.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; length = dict(nx.all_pairs_dijkstra_path_length(G))</span>
<span class="sd">    &gt;&gt;&gt; for node in [0, 1, 2, 3, 4]:</span>
<span class="sd">    ...     print(f&quot;1 - {node}: {length[1][node]}&quot;)</span>
<span class="sd">    1 - 0: 1</span>
<span class="sd">    1 - 1: 0</span>
<span class="sd">    1 - 2: 1</span>
<span class="sd">    1 - 3: 2</span>
<span class="sd">    1 - 4: 3</span>
<span class="sd">    &gt;&gt;&gt; length[3][2]</span>
<span class="sd">    1</span>
<span class="sd">    &gt;&gt;&gt; length[2][2]</span>
<span class="sd">    0</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    The dictionary returned only has keys for reachable node pairs.</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">length</span> <span class="o">=</span> <span class="n">single_source_dijkstra_path_length</span>
    <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
        <span class="k">yield</span> <span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="n">length</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="n">cutoff</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">))</span></div>


<div class="viewcode-block" id="all_pairs_dijkstra_path"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.all_pairs_dijkstra_path.html#networkx.algorithms.shortest_paths.weighted.all_pairs_dijkstra_path">[docs]</a><span class="k">def</span> <span class="nf">all_pairs_dijkstra_path</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Compute shortest paths between all nodes in a weighted graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    cutoff : integer or float, optional</span>
<span class="sd">        Length (sum of edge weights) at which the search is stopped.</span>
<span class="sd">        If cutoff is provided, only return paths with summed weight &lt;= cutoff.</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number or None to indicate a hidden edge.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    distance : dictionary</span>
<span class="sd">        Dictionary, keyed by source and target, of shortest paths.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; path = dict(nx.all_pairs_dijkstra_path(G))</span>
<span class="sd">    &gt;&gt;&gt; path[0][4]</span>
<span class="sd">    [0, 1, 2, 3, 4]</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    floyd_warshall, all_pairs_bellman_ford_path</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">path</span> <span class="o">=</span> <span class="n">single_source_dijkstra_path</span>
    <span class="c1"># TODO This can be trivially parallelized.</span>
    <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
        <span class="k">yield</span> <span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="n">path</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">cutoff</span><span class="o">=</span><span class="n">cutoff</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">))</span></div>


<div class="viewcode-block" id="bellman_ford_predecessor_and_distance"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.bellman_ford_predecessor_and_distance.html#networkx.algorithms.shortest_paths.weighted.bellman_ford_predecessor_and_distance">[docs]</a><span class="k">def</span> <span class="nf">bellman_ford_predecessor_and_distance</span><span class="p">(</span>
    <span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">heuristic</span><span class="o">=</span><span class="kc">False</span>
<span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Compute shortest path lengths and predecessors on shortest paths</span>
<span class="sd">    in weighted graphs.</span>

<span class="sd">    The algorithm has a running time of $O(mn)$ where $n$ is the number of</span>
<span class="sd">    nodes and $m$ is the number of edges.  It is slower than Dijkstra but</span>
<span class="sd">    can handle negative edge weights.</span>

<span class="sd">    If a negative cycle is detected, you can use :func:`find_negative_cycle`</span>
<span class="sd">    to return the cycle and examine it. Shortest paths are not defined when</span>
<span class="sd">    a negative cycle exists because once reached, the path can cycle forever</span>
<span class="sd">    to build up arbitrarily low weights.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">        The algorithm works for all types of graphs, including directed</span>
<span class="sd">        graphs and multigraphs.</span>

<span class="sd">    source: node label</span>
<span class="sd">        Starting node for path</span>

<span class="sd">    target : node label, optional</span>
<span class="sd">        Ending node for path</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number.</span>

<span class="sd">    heuristic : bool</span>
<span class="sd">        Determines whether to use a heuristic to early detect negative</span>
<span class="sd">        cycles at a hopefully negligible cost.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    pred, dist : dictionaries</span>
<span class="sd">        Returns two dictionaries keyed by node to predecessor in the</span>
<span class="sd">        path and to the distance from the source respectively.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If `source` is not in `G`.</span>

<span class="sd">    NetworkXUnbounded</span>
<span class="sd">        If the (di)graph contains a negative (di)cycle, the</span>
<span class="sd">        algorithm raises an exception to indicate the presence of the</span>
<span class="sd">        negative (di)cycle.  Note: any negative weight edge in an</span>
<span class="sd">        undirected graph is a negative cycle.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5, create_using=nx.DiGraph())</span>
<span class="sd">    &gt;&gt;&gt; pred, dist = nx.bellman_ford_predecessor_and_distance(G, 0)</span>
<span class="sd">    &gt;&gt;&gt; sorted(pred.items())</span>
<span class="sd">    [(0, []), (1, [0]), (2, [1]), (3, [2]), (4, [3])]</span>
<span class="sd">    &gt;&gt;&gt; sorted(dist.items())</span>
<span class="sd">    [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]</span>

<span class="sd">    &gt;&gt;&gt; pred, dist = nx.bellman_ford_predecessor_and_distance(G, 0, 1)</span>
<span class="sd">    &gt;&gt;&gt; sorted(pred.items())</span>
<span class="sd">    [(0, []), (1, [0]), (2, [1]), (3, [2]), (4, [3])]</span>
<span class="sd">    &gt;&gt;&gt; sorted(dist.items())</span>
<span class="sd">    [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]</span>

<span class="sd">    &gt;&gt;&gt; G = nx.cycle_graph(5, create_using=nx.DiGraph())</span>
<span class="sd">    &gt;&gt;&gt; G[1][2][&quot;weight&quot;] = -7</span>
<span class="sd">    &gt;&gt;&gt; nx.bellman_ford_predecessor_and_distance(G, 0)</span>
<span class="sd">    Traceback (most recent call last):</span>
<span class="sd">        ...</span>
<span class="sd">    networkx.exception.NetworkXUnbounded: Negative cycle detected.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    find_negative_cycle</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    The dictionaries returned only have keys for nodes reachable from</span>
<span class="sd">    the source.</span>

<span class="sd">    In the case where the (di)graph is not connected, if a component</span>
<span class="sd">    not containing the source contains a negative (di)cycle, it</span>
<span class="sd">    will not be detected.</span>

<span class="sd">    In NetworkX v2.1 and prior, the source node had predecessor `[None]`.</span>
<span class="sd">    In NetworkX v2.2 this changed to the source node having predecessor `[]`</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">source</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NodeNotFound</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Node </span><span class="si">{</span><span class="n">source</span><span class="si">}</span><span class="s2"> is not found in the graph&quot;</span><span class="p">)</span>
    <span class="n">weight</span> <span class="o">=</span> <span class="n">_weight_function</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>
    <span class="k">if</span> <span class="nb">any</span><span class="p">(</span><span class="n">weight</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span><span class="p">)</span> <span class="o">&lt;</span> <span class="mi">0</span> <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">nx</span><span class="o">.</span><span class="n">selfloop_edges</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">)):</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXUnbounded</span><span class="p">(</span><span class="s2">&quot;Negative cycle detected.&quot;</span><span class="p">)</span>

    <span class="n">dist</span> <span class="o">=</span> <span class="p">{</span><span class="n">source</span><span class="p">:</span> <span class="mi">0</span><span class="p">}</span>
    <span class="n">pred</span> <span class="o">=</span> <span class="p">{</span><span class="n">source</span><span class="p">:</span> <span class="p">[]}</span>

    <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
        <span class="k">return</span> <span class="n">pred</span><span class="p">,</span> <span class="n">dist</span>

    <span class="n">weight</span> <span class="o">=</span> <span class="n">_weight_function</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>

    <span class="n">dist</span> <span class="o">=</span> <span class="n">_bellman_ford</span><span class="p">(</span>
        <span class="n">G</span><span class="p">,</span> <span class="p">[</span><span class="n">source</span><span class="p">],</span> <span class="n">weight</span><span class="p">,</span> <span class="n">pred</span><span class="o">=</span><span class="n">pred</span><span class="p">,</span> <span class="n">dist</span><span class="o">=</span><span class="n">dist</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="n">target</span><span class="p">,</span> <span class="n">heuristic</span><span class="o">=</span><span class="n">heuristic</span>
    <span class="p">)</span>
    <span class="k">return</span> <span class="p">(</span><span class="n">pred</span><span class="p">,</span> <span class="n">dist</span><span class="p">)</span></div>


<span class="k">def</span> <span class="nf">_bellman_ford</span><span class="p">(</span>
    <span class="n">G</span><span class="p">,</span>
    <span class="n">source</span><span class="p">,</span>
    <span class="n">weight</span><span class="p">,</span>
    <span class="n">pred</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
    <span class="n">paths</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
    <span class="n">dist</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
    <span class="n">target</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
    <span class="n">heuristic</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Calls relaxation loop for Bellman–Ford algorithm and builds paths</span>

<span class="sd">    This is an implementation of the SPFA variant.</span>
<span class="sd">    See https://en.wikipedia.org/wiki/Shortest_Path_Faster_Algorithm</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    source: list</span>
<span class="sd">        List of source nodes. The shortest path from any of the source</span>
<span class="sd">        nodes will be found if multiple sources are provided.</span>

<span class="sd">    weight : function</span>
<span class="sd">        The weight of an edge is the value returned by the function. The</span>
<span class="sd">        function must accept exactly three positional arguments: the two</span>
<span class="sd">        endpoints of an edge and the dictionary of edge attributes for</span>
<span class="sd">        that edge. The function must return a number.</span>

<span class="sd">    pred: dict of lists, optional (default=None)</span>
<span class="sd">        dict to store a list of predecessors keyed by that node</span>
<span class="sd">        If None, predecessors are not stored</span>

<span class="sd">    paths: dict, optional (default=None)</span>
<span class="sd">        dict to store the path list from source to each node, keyed by node</span>
<span class="sd">        If None, paths are not stored</span>

<span class="sd">    dist: dict, optional (default=None)</span>
<span class="sd">        dict to store distance from source to the keyed node</span>
<span class="sd">        If None, returned dist dict contents default to 0 for every node in the</span>
<span class="sd">        source list</span>

<span class="sd">    target: node label, optional</span>
<span class="sd">        Ending node for path. Path lengths to other destinations may (and</span>
<span class="sd">        probably will) be incorrect.</span>

<span class="sd">    heuristic : bool</span>
<span class="sd">        Determines whether to use a heuristic to early detect negative</span>
<span class="sd">        cycles at a hopefully negligible cost.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    dist : dict</span>
<span class="sd">        Returns a dict keyed by node to the distance from the source.</span>
<span class="sd">        Dicts for paths and pred are in the mutated input dicts by those names.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If any of `source` is not in `G`.</span>

<span class="sd">    NetworkXUnbounded</span>
<span class="sd">        If the (di)graph contains a negative (di)cycle, the</span>
<span class="sd">        algorithm raises an exception to indicate the presence of the</span>
<span class="sd">        negative (di)cycle.  Note: any negative weight edge in an</span>
<span class="sd">        undirected graph is a negative cycle</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">pred</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">pred</span> <span class="o">=</span> <span class="p">{</span><span class="n">v</span><span class="p">:</span> <span class="p">[]</span> <span class="k">for</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">source</span><span class="p">}</span>

    <span class="k">if</span> <span class="n">dist</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">dist</span> <span class="o">=</span> <span class="p">{</span><span class="n">v</span><span class="p">:</span> <span class="mi">0</span> <span class="k">for</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">source</span><span class="p">}</span>

    <span class="n">negative_cycle_found</span> <span class="o">=</span> <span class="n">_inner_bellman_ford</span><span class="p">(</span>
        <span class="n">G</span><span class="p">,</span>
        <span class="n">source</span><span class="p">,</span>
        <span class="n">weight</span><span class="p">,</span>
        <span class="n">pred</span><span class="p">,</span>
        <span class="n">dist</span><span class="p">,</span>
        <span class="n">heuristic</span><span class="p">,</span>
    <span class="p">)</span>
    <span class="k">if</span> <span class="n">negative_cycle_found</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXUnbounded</span><span class="p">(</span><span class="s2">&quot;Negative cycle detected.&quot;</span><span class="p">)</span>

    <span class="k">if</span> <span class="n">paths</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">sources</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span><span class="n">source</span><span class="p">)</span>
        <span class="n">dsts</span> <span class="o">=</span> <span class="p">[</span><span class="n">target</span><span class="p">]</span> <span class="k">if</span> <span class="n">target</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="k">else</span> <span class="n">pred</span>
        <span class="k">for</span> <span class="n">dst</span> <span class="ow">in</span> <span class="n">dsts</span><span class="p">:</span>
            <span class="n">gen</span> <span class="o">=</span> <span class="n">_build_paths_from_predecessors</span><span class="p">(</span><span class="n">sources</span><span class="p">,</span> <span class="n">dst</span><span class="p">,</span> <span class="n">pred</span><span class="p">)</span>
            <span class="n">paths</span><span class="p">[</span><span class="n">dst</span><span class="p">]</span> <span class="o">=</span> <span class="nb">next</span><span class="p">(</span><span class="n">gen</span><span class="p">)</span>

    <span class="k">return</span> <span class="n">dist</span>


<span class="k">def</span> <span class="nf">_inner_bellman_ford</span><span class="p">(</span>
    <span class="n">G</span><span class="p">,</span>
    <span class="n">sources</span><span class="p">,</span>
    <span class="n">weight</span><span class="p">,</span>
    <span class="n">pred</span><span class="p">,</span>
    <span class="n">dist</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span>
    <span class="n">heuristic</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
<span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Inner Relaxation loop for Bellman–Ford algorithm.</span>

<span class="sd">    This is an implementation of the SPFA variant.</span>
<span class="sd">    See https://en.wikipedia.org/wiki/Shortest_Path_Faster_Algorithm</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    source: list</span>
<span class="sd">        List of source nodes. The shortest path from any of the source</span>
<span class="sd">        nodes will be found if multiple sources are provided.</span>

<span class="sd">    weight : function</span>
<span class="sd">        The weight of an edge is the value returned by the function. The</span>
<span class="sd">        function must accept exactly three positional arguments: the two</span>
<span class="sd">        endpoints of an edge and the dictionary of edge attributes for</span>
<span class="sd">        that edge. The function must return a number.</span>

<span class="sd">    pred: dict of lists</span>
<span class="sd">        dict to store a list of predecessors keyed by that node</span>

<span class="sd">    dist: dict, optional (default=None)</span>
<span class="sd">        dict to store distance from source to the keyed node</span>
<span class="sd">        If None, returned dist dict contents default to 0 for every node in the</span>
<span class="sd">        source list</span>

<span class="sd">    heuristic : bool</span>
<span class="sd">        Determines whether to use a heuristic to early detect negative</span>
<span class="sd">        cycles at a hopefully negligible cost.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    node or None</span>
<span class="sd">        Return a node `v` where processing discovered a negative cycle.</span>
<span class="sd">        If no negative cycle found, return None.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If any of `source` is not in `G`.</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="n">sources</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">s</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NodeNotFound</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Source </span><span class="si">{</span><span class="n">s</span><span class="si">}</span><span class="s2"> not in G&quot;</span><span class="p">)</span>

    <span class="k">if</span> <span class="n">pred</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">pred</span> <span class="o">=</span> <span class="p">{</span><span class="n">v</span><span class="p">:</span> <span class="p">[]</span> <span class="k">for</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">sources</span><span class="p">}</span>

    <span class="k">if</span> <span class="n">dist</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="n">dist</span> <span class="o">=</span> <span class="p">{</span><span class="n">v</span><span class="p">:</span> <span class="mi">0</span> <span class="k">for</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">sources</span><span class="p">}</span>

    <span class="c1"># Heuristic Storage setup. Note: use None because nodes cannot be None</span>
    <span class="n">nonexistent_edge</span> <span class="o">=</span> <span class="p">(</span><span class="kc">None</span><span class="p">,</span> <span class="kc">None</span><span class="p">)</span>
    <span class="n">pred_edge</span> <span class="o">=</span> <span class="p">{</span><span class="n">v</span><span class="p">:</span> <span class="kc">None</span> <span class="k">for</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">sources</span><span class="p">}</span>
    <span class="n">recent_update</span> <span class="o">=</span> <span class="p">{</span><span class="n">v</span><span class="p">:</span> <span class="n">nonexistent_edge</span> <span class="k">for</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">sources</span><span class="p">}</span>

    <span class="n">G_succ</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">_adj</span>  <span class="c1"># For speed-up (and works for both directed and undirected graphs)</span>
    <span class="n">inf</span> <span class="o">=</span> <span class="nb">float</span><span class="p">(</span><span class="s2">&quot;inf&quot;</span><span class="p">)</span>
    <span class="n">n</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">)</span>

    <span class="n">count</span> <span class="o">=</span> <span class="p">{}</span>
    <span class="n">q</span> <span class="o">=</span> <span class="n">deque</span><span class="p">(</span><span class="n">sources</span><span class="p">)</span>
    <span class="n">in_q</span> <span class="o">=</span> <span class="nb">set</span><span class="p">(</span><span class="n">sources</span><span class="p">)</span>
    <span class="k">while</span> <span class="n">q</span><span class="p">:</span>
        <span class="n">u</span> <span class="o">=</span> <span class="n">q</span><span class="o">.</span><span class="n">popleft</span><span class="p">()</span>
        <span class="n">in_q</span><span class="o">.</span><span class="n">remove</span><span class="p">(</span><span class="n">u</span><span class="p">)</span>

        <span class="c1"># Skip relaxations if any of the predecessors of u is in the queue.</span>
        <span class="k">if</span> <span class="nb">all</span><span class="p">(</span><span class="n">pred_u</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">in_q</span> <span class="k">for</span> <span class="n">pred_u</span> <span class="ow">in</span> <span class="n">pred</span><span class="p">[</span><span class="n">u</span><span class="p">]):</span>
            <span class="n">dist_u</span> <span class="o">=</span> <span class="n">dist</span><span class="p">[</span><span class="n">u</span><span class="p">]</span>
            <span class="k">for</span> <span class="n">v</span><span class="p">,</span> <span class="n">e</span> <span class="ow">in</span> <span class="n">G_succ</span><span class="p">[</span><span class="n">u</span><span class="p">]</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
                <span class="n">dist_v</span> <span class="o">=</span> <span class="n">dist_u</span> <span class="o">+</span> <span class="n">weight</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">e</span><span class="p">)</span>

                <span class="k">if</span> <span class="n">dist_v</span> <span class="o">&lt;</span> <span class="n">dist</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">v</span><span class="p">,</span> <span class="n">inf</span><span class="p">):</span>
                    <span class="c1"># In this conditional branch we are updating the path with v.</span>
                    <span class="c1"># If it happens that some earlier update also added node v</span>
                    <span class="c1"># that implies the existence of a negative cycle since</span>
                    <span class="c1"># after the update node v would lie on the update path twice.</span>
                    <span class="c1"># The update path is stored up to one of the source nodes,</span>
                    <span class="c1"># therefore u is always in the dict recent_update</span>
                    <span class="k">if</span> <span class="n">heuristic</span><span class="p">:</span>
                        <span class="k">if</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">recent_update</span><span class="p">[</span><span class="n">u</span><span class="p">]:</span>
                            <span class="c1"># Negative cycle found!</span>
                            <span class="n">pred</span><span class="p">[</span><span class="n">v</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">u</span><span class="p">)</span>
                            <span class="k">return</span> <span class="n">v</span>

                        <span class="c1"># Transfer the recent update info from u to v if the</span>
                        <span class="c1"># same source node is the head of the update path.</span>
                        <span class="c1"># If the source node is responsible for the cost update,</span>
                        <span class="c1"># then clear the history and use it instead.</span>
                        <span class="k">if</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">pred_edge</span> <span class="ow">and</span> <span class="n">pred_edge</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">==</span> <span class="n">u</span><span class="p">:</span>
                            <span class="n">recent_update</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">=</span> <span class="n">recent_update</span><span class="p">[</span><span class="n">u</span><span class="p">]</span>
                        <span class="k">else</span><span class="p">:</span>
                            <span class="n">recent_update</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">=</span> <span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span>

                    <span class="k">if</span> <span class="n">v</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">in_q</span><span class="p">:</span>
                        <span class="n">q</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
                        <span class="n">in_q</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
                        <span class="n">count_v</span> <span class="o">=</span> <span class="n">count</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">v</span><span class="p">,</span> <span class="mi">0</span><span class="p">)</span> <span class="o">+</span> <span class="mi">1</span>
                        <span class="k">if</span> <span class="n">count_v</span> <span class="o">==</span> <span class="n">n</span><span class="p">:</span>
                            <span class="c1"># Negative cycle found!</span>
                            <span class="k">return</span> <span class="n">v</span>

                        <span class="n">count</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">=</span> <span class="n">count_v</span>
                    <span class="n">dist</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">=</span> <span class="n">dist_v</span>
                    <span class="n">pred</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">=</span> <span class="p">[</span><span class="n">u</span><span class="p">]</span>
                    <span class="n">pred_edge</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">=</span> <span class="n">u</span>

                <span class="k">elif</span> <span class="n">dist</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">v</span><span class="p">)</span> <span class="ow">is</span> <span class="ow">not</span> <span class="kc">None</span> <span class="ow">and</span> <span class="n">dist_v</span> <span class="o">==</span> <span class="n">dist</span><span class="o">.</span><span class="n">get</span><span class="p">(</span><span class="n">v</span><span class="p">):</span>
                    <span class="n">pred</span><span class="p">[</span><span class="n">v</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">u</span><span class="p">)</span>

    <span class="c1"># successfully found shortest_path. No negative cycles found.</span>
    <span class="k">return</span> <span class="kc">None</span>


<div class="viewcode-block" id="bellman_ford_path"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.bellman_ford_path.html#networkx.algorithms.shortest_paths.weighted.bellman_ford_path">[docs]</a><span class="k">def</span> <span class="nf">bellman_ford_path</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">target</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Returns the shortest path from source to target in a weighted graph G.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    source : node</span>
<span class="sd">        Starting node</span>

<span class="sd">    target : node</span>
<span class="sd">        Ending node</span>

<span class="sd">    weight : string or function (default=&quot;weight&quot;)</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    path : list</span>
<span class="sd">        List of nodes in a shortest path.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If `source` is not in `G`.</span>

<span class="sd">    NetworkXNoPath</span>
<span class="sd">        If no path exists between source and target.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; nx.bellman_ford_path(G, 0, 4)</span>
<span class="sd">    [0, 1, 2, 3, 4]</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    dijkstra_path, bellman_ford_path_length</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">length</span><span class="p">,</span> <span class="n">path</span> <span class="o">=</span> <span class="n">single_source_bellman_ford</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="n">target</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">path</span></div>


<div class="viewcode-block" id="bellman_ford_path_length"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.bellman_ford_path_length.html#networkx.algorithms.shortest_paths.weighted.bellman_ford_path_length">[docs]</a><span class="k">def</span> <span class="nf">bellman_ford_path_length</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">target</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Returns the shortest path length from source to target</span>
<span class="sd">    in a weighted graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    source : node label</span>
<span class="sd">        starting node for path</span>

<span class="sd">    target : node label</span>
<span class="sd">        ending node for path</span>

<span class="sd">    weight : string or function (default=&quot;weight&quot;)</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    length : number</span>
<span class="sd">        Shortest path length.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If `source` is not in `G`.</span>

<span class="sd">    NetworkXNoPath</span>
<span class="sd">        If no path exists between source and target.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; nx.bellman_ford_path_length(G, 0, 4)</span>
<span class="sd">    4</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    dijkstra_path_length, bellman_ford_path</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">source</span> <span class="o">==</span> <span class="n">target</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">source</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NodeNotFound</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Node </span><span class="si">{</span><span class="n">source</span><span class="si">}</span><span class="s2"> not found in graph&quot;</span><span class="p">)</span>
        <span class="k">return</span> <span class="mi">0</span>

    <span class="n">weight</span> <span class="o">=</span> <span class="n">_weight_function</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>

    <span class="n">length</span> <span class="o">=</span> <span class="n">_bellman_ford</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="p">[</span><span class="n">source</span><span class="p">],</span> <span class="n">weight</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="n">target</span><span class="p">)</span>

    <span class="k">try</span><span class="p">:</span>
        <span class="k">return</span> <span class="n">length</span><span class="p">[</span><span class="n">target</span><span class="p">]</span>
    <span class="k">except</span> <span class="ne">KeyError</span> <span class="k">as</span> <span class="n">err</span><span class="p">:</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXNoPath</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;node </span><span class="si">{</span><span class="n">target</span><span class="si">}</span><span class="s2"> not reachable from </span><span class="si">{</span><span class="n">source</span><span class="si">}</span><span class="s2">&quot;</span><span class="p">)</span> <span class="kn">from</span> <span class="nn">err</span></div>


<div class="viewcode-block" id="single_source_bellman_ford_path"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.single_source_bellman_ford_path.html#networkx.algorithms.shortest_paths.weighted.single_source_bellman_ford_path">[docs]</a><span class="k">def</span> <span class="nf">single_source_bellman_ford_path</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Compute shortest path between source and all other reachable</span>
<span class="sd">    nodes for a weighted graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    source : node</span>
<span class="sd">        Starting node for path.</span>

<span class="sd">    weight : string or function (default=&quot;weight&quot;)</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    paths : dictionary</span>
<span class="sd">        Dictionary of shortest path lengths keyed by target.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If `source` is not in `G`.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; path = nx.single_source_bellman_ford_path(G, 0)</span>
<span class="sd">    &gt;&gt;&gt; path[4]</span>
<span class="sd">    [0, 1, 2, 3, 4]</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    single_source_dijkstra, single_source_bellman_ford</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="p">(</span><span class="n">length</span><span class="p">,</span> <span class="n">path</span><span class="p">)</span> <span class="o">=</span> <span class="n">single_source_bellman_ford</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">path</span></div>


<div class="viewcode-block" id="single_source_bellman_ford_path_length"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.single_source_bellman_ford_path_length.html#networkx.algorithms.shortest_paths.weighted.single_source_bellman_ford_path_length">[docs]</a><span class="k">def</span> <span class="nf">single_source_bellman_ford_path_length</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Compute the shortest path length between source and all other</span>
<span class="sd">    reachable nodes for a weighted graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    source : node label</span>
<span class="sd">        Starting node for path</span>

<span class="sd">    weight : string or function (default=&quot;weight&quot;)</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    length : iterator</span>
<span class="sd">        (target, shortest path length) iterator</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If `source` is not in `G`.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; length = dict(nx.single_source_bellman_ford_path_length(G, 0))</span>
<span class="sd">    &gt;&gt;&gt; length[4]</span>
<span class="sd">    4</span>
<span class="sd">    &gt;&gt;&gt; for node in [0, 1, 2, 3, 4]:</span>
<span class="sd">    ...     print(f&quot;{node}: {length[node]}&quot;)</span>
<span class="sd">    0: 0</span>
<span class="sd">    1: 1</span>
<span class="sd">    2: 2</span>
<span class="sd">    3: 3</span>
<span class="sd">    4: 4</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    single_source_dijkstra, single_source_bellman_ford</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">weight</span> <span class="o">=</span> <span class="n">_weight_function</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>
    <span class="k">return</span> <span class="n">_bellman_ford</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="p">[</span><span class="n">source</span><span class="p">],</span> <span class="n">weight</span><span class="p">)</span></div>


<div class="viewcode-block" id="single_source_bellman_ford"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.single_source_bellman_ford.html#networkx.algorithms.shortest_paths.weighted.single_source_bellman_ford">[docs]</a><span class="k">def</span> <span class="nf">single_source_bellman_ford</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Compute shortest paths and lengths in a weighted graph G.</span>

<span class="sd">    Uses Bellman-Ford algorithm for shortest paths.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    source : node label</span>
<span class="sd">        Starting node for path</span>

<span class="sd">    target : node label, optional</span>
<span class="sd">        Ending node for path</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    distance, path : pair of dictionaries, or numeric and list</span>
<span class="sd">        If target is None, returns a tuple of two dictionaries keyed by node.</span>
<span class="sd">        The first dictionary stores distance from one of the source nodes.</span>
<span class="sd">        The second stores the path from one of the sources to that node.</span>
<span class="sd">        If target is not None, returns a tuple of (distance, path) where</span>
<span class="sd">        distance is the distance from source to target and path is a list</span>
<span class="sd">        representing the path from source to target.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If `source` is not in `G`.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; length, path = nx.single_source_bellman_ford(G, 0)</span>
<span class="sd">    &gt;&gt;&gt; length[4]</span>
<span class="sd">    4</span>
<span class="sd">    &gt;&gt;&gt; for node in [0, 1, 2, 3, 4]:</span>
<span class="sd">    ...     print(f&quot;{node}: {length[node]}&quot;)</span>
<span class="sd">    0: 0</span>
<span class="sd">    1: 1</span>
<span class="sd">    2: 2</span>
<span class="sd">    3: 3</span>
<span class="sd">    4: 4</span>
<span class="sd">    &gt;&gt;&gt; path[4]</span>
<span class="sd">    [0, 1, 2, 3, 4]</span>
<span class="sd">    &gt;&gt;&gt; length, path = nx.single_source_bellman_ford(G, 0, 1)</span>
<span class="sd">    &gt;&gt;&gt; length</span>
<span class="sd">    1</span>
<span class="sd">    &gt;&gt;&gt; path</span>
<span class="sd">    [0, 1]</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    single_source_dijkstra</span>
<span class="sd">    single_source_bellman_ford_path</span>
<span class="sd">    single_source_bellman_ford_path_length</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">source</span> <span class="o">==</span> <span class="n">target</span><span class="p">:</span>
        <span class="k">if</span> <span class="n">source</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
            <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NodeNotFound</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Node </span><span class="si">{</span><span class="n">source</span><span class="si">}</span><span class="s2"> is not found in the graph&quot;</span><span class="p">)</span>
        <span class="k">return</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="p">[</span><span class="n">source</span><span class="p">])</span>

    <span class="n">weight</span> <span class="o">=</span> <span class="n">_weight_function</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>

    <span class="n">paths</span> <span class="o">=</span> <span class="p">{</span><span class="n">source</span><span class="p">:</span> <span class="p">[</span><span class="n">source</span><span class="p">]}</span>  <span class="c1"># dictionary of paths</span>
    <span class="n">dist</span> <span class="o">=</span> <span class="n">_bellman_ford</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="p">[</span><span class="n">source</span><span class="p">],</span> <span class="n">weight</span><span class="p">,</span> <span class="n">paths</span><span class="o">=</span><span class="n">paths</span><span class="p">,</span> <span class="n">target</span><span class="o">=</span><span class="n">target</span><span class="p">)</span>
    <span class="k">if</span> <span class="n">target</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="k">return</span> <span class="p">(</span><span class="n">dist</span><span class="p">,</span> <span class="n">paths</span><span class="p">)</span>
    <span class="k">try</span><span class="p">:</span>
        <span class="k">return</span> <span class="p">(</span><span class="n">dist</span><span class="p">[</span><span class="n">target</span><span class="p">],</span> <span class="n">paths</span><span class="p">[</span><span class="n">target</span><span class="p">])</span>
    <span class="k">except</span> <span class="ne">KeyError</span> <span class="k">as</span> <span class="n">err</span><span class="p">:</span>
        <span class="n">msg</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;Node </span><span class="si">{</span><span class="n">target</span><span class="si">}</span><span class="s2"> not reachable from </span><span class="si">{</span><span class="n">source</span><span class="si">}</span><span class="s2">&quot;</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXNoPath</span><span class="p">(</span><span class="n">msg</span><span class="p">)</span> <span class="kn">from</span> <span class="nn">err</span></div>


<div class="viewcode-block" id="all_pairs_bellman_ford_path_length"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.all_pairs_bellman_ford_path_length.html#networkx.algorithms.shortest_paths.weighted.all_pairs_bellman_ford_path_length">[docs]</a><span class="k">def</span> <span class="nf">all_pairs_bellman_ford_path_length</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Compute shortest path lengths between all nodes in a weighted graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    weight : string or function (default=&quot;weight&quot;)</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    distance : iterator</span>
<span class="sd">        (source, dictionary) iterator with dictionary keyed by target and</span>
<span class="sd">        shortest path length as the key value.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; length = dict(nx.all_pairs_bellman_ford_path_length(G))</span>
<span class="sd">    &gt;&gt;&gt; for node in [0, 1, 2, 3, 4]:</span>
<span class="sd">    ...     print(f&quot;1 - {node}: {length[1][node]}&quot;)</span>
<span class="sd">    1 - 0: 1</span>
<span class="sd">    1 - 1: 0</span>
<span class="sd">    1 - 2: 1</span>
<span class="sd">    1 - 3: 2</span>
<span class="sd">    1 - 4: 3</span>
<span class="sd">    &gt;&gt;&gt; length[3][2]</span>
<span class="sd">    1</span>
<span class="sd">    &gt;&gt;&gt; length[2][2]</span>
<span class="sd">    0</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    The dictionary returned only has keys for reachable node pairs.</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">length</span> <span class="o">=</span> <span class="n">single_source_bellman_ford_path_length</span>
    <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
        <span class="k">yield</span> <span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="nb">dict</span><span class="p">(</span><span class="n">length</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">)))</span></div>


<div class="viewcode-block" id="all_pairs_bellman_ford_path"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.all_pairs_bellman_ford_path.html#networkx.algorithms.shortest_paths.weighted.all_pairs_bellman_ford_path">[docs]</a><span class="k">def</span> <span class="nf">all_pairs_bellman_ford_path</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Compute shortest paths between all nodes in a weighted graph.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    weight : string or function (default=&quot;weight&quot;)</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    distance : dictionary</span>
<span class="sd">        Dictionary, keyed by source and target, of shortest paths.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; path = dict(nx.all_pairs_bellman_ford_path(G))</span>
<span class="sd">    &gt;&gt;&gt; path[0][4]</span>
<span class="sd">    [0, 1, 2, 3, 4]</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    floyd_warshall, all_pairs_dijkstra_path</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">path</span> <span class="o">=</span> <span class="n">single_source_bellman_ford_path</span>
    <span class="c1"># TODO This can be trivially parallelized.</span>
    <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
        <span class="k">yield</span> <span class="p">(</span><span class="n">n</span><span class="p">,</span> <span class="n">path</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">n</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">))</span></div>


<div class="viewcode-block" id="goldberg_radzik"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.goldberg_radzik.html#networkx.algorithms.shortest_paths.weighted.goldberg_radzik">[docs]</a><span class="k">def</span> <span class="nf">goldberg_radzik</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Compute shortest path lengths and predecessors on shortest paths</span>
<span class="sd">    in weighted graphs.</span>

<span class="sd">    The algorithm has a running time of $O(mn)$ where $n$ is the number of</span>
<span class="sd">    nodes and $m$ is the number of edges.  It is slower than Dijkstra but</span>
<span class="sd">    can handle negative edge weights.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>
<span class="sd">        The algorithm works for all types of graphs, including directed</span>
<span class="sd">        graphs and multigraphs.</span>

<span class="sd">    source: node label</span>
<span class="sd">        Starting node for path</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    pred, dist : dictionaries</span>
<span class="sd">        Returns two dictionaries keyed by node to predecessor in the</span>
<span class="sd">        path and to the distance from the source respectively.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If `source` is not in `G`.</span>

<span class="sd">    NetworkXUnbounded</span>
<span class="sd">        If the (di)graph contains a negative (di)cycle, the</span>
<span class="sd">        algorithm raises an exception to indicate the presence of the</span>
<span class="sd">        negative (di)cycle.  Note: any negative weight edge in an</span>
<span class="sd">        undirected graph is a negative cycle.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5, create_using=nx.DiGraph())</span>
<span class="sd">    &gt;&gt;&gt; pred, dist = nx.goldberg_radzik(G, 0)</span>
<span class="sd">    &gt;&gt;&gt; sorted(pred.items())</span>
<span class="sd">    [(0, None), (1, 0), (2, 1), (3, 2), (4, 3)]</span>
<span class="sd">    &gt;&gt;&gt; sorted(dist.items())</span>
<span class="sd">    [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)]</span>

<span class="sd">    &gt;&gt;&gt; G = nx.cycle_graph(5, create_using=nx.DiGraph())</span>
<span class="sd">    &gt;&gt;&gt; G[1][2][&quot;weight&quot;] = -7</span>
<span class="sd">    &gt;&gt;&gt; nx.goldberg_radzik(G, 0)</span>
<span class="sd">    Traceback (most recent call last):</span>
<span class="sd">        ...</span>
<span class="sd">    networkx.exception.NetworkXUnbounded: Negative cycle detected.</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    The dictionaries returned only have keys for nodes reachable from</span>
<span class="sd">    the source.</span>

<span class="sd">    In the case where the (di)graph is not connected, if a component</span>
<span class="sd">    not containing the source contains a negative (di)cycle, it</span>
<span class="sd">    will not be detected.</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">source</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NodeNotFound</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;Node </span><span class="si">{</span><span class="n">source</span><span class="si">}</span><span class="s2"> is not found in the graph&quot;</span><span class="p">)</span>
    <span class="n">weight</span> <span class="o">=</span> <span class="n">_weight_function</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>
    <span class="k">if</span> <span class="nb">any</span><span class="p">(</span><span class="n">weight</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span><span class="p">)</span> <span class="o">&lt;</span> <span class="mi">0</span> <span class="k">for</span> <span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">nx</span><span class="o">.</span><span class="n">selfloop_edges</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="kc">True</span><span class="p">)):</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXUnbounded</span><span class="p">(</span><span class="s2">&quot;Negative cycle detected.&quot;</span><span class="p">)</span>

    <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">G</span><span class="p">)</span> <span class="o">==</span> <span class="mi">1</span><span class="p">:</span>
        <span class="k">return</span> <span class="p">{</span><span class="n">source</span><span class="p">:</span> <span class="kc">None</span><span class="p">},</span> <span class="p">{</span><span class="n">source</span><span class="p">:</span> <span class="mi">0</span><span class="p">}</span>

    <span class="n">G_succ</span> <span class="o">=</span> <span class="n">G</span><span class="o">.</span><span class="n">_adj</span>  <span class="c1"># For speed-up (and works for both directed and undirected graphs)</span>

    <span class="n">inf</span> <span class="o">=</span> <span class="nb">float</span><span class="p">(</span><span class="s2">&quot;inf&quot;</span><span class="p">)</span>
    <span class="n">d</span> <span class="o">=</span> <span class="p">{</span><span class="n">u</span><span class="p">:</span> <span class="n">inf</span> <span class="k">for</span> <span class="n">u</span> <span class="ow">in</span> <span class="n">G</span><span class="p">}</span>
    <span class="n">d</span><span class="p">[</span><span class="n">source</span><span class="p">]</span> <span class="o">=</span> <span class="mi">0</span>
    <span class="n">pred</span> <span class="o">=</span> <span class="p">{</span><span class="n">source</span><span class="p">:</span> <span class="kc">None</span><span class="p">}</span>

    <span class="k">def</span> <span class="nf">topo_sort</span><span class="p">(</span><span class="n">relabeled</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Topologically sort nodes relabeled in the previous round and detect</span>
<span class="sd">        negative cycles.</span>
<span class="sd">        &quot;&quot;&quot;</span>
        <span class="c1"># List of nodes to scan in this round. Denoted by A in Goldberg and</span>
        <span class="c1"># Radzik&#39;s paper.</span>
        <span class="n">to_scan</span> <span class="o">=</span> <span class="p">[]</span>
        <span class="c1"># In the DFS in the loop below, neg_count records for each node the</span>
        <span class="c1"># number of edges of negative reduced costs on the path from a DFS root</span>
        <span class="c1"># to the node in the DFS forest. The reduced cost of an edge (u, v) is</span>
        <span class="c1"># defined as d[u] + weight[u][v] - d[v].</span>
        <span class="c1">#</span>
        <span class="c1"># neg_count also doubles as the DFS visit marker array.</span>
        <span class="n">neg_count</span> <span class="o">=</span> <span class="p">{}</span>
        <span class="k">for</span> <span class="n">u</span> <span class="ow">in</span> <span class="n">relabeled</span><span class="p">:</span>
            <span class="c1"># Skip visited nodes.</span>
            <span class="k">if</span> <span class="n">u</span> <span class="ow">in</span> <span class="n">neg_count</span><span class="p">:</span>
                <span class="k">continue</span>
            <span class="n">d_u</span> <span class="o">=</span> <span class="n">d</span><span class="p">[</span><span class="n">u</span><span class="p">]</span>
            <span class="c1"># Skip nodes without out-edges of negative reduced costs.</span>
            <span class="k">if</span> <span class="nb">all</span><span class="p">(</span><span class="n">d_u</span> <span class="o">+</span> <span class="n">weight</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">e</span><span class="p">)</span> <span class="o">&gt;=</span> <span class="n">d</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="k">for</span> <span class="n">v</span><span class="p">,</span> <span class="n">e</span> <span class="ow">in</span> <span class="n">G_succ</span><span class="p">[</span><span class="n">u</span><span class="p">]</span><span class="o">.</span><span class="n">items</span><span class="p">()):</span>
                <span class="k">continue</span>
            <span class="c1"># Nonrecursive DFS that inserts nodes reachable from u via edges of</span>
            <span class="c1"># nonpositive reduced costs into to_scan in (reverse) topological</span>
            <span class="c1"># order.</span>
            <span class="n">stack</span> <span class="o">=</span> <span class="p">[(</span><span class="n">u</span><span class="p">,</span> <span class="nb">iter</span><span class="p">(</span><span class="n">G_succ</span><span class="p">[</span><span class="n">u</span><span class="p">]</span><span class="o">.</span><span class="n">items</span><span class="p">()))]</span>
            <span class="n">in_stack</span> <span class="o">=</span> <span class="p">{</span><span class="n">u</span><span class="p">}</span>
            <span class="n">neg_count</span><span class="p">[</span><span class="n">u</span><span class="p">]</span> <span class="o">=</span> <span class="mi">0</span>
            <span class="k">while</span> <span class="n">stack</span><span class="p">:</span>
                <span class="n">u</span><span class="p">,</span> <span class="n">it</span> <span class="o">=</span> <span class="n">stack</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
                <span class="k">try</span><span class="p">:</span>
                    <span class="n">v</span><span class="p">,</span> <span class="n">e</span> <span class="o">=</span> <span class="nb">next</span><span class="p">(</span><span class="n">it</span><span class="p">)</span>
                <span class="k">except</span> <span class="ne">StopIteration</span><span class="p">:</span>
                    <span class="n">to_scan</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">u</span><span class="p">)</span>
                    <span class="n">stack</span><span class="o">.</span><span class="n">pop</span><span class="p">()</span>
                    <span class="n">in_stack</span><span class="o">.</span><span class="n">remove</span><span class="p">(</span><span class="n">u</span><span class="p">)</span>
                    <span class="k">continue</span>
                <span class="n">t</span> <span class="o">=</span> <span class="n">d</span><span class="p">[</span><span class="n">u</span><span class="p">]</span> <span class="o">+</span> <span class="n">weight</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">e</span><span class="p">)</span>
                <span class="n">d_v</span> <span class="o">=</span> <span class="n">d</span><span class="p">[</span><span class="n">v</span><span class="p">]</span>
                <span class="k">if</span> <span class="n">t</span> <span class="o">&lt;=</span> <span class="n">d_v</span><span class="p">:</span>
                    <span class="n">is_neg</span> <span class="o">=</span> <span class="n">t</span> <span class="o">&lt;</span> <span class="n">d_v</span>
                    <span class="n">d</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">=</span> <span class="n">t</span>
                    <span class="n">pred</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">=</span> <span class="n">u</span>
                    <span class="k">if</span> <span class="n">v</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">neg_count</span><span class="p">:</span>
                        <span class="n">neg_count</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">=</span> <span class="n">neg_count</span><span class="p">[</span><span class="n">u</span><span class="p">]</span> <span class="o">+</span> <span class="nb">int</span><span class="p">(</span><span class="n">is_neg</span><span class="p">)</span>
                        <span class="n">stack</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">v</span><span class="p">,</span> <span class="nb">iter</span><span class="p">(</span><span class="n">G_succ</span><span class="p">[</span><span class="n">v</span><span class="p">]</span><span class="o">.</span><span class="n">items</span><span class="p">())))</span>
                        <span class="n">in_stack</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
                    <span class="k">elif</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">in_stack</span> <span class="ow">and</span> <span class="n">neg_count</span><span class="p">[</span><span class="n">u</span><span class="p">]</span> <span class="o">+</span> <span class="nb">int</span><span class="p">(</span><span class="n">is_neg</span><span class="p">)</span> <span class="o">&gt;</span> <span class="n">neg_count</span><span class="p">[</span><span class="n">v</span><span class="p">]:</span>
                        <span class="c1"># (u, v) is a back edge, and the cycle formed by the</span>
                        <span class="c1"># path v to u and (u, v) contains at least one edge of</span>
                        <span class="c1"># negative reduced cost. The cycle must be of negative</span>
                        <span class="c1"># cost.</span>
                        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXUnbounded</span><span class="p">(</span><span class="s2">&quot;Negative cycle detected.&quot;</span><span class="p">)</span>
        <span class="n">to_scan</span><span class="o">.</span><span class="n">reverse</span><span class="p">()</span>
        <span class="k">return</span> <span class="n">to_scan</span>

    <span class="k">def</span> <span class="nf">relax</span><span class="p">(</span><span class="n">to_scan</span><span class="p">):</span>
        <span class="sd">&quot;&quot;&quot;Relax out-edges of relabeled nodes.&quot;&quot;&quot;</span>
        <span class="n">relabeled</span> <span class="o">=</span> <span class="nb">set</span><span class="p">()</span>
        <span class="c1"># Scan nodes in to_scan in topological order and relax incident</span>
        <span class="c1"># out-edges. Add the relabled nodes to labeled.</span>
        <span class="k">for</span> <span class="n">u</span> <span class="ow">in</span> <span class="n">to_scan</span><span class="p">:</span>
            <span class="n">d_u</span> <span class="o">=</span> <span class="n">d</span><span class="p">[</span><span class="n">u</span><span class="p">]</span>
            <span class="k">for</span> <span class="n">v</span><span class="p">,</span> <span class="n">e</span> <span class="ow">in</span> <span class="n">G_succ</span><span class="p">[</span><span class="n">u</span><span class="p">]</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
                <span class="n">w_e</span> <span class="o">=</span> <span class="n">weight</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">e</span><span class="p">)</span>
                <span class="k">if</span> <span class="n">d_u</span> <span class="o">+</span> <span class="n">w_e</span> <span class="o">&lt;</span> <span class="n">d</span><span class="p">[</span><span class="n">v</span><span class="p">]:</span>
                    <span class="n">d</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">=</span> <span class="n">d_u</span> <span class="o">+</span> <span class="n">w_e</span>
                    <span class="n">pred</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="o">=</span> <span class="n">u</span>
                    <span class="n">relabeled</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">v</span><span class="p">)</span>
        <span class="k">return</span> <span class="n">relabeled</span>

    <span class="c1"># Set of nodes relabled in the last round of scan operations. Denoted by B</span>
    <span class="c1"># in Goldberg and Radzik&#39;s paper.</span>
    <span class="n">relabeled</span> <span class="o">=</span> <span class="p">{</span><span class="n">source</span><span class="p">}</span>

    <span class="k">while</span> <span class="n">relabeled</span><span class="p">:</span>
        <span class="n">to_scan</span> <span class="o">=</span> <span class="n">topo_sort</span><span class="p">(</span><span class="n">relabeled</span><span class="p">)</span>
        <span class="n">relabeled</span> <span class="o">=</span> <span class="n">relax</span><span class="p">(</span><span class="n">to_scan</span><span class="p">)</span>

    <span class="n">d</span> <span class="o">=</span> <span class="p">{</span><span class="n">u</span><span class="p">:</span> <span class="n">d</span><span class="p">[</span><span class="n">u</span><span class="p">]</span> <span class="k">for</span> <span class="n">u</span> <span class="ow">in</span> <span class="n">pred</span><span class="p">}</span>
    <span class="k">return</span> <span class="n">pred</span><span class="p">,</span> <span class="n">d</span></div>


<div class="viewcode-block" id="negative_edge_cycle"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.negative_edge_cycle.html#networkx.algorithms.shortest_paths.weighted.negative_edge_cycle">[docs]</a><span class="k">def</span> <span class="nf">negative_edge_cycle</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">,</span> <span class="n">heuristic</span><span class="o">=</span><span class="kc">True</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Returns True if there exists a negative edge cycle anywhere in G.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number.</span>

<span class="sd">    heuristic : bool</span>
<span class="sd">        Determines whether to use a heuristic to early detect negative</span>
<span class="sd">        cycles at a negligible cost. In case of graphs with a negative cycle,</span>
<span class="sd">        the performance of detection increases by at least an order of magnitude.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    negative_cycle : bool</span>
<span class="sd">        True if a negative edge cycle exists, otherwise False.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.cycle_graph(5, create_using=nx.DiGraph())</span>
<span class="sd">    &gt;&gt;&gt; print(nx.negative_edge_cycle(G))</span>
<span class="sd">    False</span>
<span class="sd">    &gt;&gt;&gt; G[1][2][&quot;weight&quot;] = -7</span>
<span class="sd">    &gt;&gt;&gt; print(nx.negative_edge_cycle(G))</span>
<span class="sd">    True</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    This algorithm uses bellman_ford_predecessor_and_distance() but finds</span>
<span class="sd">    negative cycles on any component by first adding a new node connected to</span>
<span class="sd">    every node, and starting bellman_ford_predecessor_and_distance on that</span>
<span class="sd">    node.  It then removes that extra node.</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="c1"># find unused node to use temporarily</span>
    <span class="n">newnode</span> <span class="o">=</span> <span class="o">-</span><span class="mi">1</span>
    <span class="k">while</span> <span class="n">newnode</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
        <span class="n">newnode</span> <span class="o">-=</span> <span class="mi">1</span>
    <span class="c1"># connect it to all nodes</span>
    <span class="n">G</span><span class="o">.</span><span class="n">add_edges_from</span><span class="p">([(</span><span class="n">newnode</span><span class="p">,</span> <span class="n">n</span><span class="p">)</span> <span class="k">for</span> <span class="n">n</span> <span class="ow">in</span> <span class="n">G</span><span class="p">])</span>

    <span class="k">try</span><span class="p">:</span>
        <span class="n">bellman_ford_predecessor_and_distance</span><span class="p">(</span>
            <span class="n">G</span><span class="p">,</span> <span class="n">newnode</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">,</span> <span class="n">heuristic</span><span class="o">=</span><span class="n">heuristic</span>
        <span class="p">)</span>
    <span class="k">except</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXUnbounded</span><span class="p">:</span>
        <span class="k">return</span> <span class="kc">True</span>
    <span class="k">finally</span><span class="p">:</span>
        <span class="n">G</span><span class="o">.</span><span class="n">remove_node</span><span class="p">(</span><span class="n">newnode</span><span class="p">)</span>
    <span class="k">return</span> <span class="kc">False</span></div>


<div class="viewcode-block" id="find_negative_cycle"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.find_negative_cycle.html#networkx.algorithms.shortest_paths.weighted.find_negative_cycle">[docs]</a><span class="k">def</span> <span class="nf">find_negative_cycle</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sd">&quot;&quot;&quot;Returns a cycle with negative total weight if it exists.</span>

<span class="sd">    Bellman-Ford is used to find shortest_paths. That algorithm</span>
<span class="sd">    stops if there exists a negative cycle. This algorithm</span>
<span class="sd">    picks up from there and returns the found negative cycle.</span>

<span class="sd">    The cycle consists of a list of nodes in the cycle order. The last</span>
<span class="sd">    node equals the first to make it a cycle.</span>
<span class="sd">    You can look up the edge weights in the original graph. In the case</span>
<span class="sd">    of multigraphs the relevant edge is the minimal weight edge between</span>
<span class="sd">    the nodes in the 2-tuple.</span>

<span class="sd">    If the graph has no negative cycle, a NetworkXError is raised.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    source: node label</span>
<span class="sd">        The search for the negative cycle will start from this node.</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.DiGraph()</span>
<span class="sd">    &gt;&gt;&gt; G.add_weighted_edges_from([(0, 1, 2), (1, 2, 2), (2, 0, 1), (1, 4, 2), (4, 0, -5)])</span>
<span class="sd">    &gt;&gt;&gt; nx.find_negative_cycle(G, 0)</span>
<span class="sd">    [4, 0, 1, 4]</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    cycle : list</span>
<span class="sd">        A list of nodes in the order of the cycle found. The last node</span>
<span class="sd">        equals the first to indicate a cycle.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NetworkXError</span>
<span class="sd">        If no negative cycle is found.</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="n">weight</span> <span class="o">=</span> <span class="n">_weight_function</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>
    <span class="n">pred</span> <span class="o">=</span> <span class="p">{</span><span class="n">source</span><span class="p">:</span> <span class="p">[]}</span>

    <span class="n">v</span> <span class="o">=</span> <span class="n">_inner_bellman_ford</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="p">[</span><span class="n">source</span><span class="p">],</span> <span class="n">weight</span><span class="p">,</span> <span class="n">pred</span><span class="o">=</span><span class="n">pred</span><span class="p">)</span>
    <span class="k">if</span> <span class="n">v</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;No negative cycles detected.&quot;</span><span class="p">)</span>

    <span class="c1"># negative cycle detected... find it</span>
    <span class="n">neg_cycle</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="n">stack</span> <span class="o">=</span> <span class="p">[(</span><span class="n">v</span><span class="p">,</span> <span class="nb">list</span><span class="p">(</span><span class="n">pred</span><span class="p">[</span><span class="n">v</span><span class="p">]))]</span>
    <span class="n">seen</span> <span class="o">=</span> <span class="p">{</span><span class="n">v</span><span class="p">}</span>
    <span class="k">while</span> <span class="n">stack</span><span class="p">:</span>
        <span class="n">node</span><span class="p">,</span> <span class="n">preds</span> <span class="o">=</span> <span class="n">stack</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]</span>
        <span class="k">if</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">preds</span><span class="p">:</span>
            <span class="c1"># found the cycle</span>
            <span class="n">neg_cycle</span><span class="o">.</span><span class="n">extend</span><span class="p">([</span><span class="n">node</span><span class="p">,</span> <span class="n">v</span><span class="p">])</span>
            <span class="n">neg_cycle</span> <span class="o">=</span> <span class="nb">list</span><span class="p">(</span><span class="nb">reversed</span><span class="p">(</span><span class="n">neg_cycle</span><span class="p">))</span>
            <span class="k">return</span> <span class="n">neg_cycle</span>

        <span class="k">if</span> <span class="n">preds</span><span class="p">:</span>
            <span class="n">nbr</span> <span class="o">=</span> <span class="n">preds</span><span class="o">.</span><span class="n">pop</span><span class="p">()</span>
            <span class="k">if</span> <span class="n">nbr</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">seen</span><span class="p">:</span>
                <span class="n">stack</span><span class="o">.</span><span class="n">append</span><span class="p">((</span><span class="n">nbr</span><span class="p">,</span> <span class="nb">list</span><span class="p">(</span><span class="n">pred</span><span class="p">[</span><span class="n">nbr</span><span class="p">])))</span>
                <span class="n">neg_cycle</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">node</span><span class="p">)</span>
                <span class="n">seen</span><span class="o">.</span><span class="n">add</span><span class="p">(</span><span class="n">nbr</span><span class="p">)</span>
        <span class="k">else</span><span class="p">:</span>
            <span class="n">stack</span><span class="o">.</span><span class="n">pop</span><span class="p">()</span>
            <span class="k">if</span> <span class="n">neg_cycle</span><span class="p">:</span>
                <span class="n">neg_cycle</span><span class="o">.</span><span class="n">pop</span><span class="p">()</span>
            <span class="k">else</span><span class="p">:</span>
                <span class="k">if</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">G</span><span class="p">[</span><span class="n">v</span><span class="p">]</span> <span class="ow">and</span> <span class="n">weight</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span> <span class="o">&lt;</span> <span class="mi">0</span><span class="p">:</span>
                    <span class="k">return</span> <span class="p">[</span><span class="n">v</span><span class="p">,</span> <span class="n">v</span><span class="p">]</span>
                <span class="c1"># should not reach here</span>
                <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;Negative cycle is detected but not found&quot;</span><span class="p">)</span>
    <span class="c1"># should not get here...</span>
    <span class="n">msg</span> <span class="o">=</span> <span class="s2">&quot;negative cycle detected but not identified&quot;</span>
    <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXUnbounded</span><span class="p">(</span><span class="n">msg</span><span class="p">)</span></div>


<div class="viewcode-block" id="bidirectional_dijkstra"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.bidirectional_dijkstra.html#networkx.algorithms.shortest_paths.weighted.bidirectional_dijkstra">[docs]</a><span class="k">def</span> <span class="nf">bidirectional_dijkstra</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">source</span><span class="p">,</span> <span class="n">target</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sa">r</span><span class="sd">&quot;&quot;&quot;Dijkstra&#39;s algorithm for shortest paths using bidirectional search.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    source : node</span>
<span class="sd">        Starting node.</span>

<span class="sd">    target : node</span>
<span class="sd">        Ending node.</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number or None to indicate a hidden edge.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    length, path : number and list</span>
<span class="sd">        length is the distance from source to target.</span>
<span class="sd">        path is a list of nodes on a path from source to target.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NodeNotFound</span>
<span class="sd">        If either `source` or `target` is not in `G`.</span>

<span class="sd">    NetworkXNoPath</span>
<span class="sd">        If no path exists between source and target.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; G = nx.path_graph(5)</span>
<span class="sd">    &gt;&gt;&gt; length, path = nx.bidirectional_dijkstra(G, 0, 4)</span>
<span class="sd">    &gt;&gt;&gt; print(length)</span>
<span class="sd">    4</span>
<span class="sd">    &gt;&gt;&gt; print(path)</span>
<span class="sd">    [0, 1, 2, 3, 4]</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Edge weight attributes must be numerical.</span>
<span class="sd">    Distances are calculated as sums of weighted edges traversed.</span>

<span class="sd">    The weight function can be used to hide edges by returning None.</span>
<span class="sd">    So ``weight = lambda u, v, d: 1 if d[&#39;color&#39;]==&quot;red&quot; else None``</span>
<span class="sd">    will find the shortest red path.</span>

<span class="sd">    In practice  bidirectional Dijkstra is much more than twice as fast as</span>
<span class="sd">    ordinary Dijkstra.</span>

<span class="sd">    Ordinary Dijkstra expands nodes in a sphere-like manner from the</span>
<span class="sd">    source. The radius of this sphere will eventually be the length</span>
<span class="sd">    of the shortest path. Bidirectional Dijkstra will expand nodes</span>
<span class="sd">    from both the source and the target, making two spheres of half</span>
<span class="sd">    this radius. Volume of the first sphere is `\pi*r*r` while the</span>
<span class="sd">    others are `2*\pi*r/2*r/2`, making up half the volume.</span>

<span class="sd">    This algorithm is not guaranteed to work if edge weights</span>
<span class="sd">    are negative or are floating point numbers</span>
<span class="sd">    (overflows and roundoff errors can cause problems).</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    shortest_path</span>
<span class="sd">    shortest_path_length</span>
<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="n">source</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span> <span class="ow">or</span> <span class="n">target</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">G</span><span class="p">:</span>
        <span class="n">msg</span> <span class="o">=</span> <span class="sa">f</span><span class="s2">&quot;Either source </span><span class="si">{</span><span class="n">source</span><span class="si">}</span><span class="s2"> or target </span><span class="si">{</span><span class="n">target</span><span class="si">}</span><span class="s2"> is not in G&quot;</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NodeNotFound</span><span class="p">(</span><span class="n">msg</span><span class="p">)</span>

    <span class="k">if</span> <span class="n">source</span> <span class="o">==</span> <span class="n">target</span><span class="p">:</span>
        <span class="k">return</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="p">[</span><span class="n">source</span><span class="p">])</span>

    <span class="n">weight</span> <span class="o">=</span> <span class="n">_weight_function</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>
    <span class="n">push</span> <span class="o">=</span> <span class="n">heappush</span>
    <span class="n">pop</span> <span class="o">=</span> <span class="n">heappop</span>
    <span class="c1"># Init:  [Forward, Backward]</span>
    <span class="n">dists</span> <span class="o">=</span> <span class="p">[{},</span> <span class="p">{}]</span>  <span class="c1"># dictionary of final distances</span>
    <span class="n">paths</span> <span class="o">=</span> <span class="p">[{</span><span class="n">source</span><span class="p">:</span> <span class="p">[</span><span class="n">source</span><span class="p">]},</span> <span class="p">{</span><span class="n">target</span><span class="p">:</span> <span class="p">[</span><span class="n">target</span><span class="p">]}]</span>  <span class="c1"># dictionary of paths</span>
    <span class="n">fringe</span> <span class="o">=</span> <span class="p">[[],</span> <span class="p">[]]</span>  <span class="c1"># heap of (distance, node) for choosing node to expand</span>
    <span class="n">seen</span> <span class="o">=</span> <span class="p">[{</span><span class="n">source</span><span class="p">:</span> <span class="mi">0</span><span class="p">},</span> <span class="p">{</span><span class="n">target</span><span class="p">:</span> <span class="mi">0</span><span class="p">}]</span>  <span class="c1"># dict of distances to seen nodes</span>
    <span class="n">c</span> <span class="o">=</span> <span class="n">count</span><span class="p">()</span>
    <span class="c1"># initialize fringe heap</span>
    <span class="n">push</span><span class="p">(</span><span class="n">fringe</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">next</span><span class="p">(</span><span class="n">c</span><span class="p">),</span> <span class="n">source</span><span class="p">))</span>
    <span class="n">push</span><span class="p">(</span><span class="n">fringe</span><span class="p">[</span><span class="mi">1</span><span class="p">],</span> <span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="nb">next</span><span class="p">(</span><span class="n">c</span><span class="p">),</span> <span class="n">target</span><span class="p">))</span>
    <span class="c1"># neighs for extracting correct neighbor information</span>
    <span class="k">if</span> <span class="n">G</span><span class="o">.</span><span class="n">is_directed</span><span class="p">():</span>
        <span class="n">neighs</span> <span class="o">=</span> <span class="p">[</span><span class="n">G</span><span class="o">.</span><span class="n">_succ</span><span class="p">,</span> <span class="n">G</span><span class="o">.</span><span class="n">_pred</span><span class="p">]</span>
    <span class="k">else</span><span class="p">:</span>
        <span class="n">neighs</span> <span class="o">=</span> <span class="p">[</span><span class="n">G</span><span class="o">.</span><span class="n">_adj</span><span class="p">,</span> <span class="n">G</span><span class="o">.</span><span class="n">_adj</span><span class="p">]</span>
    <span class="c1"># variables to hold shortest discovered path</span>
    <span class="c1"># finaldist = 1e30000</span>
    <span class="n">finalpath</span> <span class="o">=</span> <span class="p">[]</span>
    <span class="nb">dir</span> <span class="o">=</span> <span class="mi">1</span>
    <span class="k">while</span> <span class="n">fringe</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="ow">and</span> <span class="n">fringe</span><span class="p">[</span><span class="mi">1</span><span class="p">]:</span>
        <span class="c1"># choose direction</span>
        <span class="c1"># dir == 0 is forward direction and dir == 1 is back</span>
        <span class="nb">dir</span> <span class="o">=</span> <span class="mi">1</span> <span class="o">-</span> <span class="nb">dir</span>
        <span class="c1"># extract closest to expand</span>
        <span class="p">(</span><span class="n">dist</span><span class="p">,</span> <span class="n">_</span><span class="p">,</span> <span class="n">v</span><span class="p">)</span> <span class="o">=</span> <span class="n">pop</span><span class="p">(</span><span class="n">fringe</span><span class="p">[</span><span class="nb">dir</span><span class="p">])</span>
        <span class="k">if</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">dists</span><span class="p">[</span><span class="nb">dir</span><span class="p">]:</span>
            <span class="c1"># Shortest path to v has already been found</span>
            <span class="k">continue</span>
        <span class="c1"># update distance</span>
        <span class="n">dists</span><span class="p">[</span><span class="nb">dir</span><span class="p">][</span><span class="n">v</span><span class="p">]</span> <span class="o">=</span> <span class="n">dist</span>  <span class="c1"># equal to seen[dir][v]</span>
        <span class="k">if</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">dists</span><span class="p">[</span><span class="mi">1</span> <span class="o">-</span> <span class="nb">dir</span><span class="p">]:</span>
            <span class="c1"># if we have scanned v in both directions we are done</span>
            <span class="c1"># we have now discovered the shortest path</span>
            <span class="k">return</span> <span class="p">(</span><span class="n">finaldist</span><span class="p">,</span> <span class="n">finalpath</span><span class="p">)</span>

        <span class="k">for</span> <span class="n">w</span><span class="p">,</span> <span class="n">d</span> <span class="ow">in</span> <span class="n">neighs</span><span class="p">[</span><span class="nb">dir</span><span class="p">][</span><span class="n">v</span><span class="p">]</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
            <span class="c1"># weight(v, w, d) for forward and weight(w, v, d) for back direction</span>
            <span class="n">cost</span> <span class="o">=</span> <span class="n">weight</span><span class="p">(</span><span class="n">v</span><span class="p">,</span> <span class="n">w</span><span class="p">,</span> <span class="n">d</span><span class="p">)</span> <span class="k">if</span> <span class="nb">dir</span> <span class="o">==</span> <span class="mi">0</span> <span class="k">else</span> <span class="n">weight</span><span class="p">(</span><span class="n">w</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span><span class="p">)</span>
            <span class="k">if</span> <span class="n">cost</span> <span class="ow">is</span> <span class="kc">None</span><span class="p">:</span>
                <span class="k">continue</span>
            <span class="n">vwLength</span> <span class="o">=</span> <span class="n">dists</span><span class="p">[</span><span class="nb">dir</span><span class="p">][</span><span class="n">v</span><span class="p">]</span> <span class="o">+</span> <span class="n">cost</span>
            <span class="k">if</span> <span class="n">w</span> <span class="ow">in</span> <span class="n">dists</span><span class="p">[</span><span class="nb">dir</span><span class="p">]:</span>
                <span class="k">if</span> <span class="n">vwLength</span> <span class="o">&lt;</span> <span class="n">dists</span><span class="p">[</span><span class="nb">dir</span><span class="p">][</span><span class="n">w</span><span class="p">]:</span>
                    <span class="k">raise</span> <span class="ne">ValueError</span><span class="p">(</span><span class="s2">&quot;Contradictory paths found: negative weights?&quot;</span><span class="p">)</span>
            <span class="k">elif</span> <span class="n">w</span> <span class="ow">not</span> <span class="ow">in</span> <span class="n">seen</span><span class="p">[</span><span class="nb">dir</span><span class="p">]</span> <span class="ow">or</span> <span class="n">vwLength</span> <span class="o">&lt;</span> <span class="n">seen</span><span class="p">[</span><span class="nb">dir</span><span class="p">][</span><span class="n">w</span><span class="p">]:</span>
                <span class="c1"># relaxing</span>
                <span class="n">seen</span><span class="p">[</span><span class="nb">dir</span><span class="p">][</span><span class="n">w</span><span class="p">]</span> <span class="o">=</span> <span class="n">vwLength</span>
                <span class="n">push</span><span class="p">(</span><span class="n">fringe</span><span class="p">[</span><span class="nb">dir</span><span class="p">],</span> <span class="p">(</span><span class="n">vwLength</span><span class="p">,</span> <span class="nb">next</span><span class="p">(</span><span class="n">c</span><span class="p">),</span> <span class="n">w</span><span class="p">))</span>
                <span class="n">paths</span><span class="p">[</span><span class="nb">dir</span><span class="p">][</span><span class="n">w</span><span class="p">]</span> <span class="o">=</span> <span class="n">paths</span><span class="p">[</span><span class="nb">dir</span><span class="p">][</span><span class="n">v</span><span class="p">]</span> <span class="o">+</span> <span class="p">[</span><span class="n">w</span><span class="p">]</span>
                <span class="k">if</span> <span class="n">w</span> <span class="ow">in</span> <span class="n">seen</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span> <span class="ow">and</span> <span class="n">w</span> <span class="ow">in</span> <span class="n">seen</span><span class="p">[</span><span class="mi">1</span><span class="p">]:</span>
                    <span class="c1"># see if this path is better than the already</span>
                    <span class="c1"># discovered shortest path</span>
                    <span class="n">totaldist</span> <span class="o">=</span> <span class="n">seen</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">w</span><span class="p">]</span> <span class="o">+</span> <span class="n">seen</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="n">w</span><span class="p">]</span>
                    <span class="k">if</span> <span class="n">finalpath</span> <span class="o">==</span> <span class="p">[]</span> <span class="ow">or</span> <span class="n">finaldist</span> <span class="o">&gt;</span> <span class="n">totaldist</span><span class="p">:</span>
                        <span class="n">finaldist</span> <span class="o">=</span> <span class="n">totaldist</span>
                        <span class="n">revpath</span> <span class="o">=</span> <span class="n">paths</span><span class="p">[</span><span class="mi">1</span><span class="p">][</span><span class="n">w</span><span class="p">][:]</span>
                        <span class="n">revpath</span><span class="o">.</span><span class="n">reverse</span><span class="p">()</span>
                        <span class="n">finalpath</span> <span class="o">=</span> <span class="n">paths</span><span class="p">[</span><span class="mi">0</span><span class="p">][</span><span class="n">w</span><span class="p">]</span> <span class="o">+</span> <span class="n">revpath</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span>
    <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXNoPath</span><span class="p">(</span><span class="sa">f</span><span class="s2">&quot;No path between </span><span class="si">{</span><span class="n">source</span><span class="si">}</span><span class="s2"> and </span><span class="si">{</span><span class="n">target</span><span class="si">}</span><span class="s2">.&quot;</span><span class="p">)</span></div>


<div class="viewcode-block" id="johnson"><a class="viewcode-back" href="../../../../reference/algorithms/generated/networkx.algorithms.shortest_paths.weighted.johnson.html#networkx.algorithms.shortest_paths.weighted.johnson">[docs]</a><span class="k">def</span> <span class="nf">johnson</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="s2">&quot;weight&quot;</span><span class="p">):</span>
    <span class="sa">r</span><span class="sd">&quot;&quot;&quot;Uses Johnson&#39;s Algorithm to compute shortest paths.</span>

<span class="sd">    Johnson&#39;s Algorithm finds a shortest path between each pair of</span>
<span class="sd">    nodes in a weighted graph even if negative weights are present.</span>

<span class="sd">    Parameters</span>
<span class="sd">    ----------</span>
<span class="sd">    G : NetworkX graph</span>

<span class="sd">    weight : string or function</span>
<span class="sd">        If this is a string, then edge weights will be accessed via the</span>
<span class="sd">        edge attribute with this key (that is, the weight of the edge</span>
<span class="sd">        joining `u` to `v` will be ``G.edges[u, v][weight]``). If no</span>
<span class="sd">        such edge attribute exists, the weight of the edge is assumed to</span>
<span class="sd">        be one.</span>

<span class="sd">        If this is a function, the weight of an edge is the value</span>
<span class="sd">        returned by the function. The function must accept exactly three</span>
<span class="sd">        positional arguments: the two endpoints of an edge and the</span>
<span class="sd">        dictionary of edge attributes for that edge. The function must</span>
<span class="sd">        return a number.</span>

<span class="sd">    Returns</span>
<span class="sd">    -------</span>
<span class="sd">    distance : dictionary</span>
<span class="sd">        Dictionary, keyed by source and target, of shortest paths.</span>

<span class="sd">    Raises</span>
<span class="sd">    ------</span>
<span class="sd">    NetworkXError</span>
<span class="sd">        If given graph is not weighted.</span>

<span class="sd">    Examples</span>
<span class="sd">    --------</span>
<span class="sd">    &gt;&gt;&gt; graph = nx.DiGraph()</span>
<span class="sd">    &gt;&gt;&gt; graph.add_weighted_edges_from(</span>
<span class="sd">    ...     [(&quot;0&quot;, &quot;3&quot;, 3), (&quot;0&quot;, &quot;1&quot;, -5), (&quot;0&quot;, &quot;2&quot;, 2), (&quot;1&quot;, &quot;2&quot;, 4), (&quot;2&quot;, &quot;3&quot;, 1)]</span>
<span class="sd">    ... )</span>
<span class="sd">    &gt;&gt;&gt; paths = nx.johnson(graph, weight=&quot;weight&quot;)</span>
<span class="sd">    &gt;&gt;&gt; paths[&quot;0&quot;][&quot;2&quot;]</span>
<span class="sd">    [&#39;0&#39;, &#39;1&#39;, &#39;2&#39;]</span>

<span class="sd">    Notes</span>
<span class="sd">    -----</span>
<span class="sd">    Johnson&#39;s algorithm is suitable even for graphs with negative weights. It</span>
<span class="sd">    works by using the Bellman–Ford algorithm to compute a transformation of</span>
<span class="sd">    the input graph that removes all negative weights, allowing Dijkstra&#39;s</span>
<span class="sd">    algorithm to be used on the transformed graph.</span>

<span class="sd">    The time complexity of this algorithm is $O(n^2 \log n + n m)$,</span>
<span class="sd">    where $n$ is the number of nodes and $m$ the number of edges in the</span>
<span class="sd">    graph. For dense graphs, this may be faster than the Floyd–Warshall</span>
<span class="sd">    algorithm.</span>

<span class="sd">    See Also</span>
<span class="sd">    --------</span>
<span class="sd">    floyd_warshall_predecessor_and_distance</span>
<span class="sd">    floyd_warshall_numpy</span>
<span class="sd">    all_pairs_shortest_path</span>
<span class="sd">    all_pairs_shortest_path_length</span>
<span class="sd">    all_pairs_dijkstra_path</span>
<span class="sd">    bellman_ford_predecessor_and_distance</span>
<span class="sd">    all_pairs_bellman_ford_path</span>
<span class="sd">    all_pairs_bellman_ford_path_length</span>

<span class="sd">    &quot;&quot;&quot;</span>
    <span class="k">if</span> <span class="ow">not</span> <span class="n">nx</span><span class="o">.</span><span class="n">is_weighted</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="o">=</span><span class="n">weight</span><span class="p">):</span>
        <span class="k">raise</span> <span class="n">nx</span><span class="o">.</span><span class="n">NetworkXError</span><span class="p">(</span><span class="s2">&quot;Graph is not weighted.&quot;</span><span class="p">)</span>

    <span class="n">dist</span> <span class="o">=</span> <span class="p">{</span><span class="n">v</span><span class="p">:</span> <span class="mi">0</span> <span class="k">for</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">G</span><span class="p">}</span>
    <span class="n">pred</span> <span class="o">=</span> <span class="p">{</span><span class="n">v</span><span class="p">:</span> <span class="p">[]</span> <span class="k">for</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">G</span><span class="p">}</span>
    <span class="n">weight</span> <span class="o">=</span> <span class="n">_weight_function</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">weight</span><span class="p">)</span>

    <span class="c1"># Calculate distance of shortest paths</span>
    <span class="n">dist_bellman</span> <span class="o">=</span> <span class="n">_bellman_ford</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="nb">list</span><span class="p">(</span><span class="n">G</span><span class="p">),</span> <span class="n">weight</span><span class="p">,</span> <span class="n">pred</span><span class="o">=</span><span class="n">pred</span><span class="p">,</span> <span class="n">dist</span><span class="o">=</span><span class="n">dist</span><span class="p">)</span>

    <span class="c1"># Update the weight function to take into account the Bellman--Ford</span>
    <span class="c1"># relaxation distances.</span>
    <span class="k">def</span> <span class="nf">new_weight</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span><span class="p">):</span>
        <span class="k">return</span> <span class="n">weight</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">d</span><span class="p">)</span> <span class="o">+</span> <span class="n">dist_bellman</span><span class="p">[</span><span class="n">u</span><span class="p">]</span> <span class="o">-</span> <span class="n">dist_bellman</span><span class="p">[</span><span class="n">v</span><span class="p">]</span>

    <span class="k">def</span> <span class="nf">dist_path</span><span class="p">(</span><span class="n">v</span><span class="p">):</span>
        <span class="n">paths</span> <span class="o">=</span> <span class="p">{</span><span class="n">v</span><span class="p">:</span> <span class="p">[</span><span class="n">v</span><span class="p">]}</span>
        <span class="n">_dijkstra</span><span class="p">(</span><span class="n">G</span><span class="p">,</span> <span class="n">v</span><span class="p">,</span> <span class="n">new_weight</span><span class="p">,</span> <span class="n">paths</span><span class="o">=</span><span class="n">paths</span><span class="p">)</span>
        <span class="k">return</span> <span class="n">paths</span>

    <span class="k">return</span> <span class="p">{</span><span class="n">v</span><span class="p">:</span> <span class="n">dist_path</span><span class="p">(</span><span class="n">v</span><span class="p">)</span> <span class="k">for</span> <span class="n">v</span> <span class="ow">in</span> <span class="n">G</span><span class="p">}</span></div>
</pre></div>

            </article>
            
            
            
          </div>
          
          
          
            <div class="bd-sidebar-secondary bd-toc">
              
<div class="toc-item">
  
<div id="searchbox"></div>
</div>

<div class="toc-item">
  
</div>

<div class="toc-item">
  
</div>

            </div>
          
          
        </div>
        <footer class="bd-footer-content">
          <div class="bd-footer-content__inner">
            
          </div>
        </footer>
        
      </main>
    </div>
  </div>

  
    
  <!-- Scripts loaded after <body> so the DOM is not blocked -->
  <script src="../../../../_static/scripts/bootstrap.js?digest=796348d33e8b1d947c94"></script>
<script src="../../../../_static/scripts/pydata-sphinx-theme.js?digest=796348d33e8b1d947c94"></script>
 
  <footer class="bd-footer"><div class="bd-footer__inner container">
  
  <div class="footer-item">
    
<p class="copyright">

    &copy; Copyright 2004-2022, NetworkX Developers.<br>

</p>

  </div>
  
  <div class="footer-item">
    <p class="theme-version">
    Built with the
    <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">
        PyData Sphinx Theme
    </a>
    0.12.0.
</p>
  </div>
  
  <div class="footer-item">
    
<p class="sphinx-version">
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 5.2.3.<br>
</p>

  </div>
  
</div>
  </footer>
  </body>
</html>