diff options
author | Ross Barnowski <rossbar@berkeley.edu> | 2022-02-22 13:54:49 -0800 |
---|---|---|
committer | GitHub <noreply@github.com> | 2022-02-22 13:54:49 -0800 |
commit | 12d5f9bae34cd8ecc6e63aef0f7bea9542aeddc0 (patch) | |
tree | 2a530c6bbefe1742a2bfe7cf5598a640a82850d4 | |
parent | 42985ba7d9f768c32c651e3e73d4d98b46776f54 (diff) | |
download | networkx-12d5f9bae34cd8ecc6e63aef0f7bea9542aeddc0.tar.gz |
Use np.random.default_rng in example + other updates. (#5356)
-rw-r--r-- | networkx/convert_matrix.py | 17 |
1 files changed, 10 insertions, 7 deletions
diff --git a/networkx/convert_matrix.py b/networkx/convert_matrix.py index c38762d3..2ccaf01a 100644 --- a/networkx/convert_matrix.py +++ b/networkx/convert_matrix.py @@ -1,21 +1,24 @@ """Functions to convert NetworkX graphs to and from common data containers -like numpy arrays, scipy sparse matrices, and pandas DataFrames. +like numpy arrays, scipy sparse arrays, and pandas DataFrames. The preferred way of converting data to a NetworkX graph is through the -graph constructor. The constructor calls the to_networkx_graph() function -which attempts to guess the input type and convert it automatically. +graph constructor. The constructor calls the `~networkx.convert.to_networkx_graph` +function which attempts to guess the input type and convert it automatically. Examples -------- Create a 10 node random graph from a numpy array >>> import numpy as np ->>> a = np.random.randint(0, 2, size=(10, 10)) ->>> D = nx.DiGraph(a) +>>> rng = np.random.default_rng() +>>> a = rng.integers(low=0, high=2, size=(10, 10)) +>>> DG = nx.from_numpy_array(a, create_using=nx.DiGraph) -or equivalently +or equivalently: ->>> D = nx.to_networkx_graph(a, create_using=nx.DiGraph) +>>> DG = nx.DiGraph(a) + +which calls `from_numpy_array` internally based on the type of ``a``. See Also -------- |