summaryrefslogtreecommitdiff
path: root/man/top.1
blob: 8bf804aab467c7f96680ebf17cedef4686a7c346 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
.ig
. manual page for NEW and IMPROVED linux top
.
. Copyright (c) 2002-2023 Jim Warner <james.warner@comcast.net
.
. This file may be copied under the terms of the GNU Public License.
..
\#  Setup ////////////////////////////////////////////////////////////////
\#                      Commonly used strings (for consistency) ----------
\#                           - our em-dashes
.ds Em \fR\ \-\-\ \fR
.ds EM \fB\ \-\-\ \fR
\#                           - our program name (makes great grammar)
.ds We top
.ds WE \fBtop\fR
\#                           - other misc strs for consistent usage
.ds F \fIOff\fR
.ds O \fIOn\fR
.
.ds AK asterisk (`*')
.ds AM alternate\-display mode
.ds AS auxiliary storage
.ds CF configuration file
.ds CG `current' window/field group
.ds CI interactive command
.ds CO command\-line option
.ds CT command toggle
.ds CW `current' window
.ds FG field group
.ds FM full\-screen mode
.ds KA arrow key
.ds KS scrolling key
.ds MP physical memory
.ds MS swap file
.ds MV virtual memory
.ds NT \fBNote\fR:
.ds PU CPU
.ds Pu cpu
.ds SA summary area
.ds TA task area
.ds TD task display
.ds TT \fBprocesses\fR or \fBthreads\fR
.ds TW task window
\#                      Reference to the various widths/sizes ------------
\#                           - the max screen width limit
.ds WX 512
\#                           - the header width w/ all fields
.ds WF approximately 250
\#                           - pid monitoring limit
\#                      Xref's that depend on/mention other stuff --------
.ds Xa see
.ds XC See the
.ds Xc see the
.ds XT See topic
.ds Xt see topic
.ds XX See `OVERVIEW, Linux Memory Types' for additional details
.ds ZX Accessing smaps values is 10x more costly than other \
memory statistics and data for other users requires root privileges
.
.\" Document /////////////////////////////////////////////////////////////
.\" ----------------------------------------------------------------------
.TH TOP 1 "January 2023" "procps-ng" "User Commands"
.\" ----------------------------------------------------------------------
.nh

.\" ----------------------------------------------------------------------
.SH NAME
.\" ----------------------------------------------------------------------
top \- display Linux processes

.\" ----------------------------------------------------------------------
.SH SYNOPSIS
.\" ----------------------------------------------------------------------
\*(WE [options]

.\" ----------------------------------------------------------------------
.SH DESCRIPTION
.\" ----------------------------------------------------------------------
The \*(WE program provides a dynamic real-time view of a running system.
It can display\fB system\fR summary information as well as a list of
\*(TT currently being managed by the Linux kernel.
The types of system summary information shown and the types, order and
size of information displayed for processes are all user configurable
and that configuration can be made persistent across restarts.

The program provides a limited interactive interface for process
manipulation as well as a much more extensive interface for personal
configuration \*(Em encompassing every aspect of its operation.
And while \*(WE is referred to throughout this document, you are free
to name the program anything you wish.
That new name, possibly an alias, will then be reflected on \*(We's
display and used when reading and writing a \*(CF.

.\" ----------------------------------------------------------------------
.SH OVERVIEW
.\" ----------------------------------------------------------------------
.\" ......................................................................
.SS Documentation
.\" ----------------------------------------------------------------------
The remaining Table of Contents

.nf
    OVERVIEW
       Operation
       Linux Memory Types
    1. COMMAND\-LINE Options
    2. SUMMARY Display
       a. UPTIME and LOAD Averages
       b. TASK and CPU States
       c. MEMORY Usage
    3. FIELDS / Columns Display
       a. DESCRIPTIONS of Fields
       b. MANAGING Fields
    4. INTERACTIVE Commands
       a. GLOBAL Commands
       b. SUMMARY AREA Commands
       c. TASK AREA Commands
          1. Appearance
          2. Content
          3. Size
          4. Sorting
       d. COLOR Mapping
    5. ALTERNATE\-DISPLAY Provisions
       a. WINDOWS Overview
       b. COMMANDS for Windows
       c. SCROLLING a Window
       d. SEARCHING in a Window
       e. FILTERING in a Window
    6. FILES
       a. PERSONAL Configuration File
       b. ADDING INSPECT Entries
       c. SYSTEM Configuration File
       d. SYSTEM Restrictions File
    7. ENVIRONMENT VARIABLE(S)
    8. STUPID TRICKS Sampler
       a. Kernel Magic
       b. Bouncing Windows
       c. The Big Bird Window
       d. The Ol' Switcheroo
    9. BUGS, 10. SEE Also
.fi

.\" ......................................................................
.SS Operation
.\" ----------------------------------------------------------------------
When operating \*(We, the two most important keys are the help (h or ?)
key and quit (`q') key.
Alternatively, you could simply use the traditional interrupt key (^C)
when you're done.

When started for the first time, you'll be presented with these traditional
elements on the main \*(We screen: 1) Summary Area; 2) Fields/Columns Header;
3) Task Area.
Each of these will be explored in the sections that follow.
There is also an Input/Message line between the Summary Area and Columns
Header which needs no further explanation.

The main \*(We screen is \fIgenerally\fR quite adaptive to changes in
terminal dimensions under X-Windows.
Other \*(We screens may be less so, especially those with static text.
It ultimately depends, however, on your particular window manager and
terminal emulator.
There may be occasions when their view of terminal size and current contents
differs from \*(We's view, which is always based on operating system calls.

Following any re-size operation, if a \*(We screen is corrupted, appears
incomplete or disordered, simply typing something innocuous like a
punctuation character or cursor motion key will usually restore it.
In extreme cases, the following sequence almost certainly will:
.nf
       \fIkey/cmd  objective \fR
       ^Z       \fBsuspend\fR \*(We
       fg       \fBresume\fR \*(We
       <Left>   force a screen \fBredraw\fR (if necessary)
.fi

But if the display is still corrupted, there is one more step you could try.
Insert this command after \*(We has been suspended but before resuming it.
.nf
       \fIkey/cmd  objective \fR
       reset    restore your \fBterminal settings\fR
.fi

\*(NT the width of \*(We's display will be limited to \*(WX positions.
Displaying all fields requires \*(WF characters.
Remaining screen width is usually allocated to any variable width columns
currently visible.
The variable width columns, such as COMMAND, are noted in topic
3a. DESCRIPTIONS of Fields.
Actual output width may also be influenced by the \-w switch, which is
discussed in topic 1. COMMAND\-LINE Options.

Lastly, some of \*(We's screens or functions require the use of cursor
motion keys like the standard \*(KAs plus the Home, End, PgUp and PgDn keys.
If your terminal or emulator does not provide those keys, the following
combinations are accepted as alternatives:
.nf
      \fI key      equivalent-keys \fR
       Left     alt +\fB h \fR
       Down     alt +\fB j \fR
       Up       alt +\fB k \fR
       Right    alt +\fB l \fR
       Home     alt + ctrl +\fB h \fR
       PgDn     alt + ctrl +\fB j \fR
       PgUp     alt + ctrl +\fB k \fR
       End      alt + ctrl +\fB l \fR
.fi

The \fBUp\fR and \fBDown\fR \*(KAs have special significance when prompted
for line input terminated with the <Enter> key.
Those keys, or their aliases, can be used to retrieve previous input lines
which can then be edited and re-input.
And there are four additional keys available with line oriented input.
.nf
      \fI key      special-significance \fR
       Up       recall \fBolder\fR strings for re-editing
       Down     recall \fBnewer\fR strings or \fBerase\fR entire line
       Insert   toggle between \fBinsert\fR and \fBovertype\fR modes
       Delete   character \fBremoved\fR at cursor, moving others left
       Home     jump to \fBbeginning\fR of input line
       End      jump to \fBend\fR of input line
.fi

.\" ......................................................................
.SS Linux Memory Types
.\" ----------------------------------------------------------------------
For our purposes there are three types of memory, and one is optional.
First is \*(MP, a limited resource where code and data must
reside when executed or referenced.
Next is the optional \*(MS, where modified (dirty) memory can be saved
and later retrieved if too many demands are made on \*(MP.
Lastly we have \*(MV, a nearly unlimited resource serving the
following goals:

.nf
   1. abstraction, free from physical memory addresses/limits
   2. isolation, every process in a separate address space
   3. sharing, a single mapping can serve multiple needs
   4. flexibility, assign a virtual address to a file
.fi

Regardless of which of these forms memory may take, all are managed as
pages (typically 4096 bytes) but expressed by default in \*(We as
KiB (kibibyte).
The memory discussed under topic `2c. MEMORY Usage' deals with \*(MP
and the \*(MS for the system as a whole.
The memory reviewed in topic `3. FIELDS / Columns Display'
embraces all three memory types, but for individual processes.

For each such process, every memory page is restricted to a single
quadrant from the table below.
Both \*(MP and \*(MV can include any of the four, while the \*(MS only
includes #1 through #3.
The memory in quadrant #4, when modified, acts as its own dedicated \*(MS.

.nf
                              \fBPrivate\fR | \fBShared\fR
                          \fB1\fR           |          \fB2\fR
     \fBAnonymous\fR  . stack               |
                . malloc()            |
                . brk()/sbrk()        | . POSIX shm*
                . mmap(PRIVATE, ANON) | . mmap(SHARED, ANON)
               -----------------------+----------------------
                . mmap(PRIVATE, fd)   | . mmap(SHARED, fd)
   \fBFile-backed\fR  . pgms/shared libs    |
                          \fB3\fR           |          \fB4\fR
.fi

The following may help in interpreting process level memory values displayed
as scalable columns and discussed under topic `3a. DESCRIPTIONS of Fields'.

.nf
   %MEM \- simply RES divided by total \*(MP
   CODE \- the `pgms' portion of quadrant \fB3\fR
   DATA \- the entire quadrant \fB1\fR portion of VIRT plus all
          explicit mmap file-backed pages of quadrant \fB3\fR
   RES  \- anything occupying \*(MP which, beginning with
          Linux-4.5, is the sum of the following three fields:
          RSan \- quadrant \fB1\fR pages, which include any
                 former quadrant \fB3\fR pages if modified
          RSfd \- quadrant \fB3\fR and quadrant \fB4\fR pages
          RSsh \- quadrant \fB2\fR pages
   RSlk \- subset of RES which cannot be swapped out (any quadrant)
   SHR  \- subset of RES (excludes \fB1\fR, includes all \fB2\fR & \fB4\fR, some \fB3\fR)
   SWAP \- potentially any quadrant except \fB4\fR
   USED \- simply the sum of RES and SWAP
   VIRT \- everything in-use and/or reserved (all quadrants)
.fi

\*(NT Even though program images and shared libraries are considered
\fIprivate\fR to a process, they will be accounted for as \fIshared\fR
(SHR) by the kernel.

.\" ----------------------------------------------------------------------
.SH 1. COMMAND-LINE Options
.\" ----------------------------------------------------------------------
Mandatory\fI arguments\fR to long options are mandatory for short
options too.

Although not required, the equals sign can be used with either option
form and whitespace before and/or after the `=' is permitted.

.TP 3
\-\fBb\fR, \fB\-\-batch\fR
Starts \*(We in Batch mode, which could be useful for sending output
from \*(We to other programs or to a file.
In this mode, \*(We will not accept input and runs until the iterations
limit you've set with the `\-n' \*(CO or until killed.

.TP 3
\-\fBc\fR, \fB\-\-cmdline\-toggle\fR
Starts \*(We with the last remembered `c' state reversed.
Thus, if \*(We was displaying command lines, now that field will show program
names, and vice versa.
\*(XC `c' \*(CI for additional information.

.TP 3
\-\fBd\fR, \fB\-\-delay\fR = \fISECS\fR [\fI.TENTHS\fR]\fR
Specifies the delay between screen updates, and overrides the corresponding
value in one's personal \*(CF or the startup default.
Later this can be changed with the `d' or `s' \*(CIs.

Fractional seconds are honored, but a negative number is not allowed.
In all cases, however, such changes are prohibited if \*(We is running
in Secure mode, except for root (unless the `s' \*(CO was used).
For additional information on Secure mode \*(Xt 6d. SYSTEM Restrictions File.

.TP 3
\-\fBE\fR, \fB\-\-scale-summary-mem\fR = \fIk\fR | \fIm\fR | \fIg\fR | \fIt\fR | \fIp\fR | \fIe\fR
Instructs \*(We to force \*(SA memory to be scaled as:
.nf
   k \- kibibytes
   m \- mebibytes
   g \- gibibytes
   t \- tebibytes
   p \- pebibytes
   e \- exbibytes
.fi

Later this can be changed with the `E' \*(CT.

.TP 3
\-\fBe\fR, \fB\-\-scale-task-mem\fR = \fIk\fR | \fIm\fR | \fIg\fR | \fIt\fR | \fIp\fR
Instructs \*(We to force \*(TA memory to be scaled as:
.nf
   k \- kibibytes
   m \- mebibytes
   g \- gibibytes
   t \- tebibytes
   p \- pebibytes
.fi

Later this can be changed with the `e' \*(CT.

.TP 3
\-\fBH\fR, \fB\-\-threads-show\fR
Instructs \*(We to display individual threads.
Without this \*(CO a summation of all threads in each process is shown.
Later this can be changed with the `H' \*(CI.

.TP 3
\-\fBh\fR, \fB\-\-help\fR
Display usage help text, then quit.

.TP 3
\-\fBi\fR, \fB\-\-idle-toggle\fR
Starts \*(We with the last remembered `i' state reversed.
When this toggle is \*F, tasks that have not used any \*(PU since the
last update will not be displayed.
For additional information regarding this toggle
\*(Xt 4c. TASK AREA Commands, SIZE.

.TP 3
\-\fBn\fR, \fB\-\-iterations\fR = \fINUMBER\fR
Specifies the maximum number of iterations, or frames, \*(We should
produce before ending.

.TP 3
\-\fBO\fR, \fB\-\-list-fields\fR
This option acts as a form of help for the \-o option shown below.
It will cause \*(We to print each of the available field names on a
separate line, then quit.
Such names are subject to NLS (National Language Support) translation.

.TP 3
\-\fBo\fR, \fB\-\-sort-override\fR = \fIFIELDNAME\fR
Specifies the name of the field on which tasks will be sorted, independent
of what is reflected in the configuration file.
You can prepend a `+' or `\-' to the field name to also override the sort
direction.
A leading `+' will force sorting high to low, whereas a `\-' will ensure
a low to high ordering.

This option exists primarily to support automated/scripted batch mode
operation.

.TP 3
\-\fBp\fR, \fB\-\-pid\fR = \fIPIDLIST\fR \
(as: \fI1\fR,\fI2\fR,\fI3\fR, ...\fR or \fR-p\fI1\fR -p\fI2\fR -p\fI3\fR ...)
Monitor only processes with specified process IDs.
However, when combined with Threads mode (`H'), all processes in the
thread group (\*(Xa TGID) of each monitored PID will also be shown.

This option can be given up to 20 times, or you can provide a comma delimited
list with up to 20 pids.
Co-mingling both approaches is permitted.

A pid value of zero will be treated as the process id of the \*(We program
itself once it is running.

This is a \*(CO only and should you wish to return to normal operation,
it is not necessary to quit and restart \*(We \*(Em just issue any
of these \*(CIs: `=', `u' or `U'.

The `p', `u' and `U' \*(COs are mutually exclusive.

.TP 3
\-\fBS\fR, \fB\-\-accum-time-toggle\fR
Starts \*(We with the last remembered `S' state reversed.
When Cumulative time mode is \*O, each process is listed with the \*(Pu
time that it and its dead children have used.
\*(XC `S' \*(CI for additional information regarding this mode.

.TP 3
\-\fBs\fR, \fB\-\-secure-mode\fR
Starts \*(We with secure mode forced, even for root.
This mode is far better controlled through a system \*(CF
(\*(Xt 6. FILES).

.TP 3
\-\fBU\fR, \fB\-\-filter-any-user\fR = \fIUSER\fR (as: \fInumber\fR or \fIname\fR)
Display only processes with a user id or user name matching that given.
This option matches on\fI any\fR user (\fIreal\fR, \fIeffective\fR,
\fIsaved\fR, or \fIfilesystem\fR).

Prepending an exclamation point (`!') to the user id or name instructs \*(We
to display only processes with users not matching the one provided.

The `p', `U' and `u' \*(COs are mutually exclusive.

.TP 3
\-\fBu\fR, \fB\-\-filter-only-euser\fR = \fIUSER\fR (as: \fInumber\fR or \fIname\fR)
Display only processes with a user id or user name matching that given.
This option matches on the\fI effective\fR user id only.

Prepending an exclamation point (`!') to the user id or name instructs \*(We
to display only processes with users not matching the one provided.

The `p', `U' and `u' \*(COs are mutually exclusive.

.TP 3
\-\fBV\fR, \fB\-\-version\fR
Display version information, then quit.

.TP 3
\-\fBw\fR, \fB\-\-width\fR [=\fICOLUMNS\fR]
In Batch mode, when used without an argument \*(We will format
output using the COLUMNS= and LINES= environment variables, if set.
Otherwise, width will be fixed at the maximum \*(WX columns.
With an argument, output width can be decreased or increased (up to \*(WX)
but the number of rows is considered unlimited.

In normal display mode, when used without an argument \*(We will\fI attempt\fR
to format output using the COLUMNS= and LINES= environment variables, if set.
With an argument, output width can only be decreased, not increased.
Whether using environment variables or an argument with \-w, when\fI not\fR
in Batch mode actual terminal dimensions can never be exceeded.

\*(NT Without the use of this \*(CO, output width is always based on the
terminal at which \*(We was invoked whether or not in Batch mode.

.TP 3
\-\fB1\fR, \fB\-\-single-cpu-toggle\fR
Starts \*(We with the last remembered Cpu States portion of the \*(SA reversed.
Either all \*(Pu information will be displayed in a single line or
each \*(Pu will be displayed separately, depending on the state of the NUMA Node
\*(CT (`2').

\*(XC `1' and `2' \*(CIs for additional information.

.\" ----------------------------------------------------------------------
.SH 2. SUMMARY Display
.\" ----------------------------------------------------------------------
Each of the following three areas are individually controlled through
one or more \*(CIs.
\*(XT 4b. SUMMARY AREA Commands for additional information regarding
these provisions.

.\" ......................................................................
.SS 2a. UPTIME and LOAD Averages
.\" ----------------------------------------------------------------------
This portion consists of a single line containing:
.nf
    \fBprogram\fR or\fB window\fR name, depending on display mode
    current time and length of time since last boot
    total number of users
    system load avg over the last 1, 5 and 15 minutes
.fi

.\" ......................................................................
.SS 2b. TASK and CPU States
.\" ----------------------------------------------------------------------
This portion consists of a minimum of two lines.
In an SMP environment, additional lines can reflect individual \*(PU
state percentages.

Line 1 shows total\fB tasks\fR or\fB threads\fR, depending on the state
of the Threads-mode toggle.
That total is further classified as:
.nf
    running; sleeping; stopped; zombie
.fi

Line 2 shows \*(PU state percentages based on the interval since the
last refresh.

As a default, percentages for these individual categories are displayed.
Depending on your kernel version, the \fBst\fR field may not be shown.
.nf
    \fBus\fR : time running un-niced user processes
    \fBsy\fR : time running kernel processes
    \fBni\fR : time running niced user processes
    \fBid\fR : time spent in the kernel idle handler
    \fBwa\fR : time waiting for I/O completion
    \fBhi\fR : time spent servicing hardware interrupts
    \fBsi\fR : time spent servicing software interrupts
    \fBst\fR : time stolen from this vm by the hypervisor
.fi

The `sy' value above also reflects the time running a virtual \*(Pu
for guest operating systems, including those that have been niced.

Beyond the first tasks/threads line, there are alternate \*(PU display
modes available via the 4-way `t' \*(CT.
They show an abbreviated summary consisting of these elements:
.nf
              \fR a  \fR  b    \fR c \fR   d
    %Cpu(s):  \fB75.0\fR/25.0  \fB100\fR[ ... ]

.fi

Where: a) is the `user' (us + ni) percentage; b) is the `system'
(sy + hi + si + guests) percentage; c) is the total percentage;
and d) is one of two visual graphs of those representations.
Such graphs also reflect separate `user' and `system' portions.

If the `4' \*(CT is used to yield more than two cpus per line,
results will be further abridged eliminating the a) and b) elements.
However, that information is still reflected in the graph itself
assuming color is active or, if not, bars vs. blocks are being shown.

\*(XT 4b. SUMMARY AREA Commands for additional information on the `t'
and `4' \*(CTs.

.\" ......................................................................
.SS 2c. MEMORY Usage
.\" ----------------------------------------------------------------------
This portion consists of two lines which may express values in kibibytes (KiB)
through exbibytes (EiB) depending on the scaling factor enforced
with the `E' \*(CI.

As a default, Line 1 reflects \*(MP, classified as:
.nf
    total, free, used and buff/cache
.fi

Line 2 reflects mostly \*(MV, classified as:
.nf
    total, free, used and avail (which is \*(MP)
.fi

The \fBavail\fR number on line 2 is an estimation of \*(MP available for
starting new applications, without swapping.
Unlike the \fBfree\fR field, it attempts to account for readily reclaimable
page cache and memory slabs.
It is available on kernels 3.14, emulated on kernels 2.6.27+, otherwise
the same as \fBfree\fR.

In the alternate memory display modes, two abbreviated summary lines
are shown consisting of these elements:
.nf
              \fR a  \fR  b          c
    GiB Mem : \fB18.7\fR/15.738   [ ... ]
    GiB Swap: \fB 0.0\fR/7.999    [ ... ]
.fi

Where: a) is the percentage used; b) is the total available; and c) is one of two
visual graphs of those representations.

In the case of \*(MP, the percentage represents the \fBtotal\fR minus the estimated
\fBavail\fR noted above.
The `Mem' graph itself is divided between the non-cached portion of \fBused\fR and
any remaining memory not otherwise accounted for by \fBavail\fR.
\*(XT 4b. SUMMARY AREA Commands and the `m' command for additional information
on that special 4-way toggle.

This table may help in interpreting the scaled values displayed:
.nf
    KiB = kibibyte = 1024 bytes
    MiB = mebibyte = 1024 KiB = 1,048,576 bytes
    GiB = gibibyte = 1024 MiB = 1,073,741,824 bytes
    TiB = tebibyte = 1024 GiB = 1,099,511,627,776 bytes
    PiB = pebibyte = 1024 TiB = 1,125,899,906,842,624 bytes
    EiB = exbibyte = 1024 PiB = 1,152,921,504,606,846,976 bytes
.fi

.\" ----------------------------------------------------------------------
.SH 3. FIELDS / Columns
.\" ----------------------------------------------------------------------
.\" ......................................................................
.SS 3a. DESCRIPTIONS of Fields
.\" ----------------------------------------------------------------------
Listed below are \*(We's available process fields (columns).
They are shown in strict ascii alphabetical order.
You may customize their position and whether or not they are displayable
with the `f' (Fields Management) \*(CI.

Any field is selectable as the sort field, and you control whether they
are sorted high-to-low or low-to-high.
For additional information on sort provisions
\*(Xt 4c. TASK AREA Commands, SORTING.

The fields related to \*(MP or \*(MV reference `(KiB)' which is the
unsuffixed display mode.
Such fields may, however, be scaled from KiB through PiB.
That scaling is influenced via the `e' \*(CI or established for startup
through a build option.

.TP 4
\fB%CPU \*(Em \*(PU Usage \fR
The task's share of the elapsed \*(PU time since the last screen update,
expressed as a percentage of total \*(PU time.

In a true SMP environment, if a process is multi-threaded and \*(We is
\fInot\fR operating in Threads mode, amounts greater than 100% may be
reported.
You toggle Threads mode with the `H' \*(CI.

Also for multi-processor environments, if Irix mode is \*F, \*(We
will operate in Solaris mode where a task's \*(Pu usage will be
divided by the total number of \*(PUs.
You toggle Irix/Solaris modes with the `I' \*(CI.

\*(NT When running in forest view mode (`V') with children
collapsed (`v'), this field will also include the \*(PU time of
those unseen children.
\*(XT 4c. TASK AREA Commands, CONTENT for more information regarding
the `V' and `v' toggles.

.TP 4
\fB%CUC \*(Em \*(PU Utilization \fR
This field is identical to %CUU below, except the percentage also
reflects reaped child processes.

.TP 4
\fB%CUU \*(Em \*(PU Utilization \fR
A task's total \*(PU usage divided by its elapsed running time,
expressed as a percentage.

If a process currently displays high \*(PU usage, this field can help
determine if such behavior is normal.
Conversely, if a process has low \*(PU usage currently, %CUU may reflect
historically higher demands over its lifetime.

.TP 4
\fB%MEM \*(Em Memory Usage (RES) \fR
A task's currently resident share of available \*(MP.

\*(XX.

.TP 4
\fBAGID \*(Em Autogroup Identifier \fR
The autogroup identifier associated with a process.
This feature operates in conjunction with the CFS scheduler
to improve interactive desktop performance.

When /proc/sys/kernel/sched_autogroup_enabled is set, a new
autogroup is created with each new session (\*(Xa SID).
All subsequently forked processes in that session inherit membership in
this autogroup.
The kernel then attempts to equalize distribution of CPU cycles
across such groups.
Thus, an autogroup with many \*(PU intensive processes (e.g make -j)
will not dominate an autogroup with only one or two processes.

When -1 is displayed it means this information is not available.

.TP 4
\fBAGNI \*(Em Autogroup Nice Value \fR
The autogroup nice value which affects scheduling of all processes
in that group.
A negative nice value means higher priority, whereas a positive nice
value means lower priority.

.TP 4
\fBCGNAME \*(Em Control Group Name \fR
The name of the control group to which a process belongs,
or `\-' if not applicable for that process.

This will typically be the last entry in the full list of control
groups as shown under the next heading (CGROUPS).
And as is true there, this field is also variable width.

.TP 4
\fBCGROUPS \*(Em Control Groups \fR
The names of the control group(s) to which a process belongs,
or `\-' if not applicable for that process.

Control Groups provide for allocating resources (cpu, memory, network
bandwidth, etc.) among installation-defined groups of processes.
They enable fine-grained control over allocating, denying, prioritizing,
managing and monitoring those resources.

Many different hierarchies of cgroups can exist simultaneously on a system
and each hierarchy is attached to one or more subsystems.
A subsystem represents a single resource.

\*(NT The CGROUPS field, unlike most columns, is not fixed-width.
When displayed, it plus any other variable width columns will be allocated
all remaining screen width (up to the maximum \*(WX characters).
Even so, such variable width fields could still suffer truncation.
\*(XT 5c. SCROLLING a Window for additional information on accessing
any truncated data.

.TP 4
\fBCODE \*(Em Code Size (KiB) \fR
The amount of \*(MP currently devoted to executable code, also known
as the Text Resident Set size or TRS.

\*(XX.

.TP 4
\fBCOMMAND \*(Em Command\fB Name\fR or Command\fB Line \fR
Display the command line used to start a task or the name of the associated
program.
You toggle between command\fI line\fR and\fI name\fR with `c', which is both
a \*(CO and an \*(CI.

When you've chosen to display command lines, processes without a command
line (like kernel threads) will be shown with only the program name in
brackets, as in this example:
    \fR[kthreadd]

This field may also be impacted by the forest view display mode.
\*(XC `V' \*(CI for additional information regarding that mode.

\*(NT The COMMAND field, unlike most columns, is not fixed-width.
When displayed, it plus any other variable width columns will be allocated
all remaining screen width (up to the maximum \*(WX characters).
Even so, such variable width fields could still suffer truncation.
This is especially true for this field when command lines are being
displayed (the `c' \*(CI.)
\*(XT 5c. SCROLLING a Window for additional information on accessing
any truncated data.

.TP 4
\fBDATA \*(Em Data + Stack Size (KiB) \fR
The amount of private memory \fIreserved\fR by a process.
It is also known as the Data Resident Set or DRS.
Such memory may not yet be mapped to \*(MP (RES) but will always be
included in the \*(MV (VIRT) amount.

\*(XX.

.TP 4
\fBELAPSED \*(Em Elapsed Running Time\fR
The length of time since a process was started.
Thus, the most recently started task will display the smallest time interval.

The value will be expressed as `HH,MM' (hours,minutes) but is subject to
additional scaling if the interval becomes too great to fit column width.
At that point it will be scaled to `DD+HH' (days+hours) and possibly
beyond.

.TP 4
\fBENVIRON \*(Em Environment variables \fR
Display all of the environment variables, if any, as seen by the
respective processes.
These variables will be displayed in their raw native order, not the
sorted order you are accustomed to seeing with an unqualified `set'.

\*(NT The ENVIRON field, unlike most columns, is not fixed-width.
When displayed, it plus any other variable width columns will be allocated
all remaining screen width (up to the maximum \*(WX characters).
Even so, such variable width fields could still suffer truncation.
This is especially true for this field.
\*(XT 5c. SCROLLING a Window for additional information on accessing
any truncated data.

.TP 4
\fBEXE \*(Em Executable Path \fR
Where available, this is the full path to the executable,
including the program name.

\*(NT The EXE field, unlike most columns, is not fixed-width.
When displayed, it plus any other variable width columns will be allocated
all remaining screen width (up to the maximum \*(WX characters).

.TP 4
\fBFlags \*(Em Task Flags \fR
This column represents the task's current scheduling flags which are
expressed in hexadecimal notation and with zeros suppressed.
These flags are officially documented in <linux/sched.h>.

.TP 4
\fBGID \*(Em Group Id \fR
The\fI effective\fR group ID.

.TP 4
\fBGROUP \*(Em Group Name \fR
The\fI effective\fR group name.

.TP 4
\fBLOGID \*(Em Login User Id \fR
The user ID used at\fI login\fR.
When -1 is displayed it means this information is not available.

.TP 4
\fBLXC \*(Em Lxc Container Name \fR
The name of the lxc container within which a task is running.
If a process is not running inside a container, a dash (`\-') will be shown.

.TP 4
\fBNI \*(Em Nice Value \fR
The nice value of the task.
A negative nice value means higher priority, whereas a positive nice value
means lower priority.
Zero in this field simply means priority will not be adjusted in determining
a task's dispatch-ability.

\*(NT This value only affects scheduling priority relative to other processes
in the same autogroup.
\*(XC `AGID' and `AGNI' fields for additional information on autogroups.

.TP 4
\fBNU \*(Em Last known NUMA node \fR
A number representing the NUMA node associated with the last used processor (`P').
When -1 is displayed it means that NUMA information is not available.

\*(XC `2' and `3' \*(CIs for additional NUMA provisions affecting the \*(SA.

.TP 4
\fBOOMa \*(Em Out of Memory Adjustment Factor \fR
The value, ranging from -1000 to +1000, added to the current out of memory
score (OOMs) which is then used to determine which task to kill when memory
is exhausted.

.TP 4
\fBOOMs \*(Em Out of Memory Score \fR
The value, ranging from 0 to +1000, used to select task(s) to kill when memory
is exhausted.
Zero translates to `never kill' whereas 1000 means `always kill'.

.TP 4
\fBP \*(Em Last used \*(PU (SMP) \fR
A number representing the last used processor.
In a true SMP environment this will likely change frequently since the kernel
intentionally uses weak affinity.
Also, the very act of running \*(We may break this weak affinity and cause more
processes to change \*(PUs more often (because of the extra demand for
\*(Pu time).

.TP 4
\fBPGRP \*(Em Process Group Id \fR
Every process is member of a unique process group which is used for
distribution of signals and by terminals to arbitrate requests for their
input and output.
When a process is created (forked), it becomes a member of the process
group of its parent.
By convention, this value equals the process ID (\*(Xa PID) of the first
member of a process group, called the process group leader.

.TP 4
\fBPID \*(Em Process Id \fR
The task's unique process ID, which periodically wraps, though never
restarting at zero.
In kernel terms, it is a dispatchable entity defined by a task_struct.

This value may also be used as: a process group ID (\*(Xa PGRP);
a session ID for the session leader (\*(Xa SID);
a thread group ID for the thread group leader (\*(Xa TGID);
and a TTY process group ID for the process group leader (\*(Xa TPGID).

.TP 4
\fBPPID \*(Em Parent Process Id \fR
The process ID (pid) of a task's parent.

.TP 4
\fBPR \*(Em Priority \fR
The scheduling priority of the task.
If you see `rt' in this field, it means the task is running
under real time scheduling priority.

Under linux, real time priority is somewhat misleading since traditionally
the operating itself was not preemptible.
And while the 2.6 kernel can be made mostly preemptible, it is not always so.

.TP 4
\fBPSS \*(Em Proportional Resident Memory, smaps (KiB) \fR
The proportion of this task's share of `RSS' where each page is divided by
the number of processes sharing it.
It is also the sum of the `PSan', `PSfd' and `PSsh' fields.

For example, if a process has 1000 resident pages alone and 1000 resident
pages shared with another process, its `PSS' would be 1500 (times page size).

\*(ZX.

.PP
\fBPSan \*(Em Proportional Anonymous Memory, smaps (KiB) \fR
.br
\fBPSfd \*(Em Proportional File Memory, smaps (KiB) \fR
.br
\fBPSsh \*(Em Proportional Shmem Memory, smaps (KiB) \fR
.RS 4
As was true for `PSS' above (total proportional resident memory),
these fields represent the proportion of this task's share of each type
of memory divided by the number of processes sharing it.

\*(ZX.
.RE

.TP 4
\fBRES \*(Em Resident Memory Size (KiB) \fR
A subset of the virtual address space (VIRT) representing the non-swapped
\*(MP a task is currently using.
It is also the sum of the `RSan', `RSfd' and `RSsh' fields.

It can include private anonymous pages, private pages mapped to files
(including program images and shared libraries) plus shared anonymous pages.
All such memory is backed by the \*(MS represented separately under SWAP.

Lastly, this field may also include shared file-backed pages which, when
modified, act as a dedicated \*(MS and thus will never impact SWAP.

\*(XX.

.TP 4
\fBRSS \*(Em Resident Memory, smaps (KiB) \fR
Another, more precise view of process non-swapped \*(MP.
It is obtained from the `smaps_rollup' file and is
generally slightly larger than that shown for `RES'.

\*(ZX.

.TP 4
\fBRSan \*(Em Resident Anonymous Memory Size (KiB) \fR
A subset of resident memory (RES) representing private pages not
mapped to a file.

.TP 4
\fBRSfd \*(Em Resident File-Backed Memory Size (KiB) \fR
A subset of resident memory (RES) representing the implicitly shared
pages supporting program images and shared libraries.
It also includes explicit file mappings, both private and shared.

.TP 4
\fBRSlk \*(Em Resident Locked Memory Size (KiB) \fR
A subset of resident memory (RES) which cannot be swapped out.

.TP 4
\fBRSsh \*(Em Resident Shared Memory Size (KiB) \fR
A subset of resident memory (RES) representing the explicitly shared
anonymous shm*/mmap pages.

.TP 4
\fBRUID \*(Em Real User Id \fR
The\fI real\fR user ID.

.TP 4
\fBRUSER \*(Em Real User Name \fR
The\fI real\fR user name.

.TP 4
\fBS \*(Em Process Status \fR
The status of the task which can be one of:
    \fBD\fR = uninterruptible sleep
    \fBI\fR = idle
    \fBR\fR = running
    \fBS\fR = sleeping
    \fBT\fR = stopped by job control signal
    \fBt\fR = stopped by debugger during trace
    \fBZ\fR = zombie

Tasks shown as running should be more properly thought of as ready to run
\*(Em their task_struct is simply represented on the Linux run-queue.
Even without a true SMP machine, you may see numerous tasks in this state
depending on \*(We's delay interval and nice value.

.TP 4
\fBSHR \*(Em Shared Memory Size (KiB) \fR
A subset of resident memory (RES) that may be used by other processes.
It will include shared anonymous pages and shared file-backed pages.
It also includes private pages mapped to files representing
program images and shared libraries.

\*(XX.

.TP 4
\fBSID \*(Em Session Id \fR
A session is a collection of process groups (\*(Xa PGRP),
usually established by the login shell.
A newly forked process joins the session of its creator.
By convention, this value equals the process ID (\*(Xa PID) of the first
member of the session, called the session leader, which is usually the
login shell.

.TP 4
\fBSTARTED \*(Em Start Time Interval\fR
The length of time since system boot when a process started.
Thus, the most recently started task will display the largest time interval.

The value will be expressed as `MM:SS' (minutes:seconds).
But if the interval is too great to fit column width it will be scaled
as `HH,MM' (hours,minutes) and possibly beyond.

.TP 4
\fBSUID \*(Em Saved User Id \fR
The\fI saved\fR user ID.

.TP 4
\fBSUPGIDS \*(Em Supplementary Group IDs \fR
The IDs of any supplementary group(s) established at login or
inherited from a task's parent.
They are displayed in a comma delimited list.

\*(NT The SUPGIDS field, unlike most columns, is not fixed-width.
When displayed, it plus any other variable width columns will be allocated
all remaining screen width (up to the maximum \*(WX characters).

.TP 4
\fBSUPGRPS \*(Em Supplementary Group Names \fR
The names of any supplementary group(s) established at login or
inherited from a task's parent.
They are displayed in a comma delimited list.

\*(NT The SUPGRPS field, unlike most columns, is not fixed-width.
When displayed, it plus any other variable width columns will be allocated
all remaining screen width (up to the maximum \*(WX characters).

.TP 4
\fBSUSER \*(Em Saved User Name \fR
The\fI saved\fR user name.

.TP 4
\fBSWAP \*(Em Swapped Size (KiB) \fR
The formerly resident portion of a task's address space written
to the \*(MS when \*(MP becomes over committed.

\*(XX.

.TP 4
\fBTGID \*(Em Thread Group Id \fR
The ID of the thread group to which a task belongs.
It is the PID of the thread group leader.
In kernel terms, it represents those tasks that share an mm_struct.

.TP 4
\fBTIME \*(Em \*(PU Time \fR
Total \*(PU time the task has used since it started.
When Cumulative mode is \*O, each process is listed with the \*(Pu
time that it and its dead children have used.
You toggle Cumulative mode with `S', which is both a \*(CO and an \*(CI.
\*(XC `S' \*(CI for additional information regarding this mode.

.TP 4
\fBTIME+ \*(Em \*(PU Time, hundredths \fR
The same as TIME, but reflecting more granularity through hundredths
of a second.

.TP 4
\fBTPGID \*(Em Tty Process Group Id \fR
The process group ID of the foreground process for the connected tty,
or \-1 if a process is not connected to a terminal.
By convention, this value equals the process ID (\*(Xa PID) of the
process group leader (\*(Xa PGRP).

.TP 4
\fBTTY \*(Em Controlling Tty \fR
The name of the controlling terminal.
This is usually the device (serial port, pty, etc.) from which the
process was started, and which it uses for input or output.
However, a task need not be associated with a terminal, in which case
you'll see `?' displayed.

.TP 4
\fBUID \*(Em User Id \fR
The\fI effective\fR user ID of the task's owner.

.TP 4
\fBUSED \*(Em Memory in Use (KiB) \fR
This field represents the non-swapped \*(MP a task is using (RES) plus
the swapped out portion of its address space (SWAP).

\*(XX.

.TP 4
\fBUSER \*(Em User Name \fR
The\fI effective\fR user name of the task's owner.

.TP 4
\fBUSS \*(Em Unique Set Size \fR
The non-swapped portion of \*(MP (`RSS') not shared with
any other process.
It is derived from the `smaps_rollup' file.

\*(ZX.

.TP 4
\fBVIRT \*(Em Virtual Memory Size (KiB) \fR
The total amount of \*(MV used by the task.
It includes all code, data and shared libraries plus pages that have been
swapped out and pages that have been mapped but not used.

\*(XX.

.TP 4
\fBWCHAN \*(Em Sleeping in Function \fR
This field will show the name of the kernel function in which the task
is currently sleeping.
Running tasks will display a dash (`\-') in this column.

.TP 4
\fBioR \*(Em I/O Bytes Read \fR
The number of bytes a process caused to be fetched from the storage layer.

Root privileges are required to display `io' data for other users.

.TP 4
\fBioRop \*(Em I/O Read Operations \fR
The number of read I/O operations (syscalls) for a process.
Such calls might not result in actual physical disk I/O.

.TP 4
\fBioW \*(Em I/O Bytes Written \fR
The number of bytes a process caused to be sent to the storage layer.

.TP 4
\fBioWop \*(Em I/O Write Operations \fR
The number of write I/O operations (syscalls) for a process.
Such calls might not result in actual physical disk I/O.

.TP 4
\fBnDRT \*(Em Dirty Pages Count \fR
The number of pages that have been modified since they were last
written to \*(AS.
Dirty pages must be written to \*(AS before the corresponding physical
memory location can be used for some other virtual page.

This field was deprecated with linux 2.6 and is always zero.

.TP 4
\fBnMaj \*(Em Major Page Fault Count \fR
The number of\fB major\fR page faults that have occurred for a task.
A page fault occurs when a process attempts to read from or write to a
virtual page that is not currently present in its address space.
A major page fault is when \*(AS access is involved in making that
page available.

.TP 4
\fBnMin \*(Em Minor Page Fault count \fR
The number of\fB minor\fR page faults that have occurred for a task.
A page fault occurs when a process attempts to read from or write to a
virtual page that is not currently present in its address space.
A minor page fault does not involve \*(AS access in making that
page available.

.TP 4
\fBnTH \*(Em Number of Threads \fR
The number of threads associated with a process.

.TP 4
\fBnsCGROUP \*(Em CGROUP namespace \fR
The Inode of the namespace used to hide the identity of the control group of
which process is a member.

.TP 4
\fBnsIPC \*(Em IPC namespace \fR
The Inode of the namespace used to isolate interprocess communication (IPC)
resources such as System V IPC objects and POSIX message queues.

.TP 4
\fBnsMNT \*(Em MNT namespace \fR
The Inode of the namespace used to isolate filesystem mount points thus
offering different views of the filesystem hierarchy.

.TP 4
\fBnsNET \*(Em NET namespace \fR
The Inode of the namespace used to isolate resources such as network devices,
IP addresses, IP routing, port numbers, etc.

.TP 4
\fBnsPID \*(Em PID namespace \fR
The Inode of the namespace used to isolate process ID numbers
meaning they need not remain unique.
Thus, each such namespace could have its own `init/systemd' (PID #1) to
manage various initialization tasks and reap orphaned child processes.

.TP 4
\fBnsTIME \*(Em TIME namespace \fR
The Inode of the namespace which allows processes to see different system
times in a way similar to the UTS namespace.

.TP 4
\fBnsUSER \*(Em USER namespace \fR
The Inode of the namespace used to isolate the user and group ID numbers.
Thus, a process could have a normal unprivileged user ID outside a user
namespace while having a user ID of 0, with full root privileges, inside
that namespace.

.TP 4
\fBnsUTS \*(Em UTS namespace \fR
The Inode of the namespace used to isolate hostname and NIS domain name.
UTS simply means "UNIX Time-sharing System".

.TP 4
\fBvMj \*(Em Major Page Fault Count Delta\fR
The number of\fB major\fR page faults that have occurred since the
last update (see nMaj).

.TP 4
\fBvMn \*(Em Minor Page Fault Count Delta\fR
The number of\fB minor\fR page faults that have occurred since the
last update (see nMin).

.\" ......................................................................
.SS 3b. MANAGING Fields
.\" ----------------------------------------------------------------------
After pressing the \*(CI `f' (Fields Management) you will be presented
with a screen showing: 1) the \*(CW name; 2) the designated sort field;
3) all fields in their current order along with descriptions.
Entries marked with an asterisk are the currently displayed fields,
screen width permitting.

.RS +4
.IP \(bu 3
As the on screen instructions indicate, you navigate among the fields with
the\fB Up\fR and\fB Down\fR \*(KAs.
The PgUp, PgDn, Home and End keys can also be used to quickly reach the
first or last available field.

.IP \(bu 3
The\fB Right\fR \*(KA selects a field for repositioning and
the\fB Left\fR \*(KA or the <\fBEnter\fR> key commits that field's
placement.

.IP \(bu 3
The `\fBd\fR' key or the <\fBSpace\fR> bar toggles a field's display
status, and thus the presence or absence of the asterisk.

.IP \(bu 3
The `\fBs\fR' key designates a field as the sort field.
\*(XT 4c. TASK AREA Commands, SORTING for additional information regarding
your selection of a sort field.

.IP \(bu 3
The `\fBa\fR' and `\fBw\fR' keys can be used to cycle through all available
windows and the `\fBq\fR' or <\fBEsc\fR> keys exit Fields Management.
.RS -4

.PP
The Fields Management screen can also be used to change the \*(CG in
either \*(FM or \*(AM.
Whatever was targeted when `q' or <Esc> was pressed will be made current
as you return to the \*(We display.
\*(XT 5. ALTERNATE\-DISPLAY Provisions and the `g' \*(CI for insight
into \*(CWs and \*(FGs.

.PP
\*(NT Any window that has been scrolled\fI horizontally\fR will be reset if any
field changes are made via the Fields Management screen.
Any\fI vertical\fR scrolled position, however, will not be affected.
\*(XT 5c. SCROLLING a Window for additional information regarding vertical
and horizontal scrolling.

.\" ----------------------------------------------------------------------
.SH 4. INTERACTIVE Commands
.\" ----------------------------------------------------------------------
Listed below is a brief index of commands within categories.
Some commands appear more than once \*(Em their meaning or scope may vary
depending on the context in which they are issued.

.nf
  4a.\fI Global-Commands \fR
        <Ent/Sp> ?, =, 0,
        A, B, d, E, e, g, H, h, I, k, q, r, s, W, X, Y, Z,
        ^G, ^K, ^N, ^P, ^U, ^L, ^R
  4b.\fI Summary-Area-Commands \fR
        C, l, t, m, 1, 2, 3, 4, 5, !
  4c.\fI Task-Area-Commands \fR
        Appearance:  b, J, j, x, y, z
        Content:     c, F, f, O, o, S, U, u, V, v, ^E
        Size:        #, i, n
        Sorting:     <, >, f, R
  4d.\fI Color-Mapping \fR
        <Ret>, a, B, b, H, M, q, S, T, w, z, 0 \- 7
  5b.\fI Commands-for-Windows \fR
        \-, _, =, +, A, a, G, g, w
  5c.\fI Scrolling-a-Window \fR
        C, Up, Dn, Left, Right, PgUp, PgDn, Home, End
  5d.\fI Searching-in-a-Window \fR
        L, &
  5e.\fI Filtering-in-a-Window
        O, o, ^O, =, +
.fi

.\" ......................................................................
.SS 4a. GLOBAL Commands
.\" ----------------------------------------------------------------------
The global \*(CIs are\fB always\fR available\fR in both \*(FM and \*(AM.
However, some of these \*(CIs are\fB not available\fR when running
in Secure mode.

If you wish to know in advance whether or not your \*(We has been
secured, simply ask for help and view the system summary on the second
line.

.TP 7
\ \ <\fBEnter\fR> or <\fBSpace\fR>\ \ :\fIRefresh-Display \fR
These commands awaken \*(We and following receipt of any input
the entire display will be repainted.
They also force an update of any hotplugged \*(Pu or \*(MP changes.

Use either of these keys if you have a large delay interval and wish
to see current status,

.TP 7
\ \ \ \fB?\fR | \fBh\fR\ \ :\fIHelp \fR
There are two help levels available.
The first will provide a reminder of all the basic \*(CIs.
If \*(We is\fI secured\fR, that screen will be abbreviated.

Typing `h' or `?' on that help screen will take you to help for
those \*(CIs applicable to \*(AM.

.TP 7
\ \ \ \fB=\fR\ \ :\fIExit-Display-Limits \fR
Removes restrictions on what is shown.
This command will reverse any `i' (idle tasks), `n' (max tasks),
`v' (hide children) and `F' focus commands that might be active.
It also provides for an exit from PID monitoring, User filtering,
Other filtering, Locate processing and Combine Cpus mode.

Additionally, if the window has been scrolled it will be reset with
this command.

.TP 7
\ \ \ \fB0\fR\ \ :\fIZero-Suppress\fR toggle \fR
This command determines whether zeros are shown or suppressed for many
of the fields in a \*(TW.
Fields like UID, GID, NI, PR or P are not affected by this toggle.

.TP 7
\ \ \ \fBA\fR\ \ :\fIAlternate-Display-Mode\fR toggle \fR
This command will switch between \*(FM and \*(AM.
\*(XT 5. ALTERNATE\-DISPLAY Provisions and the `g' \*(CI for insight
into \*(CWs and \*(FGs.

.TP 7
\ \ \ \fBB\fR\ \ :\fIBold-Disable/Enable\fR toggle \fR
This command will influence use of the bold terminfo capability and
alters\fB both\fR the \*(SA and \*(TA for the \*(CW.
While it is intended primarily for use with dumb terminals, it can be
applied anytime.

\*(NT When this toggle is \*O and \*(We is operating in monochrome mode,
the\fB entire display\fR will appear as normal text.
Thus, unless the `x' and/or `y' toggles are using reverse for emphasis,
there will be no visual confirmation that they are even on.

.TP 7
*\ \ \fBd\fR | \fBs\fR\ \ :\fIChange-Delay-Time-interval \fR
You will be prompted to enter the delay time, in seconds, between
display updates.

Fractional seconds are honored, but a negative number is not allowed.
Entering 0 causes (nearly) continuous updates, with an unsatisfactory
display as the system and tty driver try to keep up with \*(We's demands.
The delay value is inversely proportional to system loading,
so set it with care.

If at any time you wish to know the current delay time, simply ask for
help and view the system summary on the second line.

.TP 7
\ \ \ \fBE\fR\ \ :\fIEnforce-Summary-Memory-Scale\fR in Summary Area
With this command you can cycle through the available \*(SA memory scaling
which ranges from KiB (kibibytes or 1,024 bytes) through EiB (exbibytes or
1,152,921,504,606,846,976 bytes).

If you see a `+' between a displayed number and the following label, it
means that \*(We was forced to truncate some portion of that number.
By raising the scaling factor, such truncation can be avoided.

.TP 7
\ \ \ \fBe\fR\ \ :\fIEnforce-Task-Memory-Scale\fR in Task Area
With this command you can cycle through the available \*(TA memory scaling
which ranges from KiB (kibibytes or 1,024 bytes) through PiB (pebibytes or
1,125,899,906,842,624 bytes).

While \*(We will try to honor the selected target range, additional
scaling might still be necessary in order to accommodate current values.
If you wish to see a more homogeneous result in the memory columns,
raising the scaling range will usually accomplish that goal.
Raising it too high, however, is likely to produce an all zero result
which cannot be suppressed with the `0' \*(CI.

.TP 7
\ \ \ \fBg\fR\ \ :\fIChoose-Another-Window/Field-Group \fR
You will be prompted to enter a number between 1 and 4 designating the
\*(FG which should be made the \*(CW.
You will soon grow comfortable with these 4 windows, especially after
experimenting with \*(AM.

.TP 7
\ \ \ \fBH\fR\ \ :\fIThreads-mode\fR toggle \fR
When this toggle is \*O, individual threads will be displayed for all
processes in all visible \*(TWs.
Otherwise, \*(We displays a summation of all threads in each process.

.TP 7
\ \ \ \fBI\fR\ \ :\fIIrix/Solaris-Mode\fR toggle \fR
When operating in Solaris mode (`I' toggled \*F), a task's \*(Pu usage
will be divided by the total number of \*(PUs.
After issuing this command, you'll be told the new state of this toggle.

.TP 7
*\ \ \fBk\fR\ \ :\fIKill-a-task \fR
You will be prompted for a PID and then the signal to send.

Entering no PID or a negative number will be interpreted as
the default shown in the prompt (the first task displayed).
A PID value of zero means the \*(We program itself.

The default signal, as reflected in the prompt, is SIGTERM.
However, you can send any signal, via number or name.

If you wish to abort the kill process, do one of the following
depending on your progress:
.nf
    1) at the pid prompt, type an invalid number
    2) at the signal prompt, type 0 (or any invalid signal)
    3) at any prompt, type <Esc>
.fi

.TP 7
\ \ \ \fBq\fR\ \ :\fIQuit \fR

.TP 7
*\ \ \fBr\fR\ \ :\fIRenice-a-Task \fR
You will be prompted for a PID and then the value to nice it to.

Entering no PID or a negative number will be interpreted as
the default shown in the prompt (the first task displayed).
A PID value of zero means the \*(We program itself.

A positive nice value will cause a process to lose priority.
Conversely, a negative nice value will cause a process to be viewed
more favorably by the kernel.
As a general rule, ordinary users can only increase the nice value
and are prevented from lowering it.

If you wish to abort the renice process, do one of the following
depending on your progress:
.nf
    1) at the pid prompt, type an invalid number
    2) at the nice prompt, type <Enter> with no input
    3) at any prompt, type <Esc>
.fi

.TP 7
\ \ \ \fBW\fR\ \ :\fIWrite-the-Configuration-File \fR
This will save all of your options and toggles plus the current
display mode and delay time.
By issuing this command just before quitting \*(We, you will be able
restart later in exactly that same state.

.TP 7
\ \ \ \fBX\fR\ \ :\fIExtra-Fixed-Width \fR
Some fields are fixed width and not scalable.
As such, they are subject to truncation which would be indicated
by a `+' in the last position.

This \*(CI can be used to alter the widths of the following fields:

.nf
   \fI field  default    field  default    field   default \fR
    GID       5       GROUP     8       WCHAN      10
    LOGID     5       LXC       8       nsCGROUP   10
    RUID      5       RUSER     8       nsIPC      10
    SUID      5       SUSER     8       nsMNT      10
    UID       5       TTY       8       nsNET      10
                      USER      8       nsPID      10
                                        nsTIME     10
                                        nsUSER     10
                                        nsUTS      10
.fi

You will be prompted for the amount to be added to the default
widths shown above.
Entering zero forces a return to those defaults.

If you enter a negative number, \*(We will automatically increase
the column size as needed until there is no more truncated data.

\*(NT Whether explicitly or automatically increased, the widths for
these fields are never decreased by \*(We.
To narrow them you must specify a smaller number or restore the defaults.

.TP 7
\ \ \ \fBY\fR\ \ :\fIInspect-Other-Output \fR
After issuing the `Y' \*(CI, you will be prompted for a target PID.
Typing a value or accepting the default results in a separate screen.
That screen can be used to view a variety of files or piped command output
while the normal \*(We iterative display is paused.

\*(NT This \*(CI is only fully realized when supporting entries have been
manually added to the end of the \*(We \*(CF.
For details on creating those entries, \*(Xt 6b. ADDING INSPECT Entries.

Most of the keys used to navigate the Inspect feature are reflected in
its header prologue.
There are, however, additional keys available once you have selected a
particular file or command.
They are familiar to anyone who has used the pager `less' and are
summarized here for future reference.

.nf
   \fI key      function \fR
    =        alternate status\-line, file or pipeline
    /        find, equivalent to `L' locate
    n        find next, equivalent to `&' locate next
    <Space>  scroll down, equivalent to <PgDn>
    b        scroll up, equivalent to <PgUp>
    g        first line, equivalent to <Home>
    G        last line, equivalent to <End>
.fi

.TP 7
\ \ \ \fBZ\fR\ \ :\fIChange-Color-Mapping \fR
This key will take you to a separate screen where you can change the
colors for the \*(CW, or for all windows.
For details regarding this \*(CI \*(Xt 4d. COLOR Mapping.

.P
\ \ \fB^G\fR\ \ :\fIDisplay-Control-Groups \fR       (Ctrl key + `g')
.br
\ \ \fB^K\fR\ \ :\fIDisplay-Cmdline \fR              (Ctrl key + `k')
.br
\ \ \fB^N\fR\ \ :\fIDisplay-Environment \fR          (Ctrl key + `n')
.br
\ \ \fB^P\fR\ \ :\fIDisplay-Namesspaces \fR          (Ctrl key + `p')
.br
\ \ \fB^U\fR\ \ :\fIDisplay-Supplementary-Groups \fR (Ctrl key + `u')
.br
.RS +7
Applied to the first process displayed, these commands will show
that task's full (potentially wrapped) information.
Such data will be displayed in a separate window at the bottom of
the screen while normal \*(We monitoring continues.

Keying the\fI same\fR `Ctrl' command a second time removes that
separate window as does the `=' command.
Keying a different `Ctrl' combination, while one is already active,
immediately transitions to the new information.

Notable among these provisions is the Ctrl+N (environment) command.
Its output can be extensive and not easily read when line wrapped.
A more readable version can be achieved with an `Inspect' entry
in the rcfile like the following.

.nf
    pipe ^I Environment ^I cat /proc/%d/environ | tr '\\0' '\\n'
.fi

\*(XC `Y' \*(CI above and topic 6b. ADDING INSPECT Entries for
additional information.

As an alternative to `Inspect', and available to all of these `Ctrl'
commands, the tab key can be used to highlight individual elements
in the bottom window.
.RS -7

.TP 7
\ \ \fB^L\fR\ \ :\fILogged-Messages \fR (Ctrl key + `l')
The 10 most recent messages are displayed in a separate window at
the bottom of the screen while normal \*(We monitoring continues.
Keying `^L' a second time removes that window as does the `=' command.
Use the tab key to highlight individual messages.

.TP 7
*\ \fB^R\fR\ \ :\fIRenice-an-Autogroup \fR (Ctrl key + `r')
You will be prompted for a PID and then the value for its
autogroup AGNI.

Entering no PID will be interpreted as the default shown in
the prompt (the first task displayed).

A positive AGNI value will cause processes in that autogroup
to lose priority.
Conversely, a negative value causes them to be viewed more
favorably by the kernel.
Ordinary users are not allowed to set negative AGNI values.

If you wish to abort the renice process type <Esc>.

.IP "*" 3
The commands shown with an \*(AK are not available in Secure mode,
nor will they be shown on the level-1 help screen.

.\" ......................................................................
.SS 4b. SUMMARY AREA Commands
.\" ----------------------------------------------------------------------
The \*(SA \*(CIs are\fB always available\fR in both \*(FM and \*(AM.
They affect the beginning lines of your display and will determine the
position of messages and prompts.

These commands always impact just the \*(CG.
\*(XT 5. ALTERNATE\-DISPLAY Provisions and the `g' \*(CI for insight into
\*(CWs and \*(FGs.

.TP 7
\ \ \ \fBC\fR\ \ :\fIShow-scroll-coordinates\fR toggle \fR
Toggle an informational message which is displayed whenever the message
line is not otherwise being used.
For additional information \*(Xt 5c. SCROLLING a Window.

.TP 7
\ \ \ \fBl\fR\ \ :\fILoad-Average/Uptime\fR toggle \fR
This is also the line containing the program name (possibly an alias)
when operating in \*(FM or the \*(CW name when operating in \*(AM.

.TP 7
\ \ \ \fBt\fR\ \ :\fITask/Cpu-States\fR toggle \fR
This command affects from 2 to many \*(SA lines, depending on the state
of the `1', `2' or `3' \*(CTs and whether or not \*(We is running under
true SMP.

This portion of the \*(SA is also influenced by the `H' \*(CI toggle,
as reflected in the total label which shows either Tasks or Threads.

This command serves as a 4-way toggle, cycling through these modes:
.nf
    1. detailed percentages by category
    2. abbreviated user/system and total % + bar graph
    3. abbreviated user/system and total % + block graph
    4. turn off task and cpu states display
.fi

When operating in either of the graphic modes, the display becomes much
more meaningful when individual CPUs or NUMA nodes are also displayed.
\*(XC the `1', `2' and `3' commands below for additional information.

.TP 7
\ \ \ \fBm\fR\ \ :\fIMemory/Swap-Usage\fR toggle \fR
This command affects the two \*(SA lines dealing with physical
and virtual memory.

This command serves as a 4-way toggle, cycling through these modes:
.nf
    1. detailed percentages by memory type
    2. abbreviated % used/total available + bar graph
    3. abbreviated % used/total available + block graph
    4. turn off memory display
.fi

.TP 7
\ \ \ \fB1\fR\ \ :\fISingle/Separate-Cpu-States\fR toggle \fR
This command affects how the `t' command's Cpu States portion is shown.
Although this toggle exists primarily to serve massively-parallel SMP
machines, it is not restricted to solely SMP environments.

When you see `%Cpu(s):' in the \*(SA, the `1' toggle is \*O and all
\*(Pu information is gathered in a single line.
Otherwise, each \*(Pu is displayed separately as: `%Cpu0, %Cpu1, ...'
up to available screen height.

.TP 7
\ \ \ \fB2\fR\ \ :\fINUMA-Nodes/Cpu-Summary\fR toggle \fR
This command toggles between the `1' command cpu summary display (only)
or a summary display plus the cpu usage statistics for each NUMA Node.
It is only available if a system has the requisite NUMA support.

.TP 7
\ \ \ \fB3\fR\ \ :\fIExpand-NUMA-Node \fR
You will be invited to enter a number representing a NUMA Node.
Thereafter, a node summary plus the statistics for each cpu in that
node will be shown until the `1', `2' or `4' \*(CT is pressed.
This \*(CI is only available if a system has the requisite NUMA support.

.TP 7
\ \ \ \fB4\fR\ \ :\fIDisplay-Multiple-Elements-Adjacent\fR toggle \fR
This \*(CT turns the `1' toggle \*F and shows multiple \*(PU and
Memory results on each line.
Each successive `4' key adds another \*(PU until again reverting
to separate lines for \*(PU and Memory results.

A maximum of 8 \*(PUs per line can be displayed in this manner.
However, data truncation may occur before reaching the maximum.
That is definitely true when displaying detailed statistics via
the `t' \*(CT since such data cannot be scaled like the graphic
representations.

If one wished to quickly exit adjacent mode without cycling all the
way to 8, simply use the `1' \*(CT.

.TP 7
\ \ \ \fB5\fR\ \ :\fIDisplay-P-Cores-and-E-Cores\fR toggle \fR
This \*(CT is only active when the `t' toggle is \*O and the `1', `2',
`3' and `!' toggles are \*F, thus showing individual \*(PU results.
It assumes a platform has multiple cores of two distinct types,
either multi-threaded (P-Core) or single-threaded (E-Core).

While normally each \*(Pu is displayed as `%Cpu0, %Cpu1, ...', this
toggle can be used to identify and/or filter those \*(Pus by their
core type, either P-Core (performance) or E-Core (efficient).

The 1st time `5' is struck, each \*(PU is displayed as `%Cp\fBP\fR'
or `%Cp\fBE\fR' representing the two core types.
The 2nd time, only P-Cores (%Cp\fBP\fR) will be shown.
The 3rd time, only E-Cores (%Cp\fBE\fR) are displayed.
When this \*(CT is struck for the 4th time, the \*(PU display
returns to the normal `%Cpu' convention.

If separate\fI performance\fR and\fI efficient\fR categories are
not present, this \*(CT will have no effect.

.TP 7
\ \ \ \fB!\fR\ \ :\fICombine-Cpus-Mode\fR toggle \fR
This \*(CT is intended for massively parallel SMP environments where,
even with the `4' \*(CT, not all processors can be displayed.
With each press of `!' the number of additional \*(Pus combined is
doubled thus reducing the total number of \*(Pu lines displayed.

For example, with the first press of `!' one additional \*(Pu will be
combined and displayed as `0-1, 2-3, ...' instead of the normal
`%Cpu0, %Cpu1, %Cpu2, %Cpu3, ...'.
With a second `!' \*(CT two additional \*(Pus are combined and shown
as `0-2, 3-5, ...'.
Then the third `!' press, combining four additional \*(Pus, shows
as `0-4, 5-9, ...', etc.

Such progression continues until individual \*(Pus are again displayed
and impacts both the `1' and `4' toggles (one or muliple columns).
Use the `=' command to exit \fBCombine Cpus\fR mode.

.PP
\*(NT If the entire \*(SA has been toggled \*F for any window, you would
be left with just the\fB message line\fR.
In that way, you will have maximized available task rows but (temporarily)
sacrificed the program name in \*(FM or the \*(CW name when in \*(AM.

.\" ......................................................................
.SS 4c. TASK AREA Commands
.\" ----------------------------------------------------------------------
The \*(TA \*(CIs are\fB always\fR available in \*(FM.

The \*(TA \*(CIs are\fB never available\fR in \*(AM\fI if\fR the \*(CW's
\*(TD has been toggled \*F (\*(Xt 5. ALTERNATE\-DISPLAY Provisions).

.\" ..................................................
.PP
.B APPEARANCE\fR of \*(TW

.TP 7
\ \ \ \fBJ\fR\ \ :\fIJustify-Numeric-Columns\fR toggle \fR
Alternates between right-justified (the default) and
left-justified numeric data.
If the numeric data completely fills the available column, this
\*(CT may impact the column header only.

.TP 7
\ \ \ \fBj\fR\ \ :\fIJustify-Character-Columns\fR toggle \fR
Alternates between left-justified (the default) and
right-justified character data.
If the character data completely fills the available column, this
\*(CT may impact the column header only.

.PP
.RS +2
The following commands will also be influenced by the state of the
global `B' (bold enable) toggle.
.RS -2

.TP 7
\ \ \ \fBb\fR\ \ :\fIBold/Reverse\fR toggle \fR
This command will impact how the `x' and `y' toggles are displayed.
It may also impact the \*(SA when a bar graph has been selected for \*(Pu
states or memory usage via the `t' or `m' toggles.

.TP 7
\ \ \ \fBx\fR\ \ :\fIColumn-Highlight\fR toggle \fR
Changes highlighting for the current sort field.
If you forget which field is being sorted this command can serve as a quick
visual reminder, providing the sort field is being displayed.
The sort field might\fI not\fR be visible because:
    1) there is insufficient\fI Screen Width \fR
    2) the `f' \*(CI turned it \*F

.TP 7
\ \ \ \fBy\fR\ \ :\fIRow-Highlight\fR toggle \fR
Changes highlighting for "running" tasks.
For additional insight into this task state,
\*(Xt 3a. DESCRIPTIONS of Fields, the `S' field (Process Status).

Use of this provision provides important insight into your system's health.
The only costs will be a few additional tty escape sequences.

.TP 7
\ \ \ \fBz\fR\ \ :\fIColor/Monochrome\fR toggle \fR
Switches the \*(CW between your last used color scheme and the older form
of black-on-white or white-on-black.
This command will alter\fB both\fR the \*(SA and \*(TA but does not affect
the state of the `x', `y' or `b' toggles.

.\" ..................................................
.PP
.B CONTENT\fR of \*(TW

.TP 7
\ \ \ \fBc\fR\ \ :\fICommand-Line/Program-Name\fR toggle \fR
This command will be honored whether or not the COMMAND column
is currently visible.
Later, should that field come into view, the change you applied will be seen.

.TP 7
\ \ \ \fBF\fR\ \ :\fIMaintain-Parent-Focus\fR toggle \fR
When in forest view mode, this key serves as a toggle to retain focus
on a target task, presumably one with forked children.
If forest view mode is \*F this key has no effect.

The toggle is applied to the first (topmost) process in the \*(CW.
Once established, that task is always displayed as the first (topmost)
process along with its forked children.
All other processes will be suppressed.

\*(NT keys like `i' (idle tasks), `n' (max tasks), `v' (hide children)
and User/Other filtering remain accessible and can impact what is displayed.

.TP 7
\ \ \ \fBf\fR\ \ :\fIFields-Management \fR
This key displays a separate screen where you can change which fields are
displayed, their order and also designate the sort field.
For additional information on this \*(CI
\*(Xt 3b. MANAGING Fields.

.TP 7
\ \ \ \fBO\fR | \fBo\fR\ \ :\fIOther-Filtering \fR
You will be prompted for the selection criteria which then determines
which tasks will be shown in the \*(CW.
Your criteria can be made case sensitive or case can be ignored.
And you determine if \*(We should include or exclude matching tasks.

\*(XT 5e. FILTERING in a window for details on these and additional
related \*(CIs.

.TP 7
\ \ \ \fBS\fR\ \ :\fICumulative-Time-Mode\fR toggle \fR
When Cumulative mode is \*O, each process is listed with the \*(Pu
time that it and its dead children have used.

When \*F, programs that fork into many separate tasks will appear
less demanding.
For programs like `init' or a shell this is appropriate but for others,
like compilers, perhaps not.
Experiment with two \*(TWs sharing the same sort field but with different `S'
states and see which representation you prefer.

After issuing this command, you'll be informed of the new state of this toggle.
If you wish to know in advance whether or not Cumulative mode is in
effect, simply ask for help and view the window summary on the second line.

.TP 7
\ \ \ \fBU\fR | \fBu\fR\ \ :\fIShow-Specific-User-Only \fR
You will be prompted for the\fB uid\fR or\fB name\fR of the user to display.
The \-u option matches on \fB effective\fR user whereas the \-U option
matches on\fB any\fR user (real, effective, saved, or filesystem).

Thereafter, in that \*(TW only matching users will be shown, or possibly
no processes will be shown.
Prepending an exclamation point (`!') to the user id or name instructs \*(We
to display only processes with users not matching the one provided.

Different \*(TWs can be used to filter different users.
Later, if you wish to monitor all users again in the \*(CW, re-issue this
command but just press <Enter> at the prompt.

.TP 7
\ \ \ \fBV\fR\ \ :\fIForest-View-Mode\fR toggle \fR
In this mode, processes are reordered according to their parents and
the layout of the COMMAND column resembles that of a tree.
In forest view mode it is still possible to toggle between program
name and command line (\*(Xc `c' \*(CI) or between processes and
threads (\*(Xc `H' \*(CI).

\*(NT Typing any key affecting the sort order will exit forest view
mode in the \*(CW.
\*(XT 4c. TASK AREA Commands, SORTING for information on those keys.

.TP 7
\ \ \ \fBv\fR\ \ :\fIHide/Show-Children\fR toggle \fR
When in forest view mode, this key serves as a toggle to collapse or
expand the children of a parent.

The toggle is applied against the first (topmost) process in the \*(CW.
\*(XT 5c. SCROLLING a Window for additional information regarding
vertical scrolling.

If the target process has not forked any children, this key has no effect.
It also has no effect when not in forest view mode.

.TP 7
\ \ \fB^E\fR\ \ :\fIScale-CPU-Time-fields\fR (Ctrl key + `e')
The `time' fields are normally displayed with the greatest
precision their widths permit.
This toggle reduces that precision until it wraps.
It also illustrates the scaling those fields \fImight\fR experience
automatically, which usually depends on how long the system runs.

For example, if `MMM:SS.hh' is shown, each ^E keystroke would change
it to: `MM:SS', `Hours,MM', `Days+Hours' and finally `Weeks+Days'.

Not all time fields are subject to the full range of such scaling.

.\" ..................................................
.PP
.B SIZE\fR of \*(TW

.TP 7
\ \ \ \fBi\fR\ \ :\fIIdle-Process\fR toggle \fR
Displays all tasks or just active tasks.
When this toggle is \*F, tasks that have not used any \*(PU since the
last update will not be displayed.
However, due to the granularity of the %CPU and TIME+ fields,
some processes may still be displayed that\fI appear\fR to have
used\fI no\fR \*(PU.

If this command is applied to the last \*(TD when in \*(AM, then it will not
affect the window's size, as all prior \*(TDs will have already been painted.

.TP 7
\ \ \ \fBn\fR | \fB#\fR\ \ :\fISet-Maximum-Tasks \fR
You will be prompted to enter the number of tasks to display.
The lessor of your number and available screen rows will be used.

When used in \*(AM, this is the command that gives you precise control over
the size of each currently visible \*(TD, except for the very last.
It will not affect the last window's size, as all prior \*(TDs will have
already been painted.

\*(NT If you wish to increase the size of the last visible \*(TD when in \*(AM,
simply decrease the size of the \*(TD(s) above it.

.\" ..................................................
.PP
.B SORTING\fR of \*(TW
.PP
.RS +3
For compatibility, this \*(We supports most of the former \*(We sort keys.
Since this is primarily a service to former \*(We users, these commands do
not appear on any help screen.
.nf
     \fI command   sorted-field                  supported \fR
      A         start time (non-display)     \fB No \fR
      M         %MEM                          Yes
      N         PID                           Yes
      P         %CPU                          Yes
      T         TIME+                         Yes
.fi

Before using any of the following sort provisions, \*(We suggests that you
temporarily turn on column highlighting using the `x' \*(CI.
That will help ensure that the actual sort environment matches your intent.

The following \*(CIs will\fB only\fR be honored when the current sort field
is\fB visible\fR.
The sort field might\fI not\fR be visible because:
      1) there is insufficient\fI Screen Width \fR
      2) the `f' \*(CI turned it \*F

.TP 7
\ \ \ \fB<\fR\ \ :\fIMove-Sort-Field-Left \fR
Moves the sort column to the left unless the current sort field is
the first field being displayed.

.TP 7
\ \ \ \fB>\fR\ \ :\fIMove-Sort-Field-Right \fR
Moves the sort column to the right unless the current sort field is
the last field being displayed.

.PP
The following \*(CIs will\fB always\fR be honored whether or not
the current sort field is visible.

.TP 7
\ \ \ \fBf\fR\ \ :\fIFields-Management \fR
This key displays a separate screen where you can change which field
is used as the sort column, among other functions.
This can be a convenient way to simply verify the current sort field,
when running \*(We with column highlighting turned \*F.

.TP 7
\ \ \ \fBR\fR\ \ :\fIReverse/Normal-Sort-Field\fR toggle \fR
Using this \*(CI you can alternate between high-to-low and low-to-high sorts.

.\" ......................................................................
.SS 4d. COLOR Mapping
.\" ----------------------------------------------------------------------
When you issue the `Z' \*(CI, you will be presented with a separate screen.
That screen can be used to change the colors in just the \*(CW or
in all four windows before returning to the \*(We display.

.P
The following \*(CIs are available.
.nf
    \fB4\fR upper case letters to select a\fB target \fR
    \fB8\fR numbers to select a\fB color \fR
    normal toggles available \fR
        B         :bold disable/enable
        b         :running tasks "bold"/reverse
        z         :color/mono
    other commands available \fR
        a/w       :apply, then go to next/prior
        <Enter>   :apply and exit
        q         :abandon current changes and exit
.fi

If you use `a' or `w' to cycle the targeted window, you will
have applied the color scheme that was displayed when you left that window.
You can, of course, easily return to any window and reapply different
colors or turn colors \*F completely with the `z' toggle.

The Color Mapping screen can also be used to change the \*(CG in
either \*(FM or \*(AM.
Whatever was targeted when `q' or <Enter> was pressed will be made current
as you return to the \*(We display.

.\" ----------------------------------------------------------------------
.SH 5. ALTERNATE\-DISPLAY Provisions
.\" ----------------------------------------------------------------------
.\" ......................................................................
.SS 5a. WINDOWS Overview
.\" ----------------------------------------------------------------------
.TP 3
.B Field Groups/Windows\fR:
In \*(FM there is a single window represented by the entire screen.
That single window can still be changed to display 1 of 4 different\fB field
groups\fR (\*(Xc `g' \*(CI, repeated below).
Each of the 4 \*(FGs has a unique separately configurable\fB \*(SA \fR
and its own configurable\fB \*(TA\fR.

In \*(AM, those 4 underlying \*(FGs can now be made visible
simultaneously, or can be turned \*F individually at your command.

The \*(SA will always exist, even if it's only the message line.
At any given time only\fI one\fR \*(SA can be displayed.
However, depending on your commands, there could be from\fI zero \fR
to\fI four\fR separate \*(TDs currently showing on the screen.

.TP 3
.B Current Window\fR:
The \*(CW is the window associated with the \*(SA and the window to which
task related commands are always directed.
Since in \*(AM you can toggle the \*(TD \*F, some commands might be
restricted for the \*(CW.

A further complication arises when you have toggled the first \*(SA
line \*F.
With the loss of the window name (the `l' toggled line), you'll not easily
know what window is the \*(CW.

.\" ......................................................................
.SS 5b. COMMANDS for Windows
.\" ----------------------------------------------------------------------
.TP 7
\ \ \ \fB-\fR | \fB_\fR\ \ :\fIShow/Hide-Window(s)\fR toggles \fR
The `\-' key turns the \*(CW's \*(TD \*O and \*F.
When \*O, that \*(TA will show a minimum of the columns header you've
established with the `f' \*(CI.
It will also reflect any other \*(TA options/toggles you've applied
yielding zero or more tasks.

The `_' key does the same for all \*(TDs.
In other words, it switches between the currently visible \*(TD(s) and any
\*(TD(s) you had toggled \*F.
If all 4 \*(TDs are currently visible, this \*(CI will leave the \*(SA
as the only display element.

.TP 7
*\ \ \fB=\fR | \fB+\fR\ \ :\fIEqualize/Reset-Window(s) \fR
The `=' key forces the \*(CW's \*(TD to be visible.
It also reverses any active `i' (idle tasks), `n' (max tasks), `u/U'
(user filter), `o/O' (other filter), `v' (hide children), `F' focused,
`L' (locate) and `!' (combine cpus) commands.
Also, if the window had been scrolled, it will be reset with this command.
\*(XT 5c. SCROLLING a Window for additional information regarding vertical
and horizontal scrolling.

The `+' key does the same for all windows.
The four \*(TDs will reappear, evenly balanced, while retaining
any customizations previously applied beyond those noted
for the `=' \*(CT.

.TP 7
*\ \ \fBA\fR\ \ :\fIAlternate-Display-Mode\fR toggle \fR
This command will switch between \*(FM and \*(AM.

The first time you issue this command, all four \*(TDs will be shown.
Thereafter when you switch modes, you will see only the \*(TD(s) you've
chosen to make visible.

.TP 7
*\ \ \fBa\fR | \fBw\fR\ \ :\fINext-Window-Forward/Backward \fR
This will change the \*(CW, which in turn changes the window to which
commands are directed.
These keys act in a circular fashion so you can reach any desired window
using either key.

Assuming the window name is visible (you have not toggled `l' \*F),
whenever the \*(CW name loses its emphasis/color, that's a reminder
the \*(TD is \*F and many commands will be restricted.

.TP 7
\ \ \ \fBG\fR\ \ :\fIChange-Window/Field-Group-Name \fR
You will be prompted for a new name to be applied to the \*(CW.
It does not require that the window name be visible
(the `l' toggle to be \*O).

.IP "*" 3
The \*(CIs shown with an \*(AK have use beyond \*(AM.
.nf
    =, A, g    are always available
    a, w       act the same with color mapping
               and fields management
.fi

.TP 7
*\ \ \fBg\fR\ \ :\fIChoose-Another-Window/Field-Group \fR
You will be prompted to enter a number between 1 and 4 designating the
\*(FG which should be made the \*(CW.

In \*(FM, this command is necessary to alter the \*(CW.
In \*(AM, it is simply a less convenient alternative to the `a' and `w'
commands.

.\" ......................................................................
.SS 5c. SCROLLING a Window
.\" ----------------------------------------------------------------------
Typically a \*(TW is a partial view into a system's total tasks/threads
which shows only some of the available fields/columns.
With these \*(KSs, you can move that view vertically or horizontally to
reveal any desired task or column.

.TP 4
\fBUp\fR,\fBPgUp\fR\ \ :\fIScroll-Tasks \fR
Move the view up toward the first task row, until the first task is
displayed at the top of the \*(CW.
The \fIUp\fR \*(KA moves a single line while \fIPgUp\fR scrolls the
entire window.

.TP 4
\fBDown\fR,\fBPgDn\fR\ \ :\fIScroll-Tasks \fR
Move the view down toward the last task row, until the last task is
the only task displayed at the top of the \*(CW.
The \fIDown\fR \*(KA moves a single line while \fIPgDn\fR scrolls the
entire window.

.TP 4
\fBLeft\fR,\fBRight\fR\ \ :\fIScroll-Columns \fR
Move the view of displayable fields horizontally one column at a time.

\*(NT As a reminder, some fields/columns are not fixed-width but
allocated all remaining screen width when visible.
When scrolling right or left, that feature may produce some
unexpected results initially.

Additionally, there are special provisions for any variable width field
when positioned as the last displayed field.
Once that field is reached via the right arrow key, and is thus the only
column shown, you can continue scrolling horizontally within such a field.
\*(XC `C' \*(CI below for additional information.

.TP 4
\fBHome\fR\ \ :\fIJump-to-Home-Position \fR
Reposition the display to the un-scrolled coordinates.

.TP 4
\fBEnd\fR\ \ :\fIJump-to-End-Position \fR
Reposition the display so that the rightmost column reflects the last
displayable field and the bottom task row represents the last task.

\*(NT From this position it is still possible to scroll\fI down\fR
and\fI right\fR using the \*(KAs.
This is true until a single column and a single task is left as the only
display element.

.TP 4
\fBC\fR\ \ :\fIShow-scroll-coordinates\fR toggle \fR
Toggle an informational message which is displayed whenever the message
line is not otherwise being used.
That message will take one of two forms depending on whether or not a
variable width column has also been scrolled.

.nf
  \fBscroll coordinates: y = n/n (tasks), x = n/n (fields)\fR
  \fRscroll coordinates: y = n/n (tasks), x = n/n (fields)\fB + nn\fR
.fi

The coordinates shown as \fBn\fR/\fBn\fR are relative to the upper left
corner of the \*(CW.
The additional `\fB+\ nn\fR' represents the displacement into a variable
width column when it has been scrolled horizontally.
Such displacement occurs in normal 8 character tab stop amounts via
the right and left arrow keys.

.RS +4
.TP 4
\fBy = n/n (tasks) \fR
The first \fBn\fR represents the topmost visible task and is controlled
by \*(KSs.
The second \fBn\fR is updated automatically to reflect total tasks.

.TP 4
\fBx = n/n (fields) \fR
The first \fBn\fR represents the leftmost displayed column and is
controlled by \*(KSs.
The second \fBn\fR is the total number of displayable fields and is
established with the `\fBf\fR' \*(CI.
.RS -4

.PP
The above \*(CIs are\fB always\fR available in \*(FM but\fB never\fR
available in \*(AM if the \*(CW's \*(TD has been toggled \*F.

\*(NT When any form of filtering is active, you can expect some slight
aberrations when scrolling since not all tasks will be visible.
This is particularly apparent when using the Up/Down \*(KAs.

.\" ......................................................................
.SS 5d. SEARCHING in a Window
.\" ----------------------------------------------------------------------
You can use these \*(CIs to locate a task row containing a particular value.

.TP 4
\fBL\fR\ \ :\fILocate-a-string\fR
You will be prompted for the case-sensitive string to locate starting from
the current window coordinates.
There are no restrictions on search string content.

Searches are not limited to values from a single field or column.
All of the values displayed in a task row are allowed in a search string.
You may include spaces, numbers, symbols and even forest view artwork.

Keying <Enter> with no input will effectively disable the `&' key until
a new search string is entered.

.TP 4
\fB&\fR\ \ :\fILocate-next\fR
Assuming a search string has been established, \*(We will attempt to locate
the next occurrence.

.PP
When a match is found, the current window is repositioned vertically so the
task row containing that string is first.
The scroll coordinates message can provide confirmation of such vertical
repositioning (\*(Xc `C' \*(CI).
Horizontal scrolling, however, is never altered via searching.

The availability of a matching string will be influenced by the following
factors.
.RS +3
.TP 3
a. Which fields are displayable from the total available,
\*(Xt 3b. MANAGING Fields.
.TP 3
b. Scrolling a window vertically and/or horizontally,
\*(Xt 5c. SCROLLING a Window.
.TP 3
c. The state of the command/command-line toggle,
\*(Xc `c' \*(CI.
.TP 3
d. The stability of the chosen sort column,
for example PID is good but %CPU bad.
.RS -3

.PP
If a search fails, restoring the \*(CW home (unscrolled) position, scrolling
horizontally, displaying command-lines or choosing a more stable sort field
could yet produce a successful `&' search.

The above \*(CIs are\fB always\fR available in \*(FM but\fB never\fR
available in \*(AM if the \*(CW's \*(TD has been toggled \*F.

.\" ......................................................................
.SS 5e. FILTERING in a Window
.\" ----------------------------------------------------------------------
You can use this `Other Filter' feature to establish selection criteria which
will then determine which tasks are shown in the \*(CW.
Such filters can be made persistent if preserved in the rcfile via
the `W' \*(CI.

Establishing a filter requires: 1) a field name; 2) an operator; and
3) a selection value, as a minimum.
This is the most complex of \*(We's user input requirements so, when you make
a mistake, command recall will be your friend.
Remember the Up/Down \*(KAs or their aliases when prompted for input.

.B Filter Basics
.RS +3
.TP 3
1. field names are case sensitive and spelled as in the header
.TP 3
2. selection values need not comprise the full displayed field
.TP 3
3. a selection is either case insensitive or sensitive to case
.TP 3
4. the default is inclusion, prepending `!' denotes exclusions
.TP 3
5. multiple selection criteria can be applied to a \*(TW
.TP 3
6. inclusion and exclusion criteria can be used simultaneously
.TP 3
7. the 1 equality and 2 relational filters can be freely mixed
.TP 3
8. separate unique filters are maintained for each \*(TW

.PP
If a field is not turned on or is not currently in view, then your selection
criteria will not affect the display.
Later, should a filtered field become visible, the selection criteria will
then be applied.
.RE

.B Keyboard Summary
.TP 6
\ \ \fBO\fR\ \ :\fIOther-Filter\fR (upper case)
You will be prompted to establish a \fBcase sensitive\fR filter.

.TP 6
\ \ \fBo\fR\ \ :\fIOther-Filter\fR (lower case)
You will be prompted to establish a filter that \fBignores case\fR when
matching.

.TP 6
\ \fB^O\fR\ \ :\fIShow-Active-Filters\fR (Ctrl key + `o')
This can serve as a reminder of which filters are active in the \*(CW.
A summary will be shown on the message line until you press the <Enter> key.

.TP 6
\ \ \fB=\fR\ \ :\fIReset-Filtering\fR in current window
This clears all of your selection criteria in the \*(CW.
It also has additional impact so please \*(Xt 4a. GLOBAL Commands.

.TP 6
\ \ \fB+\fR\ \ :\fIReset-Filtering\fR in all windows
This clears the selection criteria in all windows, assuming you are in \*(AM.
As with the `=' \*(CI, it too has additional consequences so you might wish to
\*(Xt 5b. COMMANDS for Windows.

.PP
.B Input Requirements
.RS +3
.P
When prompted for selection criteria, the data you provide must take one
of two forms.
There are 3 required pieces of information, with a 4th as optional.
These examples use spaces for clarity but your input generally would not.
.nf
        #1           \fB#2\fR  #3              ( required )
        Field\-Name   ?   include\-if\-value
     \fB!\fR  Field\-Name   ?   \fBexclude\fR\-if\-value
     #4                                  ( optional )
.fi

Items #1, #3 and #4 should be self\-explanatory.
Item \fB#2\fR represents both a required \fIdelimiter\fR and the \fIoperator\fR
which must be one of either equality (`=') or relation (`<' or `>').

The `=' equality operator requires only a partial match and that
can reduce your `if\-value' input requirements.
The `>' or `<' relational operators always employ string comparisons,
even with numeric fields.
They are designed to work with a field's default \fIjustification\fR and
with homogeneous data.
When some field's numeric amounts have been subjected to \fIscaling\fR
while others have not, that data is no longer homogeneous.

If you establish a relational filter and you \fBhave\fR changed the
default Numeric or Character \fIjustification\fR, that filter is likely to fail.
When a relational filter is applied to a memory field and you \fBhave not\fR
changed the \fIscaling\fR, it may produce misleading results.
This happens, for example, because `100.0m' (MiB) would appear greater
than `1.000g' (GiB) when compared as strings.

If your filtered results appear suspect, simply altering justification or
scaling may yet achieve the desired objective.
See the `j', `J' and `e' \*(CIs for additional information.
.RE

.B Potential Problems
.RS +3
.P
These \fBGROUP\fR filters could produce the exact same results or the
second one might not display anything at all, just a blank \*(TW.
.nf
     GROUP=root        ( only the same results when )
     GROUP=ROOT        ( invoked via lower case `o' )
.fi

Either of these \fBRES\fR filters might yield inconsistent and/or
misleading results, depending on the current memory scaling factor.
Or both filters could produce the exact same results.
.nf
     RES>9999          ( only the same results when )
     !RES<10000        ( memory scaling is at `KiB' )
.fi

This \fBnMin\fR filter illustrates a problem unique to scalable fields.
This particular field can display a maximum of 4 digits, beyond which values
are automatically scaled to KiB or above.
So while amounts greater than 9999 exist, they will appear as 2.6m, 197k, etc.
.nf
     nMin>9999         ( always a blank \*(TW )
.fi
.RE

.B Potential Solutions
.RS +3
.P
These examples illustrate how Other Filtering can be creatively
applied to achieve almost any desired result.
Single quotes are sometimes shown to delimit the spaces which are part of
a filter or to represent a request for status (^O) accurately.
But if you used them with if-values in real life, no matches would be found.

Assuming field \fBnTH\fR is displayed, the first filter will result in
only multi-threaded processes being shown.
It also reminds us that a trailing space is part of every displayed field.
The second filter achieves the exact same results with less typing.
.nf
     !nTH=` 1 '                ( ` for clarity only )
     nTH>1                     ( same with less i/p )
.fi

With Forest View mode active and the \fBCOMMAND\fR column in view, this
filter effectively collapses child processes so that just 3 levels are shown.
.nf
     !COMMAND=`       `- '     ( ` for clarity only )
.fi

The final two filters appear as in response to the status request key (^O).
In reality, each filter would have required separate input.
The \fBPR\fR example shows the two concurrent filters necessary to display
tasks with priorities of 20 or more, since some might be negative.
Then by exploiting trailing spaces, the \fBnMin\fR series of filters could
achieve the failed `9999' objective discussed above.
.nf
     `PR>20' + `!PR=-'         ( 2 for right result )
     `!nMin=0 ' + `!nMin=1 ' + `!nMin=2 ' + `!nMin=3 ' ...
.fi
.RS -3

.\" ----------------------------------------------------------------------
.SH 6. FILES
.\" ----------------------------------------------------------------------
.SS 6a. PERSONAL Configuration File
.\" ----------------------------------------------------------------------
This file is created or updated via the `W' \*(CI.

The legacy version is written as `$HOME/.your\-name\-4\-\*(We' + `rc'
with a leading period.

A newly created \*(CF is written as procps/your\-name\-4\-\*(We' + `rc'
without a leading period.
The procps directory will be subordinate to either $XDG_CONFIG_HOME when
set as an absolute path or the $HOME/.config directory.

While not intended to be edited manually, here is the general layout:
.nf
    global   # line  1: the program name/alias notation
      "      # line  2: id,altscr,irixps,delay,curwin
    per ea   # line  a: winname,fieldscur
    window   # line  b: winflags,sortindx,maxtasks,etc
      "      # line  c: summclr,msgsclr,headclr,taskclr
    global   # line 15: additional miscellaneous settings
      "      # any remaining lines are devoted to optional
      "      # active `other filters' discussed in section 5e above
      "      # plus `inspect' entries discussed in section 6b below
.fi

If a valid absolute path to the rcfile cannot be established, customizations
made to a running \*(We will be impossible to preserve.

.\" ......................................................................
.SS 6b. ADDING INSPECT Entries
.\" ----------------------------------------------------------------------
To exploit the `Y' \*(CI, you must add entries at the\fB end\fR of the
\*(We personal \*(CF.
Such entries simply reflect a file to be read or command/pipeline to be
executed whose results will then be displayed in a separate scrollable,
searchable window.

If you don't know the location or name of your \*(We rcfile, use the `W'
\*(CI to rewrite it and note those details.

Inspect entries can be added with a redirected echo or by editing the \*(CF.
Redirecting an echo risks overwriting the rcfile should it replace (>)
rather than append (>>) to that file.
Conversely, when using an editor care must be taken not to corrupt existing
lines, some of which could contain unprintable data or unusual characters
depending on the \*(We version under which that \*(CF was saved.

Those Inspect entries beginning with a `#' character are ignored, regardless
of content.
Otherwise they consist of the following 3 elements, each of which\fI must\fR
be separated by a tab character (thus 2 `\\t' total):

.nf
  .type:  literal `file' or `pipe'
  .name:  selection shown on the Inspect screen
  .fmts:  string representing a path or command
.fi

The two types of Inspect entries are\fI not\fR interchangeable.
Those designated `\fBfile\fR' will be accessed using fopen and
must reference a single file in the `.fmts' element.
Entries specifying `\fBpipe\fR' will employ popen, their `.fmts' element
could contain many pipelined commands and, none can be interactive.

If the file or pipeline represented in your `.fmts' deals with the specific PID
input or accepted when prompted, then the format string must also contain
the `\fB%d\fR' specifier, as these examples illustrate.

.nf
  .fmts=  /proc/\fI%d\fR/numa_maps
  .fmts=  lsof -P -p\fI %d\fR
.fi

For `\fBpipe\fR' type entries only, you may also wish to redirect stderr to
stdout for a more comprehensive result.
Thus the format string becomes:

.nf
  .fmts=  pmap -x %d\fI 2>&1\fR
.fi

Here are examples of both types of Inspect entries as they might appear
in the rcfile.
The first entry will be ignored due to the initial `#' character.
For clarity, the pseudo tab depictions (^I) are surrounded by an
extra space but the actual tabs would not be.
.nf

  # pipe ^I Sockets ^I lsof -n -P -i 2>&1
  pipe ^I Open Files ^I lsof -P -p %d 2>&1
  file ^I NUMA Info ^I /proc/%d/numa_maps
  pipe ^I Log ^I tail -n100 /var/log/syslog | sort -Mr
.fi

Except for the commented entry above, these next examples show what could
be echoed to achieve similar results, assuming the rcfile name was `.toprc'.
However, due to the embedded tab characters, each of these lines should be
preceded by `\fB/bin/echo \-e\fR', not just a simple an `echo', to
enable backslash interpretation regardless of which shell you use.

.nf
  "pipe\\tOpen Files\\tlsof -P -p %d 2>&1" >> ~/.toprc
  "file\\tNUMA Info\\t/proc/%d/numa_maps" >> ~/.toprc
  "pipe\\tLog\\ttail -n200 /var/log/syslog | sort -Mr" >> ~/.toprc
.fi

If any inspect entry you create produces output with unprintable characters
they will be displayed in either the ^C notation or hexadecimal <FF> form,
depending on their value.
This applies to tab characters as well, which will show as `^I'.
If you want a truer representation, any embedded tabs should be expanded.
The following example takes what could have been a `file' entry but employs
a `pipe' instead so as to expand the embedded tabs.

.nf
  # next would have contained `\\t' ...
  # file ^I <your_name> ^I /proc/%d/status
  # but this will eliminate embedded `\\t' ...
  pipe ^I <your_name> ^I cat /proc/%d/status | expand \-
.fi

\*(NT Some programs might rely on \fISIGINT\fR to end.
Therefore, if a `\fBpipe\fR' such as the following is established, one must
use Ctrl-C to terminate it in order to review the results.
This is the single occasion where a `^C' will not also terminate \*(We.

.nf
  pipe ^I Trace ^I /usr/bin/strace -p %d 2>&1
.fi

Lastly, while `\fBpipe\fR' type entries have been discussed in terms of pipelines
and commands, there is nothing to prevent you from including \fI shell scripts\fR
as well.
Perhaps even newly created scripts designed specifically for the `Y' \*(CI.

For example, as the number of your Inspect entries grows over time, the `Options:'
row will be truncated when screen width is exceeded.
That does not affect operation other than to make some selections invisible.
However, if some choices are lost to truncation but you want to see more options,
there is an easy solution hinted at below.

.nf
  Inspection Pause at pid ...
  Use:  left/right then <Enter> ...
  Options:  help  1  2  3  4  5  6  7  8  9  10  11 ...
.fi

The entries in the \*(We rcfile would have a number for the `.name' element and
the `help' entry would identify a shell script you've written explaining what
those numbered selections actually mean.
In that way, many more choices can be made visible.

.\" ......................................................................
.SS 6c. SYSTEM Configuration File
.\" ----------------------------------------------------------------------
This \*(CF represents defaults for users who have not saved their own \*(CF.
The format mirrors exactly the personal \*(CF and can also include `inspect'
entries as explained above.

Creating it is a simple process.

1. Configure \*(We appropriately for your installation and preserve that
configuration with the `W' \*(CI.

2. Add and test any desired `inspect' entries.

3. Copy that \*(CF to the \fI/etc/\fR directory as `\fBtopdefaultrc\fR'.

.\" ......................................................................
.SS 6d. SYSTEM Restrictions File
.\" ----------------------------------------------------------------------
The presence of this file will influence which version of the help screen
is shown to an ordinary user.

More importantly, it will limit what ordinary users are allowed
to do when \*(We is running.
They will not be able to issue the following commands.
.nf
    k        Kill a task
    r        Renice a task
    d or s   Change delay/sleep interval
.fi

This \*(CF is not created by \*(We.
Rather, it is created manually and placed it in the \fI/etc/\fR
directory as `\fBtoprc\fR'.

It should have exactly two lines, as shown in this example:
.nf
    s        # line 1: secure mode switch
    5.0      # line 2: delay interval in seconds
.fi

.\" ----------------------------------------------------------------------
.SH 7. ENVIRONMENT VARIABLE(S)
.\" ----------------------------------------------------------------------
The value set for the following is unimportant, just its presence.

.IP LIBPROC_HIDE_KERNEL
This will prevent display of any kernel threads and exclude such processes
from the \*(SA Tasks/Threads counts.

.\" ----------------------------------------------------------------------
.SH 8. STUPID TRICKS Sampler
.\" ----------------------------------------------------------------------
Many of these tricks work best when you give \*(We a scheduling boost.
So plan on starting him with a nice value of \-10, assuming you've got
the authority.

.\" ......................................................................
.SS 7a. Kernel Magic
.\" ----------------------------------------------------------------------
.\" sorry, just can't help it -- don't ya love the sound of this?
For these stupid tricks, \*(We needs \*(FM.
.\" ( apparently AM static was a potential concern )

.IP \(bu 3
The user interface, through prompts and help, intentionally implies
that the delay interval is limited to tenths of a second.
However, you're free to set any desired delay.
If you want to see Linux at his scheduling best, try a delay of .09
seconds or less.

For this experiment, under x-windows open an xterm and maximize it.
Then do the following:
.nf
  . provide a scheduling boost and tiny delay via:
      nice -n -10 \*(We -d.09
  . keep sorted column highlighting \*F so as to
    minimize path length
  . turn \*O reverse row highlighting for emphasis
  . try various sort columns (TIME/MEM work well),
    and normal or reverse sorts to bring the most
    active processes into view
.fi

What you'll see is a very busy Linux doing what he's always done for you,
but there was no program available to illustrate this.

.IP \(bu 3
Under an xterm using `white-on-black' colors, on \*(We's Color Mapping screen
set the task color to black and be sure that task highlighting is set to bold,
not reverse.
Then set the delay interval to around .3 seconds.

After bringing the most active processes into view, what you'll see are
the ghostly images of just the currently running tasks.

.IP \(bu 3
Delete the existing rcfile, or create a new symlink.
Start this new version then type `T' (a secret key,
\*(Xt 4c. Task Area Commands, SORTING) followed by `W' and `q'.
Finally, restart the program with \-d0 (zero delay).

Your display will be refreshed at three times the rate of the former \*(We,
a 300% speed advantage.
As \*(We climbs the TIME ladder, be as patient as you can while speculating
on whether or not \*(We will ever reach the \*(We.

.\" ......................................................................
.SS 7b. Bouncing Windows
.\" ----------------------------------------------------------------------
For these stupid tricks, \*(We needs \*(AM.

.IP \(bu 3
With 3 or 4 \*(TDs visible, pick any window other than the last
and turn idle processes \*F using the `i' \*(CT.
Depending on where you applied `i', sometimes several \*(TDs are bouncing and
sometimes it's like an accordion, as \*(We tries his best to allocate space.

.IP \(bu 3
Set each window's summary lines differently: one with no memory (`m'); another
with no states (`t'); maybe one with nothing at all, just the message line.
Then hold down `a' or `w' and watch a variation on bouncing windows \*(Em
hopping windows.

.IP \(bu 3
Display all 4 windows and for each, in turn, set idle processes to \*F using
the `i' \*(CT.
You've just entered the "extreme bounce" zone.

.\" ......................................................................
.SS 7c. The Big Bird Window
.\" ----------------------------------------------------------------------
This stupid trick also requires \*(AM.

.IP \(bu 3
Display all 4 windows and make sure that 1:Def is the \*(CW.
Then, keep increasing window size with the `n' \*(CI until all the other
\*(TDs are "pushed out of the nest".

When they've all been displaced, toggle between all visible/invisible windows
using the `_' \*(CT.
Then ponder this:
.br
   is \*(We fibbing or telling honestly your imposed truth?

.\" ......................................................................
.SS 7d. The Ol' Switcheroo
.\" ----------------------------------------------------------------------
This stupid trick works best without \*(AM, since justification is active
on a per window basis.

.IP \(bu 3
Start \*(We and make COMMAND the last (rightmost) column displayed.
If necessary, use the `c' \*(CT to display command lines and ensure
that forest view mode is active with the `V' \*(CT.

Then use the up/down arrow keys to position the display so that some
truncated command lines are shown (`+' in last position).
You may have to resize your xterm to produce truncation.

Lastly, use the `j' \*(CT to make the COMMAND column right justified.

Now use the right arrow key to reach the COMMAND column.
Continuing with the right arrow key, watch closely the direction
of travel for the command lines being shown.

.br
   some lines travel left, while others travel right

   eventually all lines will Switcheroo, and move right

.\" ----------------------------------------------------------------------
.SH 9. BUGS
.\" ----------------------------------------------------------------------
Please send bug reports to
.UR procps@freelists.org
.UE .

 \" ----------------------------------------------------------------------
.SH 10. SEE Also
.\" ----------------------------------------------------------------------
.BR free (1),
.BR ps (1),
.BR uptime (1),
.BR atop (1),
.BR slabtop (1),
.BR vmstat (8),
.BR w (1)