summaryrefslogtreecommitdiff
path: root/src/backend/utils/adt/selfuncs.c
blob: 7e41bc56418ea0a2c9ac8a4a46e51d8454598461 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
/*-------------------------------------------------------------------------
 *
 * selfuncs.c
 *	  Selectivity functions and index cost estimation functions for
 *	  standard operators and index access methods.
 *
 *	  Selectivity routines are registered in the pg_operator catalog
 *	  in the "oprrest" and "oprjoin" attributes.
 *
 *	  Index cost functions are located via the index AM's API struct,
 *	  which is obtained from the handler function registered in pg_am.
 *
 * Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/utils/adt/selfuncs.c
 *
 *-------------------------------------------------------------------------
 */

/*----------
 * Operator selectivity estimation functions are called to estimate the
 * selectivity of WHERE clauses whose top-level operator is their operator.
 * We divide the problem into two cases:
 *		Restriction clause estimation: the clause involves vars of just
 *			one relation.
 *		Join clause estimation: the clause involves vars of multiple rels.
 * Join selectivity estimation is far more difficult and usually less accurate
 * than restriction estimation.
 *
 * When dealing with the inner scan of a nestloop join, we consider the
 * join's joinclauses as restriction clauses for the inner relation, and
 * treat vars of the outer relation as parameters (a/k/a constants of unknown
 * values).  So, restriction estimators need to be able to accept an argument
 * telling which relation is to be treated as the variable.
 *
 * The call convention for a restriction estimator (oprrest function) is
 *
 *		Selectivity oprrest (PlannerInfo *root,
 *							 Oid operator,
 *							 List *args,
 *							 int varRelid);
 *
 * root: general information about the query (rtable and RelOptInfo lists
 * are particularly important for the estimator).
 * operator: OID of the specific operator in question.
 * args: argument list from the operator clause.
 * varRelid: if not zero, the relid (rtable index) of the relation to
 * be treated as the variable relation.  May be zero if the args list
 * is known to contain vars of only one relation.
 *
 * This is represented at the SQL level (in pg_proc) as
 *
 *		float8 oprrest (internal, oid, internal, int4);
 *
 * The result is a selectivity, that is, a fraction (0 to 1) of the rows
 * of the relation that are expected to produce a TRUE result for the
 * given operator.
 *
 * The call convention for a join estimator (oprjoin function) is similar
 * except that varRelid is not needed, and instead join information is
 * supplied:
 *
 *		Selectivity oprjoin (PlannerInfo *root,
 *							 Oid operator,
 *							 List *args,
 *							 JoinType jointype,
 *							 SpecialJoinInfo *sjinfo);
 *
 *		float8 oprjoin (internal, oid, internal, int2, internal);
 *
 * (Before Postgres 8.4, join estimators had only the first four of these
 * parameters.  That signature is still allowed, but deprecated.)  The
 * relationship between jointype and sjinfo is explained in the comments for
 * clause_selectivity() --- the short version is that jointype is usually
 * best ignored in favor of examining sjinfo.
 *
 * Join selectivity for regular inner and outer joins is defined as the
 * fraction (0 to 1) of the cross product of the relations that is expected
 * to produce a TRUE result for the given operator.  For both semi and anti
 * joins, however, the selectivity is defined as the fraction of the left-hand
 * side relation's rows that are expected to have a match (ie, at least one
 * row with a TRUE result) in the right-hand side.
 *
 * For both oprrest and oprjoin functions, the operator's input collation OID
 * (if any) is passed using the standard fmgr mechanism, so that the estimator
 * function can fetch it with PG_GET_COLLATION().  Note, however, that all
 * statistics in pg_statistic are currently built using the relevant column's
 * collation.
 *----------
 */

#include "postgres.h"

#include <ctype.h>
#include <math.h>

#include "access/brin.h"
#include "access/brin_page.h"
#include "access/gin.h"
#include "access/table.h"
#include "access/tableam.h"
#include "access/visibilitymap.h"
#include "catalog/pg_am.h"
#include "catalog/pg_collation.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_statistic.h"
#include "catalog/pg_statistic_ext.h"
#include "executor/nodeAgg.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/optimizer.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/plancat.h"
#include "parser/parse_clause.h"
#include "parser/parsetree.h"
#include "statistics/statistics.h"
#include "storage/bufmgr.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/date.h"
#include "utils/datum.h"
#include "utils/fmgroids.h"
#include "utils/index_selfuncs.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/pg_locale.h"
#include "utils/rel.h"
#include "utils/selfuncs.h"
#include "utils/snapmgr.h"
#include "utils/spccache.h"
#include "utils/syscache.h"
#include "utils/timestamp.h"
#include "utils/typcache.h"


/* Hooks for plugins to get control when we ask for stats */
get_relation_stats_hook_type get_relation_stats_hook = NULL;
get_index_stats_hook_type get_index_stats_hook = NULL;

static double eqsel_internal(PG_FUNCTION_ARGS, bool negate);
static double eqjoinsel_inner(Oid opfuncoid, Oid collation,
							  VariableStatData *vardata1, VariableStatData *vardata2,
							  double nd1, double nd2,
							  bool isdefault1, bool isdefault2,
							  AttStatsSlot *sslot1, AttStatsSlot *sslot2,
							  Form_pg_statistic stats1, Form_pg_statistic stats2,
							  bool have_mcvs1, bool have_mcvs2);
static double eqjoinsel_semi(Oid opfuncoid, Oid collation,
							 VariableStatData *vardata1, VariableStatData *vardata2,
							 double nd1, double nd2,
							 bool isdefault1, bool isdefault2,
							 AttStatsSlot *sslot1, AttStatsSlot *sslot2,
							 Form_pg_statistic stats1, Form_pg_statistic stats2,
							 bool have_mcvs1, bool have_mcvs2,
							 RelOptInfo *inner_rel);
static bool estimate_multivariate_ndistinct(PlannerInfo *root,
											RelOptInfo *rel, List **varinfos, double *ndistinct);
static bool convert_to_scalar(Datum value, Oid valuetypid, Oid collid,
							  double *scaledvalue,
							  Datum lobound, Datum hibound, Oid boundstypid,
							  double *scaledlobound, double *scaledhibound);
static double convert_numeric_to_scalar(Datum value, Oid typid, bool *failure);
static void convert_string_to_scalar(char *value,
									 double *scaledvalue,
									 char *lobound,
									 double *scaledlobound,
									 char *hibound,
									 double *scaledhibound);
static void convert_bytea_to_scalar(Datum value,
									double *scaledvalue,
									Datum lobound,
									double *scaledlobound,
									Datum hibound,
									double *scaledhibound);
static double convert_one_string_to_scalar(char *value,
										   int rangelo, int rangehi);
static double convert_one_bytea_to_scalar(unsigned char *value, int valuelen,
										  int rangelo, int rangehi);
static char *convert_string_datum(Datum value, Oid typid, Oid collid,
								  bool *failure);
static double convert_timevalue_to_scalar(Datum value, Oid typid,
										  bool *failure);
static void examine_simple_variable(PlannerInfo *root, Var *var,
									VariableStatData *vardata);
static bool get_variable_range(PlannerInfo *root, VariableStatData *vardata,
							   Oid sortop, Oid collation,
							   Datum *min, Datum *max);
static void get_stats_slot_range(AttStatsSlot *sslot,
								 Oid opfuncoid, FmgrInfo *opproc,
								 Oid collation, int16 typLen, bool typByVal,
								 Datum *min, Datum *max, bool *p_have_data);
static bool get_actual_variable_range(PlannerInfo *root,
									  VariableStatData *vardata,
									  Oid sortop, Oid collation,
									  Datum *min, Datum *max);
static bool get_actual_variable_endpoint(Relation heapRel,
										 Relation indexRel,
										 ScanDirection indexscandir,
										 ScanKey scankeys,
										 int16 typLen,
										 bool typByVal,
										 TupleTableSlot *tableslot,
										 MemoryContext outercontext,
										 Datum *endpointDatum);
static RelOptInfo *find_join_input_rel(PlannerInfo *root, Relids relids);


/*
 *		eqsel			- Selectivity of "=" for any data types.
 *
 * Note: this routine is also used to estimate selectivity for some
 * operators that are not "=" but have comparable selectivity behavior,
 * such as "~=" (geometric approximate-match).  Even for "=", we must
 * keep in mind that the left and right datatypes may differ.
 */
Datum
eqsel(PG_FUNCTION_ARGS)
{
	PG_RETURN_FLOAT8((float8) eqsel_internal(fcinfo, false));
}

/*
 * Common code for eqsel() and neqsel()
 */
static double
eqsel_internal(PG_FUNCTION_ARGS, bool negate)
{
	PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
	Oid			operator = PG_GETARG_OID(1);
	List	   *args = (List *) PG_GETARG_POINTER(2);
	int			varRelid = PG_GETARG_INT32(3);
	Oid			collation = PG_GET_COLLATION();
	VariableStatData vardata;
	Node	   *other;
	bool		varonleft;
	double		selec;

	/*
	 * When asked about <>, we do the estimation using the corresponding =
	 * operator, then convert to <> via "1.0 - eq_selectivity - nullfrac".
	 */
	if (negate)
	{
		operator = get_negator(operator);
		if (!OidIsValid(operator))
		{
			/* Use default selectivity (should we raise an error instead?) */
			return 1.0 - DEFAULT_EQ_SEL;
		}
	}

	/*
	 * If expression is not variable = something or something = variable, then
	 * punt and return a default estimate.
	 */
	if (!get_restriction_variable(root, args, varRelid,
								  &vardata, &other, &varonleft))
		return negate ? (1.0 - DEFAULT_EQ_SEL) : DEFAULT_EQ_SEL;

	/*
	 * We can do a lot better if the something is a constant.  (Note: the
	 * Const might result from estimation rather than being a simple constant
	 * in the query.)
	 */
	if (IsA(other, Const))
		selec = var_eq_const(&vardata, operator, collation,
							 ((Const *) other)->constvalue,
							 ((Const *) other)->constisnull,
							 varonleft, negate);
	else
		selec = var_eq_non_const(&vardata, operator, collation, other,
								 varonleft, negate);

	ReleaseVariableStats(vardata);

	return selec;
}

/*
 * var_eq_const --- eqsel for var = const case
 *
 * This is exported so that some other estimation functions can use it.
 */
double
var_eq_const(VariableStatData *vardata, Oid operator, Oid collation,
			 Datum constval, bool constisnull,
			 bool varonleft, bool negate)
{
	double		selec;
	double		nullfrac = 0.0;
	bool		isdefault;
	Oid			opfuncoid;

	/*
	 * If the constant is NULL, assume operator is strict and return zero, ie,
	 * operator will never return TRUE.  (It's zero even for a negator op.)
	 */
	if (constisnull)
		return 0.0;

	/*
	 * Grab the nullfrac for use below.  Note we allow use of nullfrac
	 * regardless of security check.
	 */
	if (HeapTupleIsValid(vardata->statsTuple))
	{
		Form_pg_statistic stats;

		stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
		nullfrac = stats->stanullfrac;
	}

	/*
	 * If we matched the var to a unique index or DISTINCT clause, assume
	 * there is exactly one match regardless of anything else.  (This is
	 * slightly bogus, since the index or clause's equality operator might be
	 * different from ours, but it's much more likely to be right than
	 * ignoring the information.)
	 */
	if (vardata->isunique && vardata->rel && vardata->rel->tuples >= 1.0)
	{
		selec = 1.0 / vardata->rel->tuples;
	}
	else if (HeapTupleIsValid(vardata->statsTuple) &&
			 statistic_proc_security_check(vardata,
										   (opfuncoid = get_opcode(operator))))
	{
		AttStatsSlot sslot;
		bool		match = false;
		int			i;

		/*
		 * Is the constant "=" to any of the column's most common values?
		 * (Although the given operator may not really be "=", we will assume
		 * that seeing whether it returns TRUE is an appropriate test.  If you
		 * don't like this, maybe you shouldn't be using eqsel for your
		 * operator...)
		 */
		if (get_attstatsslot(&sslot, vardata->statsTuple,
							 STATISTIC_KIND_MCV, InvalidOid,
							 ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
		{
			LOCAL_FCINFO(fcinfo, 2);
			FmgrInfo	eqproc;

			fmgr_info(opfuncoid, &eqproc);

			/*
			 * Save a few cycles by setting up the fcinfo struct just once.
			 * Using FunctionCallInvoke directly also avoids failure if the
			 * eqproc returns NULL, though really equality functions should
			 * never do that.
			 */
			InitFunctionCallInfoData(*fcinfo, &eqproc, 2, collation,
									 NULL, NULL);
			fcinfo->args[0].isnull = false;
			fcinfo->args[1].isnull = false;
			/* be careful to apply operator right way 'round */
			if (varonleft)
				fcinfo->args[1].value = constval;
			else
				fcinfo->args[0].value = constval;

			for (i = 0; i < sslot.nvalues; i++)
			{
				Datum		fresult;

				if (varonleft)
					fcinfo->args[0].value = sslot.values[i];
				else
					fcinfo->args[1].value = sslot.values[i];
				fcinfo->isnull = false;
				fresult = FunctionCallInvoke(fcinfo);
				if (!fcinfo->isnull && DatumGetBool(fresult))
				{
					match = true;
					break;
				}
			}
		}
		else
		{
			/* no most-common-value info available */
			i = 0;				/* keep compiler quiet */
		}

		if (match)
		{
			/*
			 * Constant is "=" to this common value.  We know selectivity
			 * exactly (or as exactly as ANALYZE could calculate it, anyway).
			 */
			selec = sslot.numbers[i];
		}
		else
		{
			/*
			 * Comparison is against a constant that is neither NULL nor any
			 * of the common values.  Its selectivity cannot be more than
			 * this:
			 */
			double		sumcommon = 0.0;
			double		otherdistinct;

			for (i = 0; i < sslot.nnumbers; i++)
				sumcommon += sslot.numbers[i];
			selec = 1.0 - sumcommon - nullfrac;
			CLAMP_PROBABILITY(selec);

			/*
			 * and in fact it's probably a good deal less. We approximate that
			 * all the not-common values share this remaining fraction
			 * equally, so we divide by the number of other distinct values.
			 */
			otherdistinct = get_variable_numdistinct(vardata, &isdefault) -
				sslot.nnumbers;
			if (otherdistinct > 1)
				selec /= otherdistinct;

			/*
			 * Another cross-check: selectivity shouldn't be estimated as more
			 * than the least common "most common value".
			 */
			if (sslot.nnumbers > 0 && selec > sslot.numbers[sslot.nnumbers - 1])
				selec = sslot.numbers[sslot.nnumbers - 1];
		}

		free_attstatsslot(&sslot);
	}
	else
	{
		/*
		 * No ANALYZE stats available, so make a guess using estimated number
		 * of distinct values and assuming they are equally common. (The guess
		 * is unlikely to be very good, but we do know a few special cases.)
		 */
		selec = 1.0 / get_variable_numdistinct(vardata, &isdefault);
	}

	/* now adjust if we wanted <> rather than = */
	if (negate)
		selec = 1.0 - selec - nullfrac;

	/* result should be in range, but make sure... */
	CLAMP_PROBABILITY(selec);

	return selec;
}

/*
 * var_eq_non_const --- eqsel for var = something-other-than-const case
 *
 * This is exported so that some other estimation functions can use it.
 */
double
var_eq_non_const(VariableStatData *vardata, Oid operator, Oid collation,
				 Node *other,
				 bool varonleft, bool negate)
{
	double		selec;
	double		nullfrac = 0.0;
	bool		isdefault;

	/*
	 * Grab the nullfrac for use below.
	 */
	if (HeapTupleIsValid(vardata->statsTuple))
	{
		Form_pg_statistic stats;

		stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
		nullfrac = stats->stanullfrac;
	}

	/*
	 * If we matched the var to a unique index or DISTINCT clause, assume
	 * there is exactly one match regardless of anything else.  (This is
	 * slightly bogus, since the index or clause's equality operator might be
	 * different from ours, but it's much more likely to be right than
	 * ignoring the information.)
	 */
	if (vardata->isunique && vardata->rel && vardata->rel->tuples >= 1.0)
	{
		selec = 1.0 / vardata->rel->tuples;
	}
	else if (HeapTupleIsValid(vardata->statsTuple))
	{
		double		ndistinct;
		AttStatsSlot sslot;

		/*
		 * Search is for a value that we do not know a priori, but we will
		 * assume it is not NULL.  Estimate the selectivity as non-null
		 * fraction divided by number of distinct values, so that we get a
		 * result averaged over all possible values whether common or
		 * uncommon.  (Essentially, we are assuming that the not-yet-known
		 * comparison value is equally likely to be any of the possible
		 * values, regardless of their frequency in the table.  Is that a good
		 * idea?)
		 */
		selec = 1.0 - nullfrac;
		ndistinct = get_variable_numdistinct(vardata, &isdefault);
		if (ndistinct > 1)
			selec /= ndistinct;

		/*
		 * Cross-check: selectivity should never be estimated as more than the
		 * most common value's.
		 */
		if (get_attstatsslot(&sslot, vardata->statsTuple,
							 STATISTIC_KIND_MCV, InvalidOid,
							 ATTSTATSSLOT_NUMBERS))
		{
			if (sslot.nnumbers > 0 && selec > sslot.numbers[0])
				selec = sslot.numbers[0];
			free_attstatsslot(&sslot);
		}
	}
	else
	{
		/*
		 * No ANALYZE stats available, so make a guess using estimated number
		 * of distinct values and assuming they are equally common. (The guess
		 * is unlikely to be very good, but we do know a few special cases.)
		 */
		selec = 1.0 / get_variable_numdistinct(vardata, &isdefault);
	}

	/* now adjust if we wanted <> rather than = */
	if (negate)
		selec = 1.0 - selec - nullfrac;

	/* result should be in range, but make sure... */
	CLAMP_PROBABILITY(selec);

	return selec;
}

/*
 *		neqsel			- Selectivity of "!=" for any data types.
 *
 * This routine is also used for some operators that are not "!="
 * but have comparable selectivity behavior.  See above comments
 * for eqsel().
 */
Datum
neqsel(PG_FUNCTION_ARGS)
{
	PG_RETURN_FLOAT8((float8) eqsel_internal(fcinfo, true));
}

/*
 *	scalarineqsel		- Selectivity of "<", "<=", ">", ">=" for scalars.
 *
 * This is the guts of scalarltsel/scalarlesel/scalargtsel/scalargesel.
 * The isgt and iseq flags distinguish which of the four cases apply.
 *
 * The caller has commuted the clause, if necessary, so that we can treat
 * the variable as being on the left.  The caller must also make sure that
 * the other side of the clause is a non-null Const, and dissect that into
 * a value and datatype.  (This definition simplifies some callers that
 * want to estimate against a computed value instead of a Const node.)
 *
 * This routine works for any datatype (or pair of datatypes) known to
 * convert_to_scalar().  If it is applied to some other datatype,
 * it will return an approximate estimate based on assuming that the constant
 * value falls in the middle of the bin identified by binary search.
 */
static double
scalarineqsel(PlannerInfo *root, Oid operator, bool isgt, bool iseq,
			  Oid collation,
			  VariableStatData *vardata, Datum constval, Oid consttype)
{
	Form_pg_statistic stats;
	FmgrInfo	opproc;
	double		mcv_selec,
				hist_selec,
				sumcommon;
	double		selec;

	if (!HeapTupleIsValid(vardata->statsTuple))
	{
		/*
		 * No stats are available.  Typically this means we have to fall back
		 * on the default estimate; but if the variable is CTID then we can
		 * make an estimate based on comparing the constant to the table size.
		 */
		if (vardata->var && IsA(vardata->var, Var) &&
			((Var *) vardata->var)->varattno == SelfItemPointerAttributeNumber)
		{
			ItemPointer itemptr;
			double		block;
			double		density;

			/*
			 * If the relation's empty, we're going to include all of it.
			 * (This is mostly to avoid divide-by-zero below.)
			 */
			if (vardata->rel->pages == 0)
				return 1.0;

			itemptr = (ItemPointer) DatumGetPointer(constval);
			block = ItemPointerGetBlockNumberNoCheck(itemptr);

			/*
			 * Determine the average number of tuples per page (density).
			 *
			 * Since the last page will, on average, be only half full, we can
			 * estimate it to have half as many tuples as earlier pages.  So
			 * give it half the weight of a regular page.
			 */
			density = vardata->rel->tuples / (vardata->rel->pages - 0.5);

			/* If target is the last page, use half the density. */
			if (block >= vardata->rel->pages - 1)
				density *= 0.5;

			/*
			 * Using the average tuples per page, calculate how far into the
			 * page the itemptr is likely to be and adjust block accordingly,
			 * by adding that fraction of a whole block (but never more than a
			 * whole block, no matter how high the itemptr's offset is).  Here
			 * we are ignoring the possibility of dead-tuple line pointers,
			 * which is fairly bogus, but we lack the info to do better.
			 */
			if (density > 0.0)
			{
				OffsetNumber offset = ItemPointerGetOffsetNumberNoCheck(itemptr);

				block += Min(offset / density, 1.0);
			}

			/*
			 * Convert relative block number to selectivity.  Again, the last
			 * page has only half weight.
			 */
			selec = block / (vardata->rel->pages - 0.5);

			/*
			 * The calculation so far gave us a selectivity for the "<=" case.
			 * We'll have one fewer tuple for "<" and one additional tuple for
			 * ">=", the latter of which we'll reverse the selectivity for
			 * below, so we can simply subtract one tuple for both cases.  The
			 * cases that need this adjustment can be identified by iseq being
			 * equal to isgt.
			 */
			if (iseq == isgt && vardata->rel->tuples >= 1.0)
				selec -= (1.0 / vardata->rel->tuples);

			/* Finally, reverse the selectivity for the ">", ">=" cases. */
			if (isgt)
				selec = 1.0 - selec;

			CLAMP_PROBABILITY(selec);
			return selec;
		}

		/* no stats available, so default result */
		return DEFAULT_INEQ_SEL;
	}
	stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);

	fmgr_info(get_opcode(operator), &opproc);

	/*
	 * If we have most-common-values info, add up the fractions of the MCV
	 * entries that satisfy MCV OP CONST.  These fractions contribute directly
	 * to the result selectivity.  Also add up the total fraction represented
	 * by MCV entries.
	 */
	mcv_selec = mcv_selectivity(vardata, &opproc, collation, constval, true,
								&sumcommon);

	/*
	 * If there is a histogram, determine which bin the constant falls in, and
	 * compute the resulting contribution to selectivity.
	 */
	hist_selec = ineq_histogram_selectivity(root, vardata,
											operator, &opproc, isgt, iseq,
											collation,
											constval, consttype);

	/*
	 * Now merge the results from the MCV and histogram calculations,
	 * realizing that the histogram covers only the non-null values that are
	 * not listed in MCV.
	 */
	selec = 1.0 - stats->stanullfrac - sumcommon;

	if (hist_selec >= 0.0)
		selec *= hist_selec;
	else
	{
		/*
		 * If no histogram but there are values not accounted for by MCV,
		 * arbitrarily assume half of them will match.
		 */
		selec *= 0.5;
	}

	selec += mcv_selec;

	/* result should be in range, but make sure... */
	CLAMP_PROBABILITY(selec);

	return selec;
}

/*
 *	mcv_selectivity			- Examine the MCV list for selectivity estimates
 *
 * Determine the fraction of the variable's MCV population that satisfies
 * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft.  Also
 * compute the fraction of the total column population represented by the MCV
 * list.  This code will work for any boolean-returning predicate operator.
 *
 * The function result is the MCV selectivity, and the fraction of the
 * total population is returned into *sumcommonp.  Zeroes are returned
 * if there is no MCV list.
 */
double
mcv_selectivity(VariableStatData *vardata, FmgrInfo *opproc, Oid collation,
				Datum constval, bool varonleft,
				double *sumcommonp)
{
	double		mcv_selec,
				sumcommon;
	AttStatsSlot sslot;
	int			i;

	mcv_selec = 0.0;
	sumcommon = 0.0;

	if (HeapTupleIsValid(vardata->statsTuple) &&
		statistic_proc_security_check(vardata, opproc->fn_oid) &&
		get_attstatsslot(&sslot, vardata->statsTuple,
						 STATISTIC_KIND_MCV, InvalidOid,
						 ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS))
	{
		LOCAL_FCINFO(fcinfo, 2);

		/*
		 * We invoke the opproc "by hand" so that we won't fail on NULL
		 * results.  Such cases won't arise for normal comparison functions,
		 * but generic_restriction_selectivity could perhaps be used with
		 * operators that can return NULL.  A small side benefit is to not
		 * need to re-initialize the fcinfo struct from scratch each time.
		 */
		InitFunctionCallInfoData(*fcinfo, opproc, 2, collation,
								 NULL, NULL);
		fcinfo->args[0].isnull = false;
		fcinfo->args[1].isnull = false;
		/* be careful to apply operator right way 'round */
		if (varonleft)
			fcinfo->args[1].value = constval;
		else
			fcinfo->args[0].value = constval;

		for (i = 0; i < sslot.nvalues; i++)
		{
			Datum		fresult;

			if (varonleft)
				fcinfo->args[0].value = sslot.values[i];
			else
				fcinfo->args[1].value = sslot.values[i];
			fcinfo->isnull = false;
			fresult = FunctionCallInvoke(fcinfo);
			if (!fcinfo->isnull && DatumGetBool(fresult))
				mcv_selec += sslot.numbers[i];
			sumcommon += sslot.numbers[i];
		}
		free_attstatsslot(&sslot);
	}

	*sumcommonp = sumcommon;
	return mcv_selec;
}

/*
 *	histogram_selectivity	- Examine the histogram for selectivity estimates
 *
 * Determine the fraction of the variable's histogram entries that satisfy
 * the predicate (VAR OP CONST), or (CONST OP VAR) if !varonleft.
 *
 * This code will work for any boolean-returning predicate operator, whether
 * or not it has anything to do with the histogram sort operator.  We are
 * essentially using the histogram just as a representative sample.  However,
 * small histograms are unlikely to be all that representative, so the caller
 * should be prepared to fall back on some other estimation approach when the
 * histogram is missing or very small.  It may also be prudent to combine this
 * approach with another one when the histogram is small.
 *
 * If the actual histogram size is not at least min_hist_size, we won't bother
 * to do the calculation at all.  Also, if the n_skip parameter is > 0, we
 * ignore the first and last n_skip histogram elements, on the grounds that
 * they are outliers and hence not very representative.  Typical values for
 * these parameters are 10 and 1.
 *
 * The function result is the selectivity, or -1 if there is no histogram
 * or it's smaller than min_hist_size.
 *
 * The output parameter *hist_size receives the actual histogram size,
 * or zero if no histogram.  Callers may use this number to decide how
 * much faith to put in the function result.
 *
 * Note that the result disregards both the most-common-values (if any) and
 * null entries.  The caller is expected to combine this result with
 * statistics for those portions of the column population.  It may also be
 * prudent to clamp the result range, ie, disbelieve exact 0 or 1 outputs.
 */
double
histogram_selectivity(VariableStatData *vardata,
					  FmgrInfo *opproc, Oid collation,
					  Datum constval, bool varonleft,
					  int min_hist_size, int n_skip,
					  int *hist_size)
{
	double		result;
	AttStatsSlot sslot;

	/* check sanity of parameters */
	Assert(n_skip >= 0);
	Assert(min_hist_size > 2 * n_skip);

	if (HeapTupleIsValid(vardata->statsTuple) &&
		statistic_proc_security_check(vardata, opproc->fn_oid) &&
		get_attstatsslot(&sslot, vardata->statsTuple,
						 STATISTIC_KIND_HISTOGRAM, InvalidOid,
						 ATTSTATSSLOT_VALUES))
	{
		*hist_size = sslot.nvalues;
		if (sslot.nvalues >= min_hist_size)
		{
			LOCAL_FCINFO(fcinfo, 2);
			int			nmatch = 0;
			int			i;

			/*
			 * We invoke the opproc "by hand" so that we won't fail on NULL
			 * results.  Such cases won't arise for normal comparison
			 * functions, but generic_restriction_selectivity could perhaps be
			 * used with operators that can return NULL.  A small side benefit
			 * is to not need to re-initialize the fcinfo struct from scratch
			 * each time.
			 */
			InitFunctionCallInfoData(*fcinfo, opproc, 2, collation,
									 NULL, NULL);
			fcinfo->args[0].isnull = false;
			fcinfo->args[1].isnull = false;
			/* be careful to apply operator right way 'round */
			if (varonleft)
				fcinfo->args[1].value = constval;
			else
				fcinfo->args[0].value = constval;

			for (i = n_skip; i < sslot.nvalues - n_skip; i++)
			{
				Datum		fresult;

				if (varonleft)
					fcinfo->args[0].value = sslot.values[i];
				else
					fcinfo->args[1].value = sslot.values[i];
				fcinfo->isnull = false;
				fresult = FunctionCallInvoke(fcinfo);
				if (!fcinfo->isnull && DatumGetBool(fresult))
					nmatch++;
			}
			result = ((double) nmatch) / ((double) (sslot.nvalues - 2 * n_skip));
		}
		else
			result = -1;
		free_attstatsslot(&sslot);
	}
	else
	{
		*hist_size = 0;
		result = -1;
	}

	return result;
}

/*
 *	generic_restriction_selectivity		- Selectivity for almost anything
 *
 * This function estimates selectivity for operators that we don't have any
 * special knowledge about, but are on data types that we collect standard
 * MCV and/or histogram statistics for.  (Additional assumptions are that
 * the operator is strict and immutable, or at least stable.)
 *
 * If we have "VAR OP CONST" or "CONST OP VAR", selectivity is estimated by
 * applying the operator to each element of the column's MCV and/or histogram
 * stats, and merging the results using the assumption that the histogram is
 * a reasonable random sample of the column's non-MCV population.  Note that
 * if the operator's semantics are related to the histogram ordering, this
 * might not be such a great assumption; other functions such as
 * scalarineqsel() are probably a better match in such cases.
 *
 * Otherwise, fall back to the default selectivity provided by the caller.
 */
double
generic_restriction_selectivity(PlannerInfo *root, Oid oproid, Oid collation,
								List *args, int varRelid,
								double default_selectivity)
{
	double		selec;
	VariableStatData vardata;
	Node	   *other;
	bool		varonleft;

	/*
	 * If expression is not variable OP something or something OP variable,
	 * then punt and return the default estimate.
	 */
	if (!get_restriction_variable(root, args, varRelid,
								  &vardata, &other, &varonleft))
		return default_selectivity;

	/*
	 * If the something is a NULL constant, assume operator is strict and
	 * return zero, ie, operator will never return TRUE.
	 */
	if (IsA(other, Const) &&
		((Const *) other)->constisnull)
	{
		ReleaseVariableStats(vardata);
		return 0.0;
	}

	if (IsA(other, Const))
	{
		/* Variable is being compared to a known non-null constant */
		Datum		constval = ((Const *) other)->constvalue;
		FmgrInfo	opproc;
		double		mcvsum;
		double		mcvsel;
		double		nullfrac;
		int			hist_size;

		fmgr_info(get_opcode(oproid), &opproc);

		/*
		 * Calculate the selectivity for the column's most common values.
		 */
		mcvsel = mcv_selectivity(&vardata, &opproc, collation,
								 constval, varonleft,
								 &mcvsum);

		/*
		 * If the histogram is large enough, see what fraction of it matches
		 * the query, and assume that's representative of the non-MCV
		 * population.  Otherwise use the default selectivity for the non-MCV
		 * population.
		 */
		selec = histogram_selectivity(&vardata, &opproc, collation,
									  constval, varonleft,
									  10, 1, &hist_size);
		if (selec < 0)
		{
			/* Nope, fall back on default */
			selec = default_selectivity;
		}
		else if (hist_size < 100)
		{
			/*
			 * For histogram sizes from 10 to 100, we combine the histogram
			 * and default selectivities, putting increasingly more trust in
			 * the histogram for larger sizes.
			 */
			double		hist_weight = hist_size / 100.0;

			selec = selec * hist_weight +
				default_selectivity * (1.0 - hist_weight);
		}

		/* In any case, don't believe extremely small or large estimates. */
		if (selec < 0.0001)
			selec = 0.0001;
		else if (selec > 0.9999)
			selec = 0.9999;

		/* Don't forget to account for nulls. */
		if (HeapTupleIsValid(vardata.statsTuple))
			nullfrac = ((Form_pg_statistic) GETSTRUCT(vardata.statsTuple))->stanullfrac;
		else
			nullfrac = 0.0;

		/*
		 * Now merge the results from the MCV and histogram calculations,
		 * realizing that the histogram covers only the non-null values that
		 * are not listed in MCV.
		 */
		selec *= 1.0 - nullfrac - mcvsum;
		selec += mcvsel;
	}
	else
	{
		/* Comparison value is not constant, so we can't do anything */
		selec = default_selectivity;
	}

	ReleaseVariableStats(vardata);

	/* result should be in range, but make sure... */
	CLAMP_PROBABILITY(selec);

	return selec;
}

/*
 *	ineq_histogram_selectivity	- Examine the histogram for scalarineqsel
 *
 * Determine the fraction of the variable's histogram population that
 * satisfies the inequality condition, ie, VAR < (or <=, >, >=) CONST.
 * The isgt and iseq flags distinguish which of the four cases apply.
 *
 * While opproc could be looked up from the operator OID, common callers
 * also need to call it separately, so we make the caller pass both.
 *
 * Returns -1 if there is no histogram (valid results will always be >= 0).
 *
 * Note that the result disregards both the most-common-values (if any) and
 * null entries.  The caller is expected to combine this result with
 * statistics for those portions of the column population.
 *
 * This is exported so that some other estimation functions can use it.
 */
double
ineq_histogram_selectivity(PlannerInfo *root,
						   VariableStatData *vardata,
						   Oid opoid, FmgrInfo *opproc, bool isgt, bool iseq,
						   Oid collation,
						   Datum constval, Oid consttype)
{
	double		hist_selec;
	AttStatsSlot sslot;

	hist_selec = -1.0;

	/*
	 * Someday, ANALYZE might store more than one histogram per rel/att,
	 * corresponding to more than one possible sort ordering defined for the
	 * column type.  Right now, we know there is only one, so just grab it and
	 * see if it matches the query.
	 *
	 * Note that we can't use opoid as search argument; the staop appearing in
	 * pg_statistic will be for the relevant '<' operator, but what we have
	 * might be some other inequality operator such as '>='.  (Even if opoid
	 * is a '<' operator, it could be cross-type.)  Hence we must use
	 * comparison_ops_are_compatible() to see if the operators match.
	 */
	if (HeapTupleIsValid(vardata->statsTuple) &&
		statistic_proc_security_check(vardata, opproc->fn_oid) &&
		get_attstatsslot(&sslot, vardata->statsTuple,
						 STATISTIC_KIND_HISTOGRAM, InvalidOid,
						 ATTSTATSSLOT_VALUES))
	{
		if (sslot.nvalues > 1 &&
			sslot.stacoll == collation &&
			comparison_ops_are_compatible(sslot.staop, opoid))
		{
			/*
			 * Use binary search to find the desired location, namely the
			 * right end of the histogram bin containing the comparison value,
			 * which is the leftmost entry for which the comparison operator
			 * succeeds (if isgt) or fails (if !isgt).
			 *
			 * In this loop, we pay no attention to whether the operator iseq
			 * or not; that detail will be mopped up below.  (We cannot tell,
			 * anyway, whether the operator thinks the values are equal.)
			 *
			 * If the binary search accesses the first or last histogram
			 * entry, we try to replace that endpoint with the true column min
			 * or max as found by get_actual_variable_range().  This
			 * ameliorates misestimates when the min or max is moving as a
			 * result of changes since the last ANALYZE.  Note that this could
			 * result in effectively including MCVs into the histogram that
			 * weren't there before, but we don't try to correct for that.
			 */
			double		histfrac;
			int			lobound = 0;	/* first possible slot to search */
			int			hibound = sslot.nvalues;	/* last+1 slot to search */
			bool		have_end = false;

			/*
			 * If there are only two histogram entries, we'll want up-to-date
			 * values for both.  (If there are more than two, we need at most
			 * one of them to be updated, so we deal with that within the
			 * loop.)
			 */
			if (sslot.nvalues == 2)
				have_end = get_actual_variable_range(root,
													 vardata,
													 sslot.staop,
													 collation,
													 &sslot.values[0],
													 &sslot.values[1]);

			while (lobound < hibound)
			{
				int			probe = (lobound + hibound) / 2;
				bool		ltcmp;

				/*
				 * If we find ourselves about to compare to the first or last
				 * histogram entry, first try to replace it with the actual
				 * current min or max (unless we already did so above).
				 */
				if (probe == 0 && sslot.nvalues > 2)
					have_end = get_actual_variable_range(root,
														 vardata,
														 sslot.staop,
														 collation,
														 &sslot.values[0],
														 NULL);
				else if (probe == sslot.nvalues - 1 && sslot.nvalues > 2)
					have_end = get_actual_variable_range(root,
														 vardata,
														 sslot.staop,
														 collation,
														 NULL,
														 &sslot.values[probe]);

				ltcmp = DatumGetBool(FunctionCall2Coll(opproc,
													   collation,
													   sslot.values[probe],
													   constval));
				if (isgt)
					ltcmp = !ltcmp;
				if (ltcmp)
					lobound = probe + 1;
				else
					hibound = probe;
			}

			if (lobound <= 0)
			{
				/*
				 * Constant is below lower histogram boundary.  More
				 * precisely, we have found that no entry in the histogram
				 * satisfies the inequality clause (if !isgt) or they all do
				 * (if isgt).  We estimate that that's true of the entire
				 * table, so set histfrac to 0.0 (which we'll flip to 1.0
				 * below, if isgt).
				 */
				histfrac = 0.0;
			}
			else if (lobound >= sslot.nvalues)
			{
				/*
				 * Inverse case: constant is above upper histogram boundary.
				 */
				histfrac = 1.0;
			}
			else
			{
				/* We have values[i-1] <= constant <= values[i]. */
				int			i = lobound;
				double		eq_selec = 0;
				double		val,
							high,
							low;
				double		binfrac;

				/*
				 * In the cases where we'll need it below, obtain an estimate
				 * of the selectivity of "x = constval".  We use a calculation
				 * similar to what var_eq_const() does for a non-MCV constant,
				 * ie, estimate that all distinct non-MCV values occur equally
				 * often.  But multiplication by "1.0 - sumcommon - nullfrac"
				 * will be done by our caller, so we shouldn't do that here.
				 * Therefore we can't try to clamp the estimate by reference
				 * to the least common MCV; the result would be too small.
				 *
				 * Note: since this is effectively assuming that constval
				 * isn't an MCV, it's logically dubious if constval in fact is
				 * one.  But we have to apply *some* correction for equality,
				 * and anyway we cannot tell if constval is an MCV, since we
				 * don't have a suitable equality operator at hand.
				 */
				if (i == 1 || isgt == iseq)
				{
					double		otherdistinct;
					bool		isdefault;
					AttStatsSlot mcvslot;

					/* Get estimated number of distinct values */
					otherdistinct = get_variable_numdistinct(vardata,
															 &isdefault);

					/* Subtract off the number of known MCVs */
					if (get_attstatsslot(&mcvslot, vardata->statsTuple,
										 STATISTIC_KIND_MCV, InvalidOid,
										 ATTSTATSSLOT_NUMBERS))
					{
						otherdistinct -= mcvslot.nnumbers;
						free_attstatsslot(&mcvslot);
					}

					/* If result doesn't seem sane, leave eq_selec at 0 */
					if (otherdistinct > 1)
						eq_selec = 1.0 / otherdistinct;
				}

				/*
				 * Convert the constant and the two nearest bin boundary
				 * values to a uniform comparison scale, and do a linear
				 * interpolation within this bin.
				 */
				if (convert_to_scalar(constval, consttype, collation,
									  &val,
									  sslot.values[i - 1], sslot.values[i],
									  vardata->vartype,
									  &low, &high))
				{
					if (high <= low)
					{
						/* cope if bin boundaries appear identical */
						binfrac = 0.5;
					}
					else if (val <= low)
						binfrac = 0.0;
					else if (val >= high)
						binfrac = 1.0;
					else
					{
						binfrac = (val - low) / (high - low);

						/*
						 * Watch out for the possibility that we got a NaN or
						 * Infinity from the division.  This can happen
						 * despite the previous checks, if for example "low"
						 * is -Infinity.
						 */
						if (isnan(binfrac) ||
							binfrac < 0.0 || binfrac > 1.0)
							binfrac = 0.5;
					}
				}
				else
				{
					/*
					 * Ideally we'd produce an error here, on the grounds that
					 * the given operator shouldn't have scalarXXsel
					 * registered as its selectivity func unless we can deal
					 * with its operand types.  But currently, all manner of
					 * stuff is invoking scalarXXsel, so give a default
					 * estimate until that can be fixed.
					 */
					binfrac = 0.5;
				}

				/*
				 * Now, compute the overall selectivity across the values
				 * represented by the histogram.  We have i-1 full bins and
				 * binfrac partial bin below the constant.
				 */
				histfrac = (double) (i - 1) + binfrac;
				histfrac /= (double) (sslot.nvalues - 1);

				/*
				 * At this point, histfrac is an estimate of the fraction of
				 * the population represented by the histogram that satisfies
				 * "x <= constval".  Somewhat remarkably, this statement is
				 * true regardless of which operator we were doing the probes
				 * with, so long as convert_to_scalar() delivers reasonable
				 * results.  If the probe constant is equal to some histogram
				 * entry, we would have considered the bin to the left of that
				 * entry if probing with "<" or ">=", or the bin to the right
				 * if probing with "<=" or ">"; but binfrac would have come
				 * out as 1.0 in the first case and 0.0 in the second, leading
				 * to the same histfrac in either case.  For probe constants
				 * between histogram entries, we find the same bin and get the
				 * same estimate with any operator.
				 *
				 * The fact that the estimate corresponds to "x <= constval"
				 * and not "x < constval" is because of the way that ANALYZE
				 * constructs the histogram: each entry is, effectively, the
				 * rightmost value in its sample bucket.  So selectivity
				 * values that are exact multiples of 1/(histogram_size-1)
				 * should be understood as estimates including a histogram
				 * entry plus everything to its left.
				 *
				 * However, that breaks down for the first histogram entry,
				 * which necessarily is the leftmost value in its sample
				 * bucket.  That means the first histogram bin is slightly
				 * narrower than the rest, by an amount equal to eq_selec.
				 * Another way to say that is that we want "x <= leftmost" to
				 * be estimated as eq_selec not zero.  So, if we're dealing
				 * with the first bin (i==1), rescale to make that true while
				 * adjusting the rest of that bin linearly.
				 */
				if (i == 1)
					histfrac += eq_selec * (1.0 - binfrac);

				/*
				 * "x <= constval" is good if we want an estimate for "<=" or
				 * ">", but if we are estimating for "<" or ">=", we now need
				 * to decrease the estimate by eq_selec.
				 */
				if (isgt == iseq)
					histfrac -= eq_selec;
			}

			/*
			 * Now the estimate is finished for "<" and "<=" cases.  If we are
			 * estimating for ">" or ">=", flip it.
			 */
			hist_selec = isgt ? (1.0 - histfrac) : histfrac;

			/*
			 * The histogram boundaries are only approximate to begin with,
			 * and may well be out of date anyway.  Therefore, don't believe
			 * extremely small or large selectivity estimates --- unless we
			 * got actual current endpoint values from the table, in which
			 * case just do the usual sanity clamp.  Somewhat arbitrarily, we
			 * set the cutoff for other cases at a hundredth of the histogram
			 * resolution.
			 */
			if (have_end)
				CLAMP_PROBABILITY(hist_selec);
			else
			{
				double		cutoff = 0.01 / (double) (sslot.nvalues - 1);

				if (hist_selec < cutoff)
					hist_selec = cutoff;
				else if (hist_selec > 1.0 - cutoff)
					hist_selec = 1.0 - cutoff;
			}
		}
		else if (sslot.nvalues > 1)
		{
			/*
			 * If we get here, we have a histogram but it's not sorted the way
			 * we want.  Do a brute-force search to see how many of the
			 * entries satisfy the comparison condition, and take that
			 * fraction as our estimate.  (This is identical to the inner loop
			 * of histogram_selectivity; maybe share code?)
			 */
			LOCAL_FCINFO(fcinfo, 2);
			int			nmatch = 0;

			InitFunctionCallInfoData(*fcinfo, opproc, 2, collation,
									 NULL, NULL);
			fcinfo->args[0].isnull = false;
			fcinfo->args[1].isnull = false;
			fcinfo->args[1].value = constval;
			for (int i = 0; i < sslot.nvalues; i++)
			{
				Datum		fresult;

				fcinfo->args[0].value = sslot.values[i];
				fcinfo->isnull = false;
				fresult = FunctionCallInvoke(fcinfo);
				if (!fcinfo->isnull && DatumGetBool(fresult))
					nmatch++;
			}
			hist_selec = ((double) nmatch) / ((double) sslot.nvalues);

			/*
			 * As above, clamp to a hundredth of the histogram resolution.
			 * This case is surely even less trustworthy than the normal one,
			 * so we shouldn't believe exact 0 or 1 selectivity.  (Maybe the
			 * clamp should be more restrictive in this case?)
			 */
			{
				double		cutoff = 0.01 / (double) (sslot.nvalues - 1);

				if (hist_selec < cutoff)
					hist_selec = cutoff;
				else if (hist_selec > 1.0 - cutoff)
					hist_selec = 1.0 - cutoff;
			}
		}

		free_attstatsslot(&sslot);
	}

	return hist_selec;
}

/*
 * Common wrapper function for the selectivity estimators that simply
 * invoke scalarineqsel().
 */
static Datum
scalarineqsel_wrapper(PG_FUNCTION_ARGS, bool isgt, bool iseq)
{
	PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
	Oid			operator = PG_GETARG_OID(1);
	List	   *args = (List *) PG_GETARG_POINTER(2);
	int			varRelid = PG_GETARG_INT32(3);
	Oid			collation = PG_GET_COLLATION();
	VariableStatData vardata;
	Node	   *other;
	bool		varonleft;
	Datum		constval;
	Oid			consttype;
	double		selec;

	/*
	 * If expression is not variable op something or something op variable,
	 * then punt and return a default estimate.
	 */
	if (!get_restriction_variable(root, args, varRelid,
								  &vardata, &other, &varonleft))
		PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);

	/*
	 * Can't do anything useful if the something is not a constant, either.
	 */
	if (!IsA(other, Const))
	{
		ReleaseVariableStats(vardata);
		PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
	}

	/*
	 * If the constant is NULL, assume operator is strict and return zero, ie,
	 * operator will never return TRUE.
	 */
	if (((Const *) other)->constisnull)
	{
		ReleaseVariableStats(vardata);
		PG_RETURN_FLOAT8(0.0);
	}
	constval = ((Const *) other)->constvalue;
	consttype = ((Const *) other)->consttype;

	/*
	 * Force the var to be on the left to simplify logic in scalarineqsel.
	 */
	if (!varonleft)
	{
		operator = get_commutator(operator);
		if (!operator)
		{
			/* Use default selectivity (should we raise an error instead?) */
			ReleaseVariableStats(vardata);
			PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
		}
		isgt = !isgt;
	}

	/* The rest of the work is done by scalarineqsel(). */
	selec = scalarineqsel(root, operator, isgt, iseq, collation,
						  &vardata, constval, consttype);

	ReleaseVariableStats(vardata);

	PG_RETURN_FLOAT8((float8) selec);
}

/*
 *		scalarltsel		- Selectivity of "<" for scalars.
 */
Datum
scalarltsel(PG_FUNCTION_ARGS)
{
	return scalarineqsel_wrapper(fcinfo, false, false);
}

/*
 *		scalarlesel		- Selectivity of "<=" for scalars.
 */
Datum
scalarlesel(PG_FUNCTION_ARGS)
{
	return scalarineqsel_wrapper(fcinfo, false, true);
}

/*
 *		scalargtsel		- Selectivity of ">" for scalars.
 */
Datum
scalargtsel(PG_FUNCTION_ARGS)
{
	return scalarineqsel_wrapper(fcinfo, true, false);
}

/*
 *		scalargesel		- Selectivity of ">=" for scalars.
 */
Datum
scalargesel(PG_FUNCTION_ARGS)
{
	return scalarineqsel_wrapper(fcinfo, true, true);
}

/*
 *		boolvarsel		- Selectivity of Boolean variable.
 *
 * This can actually be called on any boolean-valued expression.  If it
 * involves only Vars of the specified relation, and if there are statistics
 * about the Var or expression (the latter is possible if it's indexed) then
 * we'll produce a real estimate; otherwise it's just a default.
 */
Selectivity
boolvarsel(PlannerInfo *root, Node *arg, int varRelid)
{
	VariableStatData vardata;
	double		selec;

	examine_variable(root, arg, varRelid, &vardata);
	if (HeapTupleIsValid(vardata.statsTuple))
	{
		/*
		 * A boolean variable V is equivalent to the clause V = 't', so we
		 * compute the selectivity as if that is what we have.
		 */
		selec = var_eq_const(&vardata, BooleanEqualOperator, InvalidOid,
							 BoolGetDatum(true), false, true, false);
	}
	else
	{
		/* Otherwise, the default estimate is 0.5 */
		selec = 0.5;
	}
	ReleaseVariableStats(vardata);
	return selec;
}

/*
 *		booltestsel		- Selectivity of BooleanTest Node.
 */
Selectivity
booltestsel(PlannerInfo *root, BoolTestType booltesttype, Node *arg,
			int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
{
	VariableStatData vardata;
	double		selec;

	examine_variable(root, arg, varRelid, &vardata);

	if (HeapTupleIsValid(vardata.statsTuple))
	{
		Form_pg_statistic stats;
		double		freq_null;
		AttStatsSlot sslot;

		stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
		freq_null = stats->stanullfrac;

		if (get_attstatsslot(&sslot, vardata.statsTuple,
							 STATISTIC_KIND_MCV, InvalidOid,
							 ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS)
			&& sslot.nnumbers > 0)
		{
			double		freq_true;
			double		freq_false;

			/*
			 * Get first MCV frequency and derive frequency for true.
			 */
			if (DatumGetBool(sslot.values[0]))
				freq_true = sslot.numbers[0];
			else
				freq_true = 1.0 - sslot.numbers[0] - freq_null;

			/*
			 * Next derive frequency for false. Then use these as appropriate
			 * to derive frequency for each case.
			 */
			freq_false = 1.0 - freq_true - freq_null;

			switch (booltesttype)
			{
				case IS_UNKNOWN:
					/* select only NULL values */
					selec = freq_null;
					break;
				case IS_NOT_UNKNOWN:
					/* select non-NULL values */
					selec = 1.0 - freq_null;
					break;
				case IS_TRUE:
					/* select only TRUE values */
					selec = freq_true;
					break;
				case IS_NOT_TRUE:
					/* select non-TRUE values */
					selec = 1.0 - freq_true;
					break;
				case IS_FALSE:
					/* select only FALSE values */
					selec = freq_false;
					break;
				case IS_NOT_FALSE:
					/* select non-FALSE values */
					selec = 1.0 - freq_false;
					break;
				default:
					elog(ERROR, "unrecognized booltesttype: %d",
						 (int) booltesttype);
					selec = 0.0;	/* Keep compiler quiet */
					break;
			}

			free_attstatsslot(&sslot);
		}
		else
		{
			/*
			 * No most-common-value info available. Still have null fraction
			 * information, so use it for IS [NOT] UNKNOWN. Otherwise adjust
			 * for null fraction and assume a 50-50 split of TRUE and FALSE.
			 */
			switch (booltesttype)
			{
				case IS_UNKNOWN:
					/* select only NULL values */
					selec = freq_null;
					break;
				case IS_NOT_UNKNOWN:
					/* select non-NULL values */
					selec = 1.0 - freq_null;
					break;
				case IS_TRUE:
				case IS_FALSE:
					/* Assume we select half of the non-NULL values */
					selec = (1.0 - freq_null) / 2.0;
					break;
				case IS_NOT_TRUE:
				case IS_NOT_FALSE:
					/* Assume we select NULLs plus half of the non-NULLs */
					/* equiv. to freq_null + (1.0 - freq_null) / 2.0 */
					selec = (freq_null + 1.0) / 2.0;
					break;
				default:
					elog(ERROR, "unrecognized booltesttype: %d",
						 (int) booltesttype);
					selec = 0.0;	/* Keep compiler quiet */
					break;
			}
		}
	}
	else
	{
		/*
		 * If we can't get variable statistics for the argument, perhaps
		 * clause_selectivity can do something with it.  We ignore the
		 * possibility of a NULL value when using clause_selectivity, and just
		 * assume the value is either TRUE or FALSE.
		 */
		switch (booltesttype)
		{
			case IS_UNKNOWN:
				selec = DEFAULT_UNK_SEL;
				break;
			case IS_NOT_UNKNOWN:
				selec = DEFAULT_NOT_UNK_SEL;
				break;
			case IS_TRUE:
			case IS_NOT_FALSE:
				selec = (double) clause_selectivity(root, arg,
													varRelid,
													jointype, sjinfo);
				break;
			case IS_FALSE:
			case IS_NOT_TRUE:
				selec = 1.0 - (double) clause_selectivity(root, arg,
														  varRelid,
														  jointype, sjinfo);
				break;
			default:
				elog(ERROR, "unrecognized booltesttype: %d",
					 (int) booltesttype);
				selec = 0.0;	/* Keep compiler quiet */
				break;
		}
	}

	ReleaseVariableStats(vardata);

	/* result should be in range, but make sure... */
	CLAMP_PROBABILITY(selec);

	return (Selectivity) selec;
}

/*
 *		nulltestsel		- Selectivity of NullTest Node.
 */
Selectivity
nulltestsel(PlannerInfo *root, NullTestType nulltesttype, Node *arg,
			int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
{
	VariableStatData vardata;
	double		selec;

	examine_variable(root, arg, varRelid, &vardata);

	if (HeapTupleIsValid(vardata.statsTuple))
	{
		Form_pg_statistic stats;
		double		freq_null;

		stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
		freq_null = stats->stanullfrac;

		switch (nulltesttype)
		{
			case IS_NULL:

				/*
				 * Use freq_null directly.
				 */
				selec = freq_null;
				break;
			case IS_NOT_NULL:

				/*
				 * Select not unknown (not null) values. Calculate from
				 * freq_null.
				 */
				selec = 1.0 - freq_null;
				break;
			default:
				elog(ERROR, "unrecognized nulltesttype: %d",
					 (int) nulltesttype);
				return (Selectivity) 0; /* keep compiler quiet */
		}
	}
	else if (vardata.var && IsA(vardata.var, Var) &&
			 ((Var *) vardata.var)->varattno < 0)
	{
		/*
		 * There are no stats for system columns, but we know they are never
		 * NULL.
		 */
		selec = (nulltesttype == IS_NULL) ? 0.0 : 1.0;
	}
	else
	{
		/*
		 * No ANALYZE stats available, so make a guess
		 */
		switch (nulltesttype)
		{
			case IS_NULL:
				selec = DEFAULT_UNK_SEL;
				break;
			case IS_NOT_NULL:
				selec = DEFAULT_NOT_UNK_SEL;
				break;
			default:
				elog(ERROR, "unrecognized nulltesttype: %d",
					 (int) nulltesttype);
				return (Selectivity) 0; /* keep compiler quiet */
		}
	}

	ReleaseVariableStats(vardata);

	/* result should be in range, but make sure... */
	CLAMP_PROBABILITY(selec);

	return (Selectivity) selec;
}

/*
 * strip_array_coercion - strip binary-compatible relabeling from an array expr
 *
 * For array values, the parser normally generates ArrayCoerceExpr conversions,
 * but it seems possible that RelabelType might show up.  Also, the planner
 * is not currently tense about collapsing stacked ArrayCoerceExpr nodes,
 * so we need to be ready to deal with more than one level.
 */
static Node *
strip_array_coercion(Node *node)
{
	for (;;)
	{
		if (node && IsA(node, ArrayCoerceExpr))
		{
			ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;

			/*
			 * If the per-element expression is just a RelabelType on top of
			 * CaseTestExpr, then we know it's a binary-compatible relabeling.
			 */
			if (IsA(acoerce->elemexpr, RelabelType) &&
				IsA(((RelabelType *) acoerce->elemexpr)->arg, CaseTestExpr))
				node = (Node *) acoerce->arg;
			else
				break;
		}
		else if (node && IsA(node, RelabelType))
		{
			/* We don't really expect this case, but may as well cope */
			node = (Node *) ((RelabelType *) node)->arg;
		}
		else
			break;
	}
	return node;
}

/*
 *		scalararraysel		- Selectivity of ScalarArrayOpExpr Node.
 */
Selectivity
scalararraysel(PlannerInfo *root,
			   ScalarArrayOpExpr *clause,
			   bool is_join_clause,
			   int varRelid,
			   JoinType jointype,
			   SpecialJoinInfo *sjinfo)
{
	Oid			operator = clause->opno;
	bool		useOr = clause->useOr;
	bool		isEquality = false;
	bool		isInequality = false;
	Node	   *leftop;
	Node	   *rightop;
	Oid			nominal_element_type;
	Oid			nominal_element_collation;
	TypeCacheEntry *typentry;
	RegProcedure oprsel;
	FmgrInfo	oprselproc;
	Selectivity s1;
	Selectivity s1disjoint;

	/* First, deconstruct the expression */
	Assert(list_length(clause->args) == 2);
	leftop = (Node *) linitial(clause->args);
	rightop = (Node *) lsecond(clause->args);

	/* aggressively reduce both sides to constants */
	leftop = estimate_expression_value(root, leftop);
	rightop = estimate_expression_value(root, rightop);

	/* get nominal (after relabeling) element type of rightop */
	nominal_element_type = get_base_element_type(exprType(rightop));
	if (!OidIsValid(nominal_element_type))
		return (Selectivity) 0.5;	/* probably shouldn't happen */
	/* get nominal collation, too, for generating constants */
	nominal_element_collation = exprCollation(rightop);

	/* look through any binary-compatible relabeling of rightop */
	rightop = strip_array_coercion(rightop);

	/*
	 * Detect whether the operator is the default equality or inequality
	 * operator of the array element type.
	 */
	typentry = lookup_type_cache(nominal_element_type, TYPECACHE_EQ_OPR);
	if (OidIsValid(typentry->eq_opr))
	{
		if (operator == typentry->eq_opr)
			isEquality = true;
		else if (get_negator(operator) == typentry->eq_opr)
			isInequality = true;
	}

	/*
	 * If it is equality or inequality, we might be able to estimate this as a
	 * form of array containment; for instance "const = ANY(column)" can be
	 * treated as "ARRAY[const] <@ column".  scalararraysel_containment tries
	 * that, and returns the selectivity estimate if successful, or -1 if not.
	 */
	if ((isEquality || isInequality) && !is_join_clause)
	{
		s1 = scalararraysel_containment(root, leftop, rightop,
										nominal_element_type,
										isEquality, useOr, varRelid);
		if (s1 >= 0.0)
			return s1;
	}

	/*
	 * Look up the underlying operator's selectivity estimator. Punt if it
	 * hasn't got one.
	 */
	if (is_join_clause)
		oprsel = get_oprjoin(operator);
	else
		oprsel = get_oprrest(operator);
	if (!oprsel)
		return (Selectivity) 0.5;
	fmgr_info(oprsel, &oprselproc);

	/*
	 * In the array-containment check above, we must only believe that an
	 * operator is equality or inequality if it is the default btree equality
	 * operator (or its negator) for the element type, since those are the
	 * operators that array containment will use.  But in what follows, we can
	 * be a little laxer, and also believe that any operators using eqsel() or
	 * neqsel() as selectivity estimator act like equality or inequality.
	 */
	if (oprsel == F_EQSEL || oprsel == F_EQJOINSEL)
		isEquality = true;
	else if (oprsel == F_NEQSEL || oprsel == F_NEQJOINSEL)
		isInequality = true;

	/*
	 * We consider three cases:
	 *
	 * 1. rightop is an Array constant: deconstruct the array, apply the
	 * operator's selectivity function for each array element, and merge the
	 * results in the same way that clausesel.c does for AND/OR combinations.
	 *
	 * 2. rightop is an ARRAY[] construct: apply the operator's selectivity
	 * function for each element of the ARRAY[] construct, and merge.
	 *
	 * 3. otherwise, make a guess ...
	 */
	if (rightop && IsA(rightop, Const))
	{
		Datum		arraydatum = ((Const *) rightop)->constvalue;
		bool		arrayisnull = ((Const *) rightop)->constisnull;
		ArrayType  *arrayval;
		int16		elmlen;
		bool		elmbyval;
		char		elmalign;
		int			num_elems;
		Datum	   *elem_values;
		bool	   *elem_nulls;
		int			i;

		if (arrayisnull)		/* qual can't succeed if null array */
			return (Selectivity) 0.0;
		arrayval = DatumGetArrayTypeP(arraydatum);
		get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
							 &elmlen, &elmbyval, &elmalign);
		deconstruct_array(arrayval,
						  ARR_ELEMTYPE(arrayval),
						  elmlen, elmbyval, elmalign,
						  &elem_values, &elem_nulls, &num_elems);

		/*
		 * For generic operators, we assume the probability of success is
		 * independent for each array element.  But for "= ANY" or "<> ALL",
		 * if the array elements are distinct (which'd typically be the case)
		 * then the probabilities are disjoint, and we should just sum them.
		 *
		 * If we were being really tense we would try to confirm that the
		 * elements are all distinct, but that would be expensive and it
		 * doesn't seem to be worth the cycles; it would amount to penalizing
		 * well-written queries in favor of poorly-written ones.  However, we
		 * do protect ourselves a little bit by checking whether the
		 * disjointness assumption leads to an impossible (out of range)
		 * probability; if so, we fall back to the normal calculation.
		 */
		s1 = s1disjoint = (useOr ? 0.0 : 1.0);

		for (i = 0; i < num_elems; i++)
		{
			List	   *args;
			Selectivity s2;

			args = list_make2(leftop,
							  makeConst(nominal_element_type,
										-1,
										nominal_element_collation,
										elmlen,
										elem_values[i],
										elem_nulls[i],
										elmbyval));
			if (is_join_clause)
				s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc,
													  clause->inputcollid,
													  PointerGetDatum(root),
													  ObjectIdGetDatum(operator),
													  PointerGetDatum(args),
													  Int16GetDatum(jointype),
													  PointerGetDatum(sjinfo)));
			else
				s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc,
													  clause->inputcollid,
													  PointerGetDatum(root),
													  ObjectIdGetDatum(operator),
													  PointerGetDatum(args),
													  Int32GetDatum(varRelid)));

			if (useOr)
			{
				s1 = s1 + s2 - s1 * s2;
				if (isEquality)
					s1disjoint += s2;
			}
			else
			{
				s1 = s1 * s2;
				if (isInequality)
					s1disjoint += s2 - 1.0;
			}
		}

		/* accept disjoint-probability estimate if in range */
		if ((useOr ? isEquality : isInequality) &&
			s1disjoint >= 0.0 && s1disjoint <= 1.0)
			s1 = s1disjoint;
	}
	else if (rightop && IsA(rightop, ArrayExpr) &&
			 !((ArrayExpr *) rightop)->multidims)
	{
		ArrayExpr  *arrayexpr = (ArrayExpr *) rightop;
		int16		elmlen;
		bool		elmbyval;
		ListCell   *l;

		get_typlenbyval(arrayexpr->element_typeid,
						&elmlen, &elmbyval);

		/*
		 * We use the assumption of disjoint probabilities here too, although
		 * the odds of equal array elements are rather higher if the elements
		 * are not all constants (which they won't be, else constant folding
		 * would have reduced the ArrayExpr to a Const).  In this path it's
		 * critical to have the sanity check on the s1disjoint estimate.
		 */
		s1 = s1disjoint = (useOr ? 0.0 : 1.0);

		foreach(l, arrayexpr->elements)
		{
			Node	   *elem = (Node *) lfirst(l);
			List	   *args;
			Selectivity s2;

			/*
			 * Theoretically, if elem isn't of nominal_element_type we should
			 * insert a RelabelType, but it seems unlikely that any operator
			 * estimation function would really care ...
			 */
			args = list_make2(leftop, elem);
			if (is_join_clause)
				s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc,
													  clause->inputcollid,
													  PointerGetDatum(root),
													  ObjectIdGetDatum(operator),
													  PointerGetDatum(args),
													  Int16GetDatum(jointype),
													  PointerGetDatum(sjinfo)));
			else
				s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc,
													  clause->inputcollid,
													  PointerGetDatum(root),
													  ObjectIdGetDatum(operator),
													  PointerGetDatum(args),
													  Int32GetDatum(varRelid)));

			if (useOr)
			{
				s1 = s1 + s2 - s1 * s2;
				if (isEquality)
					s1disjoint += s2;
			}
			else
			{
				s1 = s1 * s2;
				if (isInequality)
					s1disjoint += s2 - 1.0;
			}
		}

		/* accept disjoint-probability estimate if in range */
		if ((useOr ? isEquality : isInequality) &&
			s1disjoint >= 0.0 && s1disjoint <= 1.0)
			s1 = s1disjoint;
	}
	else
	{
		CaseTestExpr *dummyexpr;
		List	   *args;
		Selectivity s2;
		int			i;

		/*
		 * We need a dummy rightop to pass to the operator selectivity
		 * routine.  It can be pretty much anything that doesn't look like a
		 * constant; CaseTestExpr is a convenient choice.
		 */
		dummyexpr = makeNode(CaseTestExpr);
		dummyexpr->typeId = nominal_element_type;
		dummyexpr->typeMod = -1;
		dummyexpr->collation = clause->inputcollid;
		args = list_make2(leftop, dummyexpr);
		if (is_join_clause)
			s2 = DatumGetFloat8(FunctionCall5Coll(&oprselproc,
												  clause->inputcollid,
												  PointerGetDatum(root),
												  ObjectIdGetDatum(operator),
												  PointerGetDatum(args),
												  Int16GetDatum(jointype),
												  PointerGetDatum(sjinfo)));
		else
			s2 = DatumGetFloat8(FunctionCall4Coll(&oprselproc,
												  clause->inputcollid,
												  PointerGetDatum(root),
												  ObjectIdGetDatum(operator),
												  PointerGetDatum(args),
												  Int32GetDatum(varRelid)));
		s1 = useOr ? 0.0 : 1.0;

		/*
		 * Arbitrarily assume 10 elements in the eventual array value (see
		 * also estimate_array_length).  We don't risk an assumption of
		 * disjoint probabilities here.
		 */
		for (i = 0; i < 10; i++)
		{
			if (useOr)
				s1 = s1 + s2 - s1 * s2;
			else
				s1 = s1 * s2;
		}
	}

	/* result should be in range, but make sure... */
	CLAMP_PROBABILITY(s1);

	return s1;
}

/*
 * Estimate number of elements in the array yielded by an expression.
 *
 * It's important that this agree with scalararraysel.
 */
int
estimate_array_length(Node *arrayexpr)
{
	/* look through any binary-compatible relabeling of arrayexpr */
	arrayexpr = strip_array_coercion(arrayexpr);

	if (arrayexpr && IsA(arrayexpr, Const))
	{
		Datum		arraydatum = ((Const *) arrayexpr)->constvalue;
		bool		arrayisnull = ((Const *) arrayexpr)->constisnull;
		ArrayType  *arrayval;

		if (arrayisnull)
			return 0;
		arrayval = DatumGetArrayTypeP(arraydatum);
		return ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval));
	}
	else if (arrayexpr && IsA(arrayexpr, ArrayExpr) &&
			 !((ArrayExpr *) arrayexpr)->multidims)
	{
		return list_length(((ArrayExpr *) arrayexpr)->elements);
	}
	else
	{
		/* default guess --- see also scalararraysel */
		return 10;
	}
}

/*
 *		rowcomparesel		- Selectivity of RowCompareExpr Node.
 *
 * We estimate RowCompare selectivity by considering just the first (high
 * order) columns, which makes it equivalent to an ordinary OpExpr.  While
 * this estimate could be refined by considering additional columns, it
 * seems unlikely that we could do a lot better without multi-column
 * statistics.
 */
Selectivity
rowcomparesel(PlannerInfo *root,
			  RowCompareExpr *clause,
			  int varRelid, JoinType jointype, SpecialJoinInfo *sjinfo)
{
	Selectivity s1;
	Oid			opno = linitial_oid(clause->opnos);
	Oid			inputcollid = linitial_oid(clause->inputcollids);
	List	   *opargs;
	bool		is_join_clause;

	/* Build equivalent arg list for single operator */
	opargs = list_make2(linitial(clause->largs), linitial(clause->rargs));

	/*
	 * Decide if it's a join clause.  This should match clausesel.c's
	 * treat_as_join_clause(), except that we intentionally consider only the
	 * leading columns and not the rest of the clause.
	 */
	if (varRelid != 0)
	{
		/*
		 * Caller is forcing restriction mode (eg, because we are examining an
		 * inner indexscan qual).
		 */
		is_join_clause = false;
	}
	else if (sjinfo == NULL)
	{
		/*
		 * It must be a restriction clause, since it's being evaluated at a
		 * scan node.
		 */
		is_join_clause = false;
	}
	else
	{
		/*
		 * Otherwise, it's a join if there's more than one relation used.
		 */
		is_join_clause = (NumRelids(root, (Node *) opargs) > 1);
	}

	if (is_join_clause)
	{
		/* Estimate selectivity for a join clause. */
		s1 = join_selectivity(root, opno,
							  opargs,
							  inputcollid,
							  jointype,
							  sjinfo);
	}
	else
	{
		/* Estimate selectivity for a restriction clause. */
		s1 = restriction_selectivity(root, opno,
									 opargs,
									 inputcollid,
									 varRelid);
	}

	return s1;
}

/*
 *		eqjoinsel		- Join selectivity of "="
 */
Datum
eqjoinsel(PG_FUNCTION_ARGS)
{
	PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
	Oid			operator = PG_GETARG_OID(1);
	List	   *args = (List *) PG_GETARG_POINTER(2);

#ifdef NOT_USED
	JoinType	jointype = (JoinType) PG_GETARG_INT16(3);
#endif
	SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) PG_GETARG_POINTER(4);
	Oid			collation = PG_GET_COLLATION();
	double		selec;
	double		selec_inner;
	VariableStatData vardata1;
	VariableStatData vardata2;
	double		nd1;
	double		nd2;
	bool		isdefault1;
	bool		isdefault2;
	Oid			opfuncoid;
	AttStatsSlot sslot1;
	AttStatsSlot sslot2;
	Form_pg_statistic stats1 = NULL;
	Form_pg_statistic stats2 = NULL;
	bool		have_mcvs1 = false;
	bool		have_mcvs2 = false;
	bool		join_is_reversed;
	RelOptInfo *inner_rel;

	get_join_variables(root, args, sjinfo,
					   &vardata1, &vardata2, &join_is_reversed);

	nd1 = get_variable_numdistinct(&vardata1, &isdefault1);
	nd2 = get_variable_numdistinct(&vardata2, &isdefault2);

	opfuncoid = get_opcode(operator);

	memset(&sslot1, 0, sizeof(sslot1));
	memset(&sslot2, 0, sizeof(sslot2));

	if (HeapTupleIsValid(vardata1.statsTuple))
	{
		/* note we allow use of nullfrac regardless of security check */
		stats1 = (Form_pg_statistic) GETSTRUCT(vardata1.statsTuple);
		if (statistic_proc_security_check(&vardata1, opfuncoid))
			have_mcvs1 = get_attstatsslot(&sslot1, vardata1.statsTuple,
										  STATISTIC_KIND_MCV, InvalidOid,
										  ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS);
	}

	if (HeapTupleIsValid(vardata2.statsTuple))
	{
		/* note we allow use of nullfrac regardless of security check */
		stats2 = (Form_pg_statistic) GETSTRUCT(vardata2.statsTuple);
		if (statistic_proc_security_check(&vardata2, opfuncoid))
			have_mcvs2 = get_attstatsslot(&sslot2, vardata2.statsTuple,
										  STATISTIC_KIND_MCV, InvalidOid,
										  ATTSTATSSLOT_VALUES | ATTSTATSSLOT_NUMBERS);
	}

	/* We need to compute the inner-join selectivity in all cases */
	selec_inner = eqjoinsel_inner(opfuncoid, collation,
								  &vardata1, &vardata2,
								  nd1, nd2,
								  isdefault1, isdefault2,
								  &sslot1, &sslot2,
								  stats1, stats2,
								  have_mcvs1, have_mcvs2);

	switch (sjinfo->jointype)
	{
		case JOIN_INNER:
		case JOIN_LEFT:
		case JOIN_FULL:
			selec = selec_inner;
			break;
		case JOIN_SEMI:
		case JOIN_ANTI:

			/*
			 * Look up the join's inner relation.  min_righthand is sufficient
			 * information because neither SEMI nor ANTI joins permit any
			 * reassociation into or out of their RHS, so the righthand will
			 * always be exactly that set of rels.
			 */
			inner_rel = find_join_input_rel(root, sjinfo->min_righthand);

			if (!join_is_reversed)
				selec = eqjoinsel_semi(opfuncoid, collation,
									   &vardata1, &vardata2,
									   nd1, nd2,
									   isdefault1, isdefault2,
									   &sslot1, &sslot2,
									   stats1, stats2,
									   have_mcvs1, have_mcvs2,
									   inner_rel);
			else
			{
				Oid			commop = get_commutator(operator);
				Oid			commopfuncoid = OidIsValid(commop) ? get_opcode(commop) : InvalidOid;

				selec = eqjoinsel_semi(commopfuncoid, collation,
									   &vardata2, &vardata1,
									   nd2, nd1,
									   isdefault2, isdefault1,
									   &sslot2, &sslot1,
									   stats2, stats1,
									   have_mcvs2, have_mcvs1,
									   inner_rel);
			}

			/*
			 * We should never estimate the output of a semijoin to be more
			 * rows than we estimate for an inner join with the same input
			 * rels and join condition; it's obviously impossible for that to
			 * happen.  The former estimate is N1 * Ssemi while the latter is
			 * N1 * N2 * Sinner, so we may clamp Ssemi <= N2 * Sinner.  Doing
			 * this is worthwhile because of the shakier estimation rules we
			 * use in eqjoinsel_semi, particularly in cases where it has to
			 * punt entirely.
			 */
			selec = Min(selec, inner_rel->rows * selec_inner);
			break;
		default:
			/* other values not expected here */
			elog(ERROR, "unrecognized join type: %d",
				 (int) sjinfo->jointype);
			selec = 0;			/* keep compiler quiet */
			break;
	}

	free_attstatsslot(&sslot1);
	free_attstatsslot(&sslot2);

	ReleaseVariableStats(vardata1);
	ReleaseVariableStats(vardata2);

	CLAMP_PROBABILITY(selec);

	PG_RETURN_FLOAT8((float8) selec);
}

/*
 * eqjoinsel_inner --- eqjoinsel for normal inner join
 *
 * We also use this for LEFT/FULL outer joins; it's not presently clear
 * that it's worth trying to distinguish them here.
 */
static double
eqjoinsel_inner(Oid opfuncoid, Oid collation,
				VariableStatData *vardata1, VariableStatData *vardata2,
				double nd1, double nd2,
				bool isdefault1, bool isdefault2,
				AttStatsSlot *sslot1, AttStatsSlot *sslot2,
				Form_pg_statistic stats1, Form_pg_statistic stats2,
				bool have_mcvs1, bool have_mcvs2)
{
	double		selec;

	if (have_mcvs1 && have_mcvs2)
	{
		/*
		 * We have most-common-value lists for both relations.  Run through
		 * the lists to see which MCVs actually join to each other with the
		 * given operator.  This allows us to determine the exact join
		 * selectivity for the portion of the relations represented by the MCV
		 * lists.  We still have to estimate for the remaining population, but
		 * in a skewed distribution this gives us a big leg up in accuracy.
		 * For motivation see the analysis in Y. Ioannidis and S.
		 * Christodoulakis, "On the propagation of errors in the size of join
		 * results", Technical Report 1018, Computer Science Dept., University
		 * of Wisconsin, Madison, March 1991 (available from ftp.cs.wisc.edu).
		 */
		LOCAL_FCINFO(fcinfo, 2);
		FmgrInfo	eqproc;
		bool	   *hasmatch1;
		bool	   *hasmatch2;
		double		nullfrac1 = stats1->stanullfrac;
		double		nullfrac2 = stats2->stanullfrac;
		double		matchprodfreq,
					matchfreq1,
					matchfreq2,
					unmatchfreq1,
					unmatchfreq2,
					otherfreq1,
					otherfreq2,
					totalsel1,
					totalsel2;
		int			i,
					nmatches;

		fmgr_info(opfuncoid, &eqproc);

		/*
		 * Save a few cycles by setting up the fcinfo struct just once. Using
		 * FunctionCallInvoke directly also avoids failure if the eqproc
		 * returns NULL, though really equality functions should never do
		 * that.
		 */
		InitFunctionCallInfoData(*fcinfo, &eqproc, 2, collation,
								 NULL, NULL);
		fcinfo->args[0].isnull = false;
		fcinfo->args[1].isnull = false;

		hasmatch1 = (bool *) palloc0(sslot1->nvalues * sizeof(bool));
		hasmatch2 = (bool *) palloc0(sslot2->nvalues * sizeof(bool));

		/*
		 * Note we assume that each MCV will match at most one member of the
		 * other MCV list.  If the operator isn't really equality, there could
		 * be multiple matches --- but we don't look for them, both for speed
		 * and because the math wouldn't add up...
		 */
		matchprodfreq = 0.0;
		nmatches = 0;
		for (i = 0; i < sslot1->nvalues; i++)
		{
			int			j;

			fcinfo->args[0].value = sslot1->values[i];

			for (j = 0; j < sslot2->nvalues; j++)
			{
				Datum		fresult;

				if (hasmatch2[j])
					continue;
				fcinfo->args[1].value = sslot2->values[j];
				fcinfo->isnull = false;
				fresult = FunctionCallInvoke(fcinfo);
				if (!fcinfo->isnull && DatumGetBool(fresult))
				{
					hasmatch1[i] = hasmatch2[j] = true;
					matchprodfreq += sslot1->numbers[i] * sslot2->numbers[j];
					nmatches++;
					break;
				}
			}
		}
		CLAMP_PROBABILITY(matchprodfreq);
		/* Sum up frequencies of matched and unmatched MCVs */
		matchfreq1 = unmatchfreq1 = 0.0;
		for (i = 0; i < sslot1->nvalues; i++)
		{
			if (hasmatch1[i])
				matchfreq1 += sslot1->numbers[i];
			else
				unmatchfreq1 += sslot1->numbers[i];
		}
		CLAMP_PROBABILITY(matchfreq1);
		CLAMP_PROBABILITY(unmatchfreq1);
		matchfreq2 = unmatchfreq2 = 0.0;
		for (i = 0; i < sslot2->nvalues; i++)
		{
			if (hasmatch2[i])
				matchfreq2 += sslot2->numbers[i];
			else
				unmatchfreq2 += sslot2->numbers[i];
		}
		CLAMP_PROBABILITY(matchfreq2);
		CLAMP_PROBABILITY(unmatchfreq2);
		pfree(hasmatch1);
		pfree(hasmatch2);

		/*
		 * Compute total frequency of non-null values that are not in the MCV
		 * lists.
		 */
		otherfreq1 = 1.0 - nullfrac1 - matchfreq1 - unmatchfreq1;
		otherfreq2 = 1.0 - nullfrac2 - matchfreq2 - unmatchfreq2;
		CLAMP_PROBABILITY(otherfreq1);
		CLAMP_PROBABILITY(otherfreq2);

		/*
		 * We can estimate the total selectivity from the point of view of
		 * relation 1 as: the known selectivity for matched MCVs, plus
		 * unmatched MCVs that are assumed to match against random members of
		 * relation 2's non-MCV population, plus non-MCV values that are
		 * assumed to match against random members of relation 2's unmatched
		 * MCVs plus non-MCV values.
		 */
		totalsel1 = matchprodfreq;
		if (nd2 > sslot2->nvalues)
			totalsel1 += unmatchfreq1 * otherfreq2 / (nd2 - sslot2->nvalues);
		if (nd2 > nmatches)
			totalsel1 += otherfreq1 * (otherfreq2 + unmatchfreq2) /
				(nd2 - nmatches);
		/* Same estimate from the point of view of relation 2. */
		totalsel2 = matchprodfreq;
		if (nd1 > sslot1->nvalues)
			totalsel2 += unmatchfreq2 * otherfreq1 / (nd1 - sslot1->nvalues);
		if (nd1 > nmatches)
			totalsel2 += otherfreq2 * (otherfreq1 + unmatchfreq1) /
				(nd1 - nmatches);

		/*
		 * Use the smaller of the two estimates.  This can be justified in
		 * essentially the same terms as given below for the no-stats case: to
		 * a first approximation, we are estimating from the point of view of
		 * the relation with smaller nd.
		 */
		selec = (totalsel1 < totalsel2) ? totalsel1 : totalsel2;
	}
	else
	{
		/*
		 * We do not have MCV lists for both sides.  Estimate the join
		 * selectivity as MIN(1/nd1,1/nd2)*(1-nullfrac1)*(1-nullfrac2). This
		 * is plausible if we assume that the join operator is strict and the
		 * non-null values are about equally distributed: a given non-null
		 * tuple of rel1 will join to either zero or N2*(1-nullfrac2)/nd2 rows
		 * of rel2, so total join rows are at most
		 * N1*(1-nullfrac1)*N2*(1-nullfrac2)/nd2 giving a join selectivity of
		 * not more than (1-nullfrac1)*(1-nullfrac2)/nd2. By the same logic it
		 * is not more than (1-nullfrac1)*(1-nullfrac2)/nd1, so the expression
		 * with MIN() is an upper bound.  Using the MIN() means we estimate
		 * from the point of view of the relation with smaller nd (since the
		 * larger nd is determining the MIN).  It is reasonable to assume that
		 * most tuples in this rel will have join partners, so the bound is
		 * probably reasonably tight and should be taken as-is.
		 *
		 * XXX Can we be smarter if we have an MCV list for just one side? It
		 * seems that if we assume equal distribution for the other side, we
		 * end up with the same answer anyway.
		 */
		double		nullfrac1 = stats1 ? stats1->stanullfrac : 0.0;
		double		nullfrac2 = stats2 ? stats2->stanullfrac : 0.0;

		selec = (1.0 - nullfrac1) * (1.0 - nullfrac2);
		if (nd1 > nd2)
			selec /= nd1;
		else
			selec /= nd2;
	}

	return selec;
}

/*
 * eqjoinsel_semi --- eqjoinsel for semi join
 *
 * (Also used for anti join, which we are supposed to estimate the same way.)
 * Caller has ensured that vardata1 is the LHS variable.
 * Unlike eqjoinsel_inner, we have to cope with opfuncoid being InvalidOid.
 */
static double
eqjoinsel_semi(Oid opfuncoid, Oid collation,
			   VariableStatData *vardata1, VariableStatData *vardata2,
			   double nd1, double nd2,
			   bool isdefault1, bool isdefault2,
			   AttStatsSlot *sslot1, AttStatsSlot *sslot2,
			   Form_pg_statistic stats1, Form_pg_statistic stats2,
			   bool have_mcvs1, bool have_mcvs2,
			   RelOptInfo *inner_rel)
{
	double		selec;

	/*
	 * We clamp nd2 to be not more than what we estimate the inner relation's
	 * size to be.  This is intuitively somewhat reasonable since obviously
	 * there can't be more than that many distinct values coming from the
	 * inner rel.  The reason for the asymmetry (ie, that we don't clamp nd1
	 * likewise) is that this is the only pathway by which restriction clauses
	 * applied to the inner rel will affect the join result size estimate,
	 * since set_joinrel_size_estimates will multiply SEMI/ANTI selectivity by
	 * only the outer rel's size.  If we clamped nd1 we'd be double-counting
	 * the selectivity of outer-rel restrictions.
	 *
	 * We can apply this clamping both with respect to the base relation from
	 * which the join variable comes (if there is just one), and to the
	 * immediate inner input relation of the current join.
	 *
	 * If we clamp, we can treat nd2 as being a non-default estimate; it's not
	 * great, maybe, but it didn't come out of nowhere either.  This is most
	 * helpful when the inner relation is empty and consequently has no stats.
	 */
	if (vardata2->rel)
	{
		if (nd2 >= vardata2->rel->rows)
		{
			nd2 = vardata2->rel->rows;
			isdefault2 = false;
		}
	}
	if (nd2 >= inner_rel->rows)
	{
		nd2 = inner_rel->rows;
		isdefault2 = false;
	}

	if (have_mcvs1 && have_mcvs2 && OidIsValid(opfuncoid))
	{
		/*
		 * We have most-common-value lists for both relations.  Run through
		 * the lists to see which MCVs actually join to each other with the
		 * given operator.  This allows us to determine the exact join
		 * selectivity for the portion of the relations represented by the MCV
		 * lists.  We still have to estimate for the remaining population, but
		 * in a skewed distribution this gives us a big leg up in accuracy.
		 */
		LOCAL_FCINFO(fcinfo, 2);
		FmgrInfo	eqproc;
		bool	   *hasmatch1;
		bool	   *hasmatch2;
		double		nullfrac1 = stats1->stanullfrac;
		double		matchfreq1,
					uncertainfrac,
					uncertain;
		int			i,
					nmatches,
					clamped_nvalues2;

		/*
		 * The clamping above could have resulted in nd2 being less than
		 * sslot2->nvalues; in which case, we assume that precisely the nd2
		 * most common values in the relation will appear in the join input,
		 * and so compare to only the first nd2 members of the MCV list.  Of
		 * course this is frequently wrong, but it's the best bet we can make.
		 */
		clamped_nvalues2 = Min(sslot2->nvalues, nd2);

		fmgr_info(opfuncoid, &eqproc);

		/*
		 * Save a few cycles by setting up the fcinfo struct just once. Using
		 * FunctionCallInvoke directly also avoids failure if the eqproc
		 * returns NULL, though really equality functions should never do
		 * that.
		 */
		InitFunctionCallInfoData(*fcinfo, &eqproc, 2, collation,
								 NULL, NULL);
		fcinfo->args[0].isnull = false;
		fcinfo->args[1].isnull = false;

		hasmatch1 = (bool *) palloc0(sslot1->nvalues * sizeof(bool));
		hasmatch2 = (bool *) palloc0(clamped_nvalues2 * sizeof(bool));

		/*
		 * Note we assume that each MCV will match at most one member of the
		 * other MCV list.  If the operator isn't really equality, there could
		 * be multiple matches --- but we don't look for them, both for speed
		 * and because the math wouldn't add up...
		 */
		nmatches = 0;
		for (i = 0; i < sslot1->nvalues; i++)
		{
			int			j;

			fcinfo->args[0].value = sslot1->values[i];

			for (j = 0; j < clamped_nvalues2; j++)
			{
				Datum		fresult;

				if (hasmatch2[j])
					continue;
				fcinfo->args[1].value = sslot2->values[j];
				fcinfo->isnull = false;
				fresult = FunctionCallInvoke(fcinfo);
				if (!fcinfo->isnull && DatumGetBool(fresult))
				{
					hasmatch1[i] = hasmatch2[j] = true;
					nmatches++;
					break;
				}
			}
		}
		/* Sum up frequencies of matched MCVs */
		matchfreq1 = 0.0;
		for (i = 0; i < sslot1->nvalues; i++)
		{
			if (hasmatch1[i])
				matchfreq1 += sslot1->numbers[i];
		}
		CLAMP_PROBABILITY(matchfreq1);
		pfree(hasmatch1);
		pfree(hasmatch2);

		/*
		 * Now we need to estimate the fraction of relation 1 that has at
		 * least one join partner.  We know for certain that the matched MCVs
		 * do, so that gives us a lower bound, but we're really in the dark
		 * about everything else.  Our crude approach is: if nd1 <= nd2 then
		 * assume all non-null rel1 rows have join partners, else assume for
		 * the uncertain rows that a fraction nd2/nd1 have join partners. We
		 * can discount the known-matched MCVs from the distinct-values counts
		 * before doing the division.
		 *
		 * Crude as the above is, it's completely useless if we don't have
		 * reliable ndistinct values for both sides.  Hence, if either nd1 or
		 * nd2 is default, punt and assume half of the uncertain rows have
		 * join partners.
		 */
		if (!isdefault1 && !isdefault2)
		{
			nd1 -= nmatches;
			nd2 -= nmatches;
			if (nd1 <= nd2 || nd2 < 0)
				uncertainfrac = 1.0;
			else
				uncertainfrac = nd2 / nd1;
		}
		else
			uncertainfrac = 0.5;
		uncertain = 1.0 - matchfreq1 - nullfrac1;
		CLAMP_PROBABILITY(uncertain);
		selec = matchfreq1 + uncertainfrac * uncertain;
	}
	else
	{
		/*
		 * Without MCV lists for both sides, we can only use the heuristic
		 * about nd1 vs nd2.
		 */
		double		nullfrac1 = stats1 ? stats1->stanullfrac : 0.0;

		if (!isdefault1 && !isdefault2)
		{
			if (nd1 <= nd2 || nd2 < 0)
				selec = 1.0 - nullfrac1;
			else
				selec = (nd2 / nd1) * (1.0 - nullfrac1);
		}
		else
			selec = 0.5 * (1.0 - nullfrac1);
	}

	return selec;
}

/*
 *		neqjoinsel		- Join selectivity of "!="
 */
Datum
neqjoinsel(PG_FUNCTION_ARGS)
{
	PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
	Oid			operator = PG_GETARG_OID(1);
	List	   *args = (List *) PG_GETARG_POINTER(2);
	JoinType	jointype = (JoinType) PG_GETARG_INT16(3);
	SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) PG_GETARG_POINTER(4);
	Oid			collation = PG_GET_COLLATION();
	float8		result;

	if (jointype == JOIN_SEMI || jointype == JOIN_ANTI)
	{
		/*
		 * For semi-joins, if there is more than one distinct value in the RHS
		 * relation then every non-null LHS row must find a row to join since
		 * it can only be equal to one of them.  We'll assume that there is
		 * always more than one distinct RHS value for the sake of stability,
		 * though in theory we could have special cases for empty RHS
		 * (selectivity = 0) and single-distinct-value RHS (selectivity =
		 * fraction of LHS that has the same value as the single RHS value).
		 *
		 * For anti-joins, if we use the same assumption that there is more
		 * than one distinct key in the RHS relation, then every non-null LHS
		 * row must be suppressed by the anti-join.
		 *
		 * So either way, the selectivity estimate should be 1 - nullfrac.
		 */
		VariableStatData leftvar;
		VariableStatData rightvar;
		bool		reversed;
		HeapTuple	statsTuple;
		double		nullfrac;

		get_join_variables(root, args, sjinfo, &leftvar, &rightvar, &reversed);
		statsTuple = reversed ? rightvar.statsTuple : leftvar.statsTuple;
		if (HeapTupleIsValid(statsTuple))
			nullfrac = ((Form_pg_statistic) GETSTRUCT(statsTuple))->stanullfrac;
		else
			nullfrac = 0.0;
		ReleaseVariableStats(leftvar);
		ReleaseVariableStats(rightvar);

		result = 1.0 - nullfrac;
	}
	else
	{
		/*
		 * We want 1 - eqjoinsel() where the equality operator is the one
		 * associated with this != operator, that is, its negator.
		 */
		Oid			eqop = get_negator(operator);

		if (eqop)
		{
			result =
				DatumGetFloat8(DirectFunctionCall5Coll(eqjoinsel,
													   collation,
													   PointerGetDatum(root),
													   ObjectIdGetDatum(eqop),
													   PointerGetDatum(args),
													   Int16GetDatum(jointype),
													   PointerGetDatum(sjinfo)));
		}
		else
		{
			/* Use default selectivity (should we raise an error instead?) */
			result = DEFAULT_EQ_SEL;
		}
		result = 1.0 - result;
	}

	PG_RETURN_FLOAT8(result);
}

/*
 *		scalarltjoinsel - Join selectivity of "<" for scalars
 */
Datum
scalarltjoinsel(PG_FUNCTION_ARGS)
{
	PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
}

/*
 *		scalarlejoinsel - Join selectivity of "<=" for scalars
 */
Datum
scalarlejoinsel(PG_FUNCTION_ARGS)
{
	PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
}

/*
 *		scalargtjoinsel - Join selectivity of ">" for scalars
 */
Datum
scalargtjoinsel(PG_FUNCTION_ARGS)
{
	PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
}

/*
 *		scalargejoinsel - Join selectivity of ">=" for scalars
 */
Datum
scalargejoinsel(PG_FUNCTION_ARGS)
{
	PG_RETURN_FLOAT8(DEFAULT_INEQ_SEL);
}


/*
 * mergejoinscansel			- Scan selectivity of merge join.
 *
 * A merge join will stop as soon as it exhausts either input stream.
 * Therefore, if we can estimate the ranges of both input variables,
 * we can estimate how much of the input will actually be read.  This
 * can have a considerable impact on the cost when using indexscans.
 *
 * Also, we can estimate how much of each input has to be read before the
 * first join pair is found, which will affect the join's startup time.
 *
 * clause should be a clause already known to be mergejoinable.  opfamily,
 * strategy, and nulls_first specify the sort ordering being used.
 *
 * The outputs are:
 *		*leftstart is set to the fraction of the left-hand variable expected
 *		 to be scanned before the first join pair is found (0 to 1).
 *		*leftend is set to the fraction of the left-hand variable expected
 *		 to be scanned before the join terminates (0 to 1).
 *		*rightstart, *rightend similarly for the right-hand variable.
 */
void
mergejoinscansel(PlannerInfo *root, Node *clause,
				 Oid opfamily, int strategy, bool nulls_first,
				 Selectivity *leftstart, Selectivity *leftend,
				 Selectivity *rightstart, Selectivity *rightend)
{
	Node	   *left,
			   *right;
	VariableStatData leftvar,
				rightvar;
	int			op_strategy;
	Oid			op_lefttype;
	Oid			op_righttype;
	Oid			opno,
				collation,
				lsortop,
				rsortop,
				lstatop,
				rstatop,
				ltop,
				leop,
				revltop,
				revleop;
	bool		isgt;
	Datum		leftmin,
				leftmax,
				rightmin,
				rightmax;
	double		selec;

	/* Set default results if we can't figure anything out. */
	/* XXX should default "start" fraction be a bit more than 0? */
	*leftstart = *rightstart = 0.0;
	*leftend = *rightend = 1.0;

	/* Deconstruct the merge clause */
	if (!is_opclause(clause))
		return;					/* shouldn't happen */
	opno = ((OpExpr *) clause)->opno;
	collation = ((OpExpr *) clause)->inputcollid;
	left = get_leftop((Expr *) clause);
	right = get_rightop((Expr *) clause);
	if (!right)
		return;					/* shouldn't happen */

	/* Look for stats for the inputs */
	examine_variable(root, left, 0, &leftvar);
	examine_variable(root, right, 0, &rightvar);

	/* Extract the operator's declared left/right datatypes */
	get_op_opfamily_properties(opno, opfamily, false,
							   &op_strategy,
							   &op_lefttype,
							   &op_righttype);
	Assert(op_strategy == BTEqualStrategyNumber);

	/*
	 * Look up the various operators we need.  If we don't find them all, it
	 * probably means the opfamily is broken, but we just fail silently.
	 *
	 * Note: we expect that pg_statistic histograms will be sorted by the '<'
	 * operator, regardless of which sort direction we are considering.
	 */
	switch (strategy)
	{
		case BTLessStrategyNumber:
			isgt = false;
			if (op_lefttype == op_righttype)
			{
				/* easy case */
				ltop = get_opfamily_member(opfamily,
										   op_lefttype, op_righttype,
										   BTLessStrategyNumber);
				leop = get_opfamily_member(opfamily,
										   op_lefttype, op_righttype,
										   BTLessEqualStrategyNumber);
				lsortop = ltop;
				rsortop = ltop;
				lstatop = lsortop;
				rstatop = rsortop;
				revltop = ltop;
				revleop = leop;
			}
			else
			{
				ltop = get_opfamily_member(opfamily,
										   op_lefttype, op_righttype,
										   BTLessStrategyNumber);
				leop = get_opfamily_member(opfamily,
										   op_lefttype, op_righttype,
										   BTLessEqualStrategyNumber);
				lsortop = get_opfamily_member(opfamily,
											  op_lefttype, op_lefttype,
											  BTLessStrategyNumber);
				rsortop = get_opfamily_member(opfamily,
											  op_righttype, op_righttype,
											  BTLessStrategyNumber);
				lstatop = lsortop;
				rstatop = rsortop;
				revltop = get_opfamily_member(opfamily,
											  op_righttype, op_lefttype,
											  BTLessStrategyNumber);
				revleop = get_opfamily_member(opfamily,
											  op_righttype, op_lefttype,
											  BTLessEqualStrategyNumber);
			}
			break;
		case BTGreaterStrategyNumber:
			/* descending-order case */
			isgt = true;
			if (op_lefttype == op_righttype)
			{
				/* easy case */
				ltop = get_opfamily_member(opfamily,
										   op_lefttype, op_righttype,
										   BTGreaterStrategyNumber);
				leop = get_opfamily_member(opfamily,
										   op_lefttype, op_righttype,
										   BTGreaterEqualStrategyNumber);
				lsortop = ltop;
				rsortop = ltop;
				lstatop = get_opfamily_member(opfamily,
											  op_lefttype, op_lefttype,
											  BTLessStrategyNumber);
				rstatop = lstatop;
				revltop = ltop;
				revleop = leop;
			}
			else
			{
				ltop = get_opfamily_member(opfamily,
										   op_lefttype, op_righttype,
										   BTGreaterStrategyNumber);
				leop = get_opfamily_member(opfamily,
										   op_lefttype, op_righttype,
										   BTGreaterEqualStrategyNumber);
				lsortop = get_opfamily_member(opfamily,
											  op_lefttype, op_lefttype,
											  BTGreaterStrategyNumber);
				rsortop = get_opfamily_member(opfamily,
											  op_righttype, op_righttype,
											  BTGreaterStrategyNumber);
				lstatop = get_opfamily_member(opfamily,
											  op_lefttype, op_lefttype,
											  BTLessStrategyNumber);
				rstatop = get_opfamily_member(opfamily,
											  op_righttype, op_righttype,
											  BTLessStrategyNumber);
				revltop = get_opfamily_member(opfamily,
											  op_righttype, op_lefttype,
											  BTGreaterStrategyNumber);
				revleop = get_opfamily_member(opfamily,
											  op_righttype, op_lefttype,
											  BTGreaterEqualStrategyNumber);
			}
			break;
		default:
			goto fail;			/* shouldn't get here */
	}

	if (!OidIsValid(lsortop) ||
		!OidIsValid(rsortop) ||
		!OidIsValid(lstatop) ||
		!OidIsValid(rstatop) ||
		!OidIsValid(ltop) ||
		!OidIsValid(leop) ||
		!OidIsValid(revltop) ||
		!OidIsValid(revleop))
		goto fail;				/* insufficient info in catalogs */

	/* Try to get ranges of both inputs */
	if (!isgt)
	{
		if (!get_variable_range(root, &leftvar, lstatop, collation,
								&leftmin, &leftmax))
			goto fail;			/* no range available from stats */
		if (!get_variable_range(root, &rightvar, rstatop, collation,
								&rightmin, &rightmax))
			goto fail;			/* no range available from stats */
	}
	else
	{
		/* need to swap the max and min */
		if (!get_variable_range(root, &leftvar, lstatop, collation,
								&leftmax, &leftmin))
			goto fail;			/* no range available from stats */
		if (!get_variable_range(root, &rightvar, rstatop, collation,
								&rightmax, &rightmin))
			goto fail;			/* no range available from stats */
	}

	/*
	 * Now, the fraction of the left variable that will be scanned is the
	 * fraction that's <= the right-side maximum value.  But only believe
	 * non-default estimates, else stick with our 1.0.
	 */
	selec = scalarineqsel(root, leop, isgt, true, collation, &leftvar,
						  rightmax, op_righttype);
	if (selec != DEFAULT_INEQ_SEL)
		*leftend = selec;

	/* And similarly for the right variable. */
	selec = scalarineqsel(root, revleop, isgt, true, collation, &rightvar,
						  leftmax, op_lefttype);
	if (selec != DEFAULT_INEQ_SEL)
		*rightend = selec;

	/*
	 * Only one of the two "end" fractions can really be less than 1.0;
	 * believe the smaller estimate and reset the other one to exactly 1.0. If
	 * we get exactly equal estimates (as can easily happen with self-joins),
	 * believe neither.
	 */
	if (*leftend > *rightend)
		*leftend = 1.0;
	else if (*leftend < *rightend)
		*rightend = 1.0;
	else
		*leftend = *rightend = 1.0;

	/*
	 * Also, the fraction of the left variable that will be scanned before the
	 * first join pair is found is the fraction that's < the right-side
	 * minimum value.  But only believe non-default estimates, else stick with
	 * our own default.
	 */
	selec = scalarineqsel(root, ltop, isgt, false, collation, &leftvar,
						  rightmin, op_righttype);
	if (selec != DEFAULT_INEQ_SEL)
		*leftstart = selec;

	/* And similarly for the right variable. */
	selec = scalarineqsel(root, revltop, isgt, false, collation, &rightvar,
						  leftmin, op_lefttype);
	if (selec != DEFAULT_INEQ_SEL)
		*rightstart = selec;

	/*
	 * Only one of the two "start" fractions can really be more than zero;
	 * believe the larger estimate and reset the other one to exactly 0.0. If
	 * we get exactly equal estimates (as can easily happen with self-joins),
	 * believe neither.
	 */
	if (*leftstart < *rightstart)
		*leftstart = 0.0;
	else if (*leftstart > *rightstart)
		*rightstart = 0.0;
	else
		*leftstart = *rightstart = 0.0;

	/*
	 * If the sort order is nulls-first, we're going to have to skip over any
	 * nulls too.  These would not have been counted by scalarineqsel, and we
	 * can safely add in this fraction regardless of whether we believe
	 * scalarineqsel's results or not.  But be sure to clamp the sum to 1.0!
	 */
	if (nulls_first)
	{
		Form_pg_statistic stats;

		if (HeapTupleIsValid(leftvar.statsTuple))
		{
			stats = (Form_pg_statistic) GETSTRUCT(leftvar.statsTuple);
			*leftstart += stats->stanullfrac;
			CLAMP_PROBABILITY(*leftstart);
			*leftend += stats->stanullfrac;
			CLAMP_PROBABILITY(*leftend);
		}
		if (HeapTupleIsValid(rightvar.statsTuple))
		{
			stats = (Form_pg_statistic) GETSTRUCT(rightvar.statsTuple);
			*rightstart += stats->stanullfrac;
			CLAMP_PROBABILITY(*rightstart);
			*rightend += stats->stanullfrac;
			CLAMP_PROBABILITY(*rightend);
		}
	}

	/* Disbelieve start >= end, just in case that can happen */
	if (*leftstart >= *leftend)
	{
		*leftstart = 0.0;
		*leftend = 1.0;
	}
	if (*rightstart >= *rightend)
	{
		*rightstart = 0.0;
		*rightend = 1.0;
	}

fail:
	ReleaseVariableStats(leftvar);
	ReleaseVariableStats(rightvar);
}


/*
 *	matchingsel -- generic matching-operator selectivity support
 *
 * Use these for any operators that (a) are on data types for which we collect
 * standard statistics, and (b) have behavior for which the default estimate
 * (twice DEFAULT_EQ_SEL) is sane.  Typically that is good for match-like
 * operators.
 */

Datum
matchingsel(PG_FUNCTION_ARGS)
{
	PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
	Oid			operator = PG_GETARG_OID(1);
	List	   *args = (List *) PG_GETARG_POINTER(2);
	int			varRelid = PG_GETARG_INT32(3);
	Oid			collation = PG_GET_COLLATION();
	double		selec;

	/* Use generic restriction selectivity logic. */
	selec = generic_restriction_selectivity(root, operator, collation,
											args, varRelid,
											DEFAULT_MATCHING_SEL);

	PG_RETURN_FLOAT8((float8) selec);
}

Datum
matchingjoinsel(PG_FUNCTION_ARGS)
{
	/* Just punt, for the moment. */
	PG_RETURN_FLOAT8(DEFAULT_MATCHING_SEL);
}


/*
 * Helper routine for estimate_num_groups: add an item to a list of
 * GroupVarInfos, but only if it's not known equal to any of the existing
 * entries.
 */
typedef struct
{
	Node	   *var;			/* might be an expression, not just a Var */
	RelOptInfo *rel;			/* relation it belongs to */
	double		ndistinct;		/* # distinct values */
} GroupVarInfo;

static List *
add_unique_group_var(PlannerInfo *root, List *varinfos,
					 Node *var, VariableStatData *vardata)
{
	GroupVarInfo *varinfo;
	double		ndistinct;
	bool		isdefault;
	ListCell   *lc;

	ndistinct = get_variable_numdistinct(vardata, &isdefault);

	foreach(lc, varinfos)
	{
		varinfo = (GroupVarInfo *) lfirst(lc);

		/* Drop exact duplicates */
		if (equal(var, varinfo->var))
			return varinfos;

		/*
		 * Drop known-equal vars, but only if they belong to different
		 * relations (see comments for estimate_num_groups)
		 */
		if (vardata->rel != varinfo->rel &&
			exprs_known_equal(root, var, varinfo->var))
		{
			if (varinfo->ndistinct <= ndistinct)
			{
				/* Keep older item, forget new one */
				return varinfos;
			}
			else
			{
				/* Delete the older item */
				varinfos = foreach_delete_current(varinfos, lc);
			}
		}
	}

	varinfo = (GroupVarInfo *) palloc(sizeof(GroupVarInfo));

	varinfo->var = var;
	varinfo->rel = vardata->rel;
	varinfo->ndistinct = ndistinct;
	varinfos = lappend(varinfos, varinfo);
	return varinfos;
}

/*
 * estimate_num_groups		- Estimate number of groups in a grouped query
 *
 * Given a query having a GROUP BY clause, estimate how many groups there
 * will be --- ie, the number of distinct combinations of the GROUP BY
 * expressions.
 *
 * This routine is also used to estimate the number of rows emitted by
 * a DISTINCT filtering step; that is an isomorphic problem.  (Note:
 * actually, we only use it for DISTINCT when there's no grouping or
 * aggregation ahead of the DISTINCT.)
 *
 * Inputs:
 *	root - the query
 *	groupExprs - list of expressions being grouped by
 *	input_rows - number of rows estimated to arrive at the group/unique
 *		filter step
 *	pgset - NULL, or a List** pointing to a grouping set to filter the
 *		groupExprs against
 *
 * Given the lack of any cross-correlation statistics in the system, it's
 * impossible to do anything really trustworthy with GROUP BY conditions
 * involving multiple Vars.  We should however avoid assuming the worst
 * case (all possible cross-product terms actually appear as groups) since
 * very often the grouped-by Vars are highly correlated.  Our current approach
 * is as follows:
 *	1.  Expressions yielding boolean are assumed to contribute two groups,
 *		independently of their content, and are ignored in the subsequent
 *		steps.  This is mainly because tests like "col IS NULL" break the
 *		heuristic used in step 2 especially badly.
 *	2.  Reduce the given expressions to a list of unique Vars used.  For
 *		example, GROUP BY a, a + b is treated the same as GROUP BY a, b.
 *		It is clearly correct not to count the same Var more than once.
 *		It is also reasonable to treat f(x) the same as x: f() cannot
 *		increase the number of distinct values (unless it is volatile,
 *		which we consider unlikely for grouping), but it probably won't
 *		reduce the number of distinct values much either.
 *		As a special case, if a GROUP BY expression can be matched to an
 *		expressional index for which we have statistics, then we treat the
 *		whole expression as though it were just a Var.
 *	3.  If the list contains Vars of different relations that are known equal
 *		due to equivalence classes, then drop all but one of the Vars from each
 *		known-equal set, keeping the one with smallest estimated # of values
 *		(since the extra values of the others can't appear in joined rows).
 *		Note the reason we only consider Vars of different relations is that
 *		if we considered ones of the same rel, we'd be double-counting the
 *		restriction selectivity of the equality in the next step.
 *	4.  For Vars within a single source rel, we multiply together the numbers
 *		of values, clamp to the number of rows in the rel (divided by 10 if
 *		more than one Var), and then multiply by a factor based on the
 *		selectivity of the restriction clauses for that rel.  When there's
 *		more than one Var, the initial product is probably too high (it's the
 *		worst case) but clamping to a fraction of the rel's rows seems to be a
 *		helpful heuristic for not letting the estimate get out of hand.  (The
 *		factor of 10 is derived from pre-Postgres-7.4 practice.)  The factor
 *		we multiply by to adjust for the restriction selectivity assumes that
 *		the restriction clauses are independent of the grouping, which may not
 *		be a valid assumption, but it's hard to do better.
 *	5.  If there are Vars from multiple rels, we repeat step 4 for each such
 *		rel, and multiply the results together.
 * Note that rels not containing grouped Vars are ignored completely, as are
 * join clauses.  Such rels cannot increase the number of groups, and we
 * assume such clauses do not reduce the number either (somewhat bogus,
 * but we don't have the info to do better).
 */
double
estimate_num_groups(PlannerInfo *root, List *groupExprs, double input_rows,
					List **pgset)
{
	List	   *varinfos = NIL;
	double		srf_multiplier = 1.0;
	double		numdistinct;
	ListCell   *l;
	int			i;

	/*
	 * We don't ever want to return an estimate of zero groups, as that tends
	 * to lead to division-by-zero and other unpleasantness.  The input_rows
	 * estimate is usually already at least 1, but clamp it just in case it
	 * isn't.
	 */
	input_rows = clamp_row_est(input_rows);

	/*
	 * If no grouping columns, there's exactly one group.  (This can't happen
	 * for normal cases with GROUP BY or DISTINCT, but it is possible for
	 * corner cases with set operations.)
	 */
	if (groupExprs == NIL || (pgset && list_length(*pgset) < 1))
		return 1.0;

	/*
	 * Count groups derived from boolean grouping expressions.  For other
	 * expressions, find the unique Vars used, treating an expression as a Var
	 * if we can find stats for it.  For each one, record the statistical
	 * estimate of number of distinct values (total in its table, without
	 * regard for filtering).
	 */
	numdistinct = 1.0;

	i = 0;
	foreach(l, groupExprs)
	{
		Node	   *groupexpr = (Node *) lfirst(l);
		double		this_srf_multiplier;
		VariableStatData vardata;
		List	   *varshere;
		ListCell   *l2;

		/* is expression in this grouping set? */
		if (pgset && !list_member_int(*pgset, i++))
			continue;

		/*
		 * Set-returning functions in grouping columns are a bit problematic.
		 * The code below will effectively ignore their SRF nature and come up
		 * with a numdistinct estimate as though they were scalar functions.
		 * We compensate by scaling up the end result by the largest SRF
		 * rowcount estimate.  (This will be an overestimate if the SRF
		 * produces multiple copies of any output value, but it seems best to
		 * assume the SRF's outputs are distinct.  In any case, it's probably
		 * pointless to worry too much about this without much better
		 * estimates for SRF output rowcounts than we have today.)
		 */
		this_srf_multiplier = expression_returns_set_rows(root, groupexpr);
		if (srf_multiplier < this_srf_multiplier)
			srf_multiplier = this_srf_multiplier;

		/* Short-circuit for expressions returning boolean */
		if (exprType(groupexpr) == BOOLOID)
		{
			numdistinct *= 2.0;
			continue;
		}

		/*
		 * If examine_variable is able to deduce anything about the GROUP BY
		 * expression, treat it as a single variable even if it's really more
		 * complicated.
		 *
		 * XXX This has the consequence that if there's a statistics on the
		 * expression, we don't split it into individual Vars. This affects
		 * our selection of statistics in estimate_multivariate_ndistinct,
		 * because it's probably better to use more accurate estimate for
		 * each expression and treat them as independent, than to combine
		 * estimates for the extracted variables when we don't know how that
		 * relates to the expressions.
		 */
		examine_variable(root, groupexpr, 0, &vardata);
		if (HeapTupleIsValid(vardata.statsTuple) || vardata.isunique)
		{
			varinfos = add_unique_group_var(root, varinfos,
											groupexpr, &vardata);
			ReleaseVariableStats(vardata);
			continue;
		}
		ReleaseVariableStats(vardata);

		/*
		 * Else pull out the component Vars.  Handle PlaceHolderVars by
		 * recursing into their arguments (effectively assuming that the
		 * PlaceHolderVar doesn't change the number of groups, which boils
		 * down to ignoring the possible addition of nulls to the result set).
		 */
		varshere = pull_var_clause(groupexpr,
								   PVC_RECURSE_AGGREGATES |
								   PVC_RECURSE_WINDOWFUNCS |
								   PVC_RECURSE_PLACEHOLDERS);

		/*
		 * If we find any variable-free GROUP BY item, then either it is a
		 * constant (and we can ignore it) or it contains a volatile function;
		 * in the latter case we punt and assume that each input row will
		 * yield a distinct group.
		 */
		if (varshere == NIL)
		{
			if (contain_volatile_functions(groupexpr))
				return input_rows;
			continue;
		}

		/*
		 * Else add variables to varinfos list
		 */
		foreach(l2, varshere)
		{
			Node	   *var = (Node *) lfirst(l2);

			examine_variable(root, var, 0, &vardata);
			varinfos = add_unique_group_var(root, varinfos, var, &vardata);
			ReleaseVariableStats(vardata);
		}
	}

	/*
	 * If now no Vars, we must have an all-constant or all-boolean GROUP BY
	 * list.
	 */
	if (varinfos == NIL)
	{
		/* Apply SRF multiplier as we would do in the long path */
		numdistinct *= srf_multiplier;
		/* Round off */
		numdistinct = ceil(numdistinct);
		/* Guard against out-of-range answers */
		if (numdistinct > input_rows)
			numdistinct = input_rows;
		if (numdistinct < 1.0)
			numdistinct = 1.0;
		return numdistinct;
	}

	/*
	 * Group Vars by relation and estimate total numdistinct.
	 *
	 * For each iteration of the outer loop, we process the frontmost Var in
	 * varinfos, plus all other Vars in the same relation.  We remove these
	 * Vars from the newvarinfos list for the next iteration. This is the
	 * easiest way to group Vars of same rel together.
	 */
	do
	{
		GroupVarInfo *varinfo1 = (GroupVarInfo *) linitial(varinfos);
		RelOptInfo *rel = varinfo1->rel;
		double		reldistinct = 1;
		double		relmaxndistinct = reldistinct;
		int			relvarcount = 0;
		List	   *newvarinfos = NIL;
		List	   *relvarinfos = NIL;

		/*
		 * Split the list of varinfos in two - one for the current rel, one
		 * for remaining Vars on other rels.
		 */
		relvarinfos = lappend(relvarinfos, varinfo1);
		for_each_from(l, varinfos, 1)
		{
			GroupVarInfo *varinfo2 = (GroupVarInfo *) lfirst(l);

			if (varinfo2->rel == varinfo1->rel)
			{
				/* varinfos on current rel */
				relvarinfos = lappend(relvarinfos, varinfo2);
			}
			else
			{
				/* not time to process varinfo2 yet */
				newvarinfos = lappend(newvarinfos, varinfo2);
			}
		}

		/*
		 * Get the numdistinct estimate for the Vars of this rel.  We
		 * iteratively search for multivariate n-distinct with maximum number
		 * of vars; assuming that each var group is independent of the others,
		 * we multiply them together.  Any remaining relvarinfos after no more
		 * multivariate matches are found are assumed independent too, so
		 * their individual ndistinct estimates are multiplied also.
		 *
		 * While iterating, count how many separate numdistinct values we
		 * apply.  We apply a fudge factor below, but only if we multiplied
		 * more than one such values.
		 */
		while (relvarinfos)
		{
			double		mvndistinct;

			if (estimate_multivariate_ndistinct(root, rel, &relvarinfos,
												&mvndistinct))
			{
				reldistinct *= mvndistinct;
				if (relmaxndistinct < mvndistinct)
					relmaxndistinct = mvndistinct;
				relvarcount++;
			}
			else
			{
				foreach(l, relvarinfos)
				{
					GroupVarInfo *varinfo2 = (GroupVarInfo *) lfirst(l);

					reldistinct *= varinfo2->ndistinct;
					if (relmaxndistinct < varinfo2->ndistinct)
						relmaxndistinct = varinfo2->ndistinct;
					relvarcount++;
				}

				/* we're done with this relation */
				relvarinfos = NIL;
			}
		}

		/*
		 * Sanity check --- don't divide by zero if empty relation.
		 */
		Assert(IS_SIMPLE_REL(rel));
		if (rel->tuples > 0)
		{
			/*
			 * Clamp to size of rel, or size of rel / 10 if multiple Vars. The
			 * fudge factor is because the Vars are probably correlated but we
			 * don't know by how much.  We should never clamp to less than the
			 * largest ndistinct value for any of the Vars, though, since
			 * there will surely be at least that many groups.
			 */
			double		clamp = rel->tuples;

			if (relvarcount > 1)
			{
				clamp *= 0.1;
				if (clamp < relmaxndistinct)
				{
					clamp = relmaxndistinct;
					/* for sanity in case some ndistinct is too large: */
					if (clamp > rel->tuples)
						clamp = rel->tuples;
				}
			}
			if (reldistinct > clamp)
				reldistinct = clamp;

			/*
			 * Update the estimate based on the restriction selectivity,
			 * guarding against division by zero when reldistinct is zero.
			 * Also skip this if we know that we are returning all rows.
			 */
			if (reldistinct > 0 && rel->rows < rel->tuples)
			{
				/*
				 * Given a table containing N rows with n distinct values in a
				 * uniform distribution, if we select p rows at random then
				 * the expected number of distinct values selected is
				 *
				 * n * (1 - product((N-N/n-i)/(N-i), i=0..p-1))
				 *
				 * = n * (1 - (N-N/n)! / (N-N/n-p)! * (N-p)! / N!)
				 *
				 * See "Approximating block accesses in database
				 * organizations", S. B. Yao, Communications of the ACM,
				 * Volume 20 Issue 4, April 1977 Pages 260-261.
				 *
				 * Alternatively, re-arranging the terms from the factorials,
				 * this may be written as
				 *
				 * n * (1 - product((N-p-i)/(N-i), i=0..N/n-1))
				 *
				 * This form of the formula is more efficient to compute in
				 * the common case where p is larger than N/n.  Additionally,
				 * as pointed out by Dell'Era, if i << N for all terms in the
				 * product, it can be approximated by
				 *
				 * n * (1 - ((N-p)/N)^(N/n))
				 *
				 * See "Expected distinct values when selecting from a bag
				 * without replacement", Alberto Dell'Era,
				 * http://www.adellera.it/investigations/distinct_balls/.
				 *
				 * The condition i << N is equivalent to n >> 1, so this is a
				 * good approximation when the number of distinct values in
				 * the table is large.  It turns out that this formula also
				 * works well even when n is small.
				 */
				reldistinct *=
					(1 - pow((rel->tuples - rel->rows) / rel->tuples,
							 rel->tuples / reldistinct));
			}
			reldistinct = clamp_row_est(reldistinct);

			/*
			 * Update estimate of total distinct groups.
			 */
			numdistinct *= reldistinct;
		}

		varinfos = newvarinfos;
	} while (varinfos != NIL);

	/* Now we can account for the effects of any SRFs */
	numdistinct *= srf_multiplier;

	/* Round off */
	numdistinct = ceil(numdistinct);

	/* Guard against out-of-range answers */
	if (numdistinct > input_rows)
		numdistinct = input_rows;
	if (numdistinct < 1.0)
		numdistinct = 1.0;

	return numdistinct;
}

/*
 * Estimate hash bucket statistics when the specified expression is used
 * as a hash key for the given number of buckets.
 *
 * This attempts to determine two values:
 *
 * 1. The frequency of the most common value of the expression (returns
 * zero into *mcv_freq if we can't get that).
 *
 * 2. The "bucketsize fraction", ie, average number of entries in a bucket
 * divided by total tuples in relation.
 *
 * XXX This is really pretty bogus since we're effectively assuming that the
 * distribution of hash keys will be the same after applying restriction
 * clauses as it was in the underlying relation.  However, we are not nearly
 * smart enough to figure out how the restrict clauses might change the
 * distribution, so this will have to do for now.
 *
 * We are passed the number of buckets the executor will use for the given
 * input relation.  If the data were perfectly distributed, with the same
 * number of tuples going into each available bucket, then the bucketsize
 * fraction would be 1/nbuckets.  But this happy state of affairs will occur
 * only if (a) there are at least nbuckets distinct data values, and (b)
 * we have a not-too-skewed data distribution.  Otherwise the buckets will
 * be nonuniformly occupied.  If the other relation in the join has a key
 * distribution similar to this one's, then the most-loaded buckets are
 * exactly those that will be probed most often.  Therefore, the "average"
 * bucket size for costing purposes should really be taken as something close
 * to the "worst case" bucket size.  We try to estimate this by adjusting the
 * fraction if there are too few distinct data values, and then scaling up
 * by the ratio of the most common value's frequency to the average frequency.
 *
 * If no statistics are available, use a default estimate of 0.1.  This will
 * discourage use of a hash rather strongly if the inner relation is large,
 * which is what we want.  We do not want to hash unless we know that the
 * inner rel is well-dispersed (or the alternatives seem much worse).
 *
 * The caller should also check that the mcv_freq is not so large that the
 * most common value would by itself require an impractically large bucket.
 * In a hash join, the executor can split buckets if they get too big, but
 * obviously that doesn't help for a bucket that contains many duplicates of
 * the same value.
 */
void
estimate_hash_bucket_stats(PlannerInfo *root, Node *hashkey, double nbuckets,
						   Selectivity *mcv_freq,
						   Selectivity *bucketsize_frac)
{
	VariableStatData vardata;
	double		estfract,
				ndistinct,
				stanullfrac,
				avgfreq;
	bool		isdefault;
	AttStatsSlot sslot;

	examine_variable(root, hashkey, 0, &vardata);

	/* Look up the frequency of the most common value, if available */
	*mcv_freq = 0.0;

	if (HeapTupleIsValid(vardata.statsTuple))
	{
		if (get_attstatsslot(&sslot, vardata.statsTuple,
							 STATISTIC_KIND_MCV, InvalidOid,
							 ATTSTATSSLOT_NUMBERS))
		{
			/*
			 * The first MCV stat is for the most common value.
			 */
			if (sslot.nnumbers > 0)
				*mcv_freq = sslot.numbers[0];
			free_attstatsslot(&sslot);
		}
	}

	/* Get number of distinct values */
	ndistinct = get_variable_numdistinct(&vardata, &isdefault);

	/*
	 * If ndistinct isn't real, punt.  We normally return 0.1, but if the
	 * mcv_freq is known to be even higher than that, use it instead.
	 */
	if (isdefault)
	{
		*bucketsize_frac = (Selectivity) Max(0.1, *mcv_freq);
		ReleaseVariableStats(vardata);
		return;
	}

	/* Get fraction that are null */
	if (HeapTupleIsValid(vardata.statsTuple))
	{
		Form_pg_statistic stats;

		stats = (Form_pg_statistic) GETSTRUCT(vardata.statsTuple);
		stanullfrac = stats->stanullfrac;
	}
	else
		stanullfrac = 0.0;

	/* Compute avg freq of all distinct data values in raw relation */
	avgfreq = (1.0 - stanullfrac) / ndistinct;

	/*
	 * Adjust ndistinct to account for restriction clauses.  Observe we are
	 * assuming that the data distribution is affected uniformly by the
	 * restriction clauses!
	 *
	 * XXX Possibly better way, but much more expensive: multiply by
	 * selectivity of rel's restriction clauses that mention the target Var.
	 */
	if (vardata.rel && vardata.rel->tuples > 0)
	{
		ndistinct *= vardata.rel->rows / vardata.rel->tuples;
		ndistinct = clamp_row_est(ndistinct);
	}

	/*
	 * Initial estimate of bucketsize fraction is 1/nbuckets as long as the
	 * number of buckets is less than the expected number of distinct values;
	 * otherwise it is 1/ndistinct.
	 */
	if (ndistinct > nbuckets)
		estfract = 1.0 / nbuckets;
	else
		estfract = 1.0 / ndistinct;

	/*
	 * Adjust estimated bucketsize upward to account for skewed distribution.
	 */
	if (avgfreq > 0.0 && *mcv_freq > avgfreq)
		estfract *= *mcv_freq / avgfreq;

	/*
	 * Clamp bucketsize to sane range (the above adjustment could easily
	 * produce an out-of-range result).  We set the lower bound a little above
	 * zero, since zero isn't a very sane result.
	 */
	if (estfract < 1.0e-6)
		estfract = 1.0e-6;
	else if (estfract > 1.0)
		estfract = 1.0;

	*bucketsize_frac = (Selectivity) estfract;

	ReleaseVariableStats(vardata);
}

/*
 * estimate_hashagg_tablesize
 *	  estimate the number of bytes that a hash aggregate hashtable will
 *	  require based on the agg_costs, path width and number of groups.
 *
 * We return the result as "double" to forestall any possible overflow
 * problem in the multiplication by dNumGroups.
 *
 * XXX this may be over-estimating the size now that hashagg knows to omit
 * unneeded columns from the hashtable.  Also for mixed-mode grouping sets,
 * grouping columns not in the hashed set are counted here even though hashagg
 * won't store them.  Is this a problem?
 */
double
estimate_hashagg_tablesize(PlannerInfo *root, Path *path,
						   const AggClauseCosts *agg_costs, double dNumGroups)
{
	Size		hashentrysize;

	hashentrysize = hash_agg_entry_size(list_length(root->aggtransinfos),
										path->pathtarget->width,
										agg_costs->transitionSpace);

	/*
	 * Note that this disregards the effect of fill-factor and growth policy
	 * of the hash table.  That's probably ok, given that the default
	 * fill-factor is relatively high.  It'd be hard to meaningfully factor in
	 * "double-in-size" growth policies here.
	 */
	return hashentrysize * dNumGroups;
}


/*-------------------------------------------------------------------------
 *
 * Support routines
 *
 *-------------------------------------------------------------------------
 */

/*
 * Find applicable ndistinct statistics for the given list of VarInfos (which
 * must all belong to the given rel), and update *ndistinct to the estimate of
 * the MVNDistinctItem that best matches.  If a match it found, *varinfos is
 * updated to remove the list of matched varinfos.
 *
 * Varinfos that aren't for simple Vars are ignored.
 *
 * Return true if we're able to find a match, false otherwise.
 */
static bool
estimate_multivariate_ndistinct(PlannerInfo *root, RelOptInfo *rel,
								List **varinfos, double *ndistinct)
{
	ListCell   *lc;
	int			nmatches_vars;
	int			nmatches_exprs;
	Oid			statOid = InvalidOid;
	MVNDistinct *stats;
	StatisticExtInfo *matched_info = NULL;

	/* bail out immediately if the table has no extended statistics */
	if (!rel->statlist)
		return false;

	/* look for the ndistinct statistics matching the most vars */
	nmatches_vars = 0;			/* we require at least two matches */
	nmatches_exprs = 0;
	foreach(lc, rel->statlist)
	{
		ListCell   *lc2;
		StatisticExtInfo *info = (StatisticExtInfo *) lfirst(lc);
		int			nshared_vars = 0;
		int			nshared_exprs = 0;

		/* skip statistics of other kinds */
		if (info->kind != STATS_EXT_NDISTINCT)
			continue;

		/*
		 * Determine how many expressions (and variables in non-matched
		 * expressions) match. We'll then use these numbers to pick the
		 * statistics object that best matches the clauses.
		 */
		foreach(lc2, *varinfos)
		{
			ListCell   *lc3;
			GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc2);
			AttrNumber	attnum;

			Assert(varinfo->rel == rel);

			/* simple Var, search in statistics keys directly */
			if (IsA(varinfo->var, Var))
			{
				attnum = ((Var *) varinfo->var)->varattno;

				/*
				 * Ignore system attributes - we don't support statistics on
				 * them, so can't match them (and it'd fail as the values are
				 * negative).
				 */
				if (!AttrNumberIsForUserDefinedAttr(attnum))
					continue;

				if (bms_is_member(attnum, info->keys))
					nshared_vars++;

				continue;
			}

			/* expression - see if it's in the statistics */
			foreach(lc3, info->exprs)
			{
				Node	   *expr = (Node *) lfirst(lc3);

				if (equal(varinfo->var, expr))
				{
					nshared_exprs++;
					break;
				}
			}
		}

		if (nshared_vars + nshared_exprs < 2)
			continue;

		/*
		 * Does this statistics object match more columns than the currently
		 * best object?  If so, use this one instead.
		 *
		 * XXX This should break ties using name of the object, or something
		 * like that, to make the outcome stable.
		 */
		if ((nshared_exprs > nmatches_exprs) ||
			(((nshared_exprs == nmatches_exprs)) && (nshared_vars > nmatches_vars)))
		{
			statOid = info->statOid;
			nmatches_vars = nshared_vars;
			nmatches_exprs = nshared_exprs;
			matched_info = info;
		}
	}

	/* No match? */
	if (statOid == InvalidOid)
		return false;

	Assert(nmatches_vars + nmatches_exprs > 1);

	stats = statext_ndistinct_load(statOid);

	/*
	 * If we have a match, search it for the specific item that matches (there
	 * must be one), and construct the output values.
	 */
	if (stats)
	{
		int			i;
		List	   *newlist = NIL;
		MVNDistinctItem *item = NULL;
		ListCell   *lc2;
		Bitmapset  *matched = NULL;
		AttrNumber	attnum_offset;

		/*
		 * How much we need to offset the attnums? If there are no
		 * expressions, no offset is needed. Otherwise offset enough to move
		 * the lowest one (which is equal to number of expressions) to 1.
		 */
		if (matched_info->exprs)
			attnum_offset = (list_length(matched_info->exprs) + 1);
		else
			attnum_offset = 0;

		/* see what actually matched */
		foreach(lc2, *varinfos)
		{
			ListCell   *lc3;
			int			idx;
			bool		found = false;

			GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc2);

			/*
			 * Process a simple Var expression, by matching it to keys
			 * directly. If there's a matchine expression, we'll try
			 * matching it later.
			 */
			if (IsA(varinfo->var, Var))
			{
				AttrNumber	attnum = ((Var *) varinfo->var)->varattno;

				/*
				 * Ignore expressions on system attributes. Can't rely on
				 * the bms check for negative values.
				 */
				if (!AttrNumberIsForUserDefinedAttr(attnum))
					continue;

				/* Is the variable covered by the statistics? */
				if (!bms_is_member(attnum, matched_info->keys))
					continue;

				attnum = attnum + attnum_offset;

				/* ensure sufficient offset */
				Assert(AttrNumberIsForUserDefinedAttr(attnum));

				matched = bms_add_member(matched, attnum);

				found = true;
			}

			/*
			 * XXX Maybe we should allow searching the expressions even if we
			 * found an attribute matching the expression? That would handle
			 * trivial expressions like "(a)" but it seems fairly useless.
			 */
			if (found)
				continue;

			/* expression - see if it's in the statistics */
			idx = 0;
			foreach(lc3, matched_info->exprs)
			{
				Node	   *expr = (Node *) lfirst(lc3);

				if (equal(varinfo->var, expr))
				{
					AttrNumber	attnum = -(idx + 1);

					attnum = attnum + attnum_offset;

					/* ensure sufficient offset */
					Assert(AttrNumberIsForUserDefinedAttr(attnum));

					matched = bms_add_member(matched, attnum);

					/* there should be just one matching expression */
					break;
				}

				idx++;
			}
		}

		/* Find the specific item that exactly matches the combination */
		for (i = 0; i < stats->nitems; i++)
		{
			int			j;
			MVNDistinctItem *tmpitem = &stats->items[i];

			if (tmpitem->nattributes != bms_num_members(matched))
				continue;

			/* assume it's the right item */
			item = tmpitem;

			/* check that all item attributes/expressions fit the match */
			for (j = 0; j < tmpitem->nattributes; j++)
			{
				AttrNumber	attnum = tmpitem->attributes[j];

				/*
				 * Thanks to how we constructed the matched bitmap above, we
				 * can just offset all attnums the same way.
				 */
				attnum = attnum + attnum_offset;

				if (!bms_is_member(attnum, matched))
				{
					/* nah, it's not this item */
					item = NULL;
					break;
				}
			}

			/*
			 * If the item has all the matched attributes, we know it's the
			 * right one - there can't be a better one. matching more.
			 */
			if (item)
				break;
		}

		/*
		 * Make sure we found an item. There has to be one, because ndistinct
		 * statistics includes all combinations of attributes.
		 */
		if (!item)
			elog(ERROR, "corrupt MVNDistinct entry");

		/* Form the output varinfo list, keeping only unmatched ones */
		foreach(lc, *varinfos)
		{
			GroupVarInfo *varinfo = (GroupVarInfo *) lfirst(lc);
			ListCell   *lc3;
			bool		found = false;

			/*
			 * Let's look at plain variables first, because it's the most
			 * common case and the check is quite cheap. We can simply get the
			 * attnum and check (with an offset) matched bitmap.
			 */
			if (IsA(varinfo->var, Var))
			{
				AttrNumber	attnum = ((Var *) varinfo->var)->varattno;

				/*
				 * If it's a system attribute, we're done. We don't support
				 * extended statistics on system attributes, so it's clearly
				 * not matched. Just keep the expression and continue.
				 */
				if (!AttrNumberIsForUserDefinedAttr(attnum))
				{
					newlist = lappend(newlist, varinfo);
					continue;
				}

				/* apply the same offset as above */
				attnum += attnum_offset;

				/* if it's not matched, keep the varinfo */
				if (!bms_is_member(attnum, matched))
					newlist = lappend(newlist, varinfo);

				/* The rest of the loop deals with complex expressions. */
				continue;
			}

			/*
			 * Process complex expressions, not just simple Vars.
			 *
			 * First, we search for an exact match of an expression. If we
			 * find one, we can just discard the whole GroupExprInfo, with all
			 * the variables we extracted from it.
			 *
			 * Otherwise we inspect the individual vars, and try matching it
			 * to variables in the item.
			 */
			foreach(lc3, matched_info->exprs)
			{
				Node	   *expr = (Node *) lfirst(lc3);

				if (equal(varinfo->var, expr))
				{
					found = true;
					break;
				}
			}

			/* found exact match, skip */
			if (found)
				continue;

			newlist = lappend(newlist, varinfo);
		}

		*varinfos = newlist;
		*ndistinct = item->ndistinct;
		return true;
	}

	return false;
}

/*
 * convert_to_scalar
 *	  Convert non-NULL values of the indicated types to the comparison
 *	  scale needed by scalarineqsel().
 *	  Returns "true" if successful.
 *
 * XXX this routine is a hack: ideally we should look up the conversion
 * subroutines in pg_type.
 *
 * All numeric datatypes are simply converted to their equivalent
 * "double" values.  (NUMERIC values that are outside the range of "double"
 * are clamped to +/- HUGE_VAL.)
 *
 * String datatypes are converted by convert_string_to_scalar(),
 * which is explained below.  The reason why this routine deals with
 * three values at a time, not just one, is that we need it for strings.
 *
 * The bytea datatype is just enough different from strings that it has
 * to be treated separately.
 *
 * The several datatypes representing absolute times are all converted
 * to Timestamp, which is actually an int64, and then we promote that to
 * a double.  Note this will give correct results even for the "special"
 * values of Timestamp, since those are chosen to compare correctly;
 * see timestamp_cmp.
 *
 * The several datatypes representing relative times (intervals) are all
 * converted to measurements expressed in seconds.
 */
static bool
convert_to_scalar(Datum value, Oid valuetypid, Oid collid, double *scaledvalue,
				  Datum lobound, Datum hibound, Oid boundstypid,
				  double *scaledlobound, double *scaledhibound)
{
	bool		failure = false;

	/*
	 * Both the valuetypid and the boundstypid should exactly match the
	 * declared input type(s) of the operator we are invoked for.  However,
	 * extensions might try to use scalarineqsel as estimator for operators
	 * with input type(s) we don't handle here; in such cases, we want to
	 * return false, not fail.  In any case, we mustn't assume that valuetypid
	 * and boundstypid are identical.
	 *
	 * XXX The histogram we are interpolating between points of could belong
	 * to a column that's only binary-compatible with the declared type. In
	 * essence we are assuming that the semantics of binary-compatible types
	 * are enough alike that we can use a histogram generated with one type's
	 * operators to estimate selectivity for the other's.  This is outright
	 * wrong in some cases --- in particular signed versus unsigned
	 * interpretation could trip us up.  But it's useful enough in the
	 * majority of cases that we do it anyway.  Should think about more
	 * rigorous ways to do it.
	 */
	switch (valuetypid)
	{
			/*
			 * Built-in numeric types
			 */
		case BOOLOID:
		case INT2OID:
		case INT4OID:
		case INT8OID:
		case FLOAT4OID:
		case FLOAT8OID:
		case NUMERICOID:
		case OIDOID:
		case REGPROCOID:
		case REGPROCEDUREOID:
		case REGOPEROID:
		case REGOPERATOROID:
		case REGCLASSOID:
		case REGTYPEOID:
		case REGCONFIGOID:
		case REGDICTIONARYOID:
		case REGROLEOID:
		case REGNAMESPACEOID:
			*scaledvalue = convert_numeric_to_scalar(value, valuetypid,
													 &failure);
			*scaledlobound = convert_numeric_to_scalar(lobound, boundstypid,
													   &failure);
			*scaledhibound = convert_numeric_to_scalar(hibound, boundstypid,
													   &failure);
			return !failure;

			/*
			 * Built-in string types
			 */
		case CHAROID:
		case BPCHAROID:
		case VARCHAROID:
		case TEXTOID:
		case NAMEOID:
			{
				char	   *valstr = convert_string_datum(value, valuetypid,
														  collid, &failure);
				char	   *lostr = convert_string_datum(lobound, boundstypid,
														 collid, &failure);
				char	   *histr = convert_string_datum(hibound, boundstypid,
														 collid, &failure);

				/*
				 * Bail out if any of the values is not of string type.  We
				 * might leak converted strings for the other value(s), but
				 * that's not worth troubling over.
				 */
				if (failure)
					return false;

				convert_string_to_scalar(valstr, scaledvalue,
										 lostr, scaledlobound,
										 histr, scaledhibound);
				pfree(valstr);
				pfree(lostr);
				pfree(histr);
				return true;
			}

			/*
			 * Built-in bytea type
			 */
		case BYTEAOID:
			{
				/* We only support bytea vs bytea comparison */
				if (boundstypid != BYTEAOID)
					return false;
				convert_bytea_to_scalar(value, scaledvalue,
										lobound, scaledlobound,
										hibound, scaledhibound);
				return true;
			}

			/*
			 * Built-in time types
			 */
		case TIMESTAMPOID:
		case TIMESTAMPTZOID:
		case DATEOID:
		case INTERVALOID:
		case TIMEOID:
		case TIMETZOID:
			*scaledvalue = convert_timevalue_to_scalar(value, valuetypid,
													   &failure);
			*scaledlobound = convert_timevalue_to_scalar(lobound, boundstypid,
														 &failure);
			*scaledhibound = convert_timevalue_to_scalar(hibound, boundstypid,
														 &failure);
			return !failure;

			/*
			 * Built-in network types
			 */
		case INETOID:
		case CIDROID:
		case MACADDROID:
		case MACADDR8OID:
			*scaledvalue = convert_network_to_scalar(value, valuetypid,
													 &failure);
			*scaledlobound = convert_network_to_scalar(lobound, boundstypid,
													   &failure);
			*scaledhibound = convert_network_to_scalar(hibound, boundstypid,
													   &failure);
			return !failure;
	}
	/* Don't know how to convert */
	*scaledvalue = *scaledlobound = *scaledhibound = 0;
	return false;
}

/*
 * Do convert_to_scalar()'s work for any numeric data type.
 *
 * On failure (e.g., unsupported typid), set *failure to true;
 * otherwise, that variable is not changed.
 */
static double
convert_numeric_to_scalar(Datum value, Oid typid, bool *failure)
{
	switch (typid)
	{
		case BOOLOID:
			return (double) DatumGetBool(value);
		case INT2OID:
			return (double) DatumGetInt16(value);
		case INT4OID:
			return (double) DatumGetInt32(value);
		case INT8OID:
			return (double) DatumGetInt64(value);
		case FLOAT4OID:
			return (double) DatumGetFloat4(value);
		case FLOAT8OID:
			return (double) DatumGetFloat8(value);
		case NUMERICOID:
			/* Note: out-of-range values will be clamped to +-HUGE_VAL */
			return (double)
				DatumGetFloat8(DirectFunctionCall1(numeric_float8_no_overflow,
												   value));
		case OIDOID:
		case REGPROCOID:
		case REGPROCEDUREOID:
		case REGOPEROID:
		case REGOPERATOROID:
		case REGCLASSOID:
		case REGTYPEOID:
		case REGCONFIGOID:
		case REGDICTIONARYOID:
		case REGROLEOID:
		case REGNAMESPACEOID:
			/* we can treat OIDs as integers... */
			return (double) DatumGetObjectId(value);
	}

	*failure = true;
	return 0;
}

/*
 * Do convert_to_scalar()'s work for any character-string data type.
 *
 * String datatypes are converted to a scale that ranges from 0 to 1,
 * where we visualize the bytes of the string as fractional digits.
 *
 * We do not want the base to be 256, however, since that tends to
 * generate inflated selectivity estimates; few databases will have
 * occurrences of all 256 possible byte values at each position.
 * Instead, use the smallest and largest byte values seen in the bounds
 * as the estimated range for each byte, after some fudging to deal with
 * the fact that we probably aren't going to see the full range that way.
 *
 * An additional refinement is that we discard any common prefix of the
 * three strings before computing the scaled values.  This allows us to
 * "zoom in" when we encounter a narrow data range.  An example is a phone
 * number database where all the values begin with the same area code.
 * (Actually, the bounds will be adjacent histogram-bin-boundary values,
 * so this is more likely to happen than you might think.)
 */
static void
convert_string_to_scalar(char *value,
						 double *scaledvalue,
						 char *lobound,
						 double *scaledlobound,
						 char *hibound,
						 double *scaledhibound)
{
	int			rangelo,
				rangehi;
	char	   *sptr;

	rangelo = rangehi = (unsigned char) hibound[0];
	for (sptr = lobound; *sptr; sptr++)
	{
		if (rangelo > (unsigned char) *sptr)
			rangelo = (unsigned char) *sptr;
		if (rangehi < (unsigned char) *sptr)
			rangehi = (unsigned char) *sptr;
	}
	for (sptr = hibound; *sptr; sptr++)
	{
		if (rangelo > (unsigned char) *sptr)
			rangelo = (unsigned char) *sptr;
		if (rangehi < (unsigned char) *sptr)
			rangehi = (unsigned char) *sptr;
	}
	/* If range includes any upper-case ASCII chars, make it include all */
	if (rangelo <= 'Z' && rangehi >= 'A')
	{
		if (rangelo > 'A')
			rangelo = 'A';
		if (rangehi < 'Z')
			rangehi = 'Z';
	}
	/* Ditto lower-case */
	if (rangelo <= 'z' && rangehi >= 'a')
	{
		if (rangelo > 'a')
			rangelo = 'a';
		if (rangehi < 'z')
			rangehi = 'z';
	}
	/* Ditto digits */
	if (rangelo <= '9' && rangehi >= '0')
	{
		if (rangelo > '0')
			rangelo = '0';
		if (rangehi < '9')
			rangehi = '9';
	}

	/*
	 * If range includes less than 10 chars, assume we have not got enough
	 * data, and make it include regular ASCII set.
	 */
	if (rangehi - rangelo < 9)
	{
		rangelo = ' ';
		rangehi = 127;
	}

	/*
	 * Now strip any common prefix of the three strings.
	 */
	while (*lobound)
	{
		if (*lobound != *hibound || *lobound != *value)
			break;
		lobound++, hibound++, value++;
	}

	/*
	 * Now we can do the conversions.
	 */
	*scaledvalue = convert_one_string_to_scalar(value, rangelo, rangehi);
	*scaledlobound = convert_one_string_to_scalar(lobound, rangelo, rangehi);
	*scaledhibound = convert_one_string_to_scalar(hibound, rangelo, rangehi);
}

static double
convert_one_string_to_scalar(char *value, int rangelo, int rangehi)
{
	int			slen = strlen(value);
	double		num,
				denom,
				base;

	if (slen <= 0)
		return 0.0;				/* empty string has scalar value 0 */

	/*
	 * There seems little point in considering more than a dozen bytes from
	 * the string.  Since base is at least 10, that will give us nominal
	 * resolution of at least 12 decimal digits, which is surely far more
	 * precision than this estimation technique has got anyway (especially in
	 * non-C locales).  Also, even with the maximum possible base of 256, this
	 * ensures denom cannot grow larger than 256^13 = 2.03e31, which will not
	 * overflow on any known machine.
	 */
	if (slen > 12)
		slen = 12;

	/* Convert initial characters to fraction */
	base = rangehi - rangelo + 1;
	num = 0.0;
	denom = base;
	while (slen-- > 0)
	{
		int			ch = (unsigned char) *value++;

		if (ch < rangelo)
			ch = rangelo - 1;
		else if (ch > rangehi)
			ch = rangehi + 1;
		num += ((double) (ch - rangelo)) / denom;
		denom *= base;
	}

	return num;
}

/*
 * Convert a string-type Datum into a palloc'd, null-terminated string.
 *
 * On failure (e.g., unsupported typid), set *failure to true;
 * otherwise, that variable is not changed.  (We'll return NULL on failure.)
 *
 * When using a non-C locale, we must pass the string through strxfrm()
 * before continuing, so as to generate correct locale-specific results.
 */
static char *
convert_string_datum(Datum value, Oid typid, Oid collid, bool *failure)
{
	char	   *val;

	switch (typid)
	{
		case CHAROID:
			val = (char *) palloc(2);
			val[0] = DatumGetChar(value);
			val[1] = '\0';
			break;
		case BPCHAROID:
		case VARCHAROID:
		case TEXTOID:
			val = TextDatumGetCString(value);
			break;
		case NAMEOID:
			{
				NameData   *nm = (NameData *) DatumGetPointer(value);

				val = pstrdup(NameStr(*nm));
				break;
			}
		default:
			*failure = true;
			return NULL;
	}

	if (!lc_collate_is_c(collid))
	{
		char	   *xfrmstr;
		size_t		xfrmlen;
		size_t		xfrmlen2 PG_USED_FOR_ASSERTS_ONLY;

		/*
		 * XXX: We could guess at a suitable output buffer size and only call
		 * strxfrm twice if our guess is too small.
		 *
		 * XXX: strxfrm doesn't support UTF-8 encoding on Win32, it can return
		 * bogus data or set an error. This is not really a problem unless it
		 * crashes since it will only give an estimation error and nothing
		 * fatal.
		 */
		xfrmlen = strxfrm(NULL, val, 0);
#ifdef WIN32

		/*
		 * On Windows, strxfrm returns INT_MAX when an error occurs. Instead
		 * of trying to allocate this much memory (and fail), just return the
		 * original string unmodified as if we were in the C locale.
		 */
		if (xfrmlen == INT_MAX)
			return val;
#endif
		xfrmstr = (char *) palloc(xfrmlen + 1);
		xfrmlen2 = strxfrm(xfrmstr, val, xfrmlen + 1);

		/*
		 * Some systems (e.g., glibc) can return a smaller value from the
		 * second call than the first; thus the Assert must be <= not ==.
		 */
		Assert(xfrmlen2 <= xfrmlen);
		pfree(val);
		val = xfrmstr;
	}

	return val;
}

/*
 * Do convert_to_scalar()'s work for any bytea data type.
 *
 * Very similar to convert_string_to_scalar except we can't assume
 * null-termination and therefore pass explicit lengths around.
 *
 * Also, assumptions about likely "normal" ranges of characters have been
 * removed - a data range of 0..255 is always used, for now.  (Perhaps
 * someday we will add information about actual byte data range to
 * pg_statistic.)
 */
static void
convert_bytea_to_scalar(Datum value,
						double *scaledvalue,
						Datum lobound,
						double *scaledlobound,
						Datum hibound,
						double *scaledhibound)
{
	bytea	   *valuep = DatumGetByteaPP(value);
	bytea	   *loboundp = DatumGetByteaPP(lobound);
	bytea	   *hiboundp = DatumGetByteaPP(hibound);
	int			rangelo,
				rangehi,
				valuelen = VARSIZE_ANY_EXHDR(valuep),
				loboundlen = VARSIZE_ANY_EXHDR(loboundp),
				hiboundlen = VARSIZE_ANY_EXHDR(hiboundp),
				i,
				minlen;
	unsigned char *valstr = (unsigned char *) VARDATA_ANY(valuep);
	unsigned char *lostr = (unsigned char *) VARDATA_ANY(loboundp);
	unsigned char *histr = (unsigned char *) VARDATA_ANY(hiboundp);

	/*
	 * Assume bytea data is uniformly distributed across all byte values.
	 */
	rangelo = 0;
	rangehi = 255;

	/*
	 * Now strip any common prefix of the three strings.
	 */
	minlen = Min(Min(valuelen, loboundlen), hiboundlen);
	for (i = 0; i < minlen; i++)
	{
		if (*lostr != *histr || *lostr != *valstr)
			break;
		lostr++, histr++, valstr++;
		loboundlen--, hiboundlen--, valuelen--;
	}

	/*
	 * Now we can do the conversions.
	 */
	*scaledvalue = convert_one_bytea_to_scalar(valstr, valuelen, rangelo, rangehi);
	*scaledlobound = convert_one_bytea_to_scalar(lostr, loboundlen, rangelo, rangehi);
	*scaledhibound = convert_one_bytea_to_scalar(histr, hiboundlen, rangelo, rangehi);
}

static double
convert_one_bytea_to_scalar(unsigned char *value, int valuelen,
							int rangelo, int rangehi)
{
	double		num,
				denom,
				base;

	if (valuelen <= 0)
		return 0.0;				/* empty string has scalar value 0 */

	/*
	 * Since base is 256, need not consider more than about 10 chars (even
	 * this many seems like overkill)
	 */
	if (valuelen > 10)
		valuelen = 10;

	/* Convert initial characters to fraction */
	base = rangehi - rangelo + 1;
	num = 0.0;
	denom = base;
	while (valuelen-- > 0)
	{
		int			ch = *value++;

		if (ch < rangelo)
			ch = rangelo - 1;
		else if (ch > rangehi)
			ch = rangehi + 1;
		num += ((double) (ch - rangelo)) / denom;
		denom *= base;
	}

	return num;
}

/*
 * Do convert_to_scalar()'s work for any timevalue data type.
 *
 * On failure (e.g., unsupported typid), set *failure to true;
 * otherwise, that variable is not changed.
 */
static double
convert_timevalue_to_scalar(Datum value, Oid typid, bool *failure)
{
	switch (typid)
	{
		case TIMESTAMPOID:
			return DatumGetTimestamp(value);
		case TIMESTAMPTZOID:
			return DatumGetTimestampTz(value);
		case DATEOID:
			return date2timestamp_no_overflow(DatumGetDateADT(value));
		case INTERVALOID:
			{
				Interval   *interval = DatumGetIntervalP(value);

				/*
				 * Convert the month part of Interval to days using assumed
				 * average month length of 365.25/12.0 days.  Not too
				 * accurate, but plenty good enough for our purposes.
				 */
				return interval->time + interval->day * (double) USECS_PER_DAY +
					interval->month * ((DAYS_PER_YEAR / (double) MONTHS_PER_YEAR) * USECS_PER_DAY);
			}
		case TIMEOID:
			return DatumGetTimeADT(value);
		case TIMETZOID:
			{
				TimeTzADT  *timetz = DatumGetTimeTzADTP(value);

				/* use GMT-equivalent time */
				return (double) (timetz->time + (timetz->zone * 1000000.0));
			}
	}

	*failure = true;
	return 0;
}


/*
 * get_restriction_variable
 *		Examine the args of a restriction clause to see if it's of the
 *		form (variable op pseudoconstant) or (pseudoconstant op variable),
 *		where "variable" could be either a Var or an expression in vars of a
 *		single relation.  If so, extract information about the variable,
 *		and also indicate which side it was on and the other argument.
 *
 * Inputs:
 *	root: the planner info
 *	args: clause argument list
 *	varRelid: see specs for restriction selectivity functions
 *
 * Outputs: (these are valid only if true is returned)
 *	*vardata: gets information about variable (see examine_variable)
 *	*other: gets other clause argument, aggressively reduced to a constant
 *	*varonleft: set true if variable is on the left, false if on the right
 *
 * Returns true if a variable is identified, otherwise false.
 *
 * Note: if there are Vars on both sides of the clause, we must fail, because
 * callers are expecting that the other side will act like a pseudoconstant.
 */
bool
get_restriction_variable(PlannerInfo *root, List *args, int varRelid,
						 VariableStatData *vardata, Node **other,
						 bool *varonleft)
{
	Node	   *left,
			   *right;
	VariableStatData rdata;

	/* Fail if not a binary opclause (probably shouldn't happen) */
	if (list_length(args) != 2)
		return false;

	left = (Node *) linitial(args);
	right = (Node *) lsecond(args);

	/*
	 * Examine both sides.  Note that when varRelid is nonzero, Vars of other
	 * relations will be treated as pseudoconstants.
	 */
	examine_variable(root, left, varRelid, vardata);
	examine_variable(root, right, varRelid, &rdata);

	/*
	 * If one side is a variable and the other not, we win.
	 */
	if (vardata->rel && rdata.rel == NULL)
	{
		*varonleft = true;
		*other = estimate_expression_value(root, rdata.var);
		/* Assume we need no ReleaseVariableStats(rdata) here */
		return true;
	}

	if (vardata->rel == NULL && rdata.rel)
	{
		*varonleft = false;
		*other = estimate_expression_value(root, vardata->var);
		/* Assume we need no ReleaseVariableStats(*vardata) here */
		*vardata = rdata;
		return true;
	}

	/* Oops, clause has wrong structure (probably var op var) */
	ReleaseVariableStats(*vardata);
	ReleaseVariableStats(rdata);

	return false;
}

/*
 * get_join_variables
 *		Apply examine_variable() to each side of a join clause.
 *		Also, attempt to identify whether the join clause has the same
 *		or reversed sense compared to the SpecialJoinInfo.
 *
 * We consider the join clause "normal" if it is "lhs_var OP rhs_var",
 * or "reversed" if it is "rhs_var OP lhs_var".  In complicated cases
 * where we can't tell for sure, we default to assuming it's normal.
 */
void
get_join_variables(PlannerInfo *root, List *args, SpecialJoinInfo *sjinfo,
				   VariableStatData *vardata1, VariableStatData *vardata2,
				   bool *join_is_reversed)
{
	Node	   *left,
			   *right;

	if (list_length(args) != 2)
		elog(ERROR, "join operator should take two arguments");

	left = (Node *) linitial(args);
	right = (Node *) lsecond(args);

	examine_variable(root, left, 0, vardata1);
	examine_variable(root, right, 0, vardata2);

	if (vardata1->rel &&
		bms_is_subset(vardata1->rel->relids, sjinfo->syn_righthand))
		*join_is_reversed = true;	/* var1 is on RHS */
	else if (vardata2->rel &&
			 bms_is_subset(vardata2->rel->relids, sjinfo->syn_lefthand))
		*join_is_reversed = true;	/* var2 is on LHS */
	else
		*join_is_reversed = false;
}

/* statext_expressions_load copies the tuple, so just pfree it. */
static void
ReleaseDummy(HeapTuple tuple)
{
	pfree(tuple);
}

/*
 * examine_variable
 *		Try to look up statistical data about an expression.
 *		Fill in a VariableStatData struct to describe the expression.
 *
 * Inputs:
 *	root: the planner info
 *	node: the expression tree to examine
 *	varRelid: see specs for restriction selectivity functions
 *
 * Outputs: *vardata is filled as follows:
 *	var: the input expression (with any binary relabeling stripped, if
 *		it is or contains a variable; but otherwise the type is preserved)
 *	rel: RelOptInfo for relation containing variable; NULL if expression
 *		contains no Vars (NOTE this could point to a RelOptInfo of a
 *		subquery, not one in the current query).
 *	statsTuple: the pg_statistic entry for the variable, if one exists;
 *		otherwise NULL.
 *	freefunc: pointer to a function to release statsTuple with.
 *	vartype: exposed type of the expression; this should always match
 *		the declared input type of the operator we are estimating for.
 *	atttype, atttypmod: actual type/typmod of the "var" expression.  This is
 *		commonly the same as the exposed type of the variable argument,
 *		but can be different in binary-compatible-type cases.
 *	isunique: true if we were able to match the var to a unique index or a
 *		single-column DISTINCT clause, implying its values are unique for
 *		this query.  (Caution: this should be trusted for statistical
 *		purposes only, since we do not check indimmediate nor verify that
 *		the exact same definition of equality applies.)
 *	acl_ok: true if current user has permission to read the column(s)
 *		underlying the pg_statistic entry.  This is consulted by
 *		statistic_proc_security_check().
 *
 * Caller is responsible for doing ReleaseVariableStats() before exiting.
 */
void
examine_variable(PlannerInfo *root, Node *node, int varRelid,
				 VariableStatData *vardata)
{
	Node	   *basenode;
	Relids		varnos;
	RelOptInfo *onerel;

	/* Make sure we don't return dangling pointers in vardata */
	MemSet(vardata, 0, sizeof(VariableStatData));

	/* Save the exposed type of the expression */
	vardata->vartype = exprType(node);

	/* Look inside any binary-compatible relabeling */

	if (IsA(node, RelabelType))
		basenode = (Node *) ((RelabelType *) node)->arg;
	else
		basenode = node;

	/* Fast path for a simple Var */

	if (IsA(basenode, Var) &&
		(varRelid == 0 || varRelid == ((Var *) basenode)->varno))
	{
		Var		   *var = (Var *) basenode;

		/* Set up result fields other than the stats tuple */
		vardata->var = basenode;	/* return Var without relabeling */
		vardata->rel = find_base_rel(root, var->varno);
		vardata->atttype = var->vartype;
		vardata->atttypmod = var->vartypmod;
		vardata->isunique = has_unique_index(vardata->rel, var->varattno);

		/* Try to locate some stats */
		examine_simple_variable(root, var, vardata);

		return;
	}

	/*
	 * Okay, it's a more complicated expression.  Determine variable
	 * membership.  Note that when varRelid isn't zero, only vars of that
	 * relation are considered "real" vars.
	 */
	varnos = pull_varnos(root, basenode);

	onerel = NULL;

	switch (bms_membership(varnos))
	{
		case BMS_EMPTY_SET:
			/* No Vars at all ... must be pseudo-constant clause */
			break;
		case BMS_SINGLETON:
			if (varRelid == 0 || bms_is_member(varRelid, varnos))
			{
				onerel = find_base_rel(root,
									   (varRelid ? varRelid : bms_singleton_member(varnos)));
				vardata->rel = onerel;
				node = basenode;	/* strip any relabeling */
			}
			/* else treat it as a constant */
			break;
		case BMS_MULTIPLE:
			if (varRelid == 0)
			{
				/* treat it as a variable of a join relation */
				vardata->rel = find_join_rel(root, varnos);
				node = basenode;	/* strip any relabeling */
			}
			else if (bms_is_member(varRelid, varnos))
			{
				/* ignore the vars belonging to other relations */
				vardata->rel = find_base_rel(root, varRelid);
				node = basenode;	/* strip any relabeling */
				/* note: no point in expressional-index search here */
			}
			/* else treat it as a constant */
			break;
	}

	bms_free(varnos);

	vardata->var = node;
	vardata->atttype = exprType(node);
	vardata->atttypmod = exprTypmod(node);

	if (onerel)
	{
		/*
		 * We have an expression in vars of a single relation.  Try to match
		 * it to expressional index columns, in hopes of finding some
		 * statistics.
		 *
		 * Note that we consider all index columns including INCLUDE columns,
		 * since there could be stats for such columns.  But the test for
		 * uniqueness needs to be warier.
		 *
		 * XXX it's conceivable that there are multiple matches with different
		 * index opfamilies; if so, we need to pick one that matches the
		 * operator we are estimating for.  FIXME later.
		 */
		ListCell   *ilist;
		ListCell   *slist;

		foreach(ilist, onerel->indexlist)
		{
			IndexOptInfo *index = (IndexOptInfo *) lfirst(ilist);
			ListCell   *indexpr_item;
			int			pos;

			indexpr_item = list_head(index->indexprs);
			if (indexpr_item == NULL)
				continue;		/* no expressions here... */

			for (pos = 0; pos < index->ncolumns; pos++)
			{
				if (index->indexkeys[pos] == 0)
				{
					Node	   *indexkey;

					if (indexpr_item == NULL)
						elog(ERROR, "too few entries in indexprs list");
					indexkey = (Node *) lfirst(indexpr_item);
					if (indexkey && IsA(indexkey, RelabelType))
						indexkey = (Node *) ((RelabelType *) indexkey)->arg;
					if (equal(node, indexkey))
					{
						/*
						 * Found a match ... is it a unique index? Tests here
						 * should match has_unique_index().
						 */
						if (index->unique &&
							index->nkeycolumns == 1 &&
							pos == 0 &&
							(index->indpred == NIL || index->predOK))
							vardata->isunique = true;

						/*
						 * Has it got stats?  We only consider stats for
						 * non-partial indexes, since partial indexes probably
						 * don't reflect whole-relation statistics; the above
						 * check for uniqueness is the only info we take from
						 * a partial index.
						 *
						 * An index stats hook, however, must make its own
						 * decisions about what to do with partial indexes.
						 */
						if (get_index_stats_hook &&
							(*get_index_stats_hook) (root, index->indexoid,
													 pos + 1, vardata))
						{
							/*
							 * The hook took control of acquiring a stats
							 * tuple.  If it did supply a tuple, it'd better
							 * have supplied a freefunc.
							 */
							if (HeapTupleIsValid(vardata->statsTuple) &&
								!vardata->freefunc)
								elog(ERROR, "no function provided to release variable stats with");
						}
						else if (index->indpred == NIL)
						{
							vardata->statsTuple =
								SearchSysCache3(STATRELATTINH,
												ObjectIdGetDatum(index->indexoid),
												Int16GetDatum(pos + 1),
												BoolGetDatum(false));
							vardata->freefunc = ReleaseSysCache;

							if (HeapTupleIsValid(vardata->statsTuple))
							{
								/* Get index's table for permission check */
								RangeTblEntry *rte;
								Oid			userid;

								rte = planner_rt_fetch(index->rel->relid, root);
								Assert(rte->rtekind == RTE_RELATION);

								/*
								 * Use checkAsUser if it's set, in case we're
								 * accessing the table via a view.
								 */
								userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();

								/*
								 * For simplicity, we insist on the whole
								 * table being selectable, rather than trying
								 * to identify which column(s) the index
								 * depends on.  Also require all rows to be
								 * selectable --- there must be no
								 * securityQuals from security barrier views
								 * or RLS policies.
								 */
								vardata->acl_ok =
									rte->securityQuals == NIL &&
									(pg_class_aclcheck(rte->relid, userid,
													   ACL_SELECT) == ACLCHECK_OK);

								/*
								 * If the user doesn't have permissions to
								 * access an inheritance child relation, check
								 * the permissions of the table actually
								 * mentioned in the query, since most likely
								 * the user does have that permission.  Note
								 * that whole-table select privilege on the
								 * parent doesn't quite guarantee that the
								 * user could read all columns of the child.
								 * But in practice it's unlikely that any
								 * interesting security violation could result
								 * from allowing access to the expression
								 * index's stats, so we allow it anyway.  See
								 * similar code in examine_simple_variable()
								 * for additional comments.
								 */
								if (!vardata->acl_ok &&
									root->append_rel_array != NULL)
								{
									AppendRelInfo *appinfo;
									Index		varno = index->rel->relid;

									appinfo = root->append_rel_array[varno];
									while (appinfo &&
										   planner_rt_fetch(appinfo->parent_relid,
															root)->rtekind == RTE_RELATION)
									{
										varno = appinfo->parent_relid;
										appinfo = root->append_rel_array[varno];
									}
									if (varno != index->rel->relid)
									{
										/* Repeat access check on this rel */
										rte = planner_rt_fetch(varno, root);
										Assert(rte->rtekind == RTE_RELATION);

										userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();

										vardata->acl_ok =
											rte->securityQuals == NIL &&
											(pg_class_aclcheck(rte->relid,
															   userid,
															   ACL_SELECT) == ACLCHECK_OK);
									}
								}
							}
							else
							{
								/* suppress leakproofness checks later */
								vardata->acl_ok = true;
							}
						}
						if (vardata->statsTuple)
							break;
					}
					indexpr_item = lnext(index->indexprs, indexpr_item);
				}
			}
			if (vardata->statsTuple)
				break;
		}

		/*
		 * Search extended statistics for one with a matching expression.
		 * There might be multiple ones, so just grab the first one. In the
		 * future, we might consider the statistics target (and pick the most
		 * accurate statistics) and maybe some other parameters.
		 */
		foreach(slist, onerel->statlist)
		{
			StatisticExtInfo *info = (StatisticExtInfo *) lfirst(slist);
			ListCell   *expr_item;
			int			pos;

			/*
			 * Stop once we've found statistics for the expression (either
			 * from extended stats, or for an index in the preceding loop).
			 */
			if (vardata->statsTuple)
				break;

			/* skip stats without per-expression stats */
			if (info->kind != STATS_EXT_EXPRESSIONS)
				continue;

			pos = 0;
			foreach(expr_item, info->exprs)
			{
				Node	   *expr = (Node *) lfirst(expr_item);

				Assert(expr);

				/* strip RelabelType before comparing it */
				if (expr && IsA(expr, RelabelType))
					expr = (Node *) ((RelabelType *) expr)->arg;

				/* found a match, see if we can extract pg_statistic row */
				if (equal(node, expr))
				{
					HeapTuple	t = statext_expressions_load(info->statOid, pos);

					/* Get index's table for permission check */
					RangeTblEntry *rte;
					Oid			userid;

					vardata->statsTuple = t;

					/*
					 * XXX Not sure if we should cache the tuple somewhere.
					 * Now we just create a new copy every time.
					 */
					vardata->freefunc = ReleaseDummy;

					rte = planner_rt_fetch(onerel->relid, root);
					Assert(rte->rtekind == RTE_RELATION);

					/*
					 * Use checkAsUser if it's set, in case we're accessing
					 * the table via a view.
					 */
					userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();

					/*
					 * For simplicity, we insist on the whole table being
					 * selectable, rather than trying to identify which
					 * column(s) the statistics depends on.  Also require all
					 * rows to be selectable --- there must be no
					 * securityQuals from security barrier views or RLS
					 * policies.
					 */
					vardata->acl_ok =
						rte->securityQuals == NIL &&
						(pg_class_aclcheck(rte->relid, userid,
										   ACL_SELECT) == ACLCHECK_OK);

					/*
					 * If the user doesn't have permissions to access an
					 * inheritance child relation, check the permissions of
					 * the table actually mentioned in the query, since most
					 * likely the user does have that permission.  Note that
					 * whole-table select privilege on the parent doesn't
					 * quite guarantee that the user could read all columns of
					 * the child. But in practice it's unlikely that any
					 * interesting security violation could result from
					 * allowing access to the expression stats, so we allow it
					 * anyway.  See similar code in examine_simple_variable()
					 * for additional comments.
					 */
					if (!vardata->acl_ok &&
						root->append_rel_array != NULL)
					{
						AppendRelInfo *appinfo;
						Index		varno = onerel->relid;

						appinfo = root->append_rel_array[varno];
						while (appinfo &&
							   planner_rt_fetch(appinfo->parent_relid,
												root)->rtekind == RTE_RELATION)
						{
							varno = appinfo->parent_relid;
							appinfo = root->append_rel_array[varno];
						}
						if (varno != onerel->relid)
						{
							/* Repeat access check on this rel */
							rte = planner_rt_fetch(varno, root);
							Assert(rte->rtekind == RTE_RELATION);

							userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();

							vardata->acl_ok =
								rte->securityQuals == NIL &&
								(pg_class_aclcheck(rte->relid,
												   userid,
												   ACL_SELECT) == ACLCHECK_OK);
						}
					}

					break;
				}

				pos++;
			}
		}
	}
}

/*
 * examine_simple_variable
 *		Handle a simple Var for examine_variable
 *
 * This is split out as a subroutine so that we can recurse to deal with
 * Vars referencing subqueries.
 *
 * We already filled in all the fields of *vardata except for the stats tuple.
 */
static void
examine_simple_variable(PlannerInfo *root, Var *var,
						VariableStatData *vardata)
{
	RangeTblEntry *rte = root->simple_rte_array[var->varno];

	Assert(IsA(rte, RangeTblEntry));

	if (get_relation_stats_hook &&
		(*get_relation_stats_hook) (root, rte, var->varattno, vardata))
	{
		/*
		 * The hook took control of acquiring a stats tuple.  If it did supply
		 * a tuple, it'd better have supplied a freefunc.
		 */
		if (HeapTupleIsValid(vardata->statsTuple) &&
			!vardata->freefunc)
			elog(ERROR, "no function provided to release variable stats with");
	}
	else if (rte->rtekind == RTE_RELATION)
	{
		/*
		 * Plain table or parent of an inheritance appendrel, so look up the
		 * column in pg_statistic
		 */
		vardata->statsTuple = SearchSysCache3(STATRELATTINH,
											  ObjectIdGetDatum(rte->relid),
											  Int16GetDatum(var->varattno),
											  BoolGetDatum(rte->inh));
		vardata->freefunc = ReleaseSysCache;

		if (HeapTupleIsValid(vardata->statsTuple))
		{
			Oid			userid;

			/*
			 * Check if user has permission to read this column.  We require
			 * all rows to be accessible, so there must be no securityQuals
			 * from security barrier views or RLS policies.  Use checkAsUser
			 * if it's set, in case we're accessing the table via a view.
			 */
			userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();

			vardata->acl_ok =
				rte->securityQuals == NIL &&
				((pg_class_aclcheck(rte->relid, userid,
									ACL_SELECT) == ACLCHECK_OK) ||
				 (pg_attribute_aclcheck(rte->relid, var->varattno, userid,
										ACL_SELECT) == ACLCHECK_OK));

			/*
			 * If the user doesn't have permissions to access an inheritance
			 * child relation or specifically this attribute, check the
			 * permissions of the table/column actually mentioned in the
			 * query, since most likely the user does have that permission
			 * (else the query will fail at runtime), and if the user can read
			 * the column there then he can get the values of the child table
			 * too.  To do that, we must find out which of the root parent's
			 * attributes the child relation's attribute corresponds to.
			 */
			if (!vardata->acl_ok && var->varattno > 0 &&
				root->append_rel_array != NULL)
			{
				AppendRelInfo *appinfo;
				Index		varno = var->varno;
				int			varattno = var->varattno;
				bool		found = false;

				appinfo = root->append_rel_array[varno];

				/*
				 * Partitions are mapped to their immediate parent, not the
				 * root parent, so must be ready to walk up multiple
				 * AppendRelInfos.  But stop if we hit a parent that is not
				 * RTE_RELATION --- that's a flattened UNION ALL subquery, not
				 * an inheritance parent.
				 */
				while (appinfo &&
					   planner_rt_fetch(appinfo->parent_relid,
										root)->rtekind == RTE_RELATION)
				{
					int			parent_varattno;

					found = false;
					if (varattno <= 0 || varattno > appinfo->num_child_cols)
						break;	/* safety check */
					parent_varattno = appinfo->parent_colnos[varattno - 1];
					if (parent_varattno == 0)
						break;	/* Var is local to child */

					varno = appinfo->parent_relid;
					varattno = parent_varattno;
					found = true;

					/* If the parent is itself a child, continue up. */
					appinfo = root->append_rel_array[varno];
				}

				/*
				 * In rare cases, the Var may be local to the child table, in
				 * which case, we've got to live with having no access to this
				 * column's stats.
				 */
				if (!found)
					return;

				/* Repeat the access check on this parent rel & column */
				rte = planner_rt_fetch(varno, root);
				Assert(rte->rtekind == RTE_RELATION);

				userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();

				vardata->acl_ok =
					rte->securityQuals == NIL &&
					((pg_class_aclcheck(rte->relid, userid,
										ACL_SELECT) == ACLCHECK_OK) ||
					 (pg_attribute_aclcheck(rte->relid, varattno, userid,
											ACL_SELECT) == ACLCHECK_OK));
			}
		}
		else
		{
			/* suppress any possible leakproofness checks later */
			vardata->acl_ok = true;
		}
	}
	else if (rte->rtekind == RTE_SUBQUERY && !rte->inh)
	{
		/*
		 * Plain subquery (not one that was converted to an appendrel).
		 */
		Query	   *subquery = rte->subquery;
		RelOptInfo *rel;
		TargetEntry *ste;

		/*
		 * Punt if it's a whole-row var rather than a plain column reference.
		 */
		if (var->varattno == InvalidAttrNumber)
			return;

		/*
		 * Punt if subquery uses set operations or GROUP BY, as these will
		 * mash underlying columns' stats beyond recognition.  (Set ops are
		 * particularly nasty; if we forged ahead, we would return stats
		 * relevant to only the leftmost subselect...)	DISTINCT is also
		 * problematic, but we check that later because there is a possibility
		 * of learning something even with it.
		 */
		if (subquery->setOperations ||
			subquery->groupClause)
			return;

		/*
		 * OK, fetch RelOptInfo for subquery.  Note that we don't change the
		 * rel returned in vardata, since caller expects it to be a rel of the
		 * caller's query level.  Because we might already be recursing, we
		 * can't use that rel pointer either, but have to look up the Var's
		 * rel afresh.
		 */
		rel = find_base_rel(root, var->varno);

		/* If the subquery hasn't been planned yet, we have to punt */
		if (rel->subroot == NULL)
			return;
		Assert(IsA(rel->subroot, PlannerInfo));

		/*
		 * Switch our attention to the subquery as mangled by the planner. It
		 * was okay to look at the pre-planning version for the tests above,
		 * but now we need a Var that will refer to the subroot's live
		 * RelOptInfos.  For instance, if any subquery pullup happened during
		 * planning, Vars in the targetlist might have gotten replaced, and we
		 * need to see the replacement expressions.
		 */
		subquery = rel->subroot->parse;
		Assert(IsA(subquery, Query));

		/* Get the subquery output expression referenced by the upper Var */
		ste = get_tle_by_resno(subquery->targetList, var->varattno);
		if (ste == NULL || ste->resjunk)
			elog(ERROR, "subquery %s does not have attribute %d",
				 rte->eref->aliasname, var->varattno);
		var = (Var *) ste->expr;

		/*
		 * If subquery uses DISTINCT, we can't make use of any stats for the
		 * variable ... but, if it's the only DISTINCT column, we are entitled
		 * to consider it unique.  We do the test this way so that it works
		 * for cases involving DISTINCT ON.
		 */
		if (subquery->distinctClause)
		{
			if (list_length(subquery->distinctClause) == 1 &&
				targetIsInSortList(ste, InvalidOid, subquery->distinctClause))
				vardata->isunique = true;
			/* cannot go further */
			return;
		}

		/*
		 * If the sub-query originated from a view with the security_barrier
		 * attribute, we must not look at the variable's statistics, though it
		 * seems all right to notice the existence of a DISTINCT clause. So
		 * stop here.
		 *
		 * This is probably a harsher restriction than necessary; it's
		 * certainly OK for the selectivity estimator (which is a C function,
		 * and therefore omnipotent anyway) to look at the statistics.  But
		 * many selectivity estimators will happily *invoke the operator
		 * function* to try to work out a good estimate - and that's not OK.
		 * So for now, don't dig down for stats.
		 */
		if (rte->security_barrier)
			return;

		/* Can only handle a simple Var of subquery's query level */
		if (var && IsA(var, Var) &&
			var->varlevelsup == 0)
		{
			/*
			 * OK, recurse into the subquery.  Note that the original setting
			 * of vardata->isunique (which will surely be false) is left
			 * unchanged in this situation.  That's what we want, since even
			 * if the underlying column is unique, the subquery may have
			 * joined to other tables in a way that creates duplicates.
			 */
			examine_simple_variable(rel->subroot, var, vardata);
		}
	}
	else
	{
		/*
		 * Otherwise, the Var comes from a FUNCTION, VALUES, or CTE RTE.  (We
		 * won't see RTE_JOIN here because join alias Vars have already been
		 * flattened.)	There's not much we can do with function outputs, but
		 * maybe someday try to be smarter about VALUES and/or CTEs.
		 */
	}
}

/*
 * Check whether it is permitted to call func_oid passing some of the
 * pg_statistic data in vardata.  We allow this either if the user has SELECT
 * privileges on the table or column underlying the pg_statistic data or if
 * the function is marked leak-proof.
 */
bool
statistic_proc_security_check(VariableStatData *vardata, Oid func_oid)
{
	if (vardata->acl_ok)
		return true;

	if (!OidIsValid(func_oid))
		return false;

	if (get_func_leakproof(func_oid))
		return true;

	ereport(DEBUG2,
			(errmsg_internal("not using statistics because function \"%s\" is not leak-proof",
							 get_func_name(func_oid))));
	return false;
}

/*
 * get_variable_numdistinct
 *	  Estimate the number of distinct values of a variable.
 *
 * vardata: results of examine_variable
 * *isdefault: set to true if the result is a default rather than based on
 * anything meaningful.
 *
 * NB: be careful to produce a positive integral result, since callers may
 * compare the result to exact integer counts, or might divide by it.
 */
double
get_variable_numdistinct(VariableStatData *vardata, bool *isdefault)
{
	double		stadistinct;
	double		stanullfrac = 0.0;
	double		ntuples;

	*isdefault = false;

	/*
	 * Determine the stadistinct value to use.  There are cases where we can
	 * get an estimate even without a pg_statistic entry, or can get a better
	 * value than is in pg_statistic.  Grab stanullfrac too if we can find it
	 * (otherwise, assume no nulls, for lack of any better idea).
	 */
	if (HeapTupleIsValid(vardata->statsTuple))
	{
		/* Use the pg_statistic entry */
		Form_pg_statistic stats;

		stats = (Form_pg_statistic) GETSTRUCT(vardata->statsTuple);
		stadistinct = stats->stadistinct;
		stanullfrac = stats->stanullfrac;
	}
	else if (vardata->vartype == BOOLOID)
	{
		/*
		 * Special-case boolean columns: presumably, two distinct values.
		 *
		 * Are there any other datatypes we should wire in special estimates
		 * for?
		 */
		stadistinct = 2.0;
	}
	else if (vardata->rel && vardata->rel->rtekind == RTE_VALUES)
	{
		/*
		 * If the Var represents a column of a VALUES RTE, assume it's unique.
		 * This could of course be very wrong, but it should tend to be true
		 * in well-written queries.  We could consider examining the VALUES'
		 * contents to get some real statistics; but that only works if the
		 * entries are all constants, and it would be pretty expensive anyway.
		 */
		stadistinct = -1.0;		/* unique (and all non null) */
	}
	else
	{
		/*
		 * We don't keep statistics for system columns, but in some cases we
		 * can infer distinctness anyway.
		 */
		if (vardata->var && IsA(vardata->var, Var))
		{
			switch (((Var *) vardata->var)->varattno)
			{
				case SelfItemPointerAttributeNumber:
					stadistinct = -1.0; /* unique (and all non null) */
					break;
				case TableOidAttributeNumber:
					stadistinct = 1.0;	/* only 1 value */
					break;
				default:
					stadistinct = 0.0;	/* means "unknown" */
					break;
			}
		}
		else
			stadistinct = 0.0;	/* means "unknown" */

		/*
		 * XXX consider using estimate_num_groups on expressions?
		 */
	}

	/*
	 * If there is a unique index or DISTINCT clause for the variable, assume
	 * it is unique no matter what pg_statistic says; the statistics could be
	 * out of date, or we might have found a partial unique index that proves
	 * the var is unique for this query.  However, we'd better still believe
	 * the null-fraction statistic.
	 */
	if (vardata->isunique)
		stadistinct = -1.0 * (1.0 - stanullfrac);

	/*
	 * If we had an absolute estimate, use that.
	 */
	if (stadistinct > 0.0)
		return clamp_row_est(stadistinct);

	/*
	 * Otherwise we need to get the relation size; punt if not available.
	 */
	if (vardata->rel == NULL)
	{
		*isdefault = true;
		return DEFAULT_NUM_DISTINCT;
	}
	ntuples = vardata->rel->tuples;
	if (ntuples <= 0.0)
	{
		*isdefault = true;
		return DEFAULT_NUM_DISTINCT;
	}

	/*
	 * If we had a relative estimate, use that.
	 */
	if (stadistinct < 0.0)
		return clamp_row_est(-stadistinct * ntuples);

	/*
	 * With no data, estimate ndistinct = ntuples if the table is small, else
	 * use default.  We use DEFAULT_NUM_DISTINCT as the cutoff for "small" so
	 * that the behavior isn't discontinuous.
	 */
	if (ntuples < DEFAULT_NUM_DISTINCT)
		return clamp_row_est(ntuples);

	*isdefault = true;
	return DEFAULT_NUM_DISTINCT;
}

/*
 * get_variable_range
 *		Estimate the minimum and maximum value of the specified variable.
 *		If successful, store values in *min and *max, and return true.
 *		If no data available, return false.
 *
 * sortop is the "<" comparison operator to use.  This should generally
 * be "<" not ">", as only the former is likely to be found in pg_statistic.
 * The collation must be specified too.
 */
static bool
get_variable_range(PlannerInfo *root, VariableStatData *vardata,
				   Oid sortop, Oid collation,
				   Datum *min, Datum *max)
{
	Datum		tmin = 0;
	Datum		tmax = 0;
	bool		have_data = false;
	int16		typLen;
	bool		typByVal;
	Oid			opfuncoid;
	FmgrInfo	opproc;
	AttStatsSlot sslot;

	/*
	 * XXX It's very tempting to try to use the actual column min and max, if
	 * we can get them relatively-cheaply with an index probe.  However, since
	 * this function is called many times during join planning, that could
	 * have unpleasant effects on planning speed.  Need more investigation
	 * before enabling this.
	 */
#ifdef NOT_USED
	if (get_actual_variable_range(root, vardata, sortop, collation, min, max))
		return true;
#endif

	if (!HeapTupleIsValid(vardata->statsTuple))
	{
		/* no stats available, so default result */
		return false;
	}

	/*
	 * If we can't apply the sortop to the stats data, just fail.  In
	 * principle, if there's a histogram and no MCVs, we could return the
	 * histogram endpoints without ever applying the sortop ... but it's
	 * probably not worth trying, because whatever the caller wants to do with
	 * the endpoints would likely fail the security check too.
	 */
	if (!statistic_proc_security_check(vardata,
									   (opfuncoid = get_opcode(sortop))))
		return false;

	opproc.fn_oid = InvalidOid; /* mark this as not looked up yet */

	get_typlenbyval(vardata->atttype, &typLen, &typByVal);

	/*
	 * If there is a histogram with the ordering we want, grab the first and
	 * last values.
	 */
	if (get_attstatsslot(&sslot, vardata->statsTuple,
						 STATISTIC_KIND_HISTOGRAM, sortop,
						 ATTSTATSSLOT_VALUES))
	{
		if (sslot.stacoll == collation && sslot.nvalues > 0)
		{
			tmin = datumCopy(sslot.values[0], typByVal, typLen);
			tmax = datumCopy(sslot.values[sslot.nvalues - 1], typByVal, typLen);
			have_data = true;
		}
		free_attstatsslot(&sslot);
	}

	/*
	 * Otherwise, if there is a histogram with some other ordering, scan it
	 * and get the min and max values according to the ordering we want.  This
	 * of course may not find values that are really extremal according to our
	 * ordering, but it beats ignoring available data.
	 */
	if (!have_data &&
		get_attstatsslot(&sslot, vardata->statsTuple,
						 STATISTIC_KIND_HISTOGRAM, InvalidOid,
						 ATTSTATSSLOT_VALUES))
	{
		get_stats_slot_range(&sslot, opfuncoid, &opproc,
							 collation, typLen, typByVal,
							 &tmin, &tmax, &have_data);
		free_attstatsslot(&sslot);
	}

	/*
	 * If we have most-common-values info, look for extreme MCVs.  This is
	 * needed even if we also have a histogram, since the histogram excludes
	 * the MCVs.
	 */
	if (get_attstatsslot(&sslot, vardata->statsTuple,
						 STATISTIC_KIND_MCV, InvalidOid,
						 ATTSTATSSLOT_VALUES))
	{
		get_stats_slot_range(&sslot, opfuncoid, &opproc,
							 collation, typLen, typByVal,
							 &tmin, &tmax, &have_data);
		free_attstatsslot(&sslot);
	}

	*min = tmin;
	*max = tmax;
	return have_data;
}

/*
 * get_stats_slot_range: scan sslot for min/max values
 *
 * Subroutine for get_variable_range: update min/max/have_data according
 * to what we find in the statistics array.
 */
static void
get_stats_slot_range(AttStatsSlot *sslot, Oid opfuncoid, FmgrInfo *opproc,
					 Oid collation, int16 typLen, bool typByVal,
					 Datum *min, Datum *max, bool *p_have_data)
{
	Datum		tmin = *min;
	Datum		tmax = *max;
	bool		have_data = *p_have_data;
	bool		found_tmin = false;
	bool		found_tmax = false;

	/* Look up the comparison function, if we didn't already do so */
	if (opproc->fn_oid != opfuncoid)
		fmgr_info(opfuncoid, opproc);

	/* Scan all the slot's values */
	for (int i = 0; i < sslot->nvalues; i++)
	{
		if (!have_data)
		{
			tmin = tmax = sslot->values[i];
			found_tmin = found_tmax = true;
			*p_have_data = have_data = true;
			continue;
		}
		if (DatumGetBool(FunctionCall2Coll(opproc,
										   collation,
										   sslot->values[i], tmin)))
		{
			tmin = sslot->values[i];
			found_tmin = true;
		}
		if (DatumGetBool(FunctionCall2Coll(opproc,
										   collation,
										   tmax, sslot->values[i])))
		{
			tmax = sslot->values[i];
			found_tmax = true;
		}
	}

	/*
	 * Copy the slot's values, if we found new extreme values.
	 */
	if (found_tmin)
		*min = datumCopy(tmin, typByVal, typLen);
	if (found_tmax)
		*max = datumCopy(tmax, typByVal, typLen);
}


/*
 * get_actual_variable_range
 *		Attempt to identify the current *actual* minimum and/or maximum
 *		of the specified variable, by looking for a suitable btree index
 *		and fetching its low and/or high values.
 *		If successful, store values in *min and *max, and return true.
 *		(Either pointer can be NULL if that endpoint isn't needed.)
 *		If no data available, return false.
 *
 * sortop is the "<" comparison operator to use.
 * collation is the required collation.
 */
static bool
get_actual_variable_range(PlannerInfo *root, VariableStatData *vardata,
						  Oid sortop, Oid collation,
						  Datum *min, Datum *max)
{
	bool		have_data = false;
	RelOptInfo *rel = vardata->rel;
	RangeTblEntry *rte;
	ListCell   *lc;

	/* No hope if no relation or it doesn't have indexes */
	if (rel == NULL || rel->indexlist == NIL)
		return false;
	/* If it has indexes it must be a plain relation */
	rte = root->simple_rte_array[rel->relid];
	Assert(rte->rtekind == RTE_RELATION);

	/* Search through the indexes to see if any match our problem */
	foreach(lc, rel->indexlist)
	{
		IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
		ScanDirection indexscandir;

		/* Ignore non-btree indexes */
		if (index->relam != BTREE_AM_OID)
			continue;

		/*
		 * Ignore partial indexes --- we only want stats that cover the entire
		 * relation.
		 */
		if (index->indpred != NIL)
			continue;

		/*
		 * The index list might include hypothetical indexes inserted by a
		 * get_relation_info hook --- don't try to access them.
		 */
		if (index->hypothetical)
			continue;

		/*
		 * The first index column must match the desired variable, sortop, and
		 * collation --- but we can use a descending-order index.
		 */
		if (collation != index->indexcollations[0])
			continue;			/* test first 'cause it's cheapest */
		if (!match_index_to_operand(vardata->var, 0, index))
			continue;
		switch (get_op_opfamily_strategy(sortop, index->sortopfamily[0]))
		{
			case BTLessStrategyNumber:
				if (index->reverse_sort[0])
					indexscandir = BackwardScanDirection;
				else
					indexscandir = ForwardScanDirection;
				break;
			case BTGreaterStrategyNumber:
				if (index->reverse_sort[0])
					indexscandir = ForwardScanDirection;
				else
					indexscandir = BackwardScanDirection;
				break;
			default:
				/* index doesn't match the sortop */
				continue;
		}

		/*
		 * Found a suitable index to extract data from.  Set up some data that
		 * can be used by both invocations of get_actual_variable_endpoint.
		 */
		{
			MemoryContext tmpcontext;
			MemoryContext oldcontext;
			Relation	heapRel;
			Relation	indexRel;
			TupleTableSlot *slot;
			int16		typLen;
			bool		typByVal;
			ScanKeyData scankeys[1];

			/* Make sure any cruft gets recycled when we're done */
			tmpcontext = AllocSetContextCreate(CurrentMemoryContext,
											   "get_actual_variable_range workspace",
											   ALLOCSET_DEFAULT_SIZES);
			oldcontext = MemoryContextSwitchTo(tmpcontext);

			/*
			 * Open the table and index so we can read from them.  We should
			 * already have some type of lock on each.
			 */
			heapRel = table_open(rte->relid, NoLock);
			indexRel = index_open(index->indexoid, NoLock);

			/* build some stuff needed for indexscan execution */
			slot = table_slot_create(heapRel, NULL);
			get_typlenbyval(vardata->atttype, &typLen, &typByVal);

			/* set up an IS NOT NULL scan key so that we ignore nulls */
			ScanKeyEntryInitialize(&scankeys[0],
								   SK_ISNULL | SK_SEARCHNOTNULL,
								   1,	/* index col to scan */
								   InvalidStrategy, /* no strategy */
								   InvalidOid,	/* no strategy subtype */
								   InvalidOid,	/* no collation */
								   InvalidOid,	/* no reg proc for this */
								   (Datum) 0);	/* constant */

			/* If min is requested ... */
			if (min)
			{
				have_data = get_actual_variable_endpoint(heapRel,
														 indexRel,
														 indexscandir,
														 scankeys,
														 typLen,
														 typByVal,
														 slot,
														 oldcontext,
														 min);
			}
			else
			{
				/* If min not requested, assume index is nonempty */
				have_data = true;
			}

			/* If max is requested, and we didn't find the index is empty */
			if (max && have_data)
			{
				/* scan in the opposite direction; all else is the same */
				have_data = get_actual_variable_endpoint(heapRel,
														 indexRel,
														 -indexscandir,
														 scankeys,
														 typLen,
														 typByVal,
														 slot,
														 oldcontext,
														 max);
			}

			/* Clean everything up */
			ExecDropSingleTupleTableSlot(slot);

			index_close(indexRel, NoLock);
			table_close(heapRel, NoLock);

			MemoryContextSwitchTo(oldcontext);
			MemoryContextDelete(tmpcontext);

			/* And we're done */
			break;
		}
	}

	return have_data;
}

/*
 * Get one endpoint datum (min or max depending on indexscandir) from the
 * specified index.  Return true if successful, false if index is empty.
 * On success, endpoint value is stored to *endpointDatum (and copied into
 * outercontext).
 *
 * scankeys is a 1-element scankey array set up to reject nulls.
 * typLen/typByVal describe the datatype of the index's first column.
 * tableslot is a slot suitable to hold table tuples, in case we need
 * to probe the heap.
 * (We could compute these values locally, but that would mean computing them
 * twice when get_actual_variable_range needs both the min and the max.)
 */
static bool
get_actual_variable_endpoint(Relation heapRel,
							 Relation indexRel,
							 ScanDirection indexscandir,
							 ScanKey scankeys,
							 int16 typLen,
							 bool typByVal,
							 TupleTableSlot *tableslot,
							 MemoryContext outercontext,
							 Datum *endpointDatum)
{
	bool		have_data = false;
	SnapshotData SnapshotNonVacuumable;
	IndexScanDesc index_scan;
	Buffer		vmbuffer = InvalidBuffer;
	ItemPointer tid;
	Datum		values[INDEX_MAX_KEYS];
	bool		isnull[INDEX_MAX_KEYS];
	MemoryContext oldcontext;

	/*
	 * We use the index-only-scan machinery for this.  With mostly-static
	 * tables that's a win because it avoids a heap visit.  It's also a win
	 * for dynamic data, but the reason is less obvious; read on for details.
	 *
	 * In principle, we should scan the index with our current active
	 * snapshot, which is the best approximation we've got to what the query
	 * will see when executed.  But that won't be exact if a new snap is taken
	 * before running the query, and it can be very expensive if a lot of
	 * recently-dead or uncommitted rows exist at the beginning or end of the
	 * index (because we'll laboriously fetch each one and reject it).
	 * Instead, we use SnapshotNonVacuumable.  That will accept recently-dead
	 * and uncommitted rows as well as normal visible rows.  On the other
	 * hand, it will reject known-dead rows, and thus not give a bogus answer
	 * when the extreme value has been deleted (unless the deletion was quite
	 * recent); that case motivates not using SnapshotAny here.
	 *
	 * A crucial point here is that SnapshotNonVacuumable, with
	 * GlobalVisTestFor(heapRel) as horizon, yields the inverse of the
	 * condition that the indexscan will use to decide that index entries are
	 * killable (see heap_hot_search_buffer()).  Therefore, if the snapshot
	 * rejects a tuple (or more precisely, all tuples of a HOT chain) and we
	 * have to continue scanning past it, we know that the indexscan will mark
	 * that index entry killed.  That means that the next
	 * get_actual_variable_endpoint() call will not have to re-consider that
	 * index entry.  In this way we avoid repetitive work when this function
	 * is used a lot during planning.
	 *
	 * But using SnapshotNonVacuumable creates a hazard of its own.  In a
	 * recently-created index, some index entries may point at "broken" HOT
	 * chains in which not all the tuple versions contain data matching the
	 * index entry.  The live tuple version(s) certainly do match the index,
	 * but SnapshotNonVacuumable can accept recently-dead tuple versions that
	 * don't match.  Hence, if we took data from the selected heap tuple, we
	 * might get a bogus answer that's not close to the index extremal value,
	 * or could even be NULL.  We avoid this hazard because we take the data
	 * from the index entry not the heap.
	 */
	InitNonVacuumableSnapshot(SnapshotNonVacuumable,
							  GlobalVisTestFor(heapRel));

	index_scan = index_beginscan(heapRel, indexRel,
								 &SnapshotNonVacuumable,
								 1, 0);
	/* Set it up for index-only scan */
	index_scan->xs_want_itup = true;
	index_rescan(index_scan, scankeys, 1, NULL, 0);

	/* Fetch first/next tuple in specified direction */
	while ((tid = index_getnext_tid(index_scan, indexscandir)) != NULL)
	{
		if (!VM_ALL_VISIBLE(heapRel,
							ItemPointerGetBlockNumber(tid),
							&vmbuffer))
		{
			/* Rats, we have to visit the heap to check visibility */
			if (!index_fetch_heap(index_scan, tableslot))
				continue;		/* no visible tuple, try next index entry */

			/* We don't actually need the heap tuple for anything */
			ExecClearTuple(tableslot);

			/*
			 * We don't care whether there's more than one visible tuple in
			 * the HOT chain; if any are visible, that's good enough.
			 */
		}

		/*
		 * We expect that btree will return data in IndexTuple not HeapTuple
		 * format.  It's not lossy either.
		 */
		if (!index_scan->xs_itup)
			elog(ERROR, "no data returned for index-only scan");
		if (index_scan->xs_recheck)
			elog(ERROR, "unexpected recheck indication from btree");

		/* OK to deconstruct the index tuple */
		index_deform_tuple(index_scan->xs_itup,
						   index_scan->xs_itupdesc,
						   values, isnull);

		/* Shouldn't have got a null, but be careful */
		if (isnull[0])
			elog(ERROR, "found unexpected null value in index \"%s\"",
				 RelationGetRelationName(indexRel));

		/* Copy the index column value out to caller's context */
		oldcontext = MemoryContextSwitchTo(outercontext);
		*endpointDatum = datumCopy(values[0], typByVal, typLen);
		MemoryContextSwitchTo(oldcontext);
		have_data = true;
		break;
	}

	if (vmbuffer != InvalidBuffer)
		ReleaseBuffer(vmbuffer);
	index_endscan(index_scan);

	return have_data;
}

/*
 * find_join_input_rel
 *		Look up the input relation for a join.
 *
 * We assume that the input relation's RelOptInfo must have been constructed
 * already.
 */
static RelOptInfo *
find_join_input_rel(PlannerInfo *root, Relids relids)
{
	RelOptInfo *rel = NULL;

	switch (bms_membership(relids))
	{
		case BMS_EMPTY_SET:
			/* should not happen */
			break;
		case BMS_SINGLETON:
			rel = find_base_rel(root, bms_singleton_member(relids));
			break;
		case BMS_MULTIPLE:
			rel = find_join_rel(root, relids);
			break;
	}

	if (rel == NULL)
		elog(ERROR, "could not find RelOptInfo for given relids");

	return rel;
}


/*-------------------------------------------------------------------------
 *
 * Index cost estimation functions
 *
 *-------------------------------------------------------------------------
 */

/*
 * Extract the actual indexquals (as RestrictInfos) from an IndexClause list
 */
List *
get_quals_from_indexclauses(List *indexclauses)
{
	List	   *result = NIL;
	ListCell   *lc;

	foreach(lc, indexclauses)
	{
		IndexClause *iclause = lfirst_node(IndexClause, lc);
		ListCell   *lc2;

		foreach(lc2, iclause->indexquals)
		{
			RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);

			result = lappend(result, rinfo);
		}
	}
	return result;
}

/*
 * Compute the total evaluation cost of the comparison operands in a list
 * of index qual expressions.  Since we know these will be evaluated just
 * once per scan, there's no need to distinguish startup from per-row cost.
 *
 * This can be used either on the result of get_quals_from_indexclauses(),
 * or directly on an indexorderbys list.  In both cases, we expect that the
 * index key expression is on the left side of binary clauses.
 */
Cost
index_other_operands_eval_cost(PlannerInfo *root, List *indexquals)
{
	Cost		qual_arg_cost = 0;
	ListCell   *lc;

	foreach(lc, indexquals)
	{
		Expr	   *clause = (Expr *) lfirst(lc);
		Node	   *other_operand;
		QualCost	index_qual_cost;

		/*
		 * Index quals will have RestrictInfos, indexorderbys won't.  Look
		 * through RestrictInfo if present.
		 */
		if (IsA(clause, RestrictInfo))
			clause = ((RestrictInfo *) clause)->clause;

		if (IsA(clause, OpExpr))
		{
			OpExpr	   *op = (OpExpr *) clause;

			other_operand = (Node *) lsecond(op->args);
		}
		else if (IsA(clause, RowCompareExpr))
		{
			RowCompareExpr *rc = (RowCompareExpr *) clause;

			other_operand = (Node *) rc->rargs;
		}
		else if (IsA(clause, ScalarArrayOpExpr))
		{
			ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;

			other_operand = (Node *) lsecond(saop->args);
		}
		else if (IsA(clause, NullTest))
		{
			other_operand = NULL;
		}
		else
		{
			elog(ERROR, "unsupported indexqual type: %d",
				 (int) nodeTag(clause));
			other_operand = NULL;	/* keep compiler quiet */
		}

		cost_qual_eval_node(&index_qual_cost, other_operand, root);
		qual_arg_cost += index_qual_cost.startup + index_qual_cost.per_tuple;
	}
	return qual_arg_cost;
}

void
genericcostestimate(PlannerInfo *root,
					IndexPath *path,
					double loop_count,
					GenericCosts *costs)
{
	IndexOptInfo *index = path->indexinfo;
	List	   *indexQuals = get_quals_from_indexclauses(path->indexclauses);
	List	   *indexOrderBys = path->indexorderbys;
	Cost		indexStartupCost;
	Cost		indexTotalCost;
	Selectivity indexSelectivity;
	double		indexCorrelation;
	double		numIndexPages;
	double		numIndexTuples;
	double		spc_random_page_cost;
	double		num_sa_scans;
	double		num_outer_scans;
	double		num_scans;
	double		qual_op_cost;
	double		qual_arg_cost;
	List	   *selectivityQuals;
	ListCell   *l;

	/*
	 * If the index is partial, AND the index predicate with the explicitly
	 * given indexquals to produce a more accurate idea of the index
	 * selectivity.
	 */
	selectivityQuals = add_predicate_to_index_quals(index, indexQuals);

	/*
	 * Check for ScalarArrayOpExpr index quals, and estimate the number of
	 * index scans that will be performed.
	 */
	num_sa_scans = 1;
	foreach(l, indexQuals)
	{
		RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);

		if (IsA(rinfo->clause, ScalarArrayOpExpr))
		{
			ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) rinfo->clause;
			int			alength = estimate_array_length(lsecond(saop->args));

			if (alength > 1)
				num_sa_scans *= alength;
		}
	}

	/* Estimate the fraction of main-table tuples that will be visited */
	indexSelectivity = clauselist_selectivity(root, selectivityQuals,
											  index->rel->relid,
											  JOIN_INNER,
											  NULL);

	/*
	 * If caller didn't give us an estimate, estimate the number of index
	 * tuples that will be visited.  We do it in this rather peculiar-looking
	 * way in order to get the right answer for partial indexes.
	 */
	numIndexTuples = costs->numIndexTuples;
	if (numIndexTuples <= 0.0)
	{
		numIndexTuples = indexSelectivity * index->rel->tuples;

		/*
		 * The above calculation counts all the tuples visited across all
		 * scans induced by ScalarArrayOpExpr nodes.  We want to consider the
		 * average per-indexscan number, so adjust.  This is a handy place to
		 * round to integer, too.  (If caller supplied tuple estimate, it's
		 * responsible for handling these considerations.)
		 */
		numIndexTuples = rint(numIndexTuples / num_sa_scans);
	}

	/*
	 * We can bound the number of tuples by the index size in any case. Also,
	 * always estimate at least one tuple is touched, even when
	 * indexSelectivity estimate is tiny.
	 */
	if (numIndexTuples > index->tuples)
		numIndexTuples = index->tuples;
	if (numIndexTuples < 1.0)
		numIndexTuples = 1.0;

	/*
	 * Estimate the number of index pages that will be retrieved.
	 *
	 * We use the simplistic method of taking a pro-rata fraction of the total
	 * number of index pages.  In effect, this counts only leaf pages and not
	 * any overhead such as index metapage or upper tree levels.
	 *
	 * In practice access to upper index levels is often nearly free because
	 * those tend to stay in cache under load; moreover, the cost involved is
	 * highly dependent on index type.  We therefore ignore such costs here
	 * and leave it to the caller to add a suitable charge if needed.
	 */
	if (index->pages > 1 && index->tuples > 1)
		numIndexPages = ceil(numIndexTuples * index->pages / index->tuples);
	else
		numIndexPages = 1.0;

	/* fetch estimated page cost for tablespace containing index */
	get_tablespace_page_costs(index->reltablespace,
							  &spc_random_page_cost,
							  NULL);

	/*
	 * Now compute the disk access costs.
	 *
	 * The above calculations are all per-index-scan.  However, if we are in a
	 * nestloop inner scan, we can expect the scan to be repeated (with
	 * different search keys) for each row of the outer relation.  Likewise,
	 * ScalarArrayOpExpr quals result in multiple index scans.  This creates
	 * the potential for cache effects to reduce the number of disk page
	 * fetches needed.  We want to estimate the average per-scan I/O cost in
	 * the presence of caching.
	 *
	 * We use the Mackert-Lohman formula (see costsize.c for details) to
	 * estimate the total number of page fetches that occur.  While this
	 * wasn't what it was designed for, it seems a reasonable model anyway.
	 * Note that we are counting pages not tuples anymore, so we take N = T =
	 * index size, as if there were one "tuple" per page.
	 */
	num_outer_scans = loop_count;
	num_scans = num_sa_scans * num_outer_scans;

	if (num_scans > 1)
	{
		double		pages_fetched;

		/* total page fetches ignoring cache effects */
		pages_fetched = numIndexPages * num_scans;

		/* use Mackert and Lohman formula to adjust for cache effects */
		pages_fetched = index_pages_fetched(pages_fetched,
											index->pages,
											(double) index->pages,
											root);

		/*
		 * Now compute the total disk access cost, and then report a pro-rated
		 * share for each outer scan.  (Don't pro-rate for ScalarArrayOpExpr,
		 * since that's internal to the indexscan.)
		 */
		indexTotalCost = (pages_fetched * spc_random_page_cost)
			/ num_outer_scans;
	}
	else
	{
		/*
		 * For a single index scan, we just charge spc_random_page_cost per
		 * page touched.
		 */
		indexTotalCost = numIndexPages * spc_random_page_cost;
	}

	/*
	 * CPU cost: any complex expressions in the indexquals will need to be
	 * evaluated once at the start of the scan to reduce them to runtime keys
	 * to pass to the index AM (see nodeIndexscan.c).  We model the per-tuple
	 * CPU costs as cpu_index_tuple_cost plus one cpu_operator_cost per
	 * indexqual operator.  Because we have numIndexTuples as a per-scan
	 * number, we have to multiply by num_sa_scans to get the correct result
	 * for ScalarArrayOpExpr cases.  Similarly add in costs for any index
	 * ORDER BY expressions.
	 *
	 * Note: this neglects the possible costs of rechecking lossy operators.
	 * Detecting that that might be needed seems more expensive than it's
	 * worth, though, considering all the other inaccuracies here ...
	 */
	qual_arg_cost = index_other_operands_eval_cost(root, indexQuals) +
		index_other_operands_eval_cost(root, indexOrderBys);
	qual_op_cost = cpu_operator_cost *
		(list_length(indexQuals) + list_length(indexOrderBys));

	indexStartupCost = qual_arg_cost;
	indexTotalCost += qual_arg_cost;
	indexTotalCost += numIndexTuples * num_sa_scans * (cpu_index_tuple_cost + qual_op_cost);

	/*
	 * Generic assumption about index correlation: there isn't any.
	 */
	indexCorrelation = 0.0;

	/*
	 * Return everything to caller.
	 */
	costs->indexStartupCost = indexStartupCost;
	costs->indexTotalCost = indexTotalCost;
	costs->indexSelectivity = indexSelectivity;
	costs->indexCorrelation = indexCorrelation;
	costs->numIndexPages = numIndexPages;
	costs->numIndexTuples = numIndexTuples;
	costs->spc_random_page_cost = spc_random_page_cost;
	costs->num_sa_scans = num_sa_scans;
}

/*
 * If the index is partial, add its predicate to the given qual list.
 *
 * ANDing the index predicate with the explicitly given indexquals produces
 * a more accurate idea of the index's selectivity.  However, we need to be
 * careful not to insert redundant clauses, because clauselist_selectivity()
 * is easily fooled into computing a too-low selectivity estimate.  Our
 * approach is to add only the predicate clause(s) that cannot be proven to
 * be implied by the given indexquals.  This successfully handles cases such
 * as a qual "x = 42" used with a partial index "WHERE x >= 40 AND x < 50".
 * There are many other cases where we won't detect redundancy, leading to a
 * too-low selectivity estimate, which will bias the system in favor of using
 * partial indexes where possible.  That is not necessarily bad though.
 *
 * Note that indexQuals contains RestrictInfo nodes while the indpred
 * does not, so the output list will be mixed.  This is OK for both
 * predicate_implied_by() and clauselist_selectivity(), but might be
 * problematic if the result were passed to other things.
 */
List *
add_predicate_to_index_quals(IndexOptInfo *index, List *indexQuals)
{
	List	   *predExtraQuals = NIL;
	ListCell   *lc;

	if (index->indpred == NIL)
		return indexQuals;

	foreach(lc, index->indpred)
	{
		Node	   *predQual = (Node *) lfirst(lc);
		List	   *oneQual = list_make1(predQual);

		if (!predicate_implied_by(oneQual, indexQuals, false))
			predExtraQuals = list_concat(predExtraQuals, oneQual);
	}
	return list_concat(predExtraQuals, indexQuals);
}


void
btcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
			   Cost *indexStartupCost, Cost *indexTotalCost,
			   Selectivity *indexSelectivity, double *indexCorrelation,
			   double *indexPages)
{
	IndexOptInfo *index = path->indexinfo;
	GenericCosts costs;
	Oid			relid;
	AttrNumber	colnum;
	VariableStatData vardata;
	double		numIndexTuples;
	Cost		descentCost;
	List	   *indexBoundQuals;
	int			indexcol;
	bool		eqQualHere;
	bool		found_saop;
	bool		found_is_null_op;
	double		num_sa_scans;
	ListCell   *lc;

	/*
	 * For a btree scan, only leading '=' quals plus inequality quals for the
	 * immediately next attribute contribute to index selectivity (these are
	 * the "boundary quals" that determine the starting and stopping points of
	 * the index scan).  Additional quals can suppress visits to the heap, so
	 * it's OK to count them in indexSelectivity, but they should not count
	 * for estimating numIndexTuples.  So we must examine the given indexquals
	 * to find out which ones count as boundary quals.  We rely on the
	 * knowledge that they are given in index column order.
	 *
	 * For a RowCompareExpr, we consider only the first column, just as
	 * rowcomparesel() does.
	 *
	 * If there's a ScalarArrayOpExpr in the quals, we'll actually perform N
	 * index scans not one, but the ScalarArrayOpExpr's operator can be
	 * considered to act the same as it normally does.
	 */
	indexBoundQuals = NIL;
	indexcol = 0;
	eqQualHere = false;
	found_saop = false;
	found_is_null_op = false;
	num_sa_scans = 1;
	foreach(lc, path->indexclauses)
	{
		IndexClause *iclause = lfirst_node(IndexClause, lc);
		ListCell   *lc2;

		if (indexcol != iclause->indexcol)
		{
			/* Beginning of a new column's quals */
			if (!eqQualHere)
				break;			/* done if no '=' qual for indexcol */
			eqQualHere = false;
			indexcol++;
			if (indexcol != iclause->indexcol)
				break;			/* no quals at all for indexcol */
		}

		/* Examine each indexqual associated with this index clause */
		foreach(lc2, iclause->indexquals)
		{
			RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
			Expr	   *clause = rinfo->clause;
			Oid			clause_op = InvalidOid;
			int			op_strategy;

			if (IsA(clause, OpExpr))
			{
				OpExpr	   *op = (OpExpr *) clause;

				clause_op = op->opno;
			}
			else if (IsA(clause, RowCompareExpr))
			{
				RowCompareExpr *rc = (RowCompareExpr *) clause;

				clause_op = linitial_oid(rc->opnos);
			}
			else if (IsA(clause, ScalarArrayOpExpr))
			{
				ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
				Node	   *other_operand = (Node *) lsecond(saop->args);
				int			alength = estimate_array_length(other_operand);

				clause_op = saop->opno;
				found_saop = true;
				/* count number of SA scans induced by indexBoundQuals only */
				if (alength > 1)
					num_sa_scans *= alength;
			}
			else if (IsA(clause, NullTest))
			{
				NullTest   *nt = (NullTest *) clause;

				if (nt->nulltesttype == IS_NULL)
				{
					found_is_null_op = true;
					/* IS NULL is like = for selectivity purposes */
					eqQualHere = true;
				}
			}
			else
				elog(ERROR, "unsupported indexqual type: %d",
					 (int) nodeTag(clause));

			/* check for equality operator */
			if (OidIsValid(clause_op))
			{
				op_strategy = get_op_opfamily_strategy(clause_op,
													   index->opfamily[indexcol]);
				Assert(op_strategy != 0);	/* not a member of opfamily?? */
				if (op_strategy == BTEqualStrategyNumber)
					eqQualHere = true;
			}

			indexBoundQuals = lappend(indexBoundQuals, rinfo);
		}
	}

	/*
	 * If index is unique and we found an '=' clause for each column, we can
	 * just assume numIndexTuples = 1 and skip the expensive
	 * clauselist_selectivity calculations.  However, a ScalarArrayOp or
	 * NullTest invalidates that theory, even though it sets eqQualHere.
	 */
	if (index->unique &&
		indexcol == index->nkeycolumns - 1 &&
		eqQualHere &&
		!found_saop &&
		!found_is_null_op)
		numIndexTuples = 1.0;
	else
	{
		List	   *selectivityQuals;
		Selectivity btreeSelectivity;

		/*
		 * If the index is partial, AND the index predicate with the
		 * index-bound quals to produce a more accurate idea of the number of
		 * rows covered by the bound conditions.
		 */
		selectivityQuals = add_predicate_to_index_quals(index, indexBoundQuals);

		btreeSelectivity = clauselist_selectivity(root, selectivityQuals,
												  index->rel->relid,
												  JOIN_INNER,
												  NULL);
		numIndexTuples = btreeSelectivity * index->rel->tuples;

		/*
		 * As in genericcostestimate(), we have to adjust for any
		 * ScalarArrayOpExpr quals included in indexBoundQuals, and then round
		 * to integer.
		 */
		numIndexTuples = rint(numIndexTuples / num_sa_scans);
	}

	/*
	 * Now do generic index cost estimation.
	 */
	MemSet(&costs, 0, sizeof(costs));
	costs.numIndexTuples = numIndexTuples;

	genericcostestimate(root, path, loop_count, &costs);

	/*
	 * Add a CPU-cost component to represent the costs of initial btree
	 * descent.  We don't charge any I/O cost for touching upper btree levels,
	 * since they tend to stay in cache, but we still have to do about log2(N)
	 * comparisons to descend a btree of N leaf tuples.  We charge one
	 * cpu_operator_cost per comparison.
	 *
	 * If there are ScalarArrayOpExprs, charge this once per SA scan.  The
	 * ones after the first one are not startup cost so far as the overall
	 * plan is concerned, so add them only to "total" cost.
	 */
	if (index->tuples > 1)		/* avoid computing log(0) */
	{
		descentCost = ceil(log(index->tuples) / log(2.0)) * cpu_operator_cost;
		costs.indexStartupCost += descentCost;
		costs.indexTotalCost += costs.num_sa_scans * descentCost;
	}

	/*
	 * Even though we're not charging I/O cost for touching upper btree pages,
	 * it's still reasonable to charge some CPU cost per page descended
	 * through.  Moreover, if we had no such charge at all, bloated indexes
	 * would appear to have the same search cost as unbloated ones, at least
	 * in cases where only a single leaf page is expected to be visited.  This
	 * cost is somewhat arbitrarily set at 50x cpu_operator_cost per page
	 * touched.  The number of such pages is btree tree height plus one (ie,
	 * we charge for the leaf page too).  As above, charge once per SA scan.
	 */
	descentCost = (index->tree_height + 1) * 50.0 * cpu_operator_cost;
	costs.indexStartupCost += descentCost;
	costs.indexTotalCost += costs.num_sa_scans * descentCost;

	/*
	 * If we can get an estimate of the first column's ordering correlation C
	 * from pg_statistic, estimate the index correlation as C for a
	 * single-column index, or C * 0.75 for multiple columns. (The idea here
	 * is that multiple columns dilute the importance of the first column's
	 * ordering, but don't negate it entirely.  Before 8.0 we divided the
	 * correlation by the number of columns, but that seems too strong.)
	 */
	MemSet(&vardata, 0, sizeof(vardata));

	if (index->indexkeys[0] != 0)
	{
		/* Simple variable --- look to stats for the underlying table */
		RangeTblEntry *rte = planner_rt_fetch(index->rel->relid, root);

		Assert(rte->rtekind == RTE_RELATION);
		relid = rte->relid;
		Assert(relid != InvalidOid);
		colnum = index->indexkeys[0];

		if (get_relation_stats_hook &&
			(*get_relation_stats_hook) (root, rte, colnum, &vardata))
		{
			/*
			 * The hook took control of acquiring a stats tuple.  If it did
			 * supply a tuple, it'd better have supplied a freefunc.
			 */
			if (HeapTupleIsValid(vardata.statsTuple) &&
				!vardata.freefunc)
				elog(ERROR, "no function provided to release variable stats with");
		}
		else
		{
			vardata.statsTuple = SearchSysCache3(STATRELATTINH,
												 ObjectIdGetDatum(relid),
												 Int16GetDatum(colnum),
												 BoolGetDatum(rte->inh));
			vardata.freefunc = ReleaseSysCache;
		}
	}
	else
	{
		/* Expression --- maybe there are stats for the index itself */
		relid = index->indexoid;
		colnum = 1;

		if (get_index_stats_hook &&
			(*get_index_stats_hook) (root, relid, colnum, &vardata))
		{
			/*
			 * The hook took control of acquiring a stats tuple.  If it did
			 * supply a tuple, it'd better have supplied a freefunc.
			 */
			if (HeapTupleIsValid(vardata.statsTuple) &&
				!vardata.freefunc)
				elog(ERROR, "no function provided to release variable stats with");
		}
		else
		{
			vardata.statsTuple = SearchSysCache3(STATRELATTINH,
												 ObjectIdGetDatum(relid),
												 Int16GetDatum(colnum),
												 BoolGetDatum(false));
			vardata.freefunc = ReleaseSysCache;
		}
	}

	if (HeapTupleIsValid(vardata.statsTuple))
	{
		Oid			sortop;
		AttStatsSlot sslot;

		sortop = get_opfamily_member(index->opfamily[0],
									 index->opcintype[0],
									 index->opcintype[0],
									 BTLessStrategyNumber);
		if (OidIsValid(sortop) &&
			get_attstatsslot(&sslot, vardata.statsTuple,
							 STATISTIC_KIND_CORRELATION, sortop,
							 ATTSTATSSLOT_NUMBERS))
		{
			double		varCorrelation;

			Assert(sslot.nnumbers == 1);
			varCorrelation = sslot.numbers[0];

			if (index->reverse_sort[0])
				varCorrelation = -varCorrelation;

			if (index->nkeycolumns > 1)
				costs.indexCorrelation = varCorrelation * 0.75;
			else
				costs.indexCorrelation = varCorrelation;

			free_attstatsslot(&sslot);
		}
	}

	ReleaseVariableStats(vardata);

	*indexStartupCost = costs.indexStartupCost;
	*indexTotalCost = costs.indexTotalCost;
	*indexSelectivity = costs.indexSelectivity;
	*indexCorrelation = costs.indexCorrelation;
	*indexPages = costs.numIndexPages;
}

void
hashcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
				 Cost *indexStartupCost, Cost *indexTotalCost,
				 Selectivity *indexSelectivity, double *indexCorrelation,
				 double *indexPages)
{
	GenericCosts costs;

	MemSet(&costs, 0, sizeof(costs));

	genericcostestimate(root, path, loop_count, &costs);

	/*
	 * A hash index has no descent costs as such, since the index AM can go
	 * directly to the target bucket after computing the hash value.  There
	 * are a couple of other hash-specific costs that we could conceivably add
	 * here, though:
	 *
	 * Ideally we'd charge spc_random_page_cost for each page in the target
	 * bucket, not just the numIndexPages pages that genericcostestimate
	 * thought we'd visit.  However in most cases we don't know which bucket
	 * that will be.  There's no point in considering the average bucket size
	 * because the hash AM makes sure that's always one page.
	 *
	 * Likewise, we could consider charging some CPU for each index tuple in
	 * the bucket, if we knew how many there were.  But the per-tuple cost is
	 * just a hash value comparison, not a general datatype-dependent
	 * comparison, so any such charge ought to be quite a bit less than
	 * cpu_operator_cost; which makes it probably not worth worrying about.
	 *
	 * A bigger issue is that chance hash-value collisions will result in
	 * wasted probes into the heap.  We don't currently attempt to model this
	 * cost on the grounds that it's rare, but maybe it's not rare enough.
	 * (Any fix for this ought to consider the generic lossy-operator problem,
	 * though; it's not entirely hash-specific.)
	 */

	*indexStartupCost = costs.indexStartupCost;
	*indexTotalCost = costs.indexTotalCost;
	*indexSelectivity = costs.indexSelectivity;
	*indexCorrelation = costs.indexCorrelation;
	*indexPages = costs.numIndexPages;
}

void
gistcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
				 Cost *indexStartupCost, Cost *indexTotalCost,
				 Selectivity *indexSelectivity, double *indexCorrelation,
				 double *indexPages)
{
	IndexOptInfo *index = path->indexinfo;
	GenericCosts costs;
	Cost		descentCost;

	MemSet(&costs, 0, sizeof(costs));

	genericcostestimate(root, path, loop_count, &costs);

	/*
	 * We model index descent costs similarly to those for btree, but to do
	 * that we first need an idea of the tree height.  We somewhat arbitrarily
	 * assume that the fanout is 100, meaning the tree height is at most
	 * log100(index->pages).
	 *
	 * Although this computation isn't really expensive enough to require
	 * caching, we might as well use index->tree_height to cache it.
	 */
	if (index->tree_height < 0) /* unknown? */
	{
		if (index->pages > 1)	/* avoid computing log(0) */
			index->tree_height = (int) (log(index->pages) / log(100.0));
		else
			index->tree_height = 0;
	}

	/*
	 * Add a CPU-cost component to represent the costs of initial descent. We
	 * just use log(N) here not log2(N) since the branching factor isn't
	 * necessarily two anyway.  As for btree, charge once per SA scan.
	 */
	if (index->tuples > 1)		/* avoid computing log(0) */
	{
		descentCost = ceil(log(index->tuples)) * cpu_operator_cost;
		costs.indexStartupCost += descentCost;
		costs.indexTotalCost += costs.num_sa_scans * descentCost;
	}

	/*
	 * Likewise add a per-page charge, calculated the same as for btrees.
	 */
	descentCost = (index->tree_height + 1) * 50.0 * cpu_operator_cost;
	costs.indexStartupCost += descentCost;
	costs.indexTotalCost += costs.num_sa_scans * descentCost;

	*indexStartupCost = costs.indexStartupCost;
	*indexTotalCost = costs.indexTotalCost;
	*indexSelectivity = costs.indexSelectivity;
	*indexCorrelation = costs.indexCorrelation;
	*indexPages = costs.numIndexPages;
}

void
spgcostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
				Cost *indexStartupCost, Cost *indexTotalCost,
				Selectivity *indexSelectivity, double *indexCorrelation,
				double *indexPages)
{
	IndexOptInfo *index = path->indexinfo;
	GenericCosts costs;
	Cost		descentCost;

	MemSet(&costs, 0, sizeof(costs));

	genericcostestimate(root, path, loop_count, &costs);

	/*
	 * We model index descent costs similarly to those for btree, but to do
	 * that we first need an idea of the tree height.  We somewhat arbitrarily
	 * assume that the fanout is 100, meaning the tree height is at most
	 * log100(index->pages).
	 *
	 * Although this computation isn't really expensive enough to require
	 * caching, we might as well use index->tree_height to cache it.
	 */
	if (index->tree_height < 0) /* unknown? */
	{
		if (index->pages > 1)	/* avoid computing log(0) */
			index->tree_height = (int) (log(index->pages) / log(100.0));
		else
			index->tree_height = 0;
	}

	/*
	 * Add a CPU-cost component to represent the costs of initial descent. We
	 * just use log(N) here not log2(N) since the branching factor isn't
	 * necessarily two anyway.  As for btree, charge once per SA scan.
	 */
	if (index->tuples > 1)		/* avoid computing log(0) */
	{
		descentCost = ceil(log(index->tuples)) * cpu_operator_cost;
		costs.indexStartupCost += descentCost;
		costs.indexTotalCost += costs.num_sa_scans * descentCost;
	}

	/*
	 * Likewise add a per-page charge, calculated the same as for btrees.
	 */
	descentCost = (index->tree_height + 1) * 50.0 * cpu_operator_cost;
	costs.indexStartupCost += descentCost;
	costs.indexTotalCost += costs.num_sa_scans * descentCost;

	*indexStartupCost = costs.indexStartupCost;
	*indexTotalCost = costs.indexTotalCost;
	*indexSelectivity = costs.indexSelectivity;
	*indexCorrelation = costs.indexCorrelation;
	*indexPages = costs.numIndexPages;
}


/*
 * Support routines for gincostestimate
 */

typedef struct
{
	bool		attHasFullScan[INDEX_MAX_KEYS];
	bool		attHasNormalScan[INDEX_MAX_KEYS];
	double		partialEntries;
	double		exactEntries;
	double		searchEntries;
	double		arrayScans;
} GinQualCounts;

/*
 * Estimate the number of index terms that need to be searched for while
 * testing the given GIN query, and increment the counts in *counts
 * appropriately.  If the query is unsatisfiable, return false.
 */
static bool
gincost_pattern(IndexOptInfo *index, int indexcol,
				Oid clause_op, Datum query,
				GinQualCounts *counts)
{
	FmgrInfo	flinfo;
	Oid			extractProcOid;
	Oid			collation;
	int			strategy_op;
	Oid			lefttype,
				righttype;
	int32		nentries = 0;
	bool	   *partial_matches = NULL;
	Pointer    *extra_data = NULL;
	bool	   *nullFlags = NULL;
	int32		searchMode = GIN_SEARCH_MODE_DEFAULT;
	int32		i;

	Assert(indexcol < index->nkeycolumns);

	/*
	 * Get the operator's strategy number and declared input data types within
	 * the index opfamily.  (We don't need the latter, but we use
	 * get_op_opfamily_properties because it will throw error if it fails to
	 * find a matching pg_amop entry.)
	 */
	get_op_opfamily_properties(clause_op, index->opfamily[indexcol], false,
							   &strategy_op, &lefttype, &righttype);

	/*
	 * GIN always uses the "default" support functions, which are those with
	 * lefttype == righttype == the opclass' opcintype (see
	 * IndexSupportInitialize in relcache.c).
	 */
	extractProcOid = get_opfamily_proc(index->opfamily[indexcol],
									   index->opcintype[indexcol],
									   index->opcintype[indexcol],
									   GIN_EXTRACTQUERY_PROC);

	if (!OidIsValid(extractProcOid))
	{
		/* should not happen; throw same error as index_getprocinfo */
		elog(ERROR, "missing support function %d for attribute %d of index \"%s\"",
			 GIN_EXTRACTQUERY_PROC, indexcol + 1,
			 get_rel_name(index->indexoid));
	}

	/*
	 * Choose collation to pass to extractProc (should match initGinState).
	 */
	if (OidIsValid(index->indexcollations[indexcol]))
		collation = index->indexcollations[indexcol];
	else
		collation = DEFAULT_COLLATION_OID;

	fmgr_info(extractProcOid, &flinfo);

	set_fn_opclass_options(&flinfo, index->opclassoptions[indexcol]);

	FunctionCall7Coll(&flinfo,
					  collation,
					  query,
					  PointerGetDatum(&nentries),
					  UInt16GetDatum(strategy_op),
					  PointerGetDatum(&partial_matches),
					  PointerGetDatum(&extra_data),
					  PointerGetDatum(&nullFlags),
					  PointerGetDatum(&searchMode));

	if (nentries <= 0 && searchMode == GIN_SEARCH_MODE_DEFAULT)
	{
		/* No match is possible */
		return false;
	}

	for (i = 0; i < nentries; i++)
	{
		/*
		 * For partial match we haven't any information to estimate number of
		 * matched entries in index, so, we just estimate it as 100
		 */
		if (partial_matches && partial_matches[i])
			counts->partialEntries += 100;
		else
			counts->exactEntries++;

		counts->searchEntries++;
	}

	if (searchMode == GIN_SEARCH_MODE_DEFAULT)
	{
		counts->attHasNormalScan[indexcol] = true;
	}
	else if (searchMode == GIN_SEARCH_MODE_INCLUDE_EMPTY)
	{
		/* Treat "include empty" like an exact-match item */
		counts->attHasNormalScan[indexcol] = true;
		counts->exactEntries++;
		counts->searchEntries++;
	}
	else
	{
		/* It's GIN_SEARCH_MODE_ALL */
		counts->attHasFullScan[indexcol] = true;
	}

	return true;
}

/*
 * Estimate the number of index terms that need to be searched for while
 * testing the given GIN index clause, and increment the counts in *counts
 * appropriately.  If the query is unsatisfiable, return false.
 */
static bool
gincost_opexpr(PlannerInfo *root,
			   IndexOptInfo *index,
			   int indexcol,
			   OpExpr *clause,
			   GinQualCounts *counts)
{
	Oid			clause_op = clause->opno;
	Node	   *operand = (Node *) lsecond(clause->args);

	/* aggressively reduce to a constant, and look through relabeling */
	operand = estimate_expression_value(root, operand);

	if (IsA(operand, RelabelType))
		operand = (Node *) ((RelabelType *) operand)->arg;

	/*
	 * It's impossible to call extractQuery method for unknown operand. So
	 * unless operand is a Const we can't do much; just assume there will be
	 * one ordinary search entry from the operand at runtime.
	 */
	if (!IsA(operand, Const))
	{
		counts->exactEntries++;
		counts->searchEntries++;
		return true;
	}

	/* If Const is null, there can be no matches */
	if (((Const *) operand)->constisnull)
		return false;

	/* Otherwise, apply extractQuery and get the actual term counts */
	return gincost_pattern(index, indexcol, clause_op,
						   ((Const *) operand)->constvalue,
						   counts);
}

/*
 * Estimate the number of index terms that need to be searched for while
 * testing the given GIN index clause, and increment the counts in *counts
 * appropriately.  If the query is unsatisfiable, return false.
 *
 * A ScalarArrayOpExpr will give rise to N separate indexscans at runtime,
 * each of which involves one value from the RHS array, plus all the
 * non-array quals (if any).  To model this, we average the counts across
 * the RHS elements, and add the averages to the counts in *counts (which
 * correspond to per-indexscan costs).  We also multiply counts->arrayScans
 * by N, causing gincostestimate to scale up its estimates accordingly.
 */
static bool
gincost_scalararrayopexpr(PlannerInfo *root,
						  IndexOptInfo *index,
						  int indexcol,
						  ScalarArrayOpExpr *clause,
						  double numIndexEntries,
						  GinQualCounts *counts)
{
	Oid			clause_op = clause->opno;
	Node	   *rightop = (Node *) lsecond(clause->args);
	ArrayType  *arrayval;
	int16		elmlen;
	bool		elmbyval;
	char		elmalign;
	int			numElems;
	Datum	   *elemValues;
	bool	   *elemNulls;
	GinQualCounts arraycounts;
	int			numPossible = 0;
	int			i;

	Assert(clause->useOr);

	/* aggressively reduce to a constant, and look through relabeling */
	rightop = estimate_expression_value(root, rightop);

	if (IsA(rightop, RelabelType))
		rightop = (Node *) ((RelabelType *) rightop)->arg;

	/*
	 * It's impossible to call extractQuery method for unknown operand. So
	 * unless operand is a Const we can't do much; just assume there will be
	 * one ordinary search entry from each array entry at runtime, and fall
	 * back on a probably-bad estimate of the number of array entries.
	 */
	if (!IsA(rightop, Const))
	{
		counts->exactEntries++;
		counts->searchEntries++;
		counts->arrayScans *= estimate_array_length(rightop);
		return true;
	}

	/* If Const is null, there can be no matches */
	if (((Const *) rightop)->constisnull)
		return false;

	/* Otherwise, extract the array elements and iterate over them */
	arrayval = DatumGetArrayTypeP(((Const *) rightop)->constvalue);
	get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
						 &elmlen, &elmbyval, &elmalign);
	deconstruct_array(arrayval,
					  ARR_ELEMTYPE(arrayval),
					  elmlen, elmbyval, elmalign,
					  &elemValues, &elemNulls, &numElems);

	memset(&arraycounts, 0, sizeof(arraycounts));

	for (i = 0; i < numElems; i++)
	{
		GinQualCounts elemcounts;

		/* NULL can't match anything, so ignore, as the executor will */
		if (elemNulls[i])
			continue;

		/* Otherwise, apply extractQuery and get the actual term counts */
		memset(&elemcounts, 0, sizeof(elemcounts));

		if (gincost_pattern(index, indexcol, clause_op, elemValues[i],
							&elemcounts))
		{
			/* We ignore array elements that are unsatisfiable patterns */
			numPossible++;

			if (elemcounts.attHasFullScan[indexcol] &&
				!elemcounts.attHasNormalScan[indexcol])
			{
				/*
				 * Full index scan will be required.  We treat this as if
				 * every key in the index had been listed in the query; is
				 * that reasonable?
				 */
				elemcounts.partialEntries = 0;
				elemcounts.exactEntries = numIndexEntries;
				elemcounts.searchEntries = numIndexEntries;
			}
			arraycounts.partialEntries += elemcounts.partialEntries;
			arraycounts.exactEntries += elemcounts.exactEntries;
			arraycounts.searchEntries += elemcounts.searchEntries;
		}
	}

	if (numPossible == 0)
	{
		/* No satisfiable patterns in the array */
		return false;
	}

	/*
	 * Now add the averages to the global counts.  This will give us an
	 * estimate of the average number of terms searched for in each indexscan,
	 * including contributions from both array and non-array quals.
	 */
	counts->partialEntries += arraycounts.partialEntries / numPossible;
	counts->exactEntries += arraycounts.exactEntries / numPossible;
	counts->searchEntries += arraycounts.searchEntries / numPossible;

	counts->arrayScans *= numPossible;

	return true;
}

/*
 * GIN has search behavior completely different from other index types
 */
void
gincostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
				Cost *indexStartupCost, Cost *indexTotalCost,
				Selectivity *indexSelectivity, double *indexCorrelation,
				double *indexPages)
{
	IndexOptInfo *index = path->indexinfo;
	List	   *indexQuals = get_quals_from_indexclauses(path->indexclauses);
	List	   *selectivityQuals;
	double		numPages = index->pages,
				numTuples = index->tuples;
	double		numEntryPages,
				numDataPages,
				numPendingPages,
				numEntries;
	GinQualCounts counts;
	bool		matchPossible;
	bool		fullIndexScan;
	double		partialScale;
	double		entryPagesFetched,
				dataPagesFetched,
				dataPagesFetchedBySel;
	double		qual_op_cost,
				qual_arg_cost,
				spc_random_page_cost,
				outer_scans;
	Relation	indexRel;
	GinStatsData ginStats;
	ListCell   *lc;
	int			i;

	/*
	 * Obtain statistical information from the meta page, if possible.  Else
	 * set ginStats to zeroes, and we'll cope below.
	 */
	if (!index->hypothetical)
	{
		/* Lock should have already been obtained in plancat.c */
		indexRel = index_open(index->indexoid, NoLock);
		ginGetStats(indexRel, &ginStats);
		index_close(indexRel, NoLock);
	}
	else
	{
		memset(&ginStats, 0, sizeof(ginStats));
	}

	/*
	 * Assuming we got valid (nonzero) stats at all, nPendingPages can be
	 * trusted, but the other fields are data as of the last VACUUM.  We can
	 * scale them up to account for growth since then, but that method only
	 * goes so far; in the worst case, the stats might be for a completely
	 * empty index, and scaling them will produce pretty bogus numbers.
	 * Somewhat arbitrarily, set the cutoff for doing scaling at 4X growth; if
	 * it's grown more than that, fall back to estimating things only from the
	 * assumed-accurate index size.  But we'll trust nPendingPages in any case
	 * so long as it's not clearly insane, ie, more than the index size.
	 */
	if (ginStats.nPendingPages < numPages)
		numPendingPages = ginStats.nPendingPages;
	else
		numPendingPages = 0;

	if (numPages > 0 && ginStats.nTotalPages <= numPages &&
		ginStats.nTotalPages > numPages / 4 &&
		ginStats.nEntryPages > 0 && ginStats.nEntries > 0)
	{
		/*
		 * OK, the stats seem close enough to sane to be trusted.  But we
		 * still need to scale them by the ratio numPages / nTotalPages to
		 * account for growth since the last VACUUM.
		 */
		double		scale = numPages / ginStats.nTotalPages;

		numEntryPages = ceil(ginStats.nEntryPages * scale);
		numDataPages = ceil(ginStats.nDataPages * scale);
		numEntries = ceil(ginStats.nEntries * scale);
		/* ensure we didn't round up too much */
		numEntryPages = Min(numEntryPages, numPages - numPendingPages);
		numDataPages = Min(numDataPages,
						   numPages - numPendingPages - numEntryPages);
	}
	else
	{
		/*
		 * We might get here because it's a hypothetical index, or an index
		 * created pre-9.1 and never vacuumed since upgrading (in which case
		 * its stats would read as zeroes), or just because it's grown too
		 * much since the last VACUUM for us to put our faith in scaling.
		 *
		 * Invent some plausible internal statistics based on the index page
		 * count (and clamp that to at least 10 pages, just in case).  We
		 * estimate that 90% of the index is entry pages, and the rest is data
		 * pages.  Estimate 100 entries per entry page; this is rather bogus
		 * since it'll depend on the size of the keys, but it's more robust
		 * than trying to predict the number of entries per heap tuple.
		 */
		numPages = Max(numPages, 10);
		numEntryPages = floor((numPages - numPendingPages) * 0.90);
		numDataPages = numPages - numPendingPages - numEntryPages;
		numEntries = floor(numEntryPages * 100);
	}

	/* In an empty index, numEntries could be zero.  Avoid divide-by-zero */
	if (numEntries < 1)
		numEntries = 1;

	/*
	 * If the index is partial, AND the index predicate with the index-bound
	 * quals to produce a more accurate idea of the number of rows covered by
	 * the bound conditions.
	 */
	selectivityQuals = add_predicate_to_index_quals(index, indexQuals);

	/* Estimate the fraction of main-table tuples that will be visited */
	*indexSelectivity = clauselist_selectivity(root, selectivityQuals,
											   index->rel->relid,
											   JOIN_INNER,
											   NULL);

	/* fetch estimated page cost for tablespace containing index */
	get_tablespace_page_costs(index->reltablespace,
							  &spc_random_page_cost,
							  NULL);

	/*
	 * Generic assumption about index correlation: there isn't any.
	 */
	*indexCorrelation = 0.0;

	/*
	 * Examine quals to estimate number of search entries & partial matches
	 */
	memset(&counts, 0, sizeof(counts));
	counts.arrayScans = 1;
	matchPossible = true;

	foreach(lc, path->indexclauses)
	{
		IndexClause *iclause = lfirst_node(IndexClause, lc);
		ListCell   *lc2;

		foreach(lc2, iclause->indexquals)
		{
			RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc2);
			Expr	   *clause = rinfo->clause;

			if (IsA(clause, OpExpr))
			{
				matchPossible = gincost_opexpr(root,
											   index,
											   iclause->indexcol,
											   (OpExpr *) clause,
											   &counts);
				if (!matchPossible)
					break;
			}
			else if (IsA(clause, ScalarArrayOpExpr))
			{
				matchPossible = gincost_scalararrayopexpr(root,
														  index,
														  iclause->indexcol,
														  (ScalarArrayOpExpr *) clause,
														  numEntries,
														  &counts);
				if (!matchPossible)
					break;
			}
			else
			{
				/* shouldn't be anything else for a GIN index */
				elog(ERROR, "unsupported GIN indexqual type: %d",
					 (int) nodeTag(clause));
			}
		}
	}

	/* Fall out if there were any provably-unsatisfiable quals */
	if (!matchPossible)
	{
		*indexStartupCost = 0;
		*indexTotalCost = 0;
		*indexSelectivity = 0;
		return;
	}

	/*
	 * If attribute has a full scan and at the same time doesn't have normal
	 * scan, then we'll have to scan all non-null entries of that attribute.
	 * Currently, we don't have per-attribute statistics for GIN.  Thus, we
	 * must assume the whole GIN index has to be scanned in this case.
	 */
	fullIndexScan = false;
	for (i = 0; i < index->nkeycolumns; i++)
	{
		if (counts.attHasFullScan[i] && !counts.attHasNormalScan[i])
		{
			fullIndexScan = true;
			break;
		}
	}

	if (fullIndexScan || indexQuals == NIL)
	{
		/*
		 * Full index scan will be required.  We treat this as if every key in
		 * the index had been listed in the query; is that reasonable?
		 */
		counts.partialEntries = 0;
		counts.exactEntries = numEntries;
		counts.searchEntries = numEntries;
	}

	/* Will we have more than one iteration of a nestloop scan? */
	outer_scans = loop_count;

	/*
	 * Compute cost to begin scan, first of all, pay attention to pending
	 * list.
	 */
	entryPagesFetched = numPendingPages;

	/*
	 * Estimate number of entry pages read.  We need to do
	 * counts.searchEntries searches.  Use a power function as it should be,
	 * but tuples on leaf pages usually is much greater. Here we include all
	 * searches in entry tree, including search of first entry in partial
	 * match algorithm
	 */
	entryPagesFetched += ceil(counts.searchEntries * rint(pow(numEntryPages, 0.15)));

	/*
	 * Add an estimate of entry pages read by partial match algorithm. It's a
	 * scan over leaf pages in entry tree.  We haven't any useful stats here,
	 * so estimate it as proportion.  Because counts.partialEntries is really
	 * pretty bogus (see code above), it's possible that it is more than
	 * numEntries; clamp the proportion to ensure sanity.
	 */
	partialScale = counts.partialEntries / numEntries;
	partialScale = Min(partialScale, 1.0);

	entryPagesFetched += ceil(numEntryPages * partialScale);

	/*
	 * Partial match algorithm reads all data pages before doing actual scan,
	 * so it's a startup cost.  Again, we haven't any useful stats here, so
	 * estimate it as proportion.
	 */
	dataPagesFetched = ceil(numDataPages * partialScale);

	/*
	 * Calculate cache effects if more than one scan due to nestloops or array
	 * quals.  The result is pro-rated per nestloop scan, but the array qual
	 * factor shouldn't be pro-rated (compare genericcostestimate).
	 */
	if (outer_scans > 1 || counts.arrayScans > 1)
	{
		entryPagesFetched *= outer_scans * counts.arrayScans;
		entryPagesFetched = index_pages_fetched(entryPagesFetched,
												(BlockNumber) numEntryPages,
												numEntryPages, root);
		entryPagesFetched /= outer_scans;
		dataPagesFetched *= outer_scans * counts.arrayScans;
		dataPagesFetched = index_pages_fetched(dataPagesFetched,
											   (BlockNumber) numDataPages,
											   numDataPages, root);
		dataPagesFetched /= outer_scans;
	}

	/*
	 * Here we use random page cost because logically-close pages could be far
	 * apart on disk.
	 */
	*indexStartupCost = (entryPagesFetched + dataPagesFetched) * spc_random_page_cost;

	/*
	 * Now compute the number of data pages fetched during the scan.
	 *
	 * We assume every entry to have the same number of items, and that there
	 * is no overlap between them. (XXX: tsvector and array opclasses collect
	 * statistics on the frequency of individual keys; it would be nice to use
	 * those here.)
	 */
	dataPagesFetched = ceil(numDataPages * counts.exactEntries / numEntries);

	/*
	 * If there is a lot of overlap among the entries, in particular if one of
	 * the entries is very frequent, the above calculation can grossly
	 * under-estimate.  As a simple cross-check, calculate a lower bound based
	 * on the overall selectivity of the quals.  At a minimum, we must read
	 * one item pointer for each matching entry.
	 *
	 * The width of each item pointer varies, based on the level of
	 * compression.  We don't have statistics on that, but an average of
	 * around 3 bytes per item is fairly typical.
	 */
	dataPagesFetchedBySel = ceil(*indexSelectivity *
								 (numTuples / (BLCKSZ / 3)));
	if (dataPagesFetchedBySel > dataPagesFetched)
		dataPagesFetched = dataPagesFetchedBySel;

	/* Account for cache effects, the same as above */
	if (outer_scans > 1 || counts.arrayScans > 1)
	{
		dataPagesFetched *= outer_scans * counts.arrayScans;
		dataPagesFetched = index_pages_fetched(dataPagesFetched,
											   (BlockNumber) numDataPages,
											   numDataPages, root);
		dataPagesFetched /= outer_scans;
	}

	/* And apply random_page_cost as the cost per page */
	*indexTotalCost = *indexStartupCost +
		dataPagesFetched * spc_random_page_cost;

	/*
	 * Add on index qual eval costs, much as in genericcostestimate.  But we
	 * can disregard indexorderbys, since GIN doesn't support those.
	 */
	qual_arg_cost = index_other_operands_eval_cost(root, indexQuals);
	qual_op_cost = cpu_operator_cost * list_length(indexQuals);

	*indexStartupCost += qual_arg_cost;
	*indexTotalCost += qual_arg_cost;
	*indexTotalCost += (numTuples * *indexSelectivity) * (cpu_index_tuple_cost + qual_op_cost);
	*indexPages = dataPagesFetched;
}

/*
 * BRIN has search behavior completely different from other index types
 */
void
brincostestimate(PlannerInfo *root, IndexPath *path, double loop_count,
				 Cost *indexStartupCost, Cost *indexTotalCost,
				 Selectivity *indexSelectivity, double *indexCorrelation,
				 double *indexPages)
{
	IndexOptInfo *index = path->indexinfo;
	List	   *indexQuals = get_quals_from_indexclauses(path->indexclauses);
	double		numPages = index->pages;
	RelOptInfo *baserel = index->rel;
	RangeTblEntry *rte = planner_rt_fetch(baserel->relid, root);
	Cost		spc_seq_page_cost;
	Cost		spc_random_page_cost;
	double		qual_arg_cost;
	double		qualSelectivity;
	BrinStatsData statsData;
	double		indexRanges;
	double		minimalRanges;
	double		estimatedRanges;
	double		selec;
	Relation	indexRel;
	ListCell   *l;
	VariableStatData vardata;

	Assert(rte->rtekind == RTE_RELATION);

	/* fetch estimated page cost for the tablespace containing the index */
	get_tablespace_page_costs(index->reltablespace,
							  &spc_random_page_cost,
							  &spc_seq_page_cost);

	/*
	 * Obtain some data from the index itself, if possible.  Otherwise invent
	 * some plausible internal statistics based on the relation page count.
	 */
	if (!index->hypothetical)
	{
		/*
		 * A lock should have already been obtained on the index in plancat.c.
		 */
		indexRel = index_open(index->indexoid, NoLock);
		brinGetStats(indexRel, &statsData);
		index_close(indexRel, NoLock);

		/* work out the actual number of ranges in the index */
		indexRanges = Max(ceil((double) baserel->pages /
							   statsData.pagesPerRange), 1.0);
	}
	else
	{
		/*
		 * Assume default number of pages per range, and estimate the number
		 * of ranges based on that.
		 */
		indexRanges = Max(ceil((double) baserel->pages /
							   BRIN_DEFAULT_PAGES_PER_RANGE), 1.0);

		statsData.pagesPerRange = BRIN_DEFAULT_PAGES_PER_RANGE;
		statsData.revmapNumPages = (indexRanges / REVMAP_PAGE_MAXITEMS) + 1;
	}

	/*
	 * Compute index correlation
	 *
	 * Because we can use all index quals equally when scanning, we can use
	 * the largest correlation (in absolute value) among columns used by the
	 * query.  Start at zero, the worst possible case.  If we cannot find any
	 * correlation statistics, we will keep it as 0.
	 */
	*indexCorrelation = 0;

	foreach(l, path->indexclauses)
	{
		IndexClause *iclause = lfirst_node(IndexClause, l);
		AttrNumber	attnum = index->indexkeys[iclause->indexcol];

		/* attempt to lookup stats in relation for this index column */
		if (attnum != 0)
		{
			/* Simple variable -- look to stats for the underlying table */
			if (get_relation_stats_hook &&
				(*get_relation_stats_hook) (root, rte, attnum, &vardata))
			{
				/*
				 * The hook took control of acquiring a stats tuple.  If it
				 * did supply a tuple, it'd better have supplied a freefunc.
				 */
				if (HeapTupleIsValid(vardata.statsTuple) && !vardata.freefunc)
					elog(ERROR,
						 "no function provided to release variable stats with");
			}
			else
			{
				vardata.statsTuple =
					SearchSysCache3(STATRELATTINH,
									ObjectIdGetDatum(rte->relid),
									Int16GetDatum(attnum),
									BoolGetDatum(false));
				vardata.freefunc = ReleaseSysCache;
			}
		}
		else
		{
			/*
			 * Looks like we've found an expression column in the index. Let's
			 * see if there's any stats for it.
			 */

			/* get the attnum from the 0-based index. */
			attnum = iclause->indexcol + 1;

			if (get_index_stats_hook &&
				(*get_index_stats_hook) (root, index->indexoid, attnum, &vardata))
			{
				/*
				 * The hook took control of acquiring a stats tuple.  If it
				 * did supply a tuple, it'd better have supplied a freefunc.
				 */
				if (HeapTupleIsValid(vardata.statsTuple) &&
					!vardata.freefunc)
					elog(ERROR, "no function provided to release variable stats with");
			}
			else
			{
				vardata.statsTuple = SearchSysCache3(STATRELATTINH,
													 ObjectIdGetDatum(index->indexoid),
													 Int16GetDatum(attnum),
													 BoolGetDatum(false));
				vardata.freefunc = ReleaseSysCache;
			}
		}

		if (HeapTupleIsValid(vardata.statsTuple))
		{
			AttStatsSlot sslot;

			if (get_attstatsslot(&sslot, vardata.statsTuple,
								 STATISTIC_KIND_CORRELATION, InvalidOid,
								 ATTSTATSSLOT_NUMBERS))
			{
				double		varCorrelation = 0.0;

				if (sslot.nnumbers > 0)
					varCorrelation = Abs(sslot.numbers[0]);

				if (varCorrelation > *indexCorrelation)
					*indexCorrelation = varCorrelation;

				free_attstatsslot(&sslot);
			}
		}

		ReleaseVariableStats(vardata);
	}

	qualSelectivity = clauselist_selectivity(root, indexQuals,
											 baserel->relid,
											 JOIN_INNER, NULL);

	/*
	 * Now calculate the minimum possible ranges we could match with if all of
	 * the rows were in the perfect order in the table's heap.
	 */
	minimalRanges = ceil(indexRanges * qualSelectivity);

	/*
	 * Now estimate the number of ranges that we'll touch by using the
	 * indexCorrelation from the stats. Careful not to divide by zero (note
	 * we're using the absolute value of the correlation).
	 */
	if (*indexCorrelation < 1.0e-10)
		estimatedRanges = indexRanges;
	else
		estimatedRanges = Min(minimalRanges / *indexCorrelation, indexRanges);

	/* we expect to visit this portion of the table */
	selec = estimatedRanges / indexRanges;

	CLAMP_PROBABILITY(selec);

	*indexSelectivity = selec;

	/*
	 * Compute the index qual costs, much as in genericcostestimate, to add to
	 * the index costs.  We can disregard indexorderbys, since BRIN doesn't
	 * support those.
	 */
	qual_arg_cost = index_other_operands_eval_cost(root, indexQuals);

	/*
	 * Compute the startup cost as the cost to read the whole revmap
	 * sequentially, including the cost to execute the index quals.
	 */
	*indexStartupCost =
		spc_seq_page_cost * statsData.revmapNumPages * loop_count;
	*indexStartupCost += qual_arg_cost;

	/*
	 * To read a BRIN index there might be a bit of back and forth over
	 * regular pages, as revmap might point to them out of sequential order;
	 * calculate the total cost as reading the whole index in random order.
	 */
	*indexTotalCost = *indexStartupCost +
		spc_random_page_cost * (numPages - statsData.revmapNumPages) * loop_count;

	/*
	 * Charge a small amount per range tuple which we expect to match to. This
	 * is meant to reflect the costs of manipulating the bitmap. The BRIN scan
	 * will set a bit for each page in the range when we find a matching
	 * range, so we must multiply the charge by the number of pages in the
	 * range.
	 */
	*indexTotalCost += 0.1 * cpu_operator_cost * estimatedRanges *
		statsData.pagesPerRange;

	*indexPages = index->pages;
}