summaryrefslogtreecommitdiff
path: root/src/backend/storage/freespace/fsmpage.c
blob: a4479e88c075dce8bbcaad03ea08a5859750966d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/*-------------------------------------------------------------------------
 *
 * fsmpage.c
 *	  routines to search and manipulate one FSM page.
 *
 *
 * Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *	  $PostgreSQL: pgsql/src/backend/storage/freespace/fsmpage.c,v 1.3 2008/12/10 17:11:18 tgl Exp $
 *
 * NOTES:
 *
 *  The public functions in this file form an API that hides the internal
 *  structure of a FSM page. This allows freespace.c to treat each FSM page
 *  as a black box with SlotsPerPage "slots". fsm_set_avail() and
 *  fsm_get_avail() let you get/set the value of a slot, and
 *  fsm_search_avail() lets you search for a slot with value >= X.
 *
 *-------------------------------------------------------------------------
 */
#include "postgres.h"

#include "storage/bufmgr.h"
#include "storage/fsm_internals.h"

/* Macros to navigate the tree within a page. Root has index zero. */
#define leftchild(x)	(2 * (x) + 1)
#define rightchild(x)	(2 * (x) + 2)
#define parentof(x)		(((x) - 1) / 2)

/*
 * Find right neighbor of x, wrapping around within the level
 */
static int
rightneighbor(int x)
{
	/*
	 * Move right. This might wrap around, stepping to the leftmost node at
	 * the next level.
	 */
	x++;

	/*
	 * Check if we stepped to the leftmost node at next level, and correct
	 * if so. The leftmost nodes at each level are numbered x = 2^level - 1,
	 * so check if (x + 1) is a power of two, using a standard
	 * twos-complement-arithmetic trick.
	 */
	if (((x + 1) & x) == 0)
		x = parentof(x);

	return x;
}

/*
 * Sets the value of a slot on page. Returns true if the page was modified.
 *
 * The caller must hold an exclusive lock on the page.
 */
bool
fsm_set_avail(Page page, int slot, uint8 value)
{
	int nodeno = NonLeafNodesPerPage + slot;
	FSMPage fsmpage = (FSMPage) PageGetContents(page);
	uint8 oldvalue;

	Assert(slot < LeafNodesPerPage);

	oldvalue = fsmpage->fp_nodes[nodeno];

	/* If the value hasn't changed, we don't need to do anything */
	if (oldvalue == value && value <= fsmpage->fp_nodes[0])
		return false;

	fsmpage->fp_nodes[nodeno] = value;

	/*
	 * Propagate up, until we hit the root or a node that doesn't
	 * need to be updated.
	 */
	do
	{
		uint8 newvalue = 0;
		int lchild;
		int rchild;

		nodeno = parentof(nodeno);
		lchild = leftchild(nodeno);
		rchild = lchild + 1;

		newvalue = fsmpage->fp_nodes[lchild];
		if (rchild < NodesPerPage)
			newvalue = Max(newvalue,
						   fsmpage->fp_nodes[rchild]);

		oldvalue = fsmpage->fp_nodes[nodeno];
		if (oldvalue == newvalue)
			break;

		fsmpage->fp_nodes[nodeno] = newvalue;
	} while (nodeno > 0);

	/*
	 * sanity check: if the new value is (still) higher than the value
	 * at the top, the tree is corrupt.  If so, rebuild.
	 */
	if (value > fsmpage->fp_nodes[0])
		fsm_rebuild_page(page);

	return true;
}

/*
 * Returns the value of given slot on page.
 *
 * Since this is just a read-only access of a single byte, the page doesn't
 * need to be locked.
 */
uint8
fsm_get_avail(Page page, int slot)
{
	FSMPage fsmpage = (FSMPage) PageGetContents(page);

	Assert(slot < LeafNodesPerPage);

	return fsmpage->fp_nodes[NonLeafNodesPerPage + slot];
}

/*
 * Returns the value at the root of a page.
 *
 * Since this is just a read-only access of a single byte, the page doesn't
 * need to be locked.
 */
uint8
fsm_get_max_avail(Page page)
{
	FSMPage fsmpage = (FSMPage) PageGetContents(page);

	return fsmpage->fp_nodes[0];
}

/*
 * Searches for a slot with category at least minvalue.
 * Returns slot number, or -1 if none found.
 *
 * The caller must hold at least a shared lock on the page, and this
 * function can unlock and lock the page again in exclusive mode if it
 * needs to be updated. exclusive_lock_held should be set to true if the
 * caller is already holding an exclusive lock, to avoid extra work.
 *
 * If advancenext is false, fp_next_slot is set to point to the returned
 * slot, and if it's true, to the slot after the returned slot.
 */
int
fsm_search_avail(Buffer buf, uint8 minvalue, bool advancenext,
				 bool exclusive_lock_held)
{
	Page page = BufferGetPage(buf);
	FSMPage fsmpage = (FSMPage) PageGetContents(page);
	int nodeno;
	int target;
	uint16 slot;

 restart:
	/*
	 * Check the root first, and exit quickly if there's no leaf with
	 * enough free space
	 */
	if (fsmpage->fp_nodes[0] < minvalue)
		return -1;

	/*
	 * Start search using fp_next_slot.  It's just a hint, so check that it's
	 * sane.  (This also handles wrapping around when the prior call returned
	 * the last slot on the page.)
	 */
	target = fsmpage->fp_next_slot;
	if (target < 0 || target >= LeafNodesPerPage)
		target = 0;
	target += NonLeafNodesPerPage;

	/*----------
	 * Start the search from the target slot.  At every step, move one
	 * node to the right, then climb up to the parent.  Stop when we reach
	 * a node with enough free space (as we must, since the root has enough
	 * space).
	 *
	 * The idea is to gradually expand our "search triangle", that is, all
	 * nodes covered by the current node, and to be sure we search to the
	 * right from the start point.  At the first step, only the target slot
	 * is examined.  When we move up from a left child to its parent, we are
	 * adding the right-hand subtree of that parent to the search triangle.
	 * When we move right then up from a right child, we are dropping the
	 * current search triangle (which we know doesn't contain any suitable
	 * page) and instead looking at the next-larger-size triangle to its
	 * right.  So we never look left from our original start point, and at
	 * each step the size of the search triangle doubles, ensuring it takes
	 * only log2(N) work to search N pages.
	 *
	 * The "move right" operation will wrap around if it hits the right edge
	 * of the tree, so the behavior is still good if we start near the right.
	 * Note also that the move-and-climb behavior ensures that we can't end
	 * up on one of the missing nodes at the right of the leaf level.
	 *
	 * For example, consider this tree:
	 *
	 *         7
	 *     7       6
	 *   5   7   6   5
	 *  4 5 5 7 2 6 5 2
	 *              T
	 *
	 * Assume that the target node is the node indicated by the letter T,
	 * and we're searching for a node with value of 6 or higher. The search
	 * begins at T. At the first iteration, we move to the right, then to the
	 * parent, arriving at the rightmost 5. At the second iteration, we move
	 * to the right, wrapping around, then climb up, arriving at the 7 on the
	 * third level.  7 satisfies our search, so we descend down to the bottom,
	 * following the path of sevens.  This is in fact the first suitable page
	 * to the right of (allowing for wraparound) our start point.
	 *----------
	 */
	nodeno = target;
	while (nodeno > 0)
	{
		if (fsmpage->fp_nodes[nodeno] >= minvalue)
			break;

		/*
		 * Move to the right, wrapping around on same level if necessary,
		 * then climb up.
		 */
		nodeno = parentof(rightneighbor(nodeno));
	}

	/*
	 * We're now at a node with enough free space, somewhere in the middle of
	 * the tree. Descend to the bottom, following a path with enough free
	 * space, preferring to move left if there's a choice.
	 */
	while (nodeno < NonLeafNodesPerPage)
	{
		int childnodeno = leftchild(nodeno);

		if (childnodeno < NodesPerPage &&
			fsmpage->fp_nodes[childnodeno] >= minvalue)
		{
			nodeno = childnodeno;
			continue;
		}
		childnodeno++;			/* point to right child */
		if (childnodeno < NodesPerPage &&
			fsmpage->fp_nodes[childnodeno] >= minvalue)
		{
			nodeno = childnodeno;
		}
		else
		{
			/*
			 * Oops. The parent node promised that either left or right
			 * child has enough space, but neither actually did. This can
			 * happen in case of a "torn page", IOW if we crashed earlier
			 * while writing the page to disk, and only part of the page
			 * made it to disk.
			 *
			 * Fix the corruption and restart.
			 */
			RelFileNode	rnode;
			ForkNumber	forknum;
			BlockNumber	blknum;

			BufferGetTag(buf, &rnode, &forknum, &blknum);
			elog(DEBUG1, "fixing corrupt FSM block %u, relation %u/%u/%u",
				 blknum, rnode.spcNode, rnode.dbNode, rnode.relNode);

			/* make sure we hold an exclusive lock */
			if (!exclusive_lock_held)
			{
				LockBuffer(buf, BUFFER_LOCK_UNLOCK);
				LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
				exclusive_lock_held = true;
			}
			fsm_rebuild_page(page);
			MarkBufferDirty(buf);
			goto restart;
		}
	}

	/* We're now at the bottom level, at a node with enough space. */
	slot = nodeno - NonLeafNodesPerPage;

	/*
	 * Update the next-target pointer. Note that we do this even if we're only
	 * holding a shared lock, on the grounds that it's better to use a shared
	 * lock and get a garbled next pointer every now and then, than take the
	 * concurrency hit of an exclusive lock.
	 *
	 * Wrap-around is handled at the beginning of this function.
	 */
	fsmpage->fp_next_slot = slot + (advancenext ? 1 : 0);

	return slot;
}

/*
 * Sets the available space to zero for all slots numbered >= nslots.
 * Returns true if the page was modified.
 */
bool
fsm_truncate_avail(Page page, int nslots)
{
	FSMPage fsmpage = (FSMPage) PageGetContents(page);
	uint8 *ptr;
	bool changed = false;

	Assert(nslots >= 0 && nslots < LeafNodesPerPage);

	/* Clear all truncated leaf nodes */
	ptr = &fsmpage->fp_nodes[NonLeafNodesPerPage + nslots];
	for (; ptr < &fsmpage->fp_nodes[NodesPerPage]; ptr++)
	{
		if (*ptr != 0)
			changed = true;
		*ptr = 0;
	}

	/* Fix upper nodes. */
	if (changed)
		fsm_rebuild_page(page);

	return changed;
}

/*
 * Reconstructs the upper levels of a page. Returns true if the page
 * was modified.
 */
bool
fsm_rebuild_page(Page page)
{
	FSMPage fsmpage = (FSMPage) PageGetContents(page);
	bool	changed = false;
	int		nodeno;

	/*
	 * Start from the lowest non-leaf level, at last node, working our way
	 * backwards, through all non-leaf nodes at all levels, up to the root.
	 */
	for (nodeno = NonLeafNodesPerPage - 1; nodeno >= 0; nodeno--)
	{
		int lchild = leftchild(nodeno);
		int rchild = lchild + 1;
		uint8 newvalue = 0;

		/* The first few nodes we examine might have zero or one child. */
		if (lchild < NodesPerPage)
			newvalue = fsmpage->fp_nodes[lchild];

		if (rchild < NodesPerPage)
			newvalue = Max(newvalue,
						   fsmpage->fp_nodes[rchild]);

		if (fsmpage->fp_nodes[nodeno] != newvalue)
		{
			fsmpage->fp_nodes[nodeno] = newvalue;
			changed = true;
		}
	}

	return changed;
}