summaryrefslogtreecommitdiff
path: root/src/backend/partitioning/partprune.c
blob: 7179b22a057d7d10280d64d41e49d04c29b1513a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
/*-------------------------------------------------------------------------
 *
 * partprune.c
 *		Support for partition pruning during query planning and execution
 *
 * This module implements partition pruning using the information contained in
 * a table's partition descriptor, query clauses, and run-time parameters.
 *
 * During planning, clauses that can be matched to the table's partition key
 * are turned into a set of "pruning steps", which are then executed to
 * identify a set of partitions (as indexes in the RelOptInfo->part_rels
 * array) that satisfy the constraints in the step.  Partitions not in the set
 * are said to have been pruned.
 *
 * A base pruning step may involve expressions whose values are only known
 * during execution, such as Params, in which case pruning cannot occur
 * entirely during planning.  In that case, such steps are included alongside
 * the plan, so that they can be used by the executor for further pruning.
 *
 * There are two kinds of pruning steps.  A "base" pruning step represents
 * tests on partition key column(s), typically comparisons to expressions.
 * A "combine" pruning step represents a Boolean connector (AND/OR), and
 * combines the outputs of some previous steps using the appropriate
 * combination method.
 *
 * See gen_partprune_steps_internal() for more details on step generation.
 *
 * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 * IDENTIFICATION
 *		  src/backend/partitioning/partprune.c
 *
 *-------------------------------------------------------------------------
*/
#include "postgres.h"

#include "access/hash.h"
#include "access/nbtree.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_opfamily.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/appendinfo.h"
#include "optimizer/cost.h"
#include "optimizer/optimizer.h"
#include "optimizer/pathnode.h"
#include "parser/parsetree.h"
#include "partitioning/partbounds.h"
#include "partitioning/partprune.h"
#include "rewrite/rewriteManip.h"
#include "utils/array.h"
#include "utils/lsyscache.h"


/*
 * Information about a clause matched with a partition key.
 */
typedef struct PartClauseInfo
{
	int			keyno;			/* Partition key number (0 to partnatts - 1) */
	Oid			opno;			/* operator used to compare partkey to expr */
	bool		op_is_ne;		/* is clause's original operator <> ? */
	Expr	   *expr;			/* expr the partition key is compared to */
	Oid			cmpfn;			/* Oid of function to compare 'expr' to the
								 * partition key */
	int			op_strategy;	/* btree strategy identifying the operator */
} PartClauseInfo;

/*
 * PartClauseMatchStatus
 *		Describes the result of match_clause_to_partition_key()
 */
typedef enum PartClauseMatchStatus
{
	PARTCLAUSE_NOMATCH,
	PARTCLAUSE_MATCH_CLAUSE,
	PARTCLAUSE_MATCH_NULLNESS,
	PARTCLAUSE_MATCH_STEPS,
	PARTCLAUSE_MATCH_CONTRADICT,
	PARTCLAUSE_UNSUPPORTED
} PartClauseMatchStatus;

/*
 * PartClauseTarget
 *		Identifies which qual clauses we can use for generating pruning steps
 */
typedef enum PartClauseTarget
{
	PARTTARGET_PLANNER,			/* want to prune during planning */
	PARTTARGET_INITIAL,			/* want to prune during executor startup */
	PARTTARGET_EXEC				/* want to prune during each plan node scan */
} PartClauseTarget;

/*
 * GeneratePruningStepsContext
 *		Information about the current state of generation of "pruning steps"
 *		for a given set of clauses
 *
 * gen_partprune_steps() initializes and returns an instance of this struct.
 *
 * Note that has_mutable_op, has_mutable_arg, and has_exec_param are set if
 * we found any potentially-useful-for-pruning clause having those properties,
 * whether or not we actually used the clause in the steps list.  This
 * definition allows us to skip the PARTTARGET_EXEC pass in some cases.
 */
typedef struct GeneratePruningStepsContext
{
	/* Copies of input arguments for gen_partprune_steps: */
	RelOptInfo *rel;			/* the partitioned relation */
	PartClauseTarget target;	/* use-case we're generating steps for */
	/* Result data: */
	List	   *steps;			/* list of PartitionPruneSteps */
	bool		has_mutable_op; /* clauses include any stable operators */
	bool		has_mutable_arg;	/* clauses include any mutable comparison
									 * values, *other than* exec params */
	bool		has_exec_param; /* clauses include any PARAM_EXEC params */
	bool		contradictory;	/* clauses were proven self-contradictory */
	/* Working state: */
	int			next_step_id;
} GeneratePruningStepsContext;

/* The result of performing one PartitionPruneStep */
typedef struct PruneStepResult
{
	/*
	 * The offsets of bounds (in a table's boundinfo) whose partition is
	 * selected by the pruning step.
	 */
	Bitmapset  *bound_offsets;

	bool		scan_default;	/* Scan the default partition? */
	bool		scan_null;		/* Scan the partition for NULL values? */
} PruneStepResult;


static List *add_part_relids(List *allpartrelids, Bitmapset *partrelids);
static List *make_partitionedrel_pruneinfo(PlannerInfo *root,
										   RelOptInfo *parentrel,
										   List *prunequal,
										   Bitmapset *partrelids,
										   int *relid_subplan_map,
										   Bitmapset **matchedsubplans);
static void gen_partprune_steps(RelOptInfo *rel, List *clauses,
								PartClauseTarget target,
								GeneratePruningStepsContext *context);
static List *gen_partprune_steps_internal(GeneratePruningStepsContext *context,
										  List *clauses);
static PartitionPruneStep *gen_prune_step_op(GeneratePruningStepsContext *context,
											 StrategyNumber opstrategy, bool op_is_ne,
											 List *exprs, List *cmpfns, Bitmapset *nullkeys);
static PartitionPruneStep *gen_prune_step_combine(GeneratePruningStepsContext *context,
												  List *source_stepids,
												  PartitionPruneCombineOp combineOp);
static List *gen_prune_steps_from_opexps(GeneratePruningStepsContext *context,
										 List **keyclauses, Bitmapset *nullkeys);
static PartClauseMatchStatus match_clause_to_partition_key(GeneratePruningStepsContext *context,
														   Expr *clause, Expr *partkey, int partkeyidx,
														   bool *clause_is_not_null,
														   PartClauseInfo **pc, List **clause_steps);
static List *get_steps_using_prefix(GeneratePruningStepsContext *context,
									StrategyNumber step_opstrategy,
									bool step_op_is_ne,
									Expr *step_lastexpr,
									Oid step_lastcmpfn,
									int step_lastkeyno,
									Bitmapset *step_nullkeys,
									List *prefix);
static List *get_steps_using_prefix_recurse(GeneratePruningStepsContext *context,
											StrategyNumber step_opstrategy,
											bool step_op_is_ne,
											Expr *step_lastexpr,
											Oid step_lastcmpfn,
											int step_lastkeyno,
											Bitmapset *step_nullkeys,
											List *prefix,
											ListCell *start,
											List *step_exprs,
											List *step_cmpfns);
static PruneStepResult *get_matching_hash_bounds(PartitionPruneContext *context,
												 StrategyNumber opstrategy, Datum *values, int nvalues,
												 FmgrInfo *partsupfunc, Bitmapset *nullkeys);
static PruneStepResult *get_matching_list_bounds(PartitionPruneContext *context,
												 StrategyNumber opstrategy, Datum value, int nvalues,
												 FmgrInfo *partsupfunc, Bitmapset *nullkeys);
static PruneStepResult *get_matching_range_bounds(PartitionPruneContext *context,
												  StrategyNumber opstrategy, Datum *values, int nvalues,
												  FmgrInfo *partsupfunc, Bitmapset *nullkeys);
static Bitmapset *pull_exec_paramids(Expr *expr);
static bool pull_exec_paramids_walker(Node *node, Bitmapset **context);
static Bitmapset *get_partkey_exec_paramids(List *steps);
static PruneStepResult *perform_pruning_base_step(PartitionPruneContext *context,
												  PartitionPruneStepOp *opstep);
static PruneStepResult *perform_pruning_combine_step(PartitionPruneContext *context,
													 PartitionPruneStepCombine *cstep,
													 PruneStepResult **step_results);
static PartClauseMatchStatus match_boolean_partition_clause(Oid partopfamily,
															Expr *clause,
															Expr *partkey,
															Expr **outconst,
															bool *noteq);
static void partkey_datum_from_expr(PartitionPruneContext *context,
									Expr *expr, int stateidx,
									Datum *value, bool *isnull);


/*
 * make_partition_pruneinfo
 *		Builds a PartitionPruneInfo which can be used in the executor to allow
 *		additional partition pruning to take place.  Returns NULL when
 *		partition pruning would be useless.
 *
 * 'parentrel' is the RelOptInfo for an appendrel, and 'subpaths' is the list
 * of scan paths for its child rels.
 * 'prunequal' is a list of potential pruning quals (i.e., restriction
 * clauses that are applicable to the appendrel).
 */
PartitionPruneInfo *
make_partition_pruneinfo(PlannerInfo *root, RelOptInfo *parentrel,
						 List *subpaths,
						 List *prunequal)
{
	PartitionPruneInfo *pruneinfo;
	Bitmapset  *allmatchedsubplans = NULL;
	List	   *allpartrelids;
	List	   *prunerelinfos;
	int		   *relid_subplan_map;
	ListCell   *lc;
	int			i;

	/*
	 * Scan the subpaths to see which ones are scans of partition child
	 * relations, and identify their parent partitioned rels.  (Note: we must
	 * restrict the parent partitioned rels to be parentrel or children of
	 * parentrel, otherwise we couldn't translate prunequal to match.)
	 *
	 * Also construct a temporary array to map from partition-child-relation
	 * relid to the index in 'subpaths' of the scan plan for that partition.
	 * (Use of "subplan" rather than "subpath" is a bit of a misnomer, but
	 * we'll let it stand.)  For convenience, we use 1-based indexes here, so
	 * that zero can represent an un-filled array entry.
	 */
	allpartrelids = NIL;
	relid_subplan_map = palloc0(sizeof(int) * root->simple_rel_array_size);

	i = 1;
	foreach(lc, subpaths)
	{
		Path	   *path = (Path *) lfirst(lc);
		RelOptInfo *pathrel = path->parent;

		/* We don't consider partitioned joins here */
		if (pathrel->reloptkind == RELOPT_OTHER_MEMBER_REL)
		{
			RelOptInfo *prel = pathrel;
			Bitmapset  *partrelids = NULL;

			/*
			 * Traverse up to the pathrel's topmost partitioned parent,
			 * collecting parent relids as we go; but stop if we reach
			 * parentrel.  (Normally, a pathrel's topmost partitioned parent
			 * is either parentrel or a UNION ALL appendrel child of
			 * parentrel.  But when handling partitionwise joins of
			 * multi-level partitioning trees, we can see an append path whose
			 * parentrel is an intermediate partitioned table.)
			 */
			do
			{
				AppendRelInfo *appinfo;

				Assert(prel->relid < root->simple_rel_array_size);
				appinfo = root->append_rel_array[prel->relid];
				prel = find_base_rel(root, appinfo->parent_relid);
				if (!IS_PARTITIONED_REL(prel))
					break;		/* reached a non-partitioned parent */
				/* accept this level as an interesting parent */
				partrelids = bms_add_member(partrelids, prel->relid);
				if (prel == parentrel)
					break;		/* don't traverse above parentrel */
			} while (prel->reloptkind == RELOPT_OTHER_MEMBER_REL);

			if (partrelids)
			{
				/*
				 * Found some relevant parent partitions, which may or may not
				 * overlap with partition trees we already found.  Add new
				 * information to the allpartrelids list.
				 */
				allpartrelids = add_part_relids(allpartrelids, partrelids);
				/* Also record the subplan in relid_subplan_map[] */
				/* No duplicates please */
				Assert(relid_subplan_map[pathrel->relid] == 0);
				relid_subplan_map[pathrel->relid] = i;
			}
		}
		i++;
	}

	/*
	 * We now build a PartitionedRelPruneInfo for each topmost partitioned rel
	 * (omitting any that turn out not to have useful pruning quals).
	 */
	prunerelinfos = NIL;
	foreach(lc, allpartrelids)
	{
		Bitmapset  *partrelids = (Bitmapset *) lfirst(lc);
		List	   *pinfolist;
		Bitmapset  *matchedsubplans = NULL;

		pinfolist = make_partitionedrel_pruneinfo(root, parentrel,
												  prunequal,
												  partrelids,
												  relid_subplan_map,
												  &matchedsubplans);

		/* When pruning is possible, record the matched subplans */
		if (pinfolist != NIL)
		{
			prunerelinfos = lappend(prunerelinfos, pinfolist);
			allmatchedsubplans = bms_join(matchedsubplans,
										  allmatchedsubplans);
		}
	}

	pfree(relid_subplan_map);

	/*
	 * If none of the partition hierarchies had any useful run-time pruning
	 * quals, then we can just not bother with run-time pruning.
	 */
	if (prunerelinfos == NIL)
		return NULL;

	/* Else build the result data structure */
	pruneinfo = makeNode(PartitionPruneInfo);
	pruneinfo->prune_infos = prunerelinfos;

	/*
	 * Some subplans may not belong to any of the identified partitioned rels.
	 * This can happen for UNION ALL queries which include a non-partitioned
	 * table, or when some of the hierarchies aren't run-time prunable.  Build
	 * a bitmapset of the indexes of all such subplans, so that the executor
	 * can identify which subplans should never be pruned.
	 */
	if (bms_num_members(allmatchedsubplans) < list_length(subpaths))
	{
		Bitmapset  *other_subplans;

		/* Create the complement of allmatchedsubplans */
		other_subplans = bms_add_range(NULL, 0, list_length(subpaths) - 1);
		other_subplans = bms_del_members(other_subplans, allmatchedsubplans);

		pruneinfo->other_subplans = other_subplans;
	}
	else
		pruneinfo->other_subplans = NULL;

	return pruneinfo;
}

/*
 * add_part_relids
 *		Add new info to a list of Bitmapsets of partitioned relids.
 *
 * Within 'allpartrelids', there is one Bitmapset for each topmost parent
 * partitioned rel.  Each Bitmapset contains the RT indexes of the topmost
 * parent as well as its relevant non-leaf child partitions.  Since (by
 * construction of the rangetable list) parent partitions must have lower
 * RT indexes than their children, we can distinguish the topmost parent
 * as being the lowest set bit in the Bitmapset.
 *
 * 'partrelids' contains the RT indexes of a parent partitioned rel, and
 * possibly some non-leaf children, that are newly identified as parents of
 * some subpath rel passed to make_partition_pruneinfo().  These are added
 * to an appropriate member of 'allpartrelids'.
 *
 * Note that the list contains only RT indexes of partitioned tables that
 * are parents of some scan-level relation appearing in the 'subpaths' that
 * make_partition_pruneinfo() is dealing with.  Also, "topmost" parents are
 * not allowed to be higher than the 'parentrel' associated with the append
 * path.  In this way, we avoid expending cycles on partitioned rels that
 * can't contribute useful pruning information for the problem at hand.
 * (It is possible for 'parentrel' to be a child partitioned table, and it
 * is also possible for scan-level relations to be child partitioned tables
 * rather than leaf partitions.  Hence we must construct this relation set
 * with reference to the particular append path we're dealing with, rather
 * than looking at the full partitioning structure represented in the
 * RelOptInfos.)
 */
static List *
add_part_relids(List *allpartrelids, Bitmapset *partrelids)
{
	Index		targetpart;
	ListCell   *lc;

	/* We can easily get the lowest set bit this way: */
	targetpart = bms_next_member(partrelids, -1);
	Assert(targetpart > 0);

	/* Look for a matching topmost parent */
	foreach(lc, allpartrelids)
	{
		Bitmapset  *currpartrelids = (Bitmapset *) lfirst(lc);
		Index		currtarget = bms_next_member(currpartrelids, -1);

		if (targetpart == currtarget)
		{
			/* Found a match, so add any new RT indexes to this hierarchy */
			currpartrelids = bms_add_members(currpartrelids, partrelids);
			lfirst(lc) = currpartrelids;
			return allpartrelids;
		}
	}
	/* No match, so add the new partition hierarchy to the list */
	return lappend(allpartrelids, partrelids);
}

/*
 * make_partitionedrel_pruneinfo
 *		Build a List of PartitionedRelPruneInfos, one for each interesting
 *		partitioned rel in a partitioning hierarchy.  These can be used in the
 *		executor to allow additional partition pruning to take place.
 *
 * parentrel: rel associated with the appendpath being considered
 * prunequal: potential pruning quals, represented for parentrel
 * partrelids: Set of RT indexes identifying relevant partitioned tables
 *   within a single partitioning hierarchy
 * relid_subplan_map[]: maps child relation relids to subplan indexes
 * matchedsubplans: on success, receives the set of subplan indexes which
 *   were matched to this partition hierarchy
 *
 * If we cannot find any useful run-time pruning steps, return NIL.
 * However, on success, each rel identified in partrelids will have
 * an element in the result list, even if some of them are useless.
 */
static List *
make_partitionedrel_pruneinfo(PlannerInfo *root, RelOptInfo *parentrel,
							  List *prunequal,
							  Bitmapset *partrelids,
							  int *relid_subplan_map,
							  Bitmapset **matchedsubplans)
{
	RelOptInfo *targetpart = NULL;
	List	   *pinfolist = NIL;
	bool		doruntimeprune = false;
	int		   *relid_subpart_map;
	Bitmapset  *subplansfound = NULL;
	ListCell   *lc;
	int			rti;
	int			i;

	/*
	 * Examine each partitioned rel, constructing a temporary array to map
	 * from planner relids to index of the partitioned rel, and building a
	 * PartitionedRelPruneInfo for each partitioned rel.
	 *
	 * In this phase we discover whether runtime pruning is needed at all; if
	 * not, we can avoid doing further work.
	 */
	relid_subpart_map = palloc0(sizeof(int) * root->simple_rel_array_size);

	i = 1;
	rti = -1;
	while ((rti = bms_next_member(partrelids, rti)) > 0)
	{
		RelOptInfo *subpart = find_base_rel(root, rti);
		PartitionedRelPruneInfo *pinfo;
		List	   *partprunequal;
		List	   *initial_pruning_steps;
		List	   *exec_pruning_steps;
		Bitmapset  *execparamids;
		GeneratePruningStepsContext context;

		/*
		 * Fill the mapping array.
		 *
		 * relid_subpart_map maps relid of a non-leaf partition to the index
		 * in the returned PartitionedRelPruneInfo list of the info for that
		 * partition.  We use 1-based indexes here, so that zero can represent
		 * an un-filled array entry.
		 */
		Assert(rti < root->simple_rel_array_size);
		relid_subpart_map[rti] = i++;

		/*
		 * Translate pruning qual, if necessary, for this partition.
		 *
		 * The first item in the list is the target partitioned relation.
		 */
		if (!targetpart)
		{
			targetpart = subpart;

			/*
			 * The prunequal is presented to us as a qual for 'parentrel'.
			 * Frequently this rel is the same as targetpart, so we can skip
			 * an adjust_appendrel_attrs step.  But it might not be, and then
			 * we have to translate.  We update the prunequal parameter here,
			 * because in later iterations of the loop for child partitions,
			 * we want to translate from parent to child variables.
			 */
			if (!bms_equal(parentrel->relids, subpart->relids))
			{
				int			nappinfos;
				AppendRelInfo **appinfos = find_appinfos_by_relids(root,
																   subpart->relids,
																   &nappinfos);

				prunequal = (List *) adjust_appendrel_attrs(root, (Node *)
															prunequal,
															nappinfos,
															appinfos);

				pfree(appinfos);
			}

			partprunequal = prunequal;
		}
		else
		{
			/*
			 * For sub-partitioned tables the columns may not be in the same
			 * order as the parent, so we must translate the prunequal to make
			 * it compatible with this relation.
			 */
			partprunequal = (List *)
				adjust_appendrel_attrs_multilevel(root,
												  (Node *) prunequal,
												  subpart,
												  targetpart);
		}

		/*
		 * Convert pruning qual to pruning steps.  We may need to do this
		 * twice, once to obtain executor startup pruning steps, and once for
		 * executor per-scan pruning steps.  This first pass creates startup
		 * pruning steps and detects whether there's any possibly-useful quals
		 * that would require per-scan pruning.
		 */
		gen_partprune_steps(subpart, partprunequal, PARTTARGET_INITIAL,
							&context);

		if (context.contradictory)
		{
			/*
			 * This shouldn't happen as the planner should have detected this
			 * earlier. However, we do use additional quals from parameterized
			 * paths here. These do only compare Params to the partition key,
			 * so this shouldn't cause the discovery of any new qual
			 * contradictions that were not previously discovered as the Param
			 * values are unknown during planning.  Anyway, we'd better do
			 * something sane here, so let's just disable run-time pruning.
			 */
			return NIL;
		}

		/*
		 * If no mutable operators or expressions appear in usable pruning
		 * clauses, then there's no point in running startup pruning, because
		 * plan-time pruning should have pruned everything prunable.
		 */
		if (context.has_mutable_op || context.has_mutable_arg)
			initial_pruning_steps = context.steps;
		else
			initial_pruning_steps = NIL;

		/*
		 * If no exec Params appear in potentially-usable pruning clauses,
		 * then there's no point in even thinking about per-scan pruning.
		 */
		if (context.has_exec_param)
		{
			/* ... OK, we'd better think about it */
			gen_partprune_steps(subpart, partprunequal, PARTTARGET_EXEC,
								&context);

			if (context.contradictory)
			{
				/* As above, skip run-time pruning if anything fishy happens */
				return NIL;
			}

			exec_pruning_steps = context.steps;

			/*
			 * Detect which exec Params actually got used; the fact that some
			 * were in available clauses doesn't mean we actually used them.
			 * Skip per-scan pruning if there are none.
			 */
			execparamids = get_partkey_exec_paramids(exec_pruning_steps);

			if (bms_is_empty(execparamids))
				exec_pruning_steps = NIL;
		}
		else
		{
			/* No exec Params anywhere, so forget about scan-time pruning */
			exec_pruning_steps = NIL;
			execparamids = NULL;
		}

		if (initial_pruning_steps || exec_pruning_steps)
			doruntimeprune = true;

		/* Begin constructing the PartitionedRelPruneInfo for this rel */
		pinfo = makeNode(PartitionedRelPruneInfo);
		pinfo->rtindex = rti;
		pinfo->initial_pruning_steps = initial_pruning_steps;
		pinfo->exec_pruning_steps = exec_pruning_steps;
		pinfo->execparamids = execparamids;
		/* Remaining fields will be filled in the next loop */

		pinfolist = lappend(pinfolist, pinfo);
	}

	if (!doruntimeprune)
	{
		/* No run-time pruning required. */
		pfree(relid_subpart_map);
		return NIL;
	}

	/*
	 * Run-time pruning will be required, so initialize other information.
	 * That includes two maps -- one needed to convert partition indexes of
	 * leaf partitions to the indexes of their subplans in the subplan list,
	 * another needed to convert partition indexes of sub-partitioned
	 * partitions to the indexes of their PartitionedRelPruneInfo in the
	 * PartitionedRelPruneInfo list.
	 */
	foreach(lc, pinfolist)
	{
		PartitionedRelPruneInfo *pinfo = lfirst(lc);
		RelOptInfo *subpart = find_base_rel(root, pinfo->rtindex);
		Bitmapset  *present_parts;
		int			nparts = subpart->nparts;
		int		   *subplan_map;
		int		   *subpart_map;
		Oid		   *relid_map;

		/*
		 * Construct the subplan and subpart maps for this partitioning level.
		 * Here we convert to zero-based indexes, with -1 for empty entries.
		 * Also construct a Bitmapset of all partitions that are present (that
		 * is, not pruned already).
		 */
		subplan_map = (int *) palloc(nparts * sizeof(int));
		memset(subplan_map, -1, nparts * sizeof(int));
		subpart_map = (int *) palloc(nparts * sizeof(int));
		memset(subpart_map, -1, nparts * sizeof(int));
		relid_map = (Oid *) palloc0(nparts * sizeof(Oid));
		present_parts = NULL;

		i = -1;
		while ((i = bms_next_member(subpart->live_parts, i)) >= 0)
		{
			RelOptInfo *partrel = subpart->part_rels[i];
			int			subplanidx;
			int			subpartidx;

			Assert(partrel != NULL);

			subplan_map[i] = subplanidx = relid_subplan_map[partrel->relid] - 1;
			subpart_map[i] = subpartidx = relid_subpart_map[partrel->relid] - 1;
			relid_map[i] = planner_rt_fetch(partrel->relid, root)->relid;
			if (subplanidx >= 0)
			{
				present_parts = bms_add_member(present_parts, i);

				/* Record finding this subplan  */
				subplansfound = bms_add_member(subplansfound, subplanidx);
			}
			else if (subpartidx >= 0)
				present_parts = bms_add_member(present_parts, i);
		}

		/*
		 * Ensure there were no stray PartitionedRelPruneInfo generated for
		 * partitioned tables that we have no sub-paths or
		 * sub-PartitionedRelPruneInfo for.
		 */
		Assert(!bms_is_empty(present_parts));

		/* Record the maps and other information. */
		pinfo->present_parts = present_parts;
		pinfo->nparts = nparts;
		pinfo->subplan_map = subplan_map;
		pinfo->subpart_map = subpart_map;
		pinfo->relid_map = relid_map;
	}

	pfree(relid_subpart_map);

	*matchedsubplans = subplansfound;

	return pinfolist;
}

/*
 * gen_partprune_steps
 *		Process 'clauses' (typically a rel's baserestrictinfo list of clauses)
 *		and create a list of "partition pruning steps".
 *
 * 'target' tells whether to generate pruning steps for planning (use
 * immutable clauses only), or for executor startup (use any allowable
 * clause except ones containing PARAM_EXEC Params), or for executor
 * per-scan pruning (use any allowable clause).
 *
 * 'context' is an output argument that receives the steps list as well as
 * some subsidiary flags; see the GeneratePruningStepsContext typedef.
 */
static void
gen_partprune_steps(RelOptInfo *rel, List *clauses, PartClauseTarget target,
					GeneratePruningStepsContext *context)
{
	/* Initialize all output values to zero/false/NULL */
	memset(context, 0, sizeof(GeneratePruningStepsContext));
	context->rel = rel;
	context->target = target;

	/*
	 * If this partitioned table is in turn a partition, and it shares any
	 * partition keys with its parent, then it's possible that the hierarchy
	 * allows the parent a narrower range of values than some of its
	 * partitions (particularly the default one).  This is normally not
	 * useful, but it can be to prune the default partition.
	 */
	if (partition_bound_has_default(rel->boundinfo) && rel->partition_qual)
	{
		/* Make a copy to avoid modifying the passed-in List */
		clauses = list_concat_copy(clauses, rel->partition_qual);
	}

	/* Down into the rabbit-hole. */
	(void) gen_partprune_steps_internal(context, clauses);
}

/*
 * prune_append_rel_partitions
 *		Process rel's baserestrictinfo and make use of quals which can be
 *		evaluated during query planning in order to determine the minimum set
 *		of partitions which must be scanned to satisfy these quals.  Returns
 *		the matching partitions in the form of a Bitmapset containing the
 *		partitions' indexes in the rel's part_rels array.
 *
 * Callers must ensure that 'rel' is a partitioned table.
 */
Bitmapset *
prune_append_rel_partitions(RelOptInfo *rel)
{
	List	   *clauses = rel->baserestrictinfo;
	List	   *pruning_steps;
	GeneratePruningStepsContext gcontext;
	PartitionPruneContext context;

	Assert(rel->part_scheme != NULL);

	/* If there are no partitions, return the empty set */
	if (rel->nparts == 0)
		return NULL;

	/*
	 * If pruning is disabled or if there are no clauses to prune with, return
	 * all partitions.
	 */
	if (!enable_partition_pruning || clauses == NIL)
		return bms_add_range(NULL, 0, rel->nparts - 1);

	/*
	 * Process clauses to extract pruning steps that are usable at plan time.
	 * If the clauses are found to be contradictory, we can return the empty
	 * set.
	 */
	gen_partprune_steps(rel, clauses, PARTTARGET_PLANNER,
						&gcontext);
	if (gcontext.contradictory)
		return NULL;
	pruning_steps = gcontext.steps;

	/* If there's nothing usable, return all partitions */
	if (pruning_steps == NIL)
		return bms_add_range(NULL, 0, rel->nparts - 1);

	/* Set up PartitionPruneContext */
	context.strategy = rel->part_scheme->strategy;
	context.partnatts = rel->part_scheme->partnatts;
	context.nparts = rel->nparts;
	context.boundinfo = rel->boundinfo;
	context.partcollation = rel->part_scheme->partcollation;
	context.partsupfunc = rel->part_scheme->partsupfunc;
	context.stepcmpfuncs = (FmgrInfo *) palloc0(sizeof(FmgrInfo) *
												context.partnatts *
												list_length(pruning_steps));
	context.ppccontext = CurrentMemoryContext;

	/* These are not valid when being called from the planner */
	context.planstate = NULL;
	context.exprcontext = NULL;
	context.exprstates = NULL;

	/* Actual pruning happens here. */
	return get_matching_partitions(&context, pruning_steps);
}

/*
 * get_matching_partitions
 *		Determine partitions that survive partition pruning
 *
 * Note: context->exprcontext must be valid when the pruning_steps were
 * generated with a target other than PARTTARGET_PLANNER.
 *
 * Returns a Bitmapset of the RelOptInfo->part_rels indexes of the surviving
 * partitions.
 */
Bitmapset *
get_matching_partitions(PartitionPruneContext *context, List *pruning_steps)
{
	Bitmapset  *result;
	int			num_steps = list_length(pruning_steps),
				i;
	PruneStepResult **results,
			   *final_result;
	ListCell   *lc;
	bool		scan_default;

	/* If there are no pruning steps then all partitions match. */
	if (num_steps == 0)
	{
		Assert(context->nparts > 0);
		return bms_add_range(NULL, 0, context->nparts - 1);
	}

	/*
	 * Allocate space for individual pruning steps to store its result.  Each
	 * slot will hold a PruneStepResult after performing a given pruning step.
	 * Later steps may use the result of one or more earlier steps.  The
	 * result of applying all pruning steps is the value contained in the slot
	 * of the last pruning step.
	 */
	results = (PruneStepResult **)
		palloc0(num_steps * sizeof(PruneStepResult *));
	foreach(lc, pruning_steps)
	{
		PartitionPruneStep *step = lfirst(lc);

		switch (nodeTag(step))
		{
			case T_PartitionPruneStepOp:
				results[step->step_id] =
					perform_pruning_base_step(context,
											  (PartitionPruneStepOp *) step);
				break;

			case T_PartitionPruneStepCombine:
				results[step->step_id] =
					perform_pruning_combine_step(context,
												 (PartitionPruneStepCombine *) step,
												 results);
				break;

			default:
				elog(ERROR, "invalid pruning step type: %d",
					 (int) nodeTag(step));
		}
	}

	/*
	 * At this point we know the offsets of all the datums whose corresponding
	 * partitions need to be in the result, including special null-accepting
	 * and default partitions.  Collect the actual partition indexes now.
	 */
	final_result = results[num_steps - 1];
	Assert(final_result != NULL);
	i = -1;
	result = NULL;
	scan_default = final_result->scan_default;
	while ((i = bms_next_member(final_result->bound_offsets, i)) >= 0)
	{
		int			partindex;

		Assert(i < context->boundinfo->nindexes);
		partindex = context->boundinfo->indexes[i];

		if (partindex < 0)
		{
			/*
			 * In range partitioning cases, if a partition index is -1 it
			 * means that the bound at the offset is the upper bound for a
			 * range not covered by any partition (other than a possible
			 * default partition).  In hash partitioning, the same means no
			 * partition has been defined for the corresponding remainder
			 * value.
			 *
			 * In either case, the value is still part of the queried range of
			 * values, so mark to scan the default partition if one exists.
			 */
			scan_default |= partition_bound_has_default(context->boundinfo);
			continue;
		}

		result = bms_add_member(result, partindex);
	}

	/* Add the null and/or default partition if needed and present. */
	if (final_result->scan_null)
	{
		Assert(context->strategy == PARTITION_STRATEGY_LIST);
		Assert(partition_bound_accepts_nulls(context->boundinfo));
		result = bms_add_member(result, context->boundinfo->null_index);
	}
	if (scan_default)
	{
		Assert(context->strategy == PARTITION_STRATEGY_LIST ||
			   context->strategy == PARTITION_STRATEGY_RANGE);
		Assert(partition_bound_has_default(context->boundinfo));
		result = bms_add_member(result, context->boundinfo->default_index);
	}

	return result;
}

/*
 * gen_partprune_steps_internal
 *		Processes 'clauses' to generate a List of partition pruning steps.  We
 *		return NIL when no steps were generated.
 *
 * These partition pruning steps come in 2 forms; operator steps and combine
 * steps.
 *
 * Operator steps (PartitionPruneStepOp) contain details of clauses that we
 * determined that we can use for partition pruning.  These contain details of
 * the expression which is being compared to the partition key and the
 * comparison function.
 *
 * Combine steps (PartitionPruneStepCombine) instruct the partition pruning
 * code how it should produce a single set of partitions from multiple input
 * operator and other combine steps.  A PARTPRUNE_COMBINE_INTERSECT type
 * combine step will merge its input steps to produce a result which only
 * contains the partitions which are present in all of the input operator
 * steps.  A PARTPRUNE_COMBINE_UNION combine step will produce a result that
 * has all of the partitions from each of the input operator steps.
 *
 * For BoolExpr clauses, each argument is processed recursively. Steps
 * generated from processing an OR BoolExpr will be combined using
 * PARTPRUNE_COMBINE_UNION.  AND BoolExprs get combined using
 * PARTPRUNE_COMBINE_INTERSECT.
 *
 * Otherwise, the list of clauses we receive we assume to be mutually ANDed.
 * We generate all of the pruning steps we can based on these clauses and then
 * at the end, if we have more than 1 step, we combine each step with a
 * PARTPRUNE_COMBINE_INTERSECT combine step.  Single steps are returned as-is.
 *
 * If we find clauses that are mutually contradictory, or contradictory with
 * the partitioning constraint, or a pseudoconstant clause that contains
 * false, we set context->contradictory to true and return NIL (that is, no
 * pruning steps).  Caller should consider all partitions as pruned in that
 * case.
 */
static List *
gen_partprune_steps_internal(GeneratePruningStepsContext *context,
							 List *clauses)
{
	PartitionScheme part_scheme = context->rel->part_scheme;
	List	   *keyclauses[PARTITION_MAX_KEYS];
	Bitmapset  *nullkeys = NULL,
			   *notnullkeys = NULL;
	bool		generate_opsteps = false;
	List	   *result = NIL;
	ListCell   *lc;

	/*
	 * If this partitioned relation has a default partition and is itself a
	 * partition (as evidenced by partition_qual being not NIL), we first
	 * check if the clauses contradict the partition constraint.  If they do,
	 * there's no need to generate any steps as it'd already be proven that no
	 * partitions need to be scanned.
	 *
	 * This is a measure of last resort only to be used because the default
	 * partition cannot be pruned using the steps generated from clauses that
	 * contradict the parent's partition constraint; regular pruning, which is
	 * cheaper, is sufficient when no default partition exists.
	 */
	if (partition_bound_has_default(context->rel->boundinfo) &&
		predicate_refuted_by(context->rel->partition_qual, clauses, false))
	{
		context->contradictory = true;
		return NIL;
	}

	memset(keyclauses, 0, sizeof(keyclauses));
	foreach(lc, clauses)
	{
		Expr	   *clause = (Expr *) lfirst(lc);
		int			i;

		/* Look through RestrictInfo, if any */
		if (IsA(clause, RestrictInfo))
			clause = ((RestrictInfo *) clause)->clause;

		/* Constant-false-or-null is contradictory */
		if (IsA(clause, Const) &&
			(((Const *) clause)->constisnull ||
			 !DatumGetBool(((Const *) clause)->constvalue)))
		{
			context->contradictory = true;
			return NIL;
		}

		/* Get the BoolExpr's out of the way. */
		if (IsA(clause, BoolExpr))
		{
			/*
			 * Generate steps for arguments.
			 *
			 * While steps generated for the arguments themselves will be
			 * added to context->steps during recursion and will be evaluated
			 * independently, collect their step IDs to be stored in the
			 * combine step we'll be creating.
			 */
			if (is_orclause(clause))
			{
				List	   *arg_stepids = NIL;
				bool		all_args_contradictory = true;
				ListCell   *lc1;

				/*
				 * We can share the outer context area with the recursive
				 * call, but contradictory had better not be true yet.
				 */
				Assert(!context->contradictory);

				/*
				 * Get pruning step for each arg.  If we get contradictory for
				 * all args, it means the OR expression is false as a whole.
				 */
				foreach(lc1, ((BoolExpr *) clause)->args)
				{
					Expr	   *arg = lfirst(lc1);
					bool		arg_contradictory;
					List	   *argsteps;

					argsteps = gen_partprune_steps_internal(context,
															list_make1(arg));
					arg_contradictory = context->contradictory;
					/* Keep context->contradictory clear till we're done */
					context->contradictory = false;

					if (arg_contradictory)
					{
						/* Just ignore self-contradictory arguments. */
						continue;
					}
					else
						all_args_contradictory = false;

					if (argsteps != NIL)
					{
						/*
						 * gen_partprune_steps_internal() always adds a single
						 * combine step when it generates multiple steps, so
						 * here we can just pay attention to the last one in
						 * the list.  If it just generated one, then the last
						 * one in the list is still the one we want.
						 */
						PartitionPruneStep *last = llast(argsteps);

						arg_stepids = lappend_int(arg_stepids, last->step_id);
					}
					else
					{
						PartitionPruneStep *orstep;

						/*
						 * The arg didn't contain a clause matching this
						 * partition key.  We cannot prune using such an arg.
						 * To indicate that to the pruning code, we must
						 * construct a dummy PartitionPruneStepCombine whose
						 * source_stepids is set to an empty List.
						 */
						orstep = gen_prune_step_combine(context, NIL,
														PARTPRUNE_COMBINE_UNION);
						arg_stepids = lappend_int(arg_stepids, orstep->step_id);
					}
				}

				/* If all the OR arms are contradictory, we can stop */
				if (all_args_contradictory)
				{
					context->contradictory = true;
					return NIL;
				}

				if (arg_stepids != NIL)
				{
					PartitionPruneStep *step;

					step = gen_prune_step_combine(context, arg_stepids,
												  PARTPRUNE_COMBINE_UNION);
					result = lappend(result, step);
				}
				continue;
			}
			else if (is_andclause(clause))
			{
				List	   *args = ((BoolExpr *) clause)->args;
				List	   *argsteps;

				/*
				 * args may itself contain clauses of arbitrary type, so just
				 * recurse and later combine the component partitions sets
				 * using a combine step.
				 */
				argsteps = gen_partprune_steps_internal(context, args);

				/* If any AND arm is contradictory, we can stop immediately */
				if (context->contradictory)
					return NIL;

				/*
				 * gen_partprune_steps_internal() always adds a single combine
				 * step when it generates multiple steps, so here we can just
				 * pay attention to the last one in the list.  If it just
				 * generated one, then the last one in the list is still the
				 * one we want.
				 */
				if (argsteps != NIL)
					result = lappend(result, llast(argsteps));

				continue;
			}

			/*
			 * Fall-through for a NOT clause, which if it's a Boolean clause,
			 * will be handled in match_clause_to_partition_key(). We
			 * currently don't perform any pruning for more complex NOT
			 * clauses.
			 */
		}

		/*
		 * See if we can match this clause to any of the partition keys.
		 */
		for (i = 0; i < part_scheme->partnatts; i++)
		{
			Expr	   *partkey = linitial(context->rel->partexprs[i]);
			bool		clause_is_not_null = false;
			PartClauseInfo *pc = NULL;
			List	   *clause_steps = NIL;

			switch (match_clause_to_partition_key(context,
												  clause, partkey, i,
												  &clause_is_not_null,
												  &pc, &clause_steps))
			{
				case PARTCLAUSE_MATCH_CLAUSE:
					Assert(pc != NULL);

					/*
					 * Since we only allow strict operators, check for any
					 * contradicting IS NULL.
					 */
					if (bms_is_member(i, nullkeys))
					{
						context->contradictory = true;
						return NIL;
					}
					generate_opsteps = true;
					keyclauses[i] = lappend(keyclauses[i], pc);
					break;

				case PARTCLAUSE_MATCH_NULLNESS:
					if (!clause_is_not_null)
					{
						/*
						 * check for conflicting IS NOT NULL as well as
						 * contradicting strict clauses
						 */
						if (bms_is_member(i, notnullkeys) ||
							keyclauses[i] != NIL)
						{
							context->contradictory = true;
							return NIL;
						}
						nullkeys = bms_add_member(nullkeys, i);
					}
					else
					{
						/* check for conflicting IS NULL */
						if (bms_is_member(i, nullkeys))
						{
							context->contradictory = true;
							return NIL;
						}
						notnullkeys = bms_add_member(notnullkeys, i);
					}
					break;

				case PARTCLAUSE_MATCH_STEPS:
					Assert(clause_steps != NIL);
					result = list_concat(result, clause_steps);
					break;

				case PARTCLAUSE_MATCH_CONTRADICT:
					/* We've nothing more to do if a contradiction was found. */
					context->contradictory = true;
					return NIL;

				case PARTCLAUSE_NOMATCH:

					/*
					 * Clause didn't match this key, but it might match the
					 * next one.
					 */
					continue;

				case PARTCLAUSE_UNSUPPORTED:
					/* This clause cannot be used for pruning. */
					break;
			}

			/* done; go check the next clause. */
			break;
		}
	}

	/*-----------
	 * Now generate some (more) pruning steps.  We have three strategies:
	 *
	 * 1) Generate pruning steps based on IS NULL clauses:
	 *   a) For list partitioning, null partition keys can only be found in
	 *      the designated null-accepting partition, so if there are IS NULL
	 *      clauses containing partition keys we should generate a pruning
	 *      step that gets rid of all partitions but that one.  We can
	 *      disregard any OpExpr we may have found.
	 *   b) For range partitioning, only the default partition can contain
	 *      NULL values, so the same rationale applies.
	 *   c) For hash partitioning, we only apply this strategy if we have
	 *      IS NULL clauses for all the keys.  Strategy 2 below will take
	 *      care of the case where some keys have OpExprs and others have
	 *      IS NULL clauses.
	 *
	 * 2) If not, generate steps based on OpExprs we have (if any).
	 *
	 * 3) If this doesn't work either, we may be able to generate steps to
	 *    prune just the null-accepting partition (if one exists), if we have
	 *    IS NOT NULL clauses for all partition keys.
	 */
	if (!bms_is_empty(nullkeys) &&
		(part_scheme->strategy == PARTITION_STRATEGY_LIST ||
		 part_scheme->strategy == PARTITION_STRATEGY_RANGE ||
		 (part_scheme->strategy == PARTITION_STRATEGY_HASH &&
		  bms_num_members(nullkeys) == part_scheme->partnatts)))
	{
		PartitionPruneStep *step;

		/* Strategy 1 */
		step = gen_prune_step_op(context, InvalidStrategy,
								 false, NIL, NIL, nullkeys);
		result = lappend(result, step);
	}
	else if (generate_opsteps)
	{
		List	   *opsteps;

		/* Strategy 2 */
		opsteps = gen_prune_steps_from_opexps(context, keyclauses, nullkeys);
		result = list_concat(result, opsteps);
	}
	else if (bms_num_members(notnullkeys) == part_scheme->partnatts)
	{
		PartitionPruneStep *step;

		/* Strategy 3 */
		step = gen_prune_step_op(context, InvalidStrategy,
								 false, NIL, NIL, NULL);
		result = lappend(result, step);
	}

	/*
	 * Finally, if there are multiple steps, since the 'clauses' are mutually
	 * ANDed, add an INTERSECT step to combine the partition sets resulting
	 * from them and append it to the result list.
	 */
	if (list_length(result) > 1)
	{
		List	   *step_ids = NIL;
		PartitionPruneStep *final;

		foreach(lc, result)
		{
			PartitionPruneStep *step = lfirst(lc);

			step_ids = lappend_int(step_ids, step->step_id);
		}

		final = gen_prune_step_combine(context, step_ids,
									   PARTPRUNE_COMBINE_INTERSECT);
		result = lappend(result, final);
	}

	return result;
}

/*
 * gen_prune_step_op
 *		Generate a pruning step for a specific operator
 *
 * The step is assigned a unique step identifier and added to context's 'steps'
 * list.
 */
static PartitionPruneStep *
gen_prune_step_op(GeneratePruningStepsContext *context,
				  StrategyNumber opstrategy, bool op_is_ne,
				  List *exprs, List *cmpfns,
				  Bitmapset *nullkeys)
{
	PartitionPruneStepOp *opstep = makeNode(PartitionPruneStepOp);

	opstep->step.step_id = context->next_step_id++;

	/*
	 * For clauses that contain an <> operator, set opstrategy to
	 * InvalidStrategy to signal get_matching_list_bounds to do the right
	 * thing.
	 */
	opstep->opstrategy = op_is_ne ? InvalidStrategy : opstrategy;
	Assert(list_length(exprs) == list_length(cmpfns));
	opstep->exprs = exprs;
	opstep->cmpfns = cmpfns;
	opstep->nullkeys = nullkeys;

	context->steps = lappend(context->steps, opstep);

	return (PartitionPruneStep *) opstep;
}

/*
 * gen_prune_step_combine
 *		Generate a pruning step for a combination of several other steps
 *
 * The step is assigned a unique step identifier and added to context's
 * 'steps' list.
 */
static PartitionPruneStep *
gen_prune_step_combine(GeneratePruningStepsContext *context,
					   List *source_stepids,
					   PartitionPruneCombineOp combineOp)
{
	PartitionPruneStepCombine *cstep = makeNode(PartitionPruneStepCombine);

	cstep->step.step_id = context->next_step_id++;
	cstep->combineOp = combineOp;
	cstep->source_stepids = source_stepids;

	context->steps = lappend(context->steps, cstep);

	return (PartitionPruneStep *) cstep;
}

/*
 * gen_prune_steps_from_opexps
 *		Generate and return a list of PartitionPruneStepOp that are based on
 *		OpExpr and BooleanTest clauses that have been matched to the partition
 *		key.
 *
 * 'keyclauses' is an array of List pointers, indexed by the partition key's
 * index.  Each List element in the array can contain clauses that match to
 * the corresponding partition key column.  Partition key columns without any
 * matched clauses will have an empty List.
 *
 * Some partitioning strategies allow pruning to still occur when we only have
 * clauses for a prefix of the partition key columns, for example, RANGE
 * partitioning.  Other strategies, such as HASH partitioning, require clauses
 * for all partition key columns.
 *
 * When we return multiple pruning steps here, it's up to the caller to add a
 * relevant "combine" step to combine the returned steps.  This is not done
 * here as callers may wish to include additional pruning steps before
 * combining them all.
 */
static List *
gen_prune_steps_from_opexps(GeneratePruningStepsContext *context,
							List **keyclauses, Bitmapset *nullkeys)
{
	PartitionScheme part_scheme = context->rel->part_scheme;
	List	   *opsteps = NIL;
	List	   *btree_clauses[BTMaxStrategyNumber + 1],
			   *hash_clauses[HTMaxStrategyNumber + 1];
	int			i;
	ListCell   *lc;

	memset(btree_clauses, 0, sizeof(btree_clauses));
	memset(hash_clauses, 0, sizeof(hash_clauses));
	for (i = 0; i < part_scheme->partnatts; i++)
	{
		List	   *clauselist = keyclauses[i];
		bool		consider_next_key = true;

		/*
		 * For range partitioning, if we have no clauses for the current key,
		 * we can't consider any later keys either, so we can stop here.
		 */
		if (part_scheme->strategy == PARTITION_STRATEGY_RANGE &&
			clauselist == NIL)
			break;

		/*
		 * For hash partitioning, if a column doesn't have the necessary
		 * equality clause, there should be an IS NULL clause, otherwise
		 * pruning is not possible.
		 */
		if (part_scheme->strategy == PARTITION_STRATEGY_HASH &&
			clauselist == NIL && !bms_is_member(i, nullkeys))
			return NIL;

		foreach(lc, clauselist)
		{
			PartClauseInfo *pc = (PartClauseInfo *) lfirst(lc);
			Oid			lefttype,
						righttype;

			/* Look up the operator's btree/hash strategy number. */
			if (pc->op_strategy == InvalidStrategy)
				get_op_opfamily_properties(pc->opno,
										   part_scheme->partopfamily[i],
										   false,
										   &pc->op_strategy,
										   &lefttype,
										   &righttype);

			switch (part_scheme->strategy)
			{
				case PARTITION_STRATEGY_LIST:
				case PARTITION_STRATEGY_RANGE:
					btree_clauses[pc->op_strategy] =
						lappend(btree_clauses[pc->op_strategy], pc);

					/*
					 * We can't consider subsequent partition keys if the
					 * clause for the current key contains a non-inclusive
					 * operator.
					 */
					if (pc->op_strategy == BTLessStrategyNumber ||
						pc->op_strategy == BTGreaterStrategyNumber)
						consider_next_key = false;
					break;

				case PARTITION_STRATEGY_HASH:
					if (pc->op_strategy != HTEqualStrategyNumber)
						elog(ERROR, "invalid clause for hash partitioning");
					hash_clauses[pc->op_strategy] =
						lappend(hash_clauses[pc->op_strategy], pc);
					break;

				default:
					elog(ERROR, "invalid partition strategy: %c",
						 part_scheme->strategy);
					break;
			}
		}

		/*
		 * If we've decided that clauses for subsequent partition keys
		 * wouldn't be useful for pruning, don't search any further.
		 */
		if (!consider_next_key)
			break;
	}

	/*
	 * Now, we have divided clauses according to their operator strategies.
	 * Check for each strategy if we can generate pruning step(s) by
	 * collecting a list of expressions whose values will constitute a vector
	 * that can be used as a lookup key by a partition bound searching
	 * function.
	 */
	switch (part_scheme->strategy)
	{
		case PARTITION_STRATEGY_LIST:
		case PARTITION_STRATEGY_RANGE:
			{
				List	   *eq_clauses = btree_clauses[BTEqualStrategyNumber];
				List	   *le_clauses = btree_clauses[BTLessEqualStrategyNumber];
				List	   *ge_clauses = btree_clauses[BTGreaterEqualStrategyNumber];
				int			strat;

				/*
				 * For each clause under consideration for a given strategy,
				 * we collect expressions from clauses for earlier keys, whose
				 * operator strategy is inclusive, into a list called
				 * 'prefix'. By appending the clause's own expression to the
				 * 'prefix', we'll generate one step using the so generated
				 * vector and assign the current strategy to it.  Actually,
				 * 'prefix' might contain multiple clauses for the same key,
				 * in which case, we must generate steps for various
				 * combinations of expressions of different keys, which
				 * get_steps_using_prefix takes care of for us.
				 */
				for (strat = 1; strat <= BTMaxStrategyNumber; strat++)
				{
					foreach(lc, btree_clauses[strat])
					{
						PartClauseInfo *pc = lfirst(lc);
						ListCell   *eq_start;
						ListCell   *le_start;
						ListCell   *ge_start;
						ListCell   *lc1;
						List	   *prefix = NIL;
						List	   *pc_steps;
						bool		prefix_valid = true;
						bool		pk_has_clauses;
						int			keyno;

						/*
						 * If this is a clause for the first partition key,
						 * there are no preceding expressions; generate a
						 * pruning step without a prefix.
						 *
						 * Note that we pass NULL for step_nullkeys, because
						 * we don't search list/range partition bounds where
						 * some keys are NULL.
						 */
						if (pc->keyno == 0)
						{
							Assert(pc->op_strategy == strat);
							pc_steps = get_steps_using_prefix(context, strat,
															  pc->op_is_ne,
															  pc->expr,
															  pc->cmpfn,
															  0,
															  NULL,
															  NIL);
							opsteps = list_concat(opsteps, pc_steps);
							continue;
						}

						eq_start = list_head(eq_clauses);
						le_start = list_head(le_clauses);
						ge_start = list_head(ge_clauses);

						/*
						 * We arrange clauses into prefix in ascending order
						 * of their partition key numbers.
						 */
						for (keyno = 0; keyno < pc->keyno; keyno++)
						{
							pk_has_clauses = false;

							/*
							 * Expressions from = clauses can always be in the
							 * prefix, provided they're from an earlier key.
							 */
							for_each_cell(lc1, eq_clauses, eq_start)
							{
								PartClauseInfo *eqpc = lfirst(lc1);

								if (eqpc->keyno == keyno)
								{
									prefix = lappend(prefix, eqpc);
									pk_has_clauses = true;
								}
								else
								{
									Assert(eqpc->keyno > keyno);
									break;
								}
							}
							eq_start = lc1;

							/*
							 * If we're generating steps for </<= strategy, we
							 * can add other <= clauses to the prefix,
							 * provided they're from an earlier key.
							 */
							if (strat == BTLessStrategyNumber ||
								strat == BTLessEqualStrategyNumber)
							{
								for_each_cell(lc1, le_clauses, le_start)
								{
									PartClauseInfo *lepc = lfirst(lc1);

									if (lepc->keyno == keyno)
									{
										prefix = lappend(prefix, lepc);
										pk_has_clauses = true;
									}
									else
									{
										Assert(lepc->keyno > keyno);
										break;
									}
								}
								le_start = lc1;
							}

							/*
							 * If we're generating steps for >/>= strategy, we
							 * can add other >= clauses to the prefix,
							 * provided they're from an earlier key.
							 */
							if (strat == BTGreaterStrategyNumber ||
								strat == BTGreaterEqualStrategyNumber)
							{
								for_each_cell(lc1, ge_clauses, ge_start)
								{
									PartClauseInfo *gepc = lfirst(lc1);

									if (gepc->keyno == keyno)
									{
										prefix = lappend(prefix, gepc);
										pk_has_clauses = true;
									}
									else
									{
										Assert(gepc->keyno > keyno);
										break;
									}
								}
								ge_start = lc1;
							}

							/*
							 * If this key has no clauses, prefix is not valid
							 * anymore.
							 */
							if (!pk_has_clauses)
							{
								prefix_valid = false;
								break;
							}
						}

						/*
						 * If prefix_valid, generate PartitionPruneStepOps.
						 * Otherwise, we would not find clauses for a valid
						 * subset of the partition keys anymore for the
						 * strategy; give up on generating partition pruning
						 * steps further for the strategy.
						 *
						 * As mentioned above, if 'prefix' contains multiple
						 * expressions for the same key, the following will
						 * generate multiple steps, one for each combination
						 * of the expressions for different keys.
						 *
						 * Note that we pass NULL for step_nullkeys, because
						 * we don't search list/range partition bounds where
						 * some keys are NULL.
						 */
						if (prefix_valid)
						{
							Assert(pc->op_strategy == strat);
							pc_steps = get_steps_using_prefix(context, strat,
															  pc->op_is_ne,
															  pc->expr,
															  pc->cmpfn,
															  pc->keyno,
															  NULL,
															  prefix);
							opsteps = list_concat(opsteps, pc_steps);
						}
						else
							break;
					}
				}
				break;
			}

		case PARTITION_STRATEGY_HASH:
			{
				List	   *eq_clauses = hash_clauses[HTEqualStrategyNumber];

				/* For hash partitioning, we have just the = strategy. */
				if (eq_clauses != NIL)
				{
					PartClauseInfo *pc;
					List	   *pc_steps;
					List	   *prefix = NIL;
					int			last_keyno;
					ListCell   *lc1;

					/*
					 * Locate the clause for the greatest column.  This may
					 * not belong to the last partition key, but it is the
					 * clause belonging to the last partition key we found a
					 * clause for above.
					 */
					pc = llast(eq_clauses);

					/*
					 * There might be multiple clauses which matched to that
					 * partition key; find the first such clause.  While at
					 * it, add all the clauses before that one to 'prefix'.
					 */
					last_keyno = pc->keyno;
					foreach(lc, eq_clauses)
					{
						pc = lfirst(lc);
						if (pc->keyno == last_keyno)
							break;
						prefix = lappend(prefix, pc);
					}

					/*
					 * For each clause for the "last" column, after appending
					 * the clause's own expression to the 'prefix', we'll
					 * generate one step using the so generated vector and
					 * assign = as its strategy.  Actually, 'prefix' might
					 * contain multiple clauses for the same key, in which
					 * case, we must generate steps for various combinations
					 * of expressions of different keys, which
					 * get_steps_using_prefix will take care of for us.
					 */
					for_each_cell(lc1, eq_clauses, lc)
					{
						pc = lfirst(lc1);

						/*
						 * Note that we pass nullkeys for step_nullkeys,
						 * because we need to tell hash partition bound search
						 * function which of the keys we found IS NULL clauses
						 * for.
						 */
						Assert(pc->op_strategy == HTEqualStrategyNumber);
						pc_steps =
							get_steps_using_prefix(context,
												   HTEqualStrategyNumber,
												   false,
												   pc->expr,
												   pc->cmpfn,
												   pc->keyno,
												   nullkeys,
												   prefix);
						opsteps = list_concat(opsteps, pc_steps);
					}
				}
				break;
			}

		default:
			elog(ERROR, "invalid partition strategy: %c",
				 part_scheme->strategy);
			break;
	}

	return opsteps;
}

/*
 * If the partition key has a collation, then the clause must have the same
 * input collation.  If the partition key is non-collatable, we assume the
 * collation doesn't matter, because while collation wasn't considered when
 * performing partitioning, the clause still may have a collation assigned
 * due to the other input being of a collatable type.
 *
 * See also IndexCollMatchesExprColl.
 */
#define PartCollMatchesExprColl(partcoll, exprcoll) \
	((partcoll) == InvalidOid || (partcoll) == (exprcoll))

/*
 * match_clause_to_partition_key
 *		Attempt to match the given 'clause' with the specified partition key.
 *
 * Return value is:
 * * PARTCLAUSE_NOMATCH if the clause doesn't match this partition key (but
 *   caller should keep trying, because it might match a subsequent key).
 *   Output arguments: none set.
 *
 * * PARTCLAUSE_MATCH_CLAUSE if there is a match.
 *   Output arguments: *pc is set to a PartClauseInfo constructed for the
 *   matched clause.
 *
 * * PARTCLAUSE_MATCH_NULLNESS if there is a match, and the matched clause was
 *   either a "a IS NULL" or "a IS NOT NULL" clause.
 *   Output arguments: *clause_is_not_null is set to false in the former case
 *   true otherwise.
 *
 * * PARTCLAUSE_MATCH_STEPS if there is a match.
 *   Output arguments: *clause_steps is set to the list of recursively
 *   generated steps for the clause.
 *
 * * PARTCLAUSE_MATCH_CONTRADICT if the clause is self-contradictory, ie
 *   it provably returns FALSE or NULL.
 *   Output arguments: none set.
 *
 * * PARTCLAUSE_UNSUPPORTED if the clause doesn't match this partition key
 *   and couldn't possibly match any other one either, due to its form or
 *   properties (such as containing a volatile function).
 *   Output arguments: none set.
 */
static PartClauseMatchStatus
match_clause_to_partition_key(GeneratePruningStepsContext *context,
							  Expr *clause, Expr *partkey, int partkeyidx,
							  bool *clause_is_not_null, PartClauseInfo **pc,
							  List **clause_steps)
{
	PartClauseMatchStatus boolmatchstatus;
	PartitionScheme part_scheme = context->rel->part_scheme;
	Oid			partopfamily = part_scheme->partopfamily[partkeyidx],
				partcoll = part_scheme->partcollation[partkeyidx];
	Expr	   *expr;
	bool		noteq;

	/*
	 * Recognize specially shaped clauses that match a Boolean partition key.
	 */
	boolmatchstatus = match_boolean_partition_clause(partopfamily, clause,
													 partkey, &expr, &noteq);

	if (boolmatchstatus == PARTCLAUSE_MATCH_CLAUSE)
	{
		PartClauseInfo *partclause;

		partclause = (PartClauseInfo *) palloc(sizeof(PartClauseInfo));
		partclause->keyno = partkeyidx;
		/* Do pruning with the Boolean equality operator. */
		partclause->opno = BooleanEqualOperator;
		partclause->op_is_ne = noteq;
		partclause->expr = expr;
		/* We know that expr is of Boolean type. */
		partclause->cmpfn = part_scheme->partsupfunc[partkeyidx].fn_oid;
		partclause->op_strategy = InvalidStrategy;

		*pc = partclause;

		return PARTCLAUSE_MATCH_CLAUSE;
	}
	else if (IsA(clause, OpExpr) &&
			 list_length(((OpExpr *) clause)->args) == 2)
	{
		OpExpr	   *opclause = (OpExpr *) clause;
		Expr	   *leftop,
				   *rightop;
		Oid			opno,
					op_lefttype,
					op_righttype,
					negator = InvalidOid;
		Oid			cmpfn;
		int			op_strategy;
		bool		is_opne_listp = false;
		PartClauseInfo *partclause;

		leftop = (Expr *) get_leftop(clause);
		if (IsA(leftop, RelabelType))
			leftop = ((RelabelType *) leftop)->arg;
		rightop = (Expr *) get_rightop(clause);
		if (IsA(rightop, RelabelType))
			rightop = ((RelabelType *) rightop)->arg;
		opno = opclause->opno;

		/* check if the clause matches this partition key */
		if (equal(leftop, partkey))
			expr = rightop;
		else if (equal(rightop, partkey))
		{
			/*
			 * It's only useful if we can commute the operator to put the
			 * partkey on the left.  If we can't, the clause can be deemed
			 * UNSUPPORTED.  Even if its leftop matches some later partkey, we
			 * now know it has Vars on the right, so it's no use.
			 */
			opno = get_commutator(opno);
			if (!OidIsValid(opno))
				return PARTCLAUSE_UNSUPPORTED;
			expr = leftop;
		}
		else
			/* clause does not match this partition key, but perhaps next. */
			return PARTCLAUSE_NOMATCH;

		/*
		 * Partition key match also requires collation match.  There may be
		 * multiple partkeys with the same expression but different
		 * collations, so failure is NOMATCH.
		 */
		if (!PartCollMatchesExprColl(partcoll, opclause->inputcollid))
			return PARTCLAUSE_NOMATCH;

		/*
		 * See if the operator is relevant to the partitioning opfamily.
		 *
		 * Normally we only care about operators that are listed as being part
		 * of the partitioning operator family.  But there is one exception:
		 * the not-equals operators are not listed in any operator family
		 * whatsoever, but their negators (equality) are.  We can use one of
		 * those if we find it, but only for list partitioning.
		 *
		 * Note: we report NOMATCH on failure, in case a later partkey has the
		 * same expression but different opfamily.  That's unlikely, but not
		 * much more so than duplicate expressions with different collations.
		 */
		if (op_in_opfamily(opno, partopfamily))
		{
			get_op_opfamily_properties(opno, partopfamily, false,
									   &op_strategy, &op_lefttype,
									   &op_righttype);
		}
		else
		{
			if (part_scheme->strategy != PARTITION_STRATEGY_LIST)
				return PARTCLAUSE_NOMATCH;

			/* See if the negator is equality */
			negator = get_negator(opno);
			if (OidIsValid(negator) && op_in_opfamily(negator, partopfamily))
			{
				get_op_opfamily_properties(negator, partopfamily, false,
										   &op_strategy, &op_lefttype,
										   &op_righttype);
				if (op_strategy == BTEqualStrategyNumber)
					is_opne_listp = true;	/* bingo */
			}

			/* Nope, it's not <> either. */
			if (!is_opne_listp)
				return PARTCLAUSE_NOMATCH;
		}

		/*
		 * Only allow strict operators.  This will guarantee nulls are
		 * filtered.  (This test is likely useless, since btree and hash
		 * comparison operators are generally strict.)
		 */
		if (!op_strict(opno))
			return PARTCLAUSE_UNSUPPORTED;

		/*
		 * OK, we have a match to the partition key and a suitable operator.
		 * Examine the other argument to see if it's usable for pruning.
		 *
		 * In most of these cases, we can return UNSUPPORTED because the same
		 * failure would occur no matter which partkey it's matched to.  (In
		 * particular, now that we've successfully matched one side of the
		 * opclause to a partkey, there is no chance that matching the other
		 * side to another partkey will produce a usable result, since that'd
		 * mean there are Vars on both sides.)
		 *
		 * Also, if we reject an argument for a target-dependent reason, set
		 * appropriate fields of *context to report that.  We postpone these
		 * tests until after matching the partkey and the operator, so as to
		 * reduce the odds of setting the context fields for clauses that do
		 * not end up contributing to pruning steps.
		 *
		 * First, check for non-Const argument.  (We assume that any immutable
		 * subexpression will have been folded to a Const already.)
		 */
		if (!IsA(expr, Const))
		{
			Bitmapset  *paramids;

			/*
			 * When pruning in the planner, we only support pruning using
			 * comparisons to constants.  We cannot prune on the basis of
			 * anything that's not immutable.  (Note that has_mutable_arg and
			 * has_exec_param do not get set for this target value.)
			 */
			if (context->target == PARTTARGET_PLANNER)
				return PARTCLAUSE_UNSUPPORTED;

			/*
			 * We can never prune using an expression that contains Vars.
			 */
			if (contain_var_clause((Node *) expr))
				return PARTCLAUSE_UNSUPPORTED;

			/*
			 * And we must reject anything containing a volatile function.
			 * Stable functions are OK though.
			 */
			if (contain_volatile_functions((Node *) expr))
				return PARTCLAUSE_UNSUPPORTED;

			/*
			 * See if there are any exec Params.  If so, we can only use this
			 * expression during per-scan pruning.
			 */
			paramids = pull_exec_paramids(expr);
			if (!bms_is_empty(paramids))
			{
				context->has_exec_param = true;
				if (context->target != PARTTARGET_EXEC)
					return PARTCLAUSE_UNSUPPORTED;
			}
			else
			{
				/* It's potentially usable, but mutable */
				context->has_mutable_arg = true;
			}
		}

		/*
		 * Check whether the comparison operator itself is immutable.  (We
		 * assume anything that's in a btree or hash opclass is at least
		 * stable, but we need to check for immutability.)
		 */
		if (op_volatile(opno) != PROVOLATILE_IMMUTABLE)
		{
			context->has_mutable_op = true;

			/*
			 * When pruning in the planner, we cannot prune with mutable
			 * operators.
			 */
			if (context->target == PARTTARGET_PLANNER)
				return PARTCLAUSE_UNSUPPORTED;
		}

		/*
		 * Now find the procedure to use, based on the types.  If the clause's
		 * other argument is of the same type as the partitioning opclass's
		 * declared input type, we can use the procedure cached in
		 * PartitionKey.  If not, search for a cross-type one in the same
		 * opfamily; if one doesn't exist, report no match.
		 */
		if (op_righttype == part_scheme->partopcintype[partkeyidx])
			cmpfn = part_scheme->partsupfunc[partkeyidx].fn_oid;
		else
		{
			switch (part_scheme->strategy)
			{
					/*
					 * For range and list partitioning, we need the ordering
					 * procedure with lefttype being the partition key's type,
					 * and righttype the clause's operator's right type.
					 */
				case PARTITION_STRATEGY_LIST:
				case PARTITION_STRATEGY_RANGE:
					cmpfn =
						get_opfamily_proc(part_scheme->partopfamily[partkeyidx],
										  part_scheme->partopcintype[partkeyidx],
										  op_righttype, BTORDER_PROC);
					break;

					/*
					 * For hash partitioning, we need the hashing procedure
					 * for the clause's type.
					 */
				case PARTITION_STRATEGY_HASH:
					cmpfn =
						get_opfamily_proc(part_scheme->partopfamily[partkeyidx],
										  op_righttype, op_righttype,
										  HASHEXTENDED_PROC);
					break;

				default:
					elog(ERROR, "invalid partition strategy: %c",
						 part_scheme->strategy);
					cmpfn = InvalidOid; /* keep compiler quiet */
					break;
			}

			if (!OidIsValid(cmpfn))
				return PARTCLAUSE_NOMATCH;
		}

		/*
		 * Build the clause, passing the negator if applicable.
		 */
		partclause = (PartClauseInfo *) palloc(sizeof(PartClauseInfo));
		partclause->keyno = partkeyidx;
		if (is_opne_listp)
		{
			Assert(OidIsValid(negator));
			partclause->opno = negator;
			partclause->op_is_ne = true;
			partclause->op_strategy = InvalidStrategy;
		}
		else
		{
			partclause->opno = opno;
			partclause->op_is_ne = false;
			partclause->op_strategy = op_strategy;
		}
		partclause->expr = expr;
		partclause->cmpfn = cmpfn;

		*pc = partclause;

		return PARTCLAUSE_MATCH_CLAUSE;
	}
	else if (IsA(clause, ScalarArrayOpExpr))
	{
		ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
		Oid			saop_op = saop->opno;
		Oid			saop_coll = saop->inputcollid;
		Expr	   *leftop = (Expr *) linitial(saop->args),
				   *rightop = (Expr *) lsecond(saop->args);
		List	   *elem_exprs,
				   *elem_clauses;
		ListCell   *lc1;

		if (IsA(leftop, RelabelType))
			leftop = ((RelabelType *) leftop)->arg;

		/* check if the LHS matches this partition key */
		if (!equal(leftop, partkey) ||
			!PartCollMatchesExprColl(partcoll, saop->inputcollid))
			return PARTCLAUSE_NOMATCH;

		/*
		 * See if the operator is relevant to the partitioning opfamily.
		 *
		 * In case of NOT IN (..), we get a '<>', which we handle if list
		 * partitioning is in use and we're able to confirm that it's negator
		 * is a btree equality operator belonging to the partitioning operator
		 * family.  As above, report NOMATCH for non-matching operator.
		 */
		if (!op_in_opfamily(saop_op, partopfamily))
		{
			Oid			negator;

			if (part_scheme->strategy != PARTITION_STRATEGY_LIST)
				return PARTCLAUSE_NOMATCH;

			negator = get_negator(saop_op);
			if (OidIsValid(negator) && op_in_opfamily(negator, partopfamily))
			{
				int			strategy;
				Oid			lefttype,
							righttype;

				get_op_opfamily_properties(negator, partopfamily,
										   false, &strategy,
										   &lefttype, &righttype);
				if (strategy != BTEqualStrategyNumber)
					return PARTCLAUSE_NOMATCH;
			}
			else
				return PARTCLAUSE_NOMATCH;	/* no useful negator */
		}

		/*
		 * Only allow strict operators.  This will guarantee nulls are
		 * filtered.  (This test is likely useless, since btree and hash
		 * comparison operators are generally strict.)
		 */
		if (!op_strict(saop_op))
			return PARTCLAUSE_UNSUPPORTED;

		/*
		 * OK, we have a match to the partition key and a suitable operator.
		 * Examine the array argument to see if it's usable for pruning.  This
		 * is identical to the logic for a plain OpExpr.
		 */
		if (!IsA(rightop, Const))
		{
			Bitmapset  *paramids;

			/*
			 * When pruning in the planner, we only support pruning using
			 * comparisons to constants.  We cannot prune on the basis of
			 * anything that's not immutable.  (Note that has_mutable_arg and
			 * has_exec_param do not get set for this target value.)
			 */
			if (context->target == PARTTARGET_PLANNER)
				return PARTCLAUSE_UNSUPPORTED;

			/*
			 * We can never prune using an expression that contains Vars.
			 */
			if (contain_var_clause((Node *) rightop))
				return PARTCLAUSE_UNSUPPORTED;

			/*
			 * And we must reject anything containing a volatile function.
			 * Stable functions are OK though.
			 */
			if (contain_volatile_functions((Node *) rightop))
				return PARTCLAUSE_UNSUPPORTED;

			/*
			 * See if there are any exec Params.  If so, we can only use this
			 * expression during per-scan pruning.
			 */
			paramids = pull_exec_paramids(rightop);
			if (!bms_is_empty(paramids))
			{
				context->has_exec_param = true;
				if (context->target != PARTTARGET_EXEC)
					return PARTCLAUSE_UNSUPPORTED;
			}
			else
			{
				/* It's potentially usable, but mutable */
				context->has_mutable_arg = true;
			}
		}

		/*
		 * Check whether the comparison operator itself is immutable.  (We
		 * assume anything that's in a btree or hash opclass is at least
		 * stable, but we need to check for immutability.)
		 */
		if (op_volatile(saop_op) != PROVOLATILE_IMMUTABLE)
		{
			context->has_mutable_op = true;

			/*
			 * When pruning in the planner, we cannot prune with mutable
			 * operators.
			 */
			if (context->target == PARTTARGET_PLANNER)
				return PARTCLAUSE_UNSUPPORTED;
		}

		/*
		 * Examine the contents of the array argument.
		 */
		elem_exprs = NIL;
		if (IsA(rightop, Const))
		{
			/*
			 * For a constant array, convert the elements to a list of Const
			 * nodes, one for each array element (excepting nulls).
			 */
			Const	   *arr = (Const *) rightop;
			ArrayType  *arrval;
			int16		elemlen;
			bool		elembyval;
			char		elemalign;
			Datum	   *elem_values;
			bool	   *elem_nulls;
			int			num_elems,
						i;

			/* If the array itself is null, the saop returns null */
			if (arr->constisnull)
				return PARTCLAUSE_MATCH_CONTRADICT;

			arrval = DatumGetArrayTypeP(arr->constvalue);
			get_typlenbyvalalign(ARR_ELEMTYPE(arrval),
								 &elemlen, &elembyval, &elemalign);
			deconstruct_array(arrval,
							  ARR_ELEMTYPE(arrval),
							  elemlen, elembyval, elemalign,
							  &elem_values, &elem_nulls,
							  &num_elems);
			for (i = 0; i < num_elems; i++)
			{
				Const	   *elem_expr;

				/*
				 * A null array element must lead to a null comparison result,
				 * since saop_op is known strict.  We can ignore it in the
				 * useOr case, but otherwise it implies self-contradiction.
				 */
				if (elem_nulls[i])
				{
					if (saop->useOr)
						continue;
					return PARTCLAUSE_MATCH_CONTRADICT;
				}

				elem_expr = makeConst(ARR_ELEMTYPE(arrval), -1,
									  arr->constcollid, elemlen,
									  elem_values[i], false, elembyval);
				elem_exprs = lappend(elem_exprs, elem_expr);
			}
		}
		else if (IsA(rightop, ArrayExpr))
		{
			ArrayExpr  *arrexpr = castNode(ArrayExpr, rightop);

			/*
			 * For a nested ArrayExpr, we don't know how to get the actual
			 * scalar values out into a flat list, so we give up doing
			 * anything with this ScalarArrayOpExpr.
			 */
			if (arrexpr->multidims)
				return PARTCLAUSE_UNSUPPORTED;

			/*
			 * Otherwise, we can just use the list of element values.
			 */
			elem_exprs = arrexpr->elements;
		}
		else
		{
			/* Give up on any other clause types. */
			return PARTCLAUSE_UNSUPPORTED;
		}

		/*
		 * Now generate a list of clauses, one for each array element, of the
		 * form leftop saop_op elem_expr
		 */
		elem_clauses = NIL;
		foreach(lc1, elem_exprs)
		{
			Expr	   *elem_clause;

			elem_clause = make_opclause(saop_op, BOOLOID, false,
										leftop, lfirst(lc1),
										InvalidOid, saop_coll);
			elem_clauses = lappend(elem_clauses, elem_clause);
		}

		/*
		 * If we have an ANY clause and multiple elements, now turn the list
		 * of clauses into an OR expression.
		 */
		if (saop->useOr && list_length(elem_clauses) > 1)
			elem_clauses = list_make1(makeBoolExpr(OR_EXPR, elem_clauses, -1));

		/* Finally, generate steps */
		*clause_steps = gen_partprune_steps_internal(context, elem_clauses);
		if (context->contradictory)
			return PARTCLAUSE_MATCH_CONTRADICT;
		else if (*clause_steps == NIL)
			return PARTCLAUSE_UNSUPPORTED;	/* step generation failed */
		return PARTCLAUSE_MATCH_STEPS;
	}
	else if (IsA(clause, NullTest))
	{
		NullTest   *nulltest = (NullTest *) clause;
		Expr	   *arg = nulltest->arg;

		if (IsA(arg, RelabelType))
			arg = ((RelabelType *) arg)->arg;

		/* Does arg match with this partition key column? */
		if (!equal(arg, partkey))
			return PARTCLAUSE_NOMATCH;

		*clause_is_not_null = (nulltest->nulltesttype == IS_NOT_NULL);

		return PARTCLAUSE_MATCH_NULLNESS;
	}

	/*
	 * If we get here then the return value depends on the result of the
	 * match_boolean_partition_clause call above.  If the call returned
	 * PARTCLAUSE_UNSUPPORTED then we're either not dealing with a bool qual
	 * or the bool qual is not suitable for pruning.  Since the qual didn't
	 * match up to any of the other qual types supported here, then trying to
	 * match it against any other partition key is a waste of time, so just
	 * return PARTCLAUSE_UNSUPPORTED.  If the qual just couldn't be matched to
	 * this partition key, then it may match another, so return
	 * PARTCLAUSE_NOMATCH.  The only other value that
	 * match_boolean_partition_clause can return is PARTCLAUSE_MATCH_CLAUSE,
	 * and since that value was already dealt with above, then we can just
	 * return boolmatchstatus.
	 */
	return boolmatchstatus;
}

/*
 * get_steps_using_prefix
 *		Generate list of PartitionPruneStepOp steps each consisting of given
 *		opstrategy
 *
 * To generate steps, step_lastexpr and step_lastcmpfn are appended to
 * expressions and cmpfns, respectively, extracted from the clauses in
 * 'prefix'.  Actually, since 'prefix' may contain multiple clauses for the
 * same partition key column, we must generate steps for various combinations
 * of the clauses of different keys.
 *
 * For list/range partitioning, callers must ensure that step_nullkeys is
 * NULL, and that prefix contains at least one clause for each of the
 * partition keys earlier than one specified in step_lastkeyno if it's
 * greater than zero.  For hash partitioning, step_nullkeys is allowed to be
 * non-NULL, but they must ensure that prefix contains at least one clause
 * for each of the partition keys other than those specified in step_nullkeys
 * and step_lastkeyno.
 *
 * For both cases, callers must also ensure that clauses in prefix are sorted
 * in ascending order of their partition key numbers.
 */
static List *
get_steps_using_prefix(GeneratePruningStepsContext *context,
					   StrategyNumber step_opstrategy,
					   bool step_op_is_ne,
					   Expr *step_lastexpr,
					   Oid step_lastcmpfn,
					   int step_lastkeyno,
					   Bitmapset *step_nullkeys,
					   List *prefix)
{
	Assert(step_nullkeys == NULL ||
		   context->rel->part_scheme->strategy == PARTITION_STRATEGY_HASH);

	/* Quick exit if there are no values to prefix with. */
	if (prefix == NIL)
	{
		PartitionPruneStep *step;

		step = gen_prune_step_op(context,
								 step_opstrategy,
								 step_op_is_ne,
								 list_make1(step_lastexpr),
								 list_make1_oid(step_lastcmpfn),
								 step_nullkeys);
		return list_make1(step);
	}

	/* Recurse to generate steps for various combinations. */
	return get_steps_using_prefix_recurse(context,
										  step_opstrategy,
										  step_op_is_ne,
										  step_lastexpr,
										  step_lastcmpfn,
										  step_lastkeyno,
										  step_nullkeys,
										  prefix,
										  list_head(prefix),
										  NIL, NIL);
}

/*
 * get_steps_using_prefix_recurse
 *		Recursively generate combinations of clauses for different partition
 *		keys and start generating steps upon reaching clauses for the greatest
 *		column that is less than the one for which we're currently generating
 *		steps (that is, step_lastkeyno)
 *
 * 'prefix' is the list of PartClauseInfos.
 * 'start' is where we should start iterating for the current invocation.
 * 'step_exprs' and 'step_cmpfns' each contains the expressions and cmpfns
 * we've generated so far from the clauses for the previous part keys.
 */
static List *
get_steps_using_prefix_recurse(GeneratePruningStepsContext *context,
							   StrategyNumber step_opstrategy,
							   bool step_op_is_ne,
							   Expr *step_lastexpr,
							   Oid step_lastcmpfn,
							   int step_lastkeyno,
							   Bitmapset *step_nullkeys,
							   List *prefix,
							   ListCell *start,
							   List *step_exprs,
							   List *step_cmpfns)
{
	List	   *result = NIL;
	ListCell   *lc;
	int			cur_keyno;

	/* Actually, recursion would be limited by PARTITION_MAX_KEYS. */
	check_stack_depth();

	/* Check if we need to recurse. */
	Assert(start != NULL);
	cur_keyno = ((PartClauseInfo *) lfirst(start))->keyno;
	if (cur_keyno < step_lastkeyno - 1)
	{
		PartClauseInfo *pc;
		ListCell   *next_start;

		/*
		 * For each clause with cur_keyno, add its expr and cmpfn to
		 * step_exprs and step_cmpfns, respectively, and recurse after setting
		 * next_start to the ListCell of the first clause for the next
		 * partition key.
		 */
		for_each_cell(lc, prefix, start)
		{
			pc = lfirst(lc);

			if (pc->keyno > cur_keyno)
				break;
		}
		next_start = lc;

		for_each_cell(lc, prefix, start)
		{
			List	   *moresteps;
			List	   *step_exprs1,
					   *step_cmpfns1;

			pc = lfirst(lc);
			if (pc->keyno == cur_keyno)
			{
				/* Leave the original step_exprs unmodified. */
				step_exprs1 = list_copy(step_exprs);
				step_exprs1 = lappend(step_exprs1, pc->expr);

				/* Leave the original step_cmpfns unmodified. */
				step_cmpfns1 = list_copy(step_cmpfns);
				step_cmpfns1 = lappend_oid(step_cmpfns1, pc->cmpfn);
			}
			else
			{
				Assert(pc->keyno > cur_keyno);
				break;
			}

			moresteps = get_steps_using_prefix_recurse(context,
													   step_opstrategy,
													   step_op_is_ne,
													   step_lastexpr,
													   step_lastcmpfn,
													   step_lastkeyno,
													   step_nullkeys,
													   prefix,
													   next_start,
													   step_exprs1,
													   step_cmpfns1);
			result = list_concat(result, moresteps);

			list_free(step_exprs1);
			list_free(step_cmpfns1);
		}
	}
	else
	{
		/*
		 * End the current recursion cycle and start generating steps, one for
		 * each clause with cur_keyno, which is all clauses from here onward
		 * till the end of the list.  Note that for hash partitioning,
		 * step_nullkeys is allowed to be non-empty, in which case step_exprs
		 * would only contain expressions for the earlier partition keys that
		 * are not specified in step_nullkeys.
		 */
		Assert(list_length(step_exprs) == cur_keyno ||
			   !bms_is_empty(step_nullkeys));

		/*
		 * Note also that for hash partitioning, each partition key should
		 * have either equality clauses or an IS NULL clause, so if a
		 * partition key doesn't have an expression, it would be specified in
		 * step_nullkeys.
		 */
		Assert(context->rel->part_scheme->strategy
			   != PARTITION_STRATEGY_HASH ||
			   list_length(step_exprs) + 2 + bms_num_members(step_nullkeys) ==
			   context->rel->part_scheme->partnatts);
		for_each_cell(lc, prefix, start)
		{
			PartClauseInfo *pc = lfirst(lc);
			PartitionPruneStep *step;
			List	   *step_exprs1,
					   *step_cmpfns1;

			Assert(pc->keyno == cur_keyno);

			/* Leave the original step_exprs unmodified. */
			step_exprs1 = list_copy(step_exprs);
			step_exprs1 = lappend(step_exprs1, pc->expr);
			step_exprs1 = lappend(step_exprs1, step_lastexpr);

			/* Leave the original step_cmpfns unmodified. */
			step_cmpfns1 = list_copy(step_cmpfns);
			step_cmpfns1 = lappend_oid(step_cmpfns1, pc->cmpfn);
			step_cmpfns1 = lappend_oid(step_cmpfns1, step_lastcmpfn);

			step = gen_prune_step_op(context,
									 step_opstrategy, step_op_is_ne,
									 step_exprs1, step_cmpfns1,
									 step_nullkeys);
			result = lappend(result, step);
		}
	}

	return result;
}

/*
 * get_matching_hash_bounds
 *		Determine offset of the hash bound matching the specified values,
 *		considering that all the non-null values come from clauses containing
 *		a compatible hash equality operator and any keys that are null come
 *		from an IS NULL clause.
 *
 * Generally this function will return a single matching bound offset,
 * although if a partition has not been setup for a given modulus then we may
 * return no matches.  If the number of clauses found don't cover the entire
 * partition key, then we'll need to return all offsets.
 *
 * 'opstrategy' if non-zero must be HTEqualStrategyNumber.
 *
 * 'values' contains Datums indexed by the partition key to use for pruning.
 *
 * 'nvalues', the number of Datums in the 'values' array.
 *
 * 'partsupfunc' contains partition hashing functions that can produce correct
 * hash for the type of the values contained in 'values'.
 *
 * 'nullkeys' is the set of partition keys that are null.
 */
static PruneStepResult *
get_matching_hash_bounds(PartitionPruneContext *context,
						 StrategyNumber opstrategy, Datum *values, int nvalues,
						 FmgrInfo *partsupfunc, Bitmapset *nullkeys)
{
	PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
	PartitionBoundInfo boundinfo = context->boundinfo;
	int		   *partindices = boundinfo->indexes;
	int			partnatts = context->partnatts;
	bool		isnull[PARTITION_MAX_KEYS];
	int			i;
	uint64		rowHash;
	int			greatest_modulus;
	Oid		   *partcollation = context->partcollation;

	Assert(context->strategy == PARTITION_STRATEGY_HASH);

	/*
	 * For hash partitioning we can only perform pruning based on equality
	 * clauses to the partition key or IS NULL clauses.  We also can only
	 * prune if we got values for all keys.
	 */
	if (nvalues + bms_num_members(nullkeys) == partnatts)
	{
		/*
		 * If there are any values, they must have come from clauses
		 * containing an equality operator compatible with hash partitioning.
		 */
		Assert(opstrategy == HTEqualStrategyNumber || nvalues == 0);

		for (i = 0; i < partnatts; i++)
			isnull[i] = bms_is_member(i, nullkeys);

		rowHash = compute_partition_hash_value(partnatts, partsupfunc, partcollation,
											   values, isnull);

		greatest_modulus = boundinfo->nindexes;
		if (partindices[rowHash % greatest_modulus] >= 0)
			result->bound_offsets =
				bms_make_singleton(rowHash % greatest_modulus);
	}
	else
	{
		/* Report all valid offsets into the boundinfo->indexes array. */
		result->bound_offsets = bms_add_range(NULL, 0,
											  boundinfo->nindexes - 1);
	}

	/*
	 * There is neither a special hash null partition or the default hash
	 * partition.
	 */
	result->scan_null = result->scan_default = false;

	return result;
}

/*
 * get_matching_list_bounds
 *		Determine the offsets of list bounds matching the specified value,
 *		according to the semantics of the given operator strategy
 *
 * scan_default will be set in the returned struct, if the default partition
 * needs to be scanned, provided one exists at all.  scan_null will be set if
 * the special null-accepting partition needs to be scanned.
 *
 * 'opstrategy' if non-zero must be a btree strategy number.
 *
 * 'value' contains the value to use for pruning.
 *
 * 'nvalues', if non-zero, should be exactly 1, because of list partitioning.
 *
 * 'partsupfunc' contains the list partitioning comparison function to be used
 * to perform partition_list_bsearch
 *
 * 'nullkeys' is the set of partition keys that are null.
 */
static PruneStepResult *
get_matching_list_bounds(PartitionPruneContext *context,
						 StrategyNumber opstrategy, Datum value, int nvalues,
						 FmgrInfo *partsupfunc, Bitmapset *nullkeys)
{
	PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
	PartitionBoundInfo boundinfo = context->boundinfo;
	int			off,
				minoff,
				maxoff;
	bool		is_equal;
	bool		inclusive = false;
	Oid		   *partcollation = context->partcollation;

	Assert(context->strategy == PARTITION_STRATEGY_LIST);
	Assert(context->partnatts == 1);

	result->scan_null = result->scan_default = false;

	if (!bms_is_empty(nullkeys))
	{
		/*
		 * Nulls may exist in only one partition - the partition whose
		 * accepted set of values includes null or the default partition if
		 * the former doesn't exist.
		 */
		if (partition_bound_accepts_nulls(boundinfo))
			result->scan_null = true;
		else
			result->scan_default = partition_bound_has_default(boundinfo);
		return result;
	}

	/*
	 * If there are no datums to compare keys with, but there are partitions,
	 * just return the default partition if one exists.
	 */
	if (boundinfo->ndatums == 0)
	{
		result->scan_default = partition_bound_has_default(boundinfo);
		return result;
	}

	minoff = 0;
	maxoff = boundinfo->ndatums - 1;

	/*
	 * If there are no values to compare with the datums in boundinfo, it
	 * means the caller asked for partitions for all non-null datums.  Add
	 * indexes of *all* partitions, including the default if any.
	 */
	if (nvalues == 0)
	{
		Assert(boundinfo->ndatums > 0);
		result->bound_offsets = bms_add_range(NULL, 0,
											  boundinfo->ndatums - 1);
		result->scan_default = partition_bound_has_default(boundinfo);
		return result;
	}

	/* Special case handling of values coming from a <> operator clause. */
	if (opstrategy == InvalidStrategy)
	{
		/*
		 * First match to all bounds.  We'll remove any matching datums below.
		 */
		Assert(boundinfo->ndatums > 0);
		result->bound_offsets = bms_add_range(NULL, 0,
											  boundinfo->ndatums - 1);

		off = partition_list_bsearch(partsupfunc, partcollation, boundinfo,
									 value, &is_equal);
		if (off >= 0 && is_equal)
		{

			/* We have a match. Remove from the result. */
			Assert(boundinfo->indexes[off] >= 0);
			result->bound_offsets = bms_del_member(result->bound_offsets,
												   off);
		}

		/* Always include the default partition if any. */
		result->scan_default = partition_bound_has_default(boundinfo);

		return result;
	}

	/*
	 * With range queries, always include the default list partition, because
	 * list partitions divide the key space in a discontinuous manner, not all
	 * values in the given range will have a partition assigned.  This may not
	 * technically be true for some data types (e.g. integer types), however,
	 * we currently lack any sort of infrastructure to provide us with proofs
	 * that would allow us to do anything smarter here.
	 */
	if (opstrategy != BTEqualStrategyNumber)
		result->scan_default = partition_bound_has_default(boundinfo);

	switch (opstrategy)
	{
		case BTEqualStrategyNumber:
			off = partition_list_bsearch(partsupfunc,
										 partcollation,
										 boundinfo, value,
										 &is_equal);
			if (off >= 0 && is_equal)
			{
				Assert(boundinfo->indexes[off] >= 0);
				result->bound_offsets = bms_make_singleton(off);
			}
			else
				result->scan_default = partition_bound_has_default(boundinfo);
			return result;

		case BTGreaterEqualStrategyNumber:
			inclusive = true;
			/* fall through */
		case BTGreaterStrategyNumber:
			off = partition_list_bsearch(partsupfunc,
										 partcollation,
										 boundinfo, value,
										 &is_equal);
			if (off >= 0)
			{
				/* We don't want the matched datum to be in the result. */
				if (!is_equal || !inclusive)
					off++;
			}
			else
			{
				/*
				 * This case means all partition bounds are greater, which in
				 * turn means that all partitions satisfy this key.
				 */
				off = 0;
			}

			/*
			 * off is greater than the numbers of datums we have partitions
			 * for.  The only possible partition that could contain a match is
			 * the default partition, but we must've set context->scan_default
			 * above anyway if one exists.
			 */
			if (off > boundinfo->ndatums - 1)
				return result;

			minoff = off;
			break;

		case BTLessEqualStrategyNumber:
			inclusive = true;
			/* fall through */
		case BTLessStrategyNumber:
			off = partition_list_bsearch(partsupfunc,
										 partcollation,
										 boundinfo, value,
										 &is_equal);
			if (off >= 0 && is_equal && !inclusive)
				off--;

			/*
			 * off is smaller than the datums of all non-default partitions.
			 * The only possible partition that could contain a match is the
			 * default partition, but we must've set context->scan_default
			 * above anyway if one exists.
			 */
			if (off < 0)
				return result;

			maxoff = off;
			break;

		default:
			elog(ERROR, "invalid strategy number %d", opstrategy);
			break;
	}

	Assert(minoff >= 0 && maxoff >= 0);
	result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
	return result;
}


/*
 * get_matching_range_bounds
 *		Determine the offsets of range bounds matching the specified values,
 *		according to the semantics of the given operator strategy
 *
 * Each datum whose offset is in result is to be treated as the upper bound of
 * the partition that will contain the desired values.
 *
 * scan_default is set in the returned struct if a default partition exists
 * and we're absolutely certain that it needs to be scanned.  We do *not* set
 * it just because values match portions of the key space uncovered by
 * partitions other than default (space which we normally assume to belong to
 * the default partition): the final set of bounds obtained after combining
 * multiple pruning steps might exclude it, so we infer its inclusion
 * elsewhere.
 *
 * 'opstrategy' if non-zero must be a btree strategy number.
 *
 * 'values' contains Datums indexed by the partition key to use for pruning.
 *
 * 'nvalues', number of Datums in 'values' array. Must be <= context->partnatts.
 *
 * 'partsupfunc' contains the range partitioning comparison functions to be
 * used to perform partition_range_datum_bsearch or partition_rbound_datum_cmp
 * using.
 *
 * 'nullkeys' is the set of partition keys that are null.
 */
static PruneStepResult *
get_matching_range_bounds(PartitionPruneContext *context,
						  StrategyNumber opstrategy, Datum *values, int nvalues,
						  FmgrInfo *partsupfunc, Bitmapset *nullkeys)
{
	PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
	PartitionBoundInfo boundinfo = context->boundinfo;
	Oid		   *partcollation = context->partcollation;
	int			partnatts = context->partnatts;
	int		   *partindices = boundinfo->indexes;
	int			off,
				minoff,
				maxoff;
	bool		is_equal;
	bool		inclusive = false;

	Assert(context->strategy == PARTITION_STRATEGY_RANGE);
	Assert(nvalues <= partnatts);

	result->scan_null = result->scan_default = false;

	/*
	 * If there are no datums to compare keys with, or if we got an IS NULL
	 * clause just return the default partition, if it exists.
	 */
	if (boundinfo->ndatums == 0 || !bms_is_empty(nullkeys))
	{
		result->scan_default = partition_bound_has_default(boundinfo);
		return result;
	}

	minoff = 0;
	maxoff = boundinfo->ndatums;

	/*
	 * If there are no values to compare with the datums in boundinfo, it
	 * means the caller asked for partitions for all non-null datums.  Add
	 * indexes of *all* partitions, including the default partition if one
	 * exists.
	 */
	if (nvalues == 0)
	{
		/* ignore key space not covered by any partitions */
		if (partindices[minoff] < 0)
			minoff++;
		if (partindices[maxoff] < 0)
			maxoff--;

		result->scan_default = partition_bound_has_default(boundinfo);
		Assert(partindices[minoff] >= 0 &&
			   partindices[maxoff] >= 0);
		result->bound_offsets = bms_add_range(NULL, minoff, maxoff);

		return result;
	}

	/*
	 * If the query does not constrain all key columns, we'll need to scan the
	 * default partition, if any.
	 */
	if (nvalues < partnatts)
		result->scan_default = partition_bound_has_default(boundinfo);

	switch (opstrategy)
	{
		case BTEqualStrategyNumber:
			/* Look for the smallest bound that is = lookup value. */
			off = partition_range_datum_bsearch(partsupfunc,
												partcollation,
												boundinfo,
												nvalues, values,
												&is_equal);

			if (off >= 0 && is_equal)
			{
				if (nvalues == partnatts)
				{
					/* There can only be zero or one matching partition. */
					result->bound_offsets = bms_make_singleton(off + 1);
					return result;
				}
				else
				{
					int			saved_off = off;

					/*
					 * Since the lookup value contains only a prefix of keys,
					 * we must find other bounds that may also match the
					 * prefix.  partition_range_datum_bsearch() returns the
					 * offset of one of them, find others by checking adjacent
					 * bounds.
					 */

					/*
					 * First find greatest bound that's smaller than the
					 * lookup value.
					 */
					while (off >= 1)
					{
						int32		cmpval;

						cmpval =
							partition_rbound_datum_cmp(partsupfunc,
													   partcollation,
													   boundinfo->datums[off - 1],
													   boundinfo->kind[off - 1],
													   values, nvalues);
						if (cmpval != 0)
							break;
						off--;
					}

					Assert(0 ==
						   partition_rbound_datum_cmp(partsupfunc,
													  partcollation,
													  boundinfo->datums[off],
													  boundinfo->kind[off],
													  values, nvalues));

					/*
					 * We can treat 'off' as the offset of the smallest bound
					 * to be included in the result, if we know it is the
					 * upper bound of the partition in which the lookup value
					 * could possibly exist.  One case it couldn't is if the
					 * bound, or precisely the matched portion of its prefix,
					 * is not inclusive.
					 */
					if (boundinfo->kind[off][nvalues] ==
						PARTITION_RANGE_DATUM_MINVALUE)
						off++;

					minoff = off;

					/*
					 * Now find smallest bound that's greater than the lookup
					 * value.
					 */
					off = saved_off;
					while (off < boundinfo->ndatums - 1)
					{
						int32		cmpval;

						cmpval = partition_rbound_datum_cmp(partsupfunc,
															partcollation,
															boundinfo->datums[off + 1],
															boundinfo->kind[off + 1],
															values, nvalues);
						if (cmpval != 0)
							break;
						off++;
					}

					Assert(0 ==
						   partition_rbound_datum_cmp(partsupfunc,
													  partcollation,
													  boundinfo->datums[off],
													  boundinfo->kind[off],
													  values, nvalues));

					/*
					 * off + 1, then would be the offset of the greatest bound
					 * to be included in the result.
					 */
					maxoff = off + 1;
				}

				Assert(minoff >= 0 && maxoff >= 0);
				result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
			}
			else
			{
				/*
				 * The lookup value falls in the range between some bounds in
				 * boundinfo.  'off' would be the offset of the greatest bound
				 * that is <= lookup value, so add off + 1 to the result
				 * instead as the offset of the upper bound of the only
				 * partition that may contain the lookup value.  If 'off' is
				 * -1 indicating that all bounds are greater, then we simply
				 * end up adding the first bound's offset, that is, 0.
				 */
				result->bound_offsets = bms_make_singleton(off + 1);
			}

			return result;

		case BTGreaterEqualStrategyNumber:
			inclusive = true;
			/* fall through */
		case BTGreaterStrategyNumber:

			/*
			 * Look for the smallest bound that is > or >= lookup value and
			 * set minoff to its offset.
			 */
			off = partition_range_datum_bsearch(partsupfunc,
												partcollation,
												boundinfo,
												nvalues, values,
												&is_equal);
			if (off < 0)
			{
				/*
				 * All bounds are greater than the lookup value, so include
				 * all of them in the result.
				 */
				minoff = 0;
			}
			else
			{
				if (is_equal && nvalues < partnatts)
				{
					/*
					 * Since the lookup value contains only a prefix of keys,
					 * we must find other bounds that may also match the
					 * prefix.  partition_range_datum_bsearch() returns the
					 * offset of one of them, find others by checking adjacent
					 * bounds.
					 *
					 * Based on whether the lookup values are inclusive or
					 * not, we must either include the indexes of all such
					 * bounds in the result (that is, set minoff to the index
					 * of smallest such bound) or find the smallest one that's
					 * greater than the lookup values and set minoff to that.
					 */
					while (off >= 1 && off < boundinfo->ndatums - 1)
					{
						int32		cmpval;
						int			nextoff;

						nextoff = inclusive ? off - 1 : off + 1;
						cmpval =
							partition_rbound_datum_cmp(partsupfunc,
													   partcollation,
													   boundinfo->datums[nextoff],
													   boundinfo->kind[nextoff],
													   values, nvalues);
						if (cmpval != 0)
							break;

						off = nextoff;
					}

					Assert(0 ==
						   partition_rbound_datum_cmp(partsupfunc,
													  partcollation,
													  boundinfo->datums[off],
													  boundinfo->kind[off],
													  values, nvalues));

					minoff = inclusive ? off : off + 1;
				}
				else
				{

					/*
					 * lookup value falls in the range between some bounds in
					 * boundinfo.  off would be the offset of the greatest
					 * bound that is <= lookup value, so add off + 1 to the
					 * result instead as the offset of the upper bound of the
					 * smallest partition that may contain the lookup value.
					 */
					minoff = off + 1;
				}
			}
			break;

		case BTLessEqualStrategyNumber:
			inclusive = true;
			/* fall through */
		case BTLessStrategyNumber:

			/*
			 * Look for the greatest bound that is < or <= lookup value and
			 * set maxoff to its offset.
			 */
			off = partition_range_datum_bsearch(partsupfunc,
												partcollation,
												boundinfo,
												nvalues, values,
												&is_equal);
			if (off >= 0)
			{
				/*
				 * See the comment above.
				 */
				if (is_equal && nvalues < partnatts)
				{
					while (off >= 1 && off < boundinfo->ndatums - 1)
					{
						int32		cmpval;
						int			nextoff;

						nextoff = inclusive ? off + 1 : off - 1;
						cmpval = partition_rbound_datum_cmp(partsupfunc,
															partcollation,
															boundinfo->datums[nextoff],
															boundinfo->kind[nextoff],
															values, nvalues);
						if (cmpval != 0)
							break;

						off = nextoff;
					}

					Assert(0 ==
						   partition_rbound_datum_cmp(partsupfunc,
													  partcollation,
													  boundinfo->datums[off],
													  boundinfo->kind[off],
													  values, nvalues));

					maxoff = inclusive ? off + 1 : off;
				}

				/*
				 * The lookup value falls in the range between some bounds in
				 * boundinfo.  'off' would be the offset of the greatest bound
				 * that is <= lookup value, so add off + 1 to the result
				 * instead as the offset of the upper bound of the greatest
				 * partition that may contain lookup value.  If the lookup
				 * value had exactly matched the bound, but it isn't
				 * inclusive, no need add the adjacent partition.
				 */
				else if (!is_equal || inclusive)
					maxoff = off + 1;
				else
					maxoff = off;
			}
			else
			{
				/*
				 * 'off' is -1 indicating that all bounds are greater, so just
				 * set the first bound's offset as maxoff.
				 */
				maxoff = off + 1;
			}
			break;

		default:
			elog(ERROR, "invalid strategy number %d", opstrategy);
			break;
	}

	Assert(minoff >= 0 && minoff <= boundinfo->ndatums);
	Assert(maxoff >= 0 && maxoff <= boundinfo->ndatums);

	/*
	 * If the smallest partition to return has MINVALUE (negative infinity) as
	 * its lower bound, increment it to point to the next finite bound
	 * (supposedly its upper bound), so that we don't inadvertently end up
	 * scanning the default partition.
	 */
	if (minoff < boundinfo->ndatums && partindices[minoff] < 0)
	{
		int			lastkey = nvalues - 1;

		if (boundinfo->kind[minoff][lastkey] ==
			PARTITION_RANGE_DATUM_MINVALUE)
		{
			minoff++;
			Assert(boundinfo->indexes[minoff] >= 0);
		}
	}

	/*
	 * If the previous greatest partition has MAXVALUE (positive infinity) as
	 * its upper bound (something only possible to do with multi-column range
	 * partitioning), we scan switch to it as the greatest partition to
	 * return.  Again, so that we don't inadvertently end up scanning the
	 * default partition.
	 */
	if (maxoff >= 1 && partindices[maxoff] < 0)
	{
		int			lastkey = nvalues - 1;

		if (boundinfo->kind[maxoff - 1][lastkey] ==
			PARTITION_RANGE_DATUM_MAXVALUE)
		{
			maxoff--;
			Assert(boundinfo->indexes[maxoff] >= 0);
		}
	}

	Assert(minoff >= 0 && maxoff >= 0);
	if (minoff <= maxoff)
		result->bound_offsets = bms_add_range(NULL, minoff, maxoff);

	return result;
}

/*
 * pull_exec_paramids
 *		Returns a Bitmapset containing the paramids of all Params with
 *		paramkind = PARAM_EXEC in 'expr'.
 */
static Bitmapset *
pull_exec_paramids(Expr *expr)
{
	Bitmapset  *result = NULL;

	(void) pull_exec_paramids_walker((Node *) expr, &result);

	return result;
}

static bool
pull_exec_paramids_walker(Node *node, Bitmapset **context)
{
	if (node == NULL)
		return false;
	if (IsA(node, Param))
	{
		Param	   *param = (Param *) node;

		if (param->paramkind == PARAM_EXEC)
			*context = bms_add_member(*context, param->paramid);
		return false;
	}
	return expression_tree_walker(node, pull_exec_paramids_walker,
								  (void *) context);
}

/*
 * get_partkey_exec_paramids
 *		Loop through given pruning steps and find out which exec Params
 *		are used.
 *
 * Returns a Bitmapset of Param IDs.
 */
static Bitmapset *
get_partkey_exec_paramids(List *steps)
{
	Bitmapset  *execparamids = NULL;
	ListCell   *lc;

	foreach(lc, steps)
	{
		PartitionPruneStepOp *step = (PartitionPruneStepOp *) lfirst(lc);
		ListCell   *lc2;

		if (!IsA(step, PartitionPruneStepOp))
			continue;

		foreach(lc2, step->exprs)
		{
			Expr	   *expr = lfirst(lc2);

			/* We can be quick for plain Consts */
			if (!IsA(expr, Const))
				execparamids = bms_join(execparamids,
										pull_exec_paramids(expr));
		}
	}

	return execparamids;
}

/*
 * perform_pruning_base_step
 *		Determines the indexes of datums that satisfy conditions specified in
 *		'opstep'.
 *
 * Result also contains whether special null-accepting and/or default
 * partition need to be scanned.
 */
static PruneStepResult *
perform_pruning_base_step(PartitionPruneContext *context,
						  PartitionPruneStepOp *opstep)
{
	ListCell   *lc1,
			   *lc2;
	int			keyno,
				nvalues;
	Datum		values[PARTITION_MAX_KEYS];
	FmgrInfo   *partsupfunc;
	int			stateidx;

	/*
	 * There better be the same number of expressions and compare functions.
	 */
	Assert(list_length(opstep->exprs) == list_length(opstep->cmpfns));

	nvalues = 0;
	lc1 = list_head(opstep->exprs);
	lc2 = list_head(opstep->cmpfns);

	/*
	 * Generate the partition lookup key that will be used by one of the
	 * get_matching_*_bounds functions called below.
	 */
	for (keyno = 0; keyno < context->partnatts; keyno++)
	{
		/*
		 * For hash partitioning, it is possible that values of some keys are
		 * not provided in operator clauses, but instead the planner found
		 * that they appeared in a IS NULL clause.
		 */
		if (bms_is_member(keyno, opstep->nullkeys))
			continue;

		/*
		 * For range partitioning, we must only perform pruning with values
		 * for either all partition keys or a prefix thereof.
		 */
		if (keyno > nvalues && context->strategy == PARTITION_STRATEGY_RANGE)
			break;

		if (lc1 != NULL)
		{
			Expr	   *expr;
			Datum		datum;
			bool		isnull;
			Oid			cmpfn;

			expr = lfirst(lc1);
			stateidx = PruneCxtStateIdx(context->partnatts,
										opstep->step.step_id, keyno);
			partkey_datum_from_expr(context, expr, stateidx,
									&datum, &isnull);

			/*
			 * Since we only allow strict operators in pruning steps, any
			 * null-valued comparison value must cause the comparison to fail,
			 * so that no partitions could match.
			 */
			if (isnull)
			{
				PruneStepResult *result;

				result = (PruneStepResult *) palloc(sizeof(PruneStepResult));
				result->bound_offsets = NULL;
				result->scan_default = false;
				result->scan_null = false;

				return result;
			}

			/* Set up the stepcmpfuncs entry, unless we already did */
			cmpfn = lfirst_oid(lc2);
			Assert(OidIsValid(cmpfn));
			if (cmpfn != context->stepcmpfuncs[stateidx].fn_oid)
			{
				/*
				 * If the needed support function is the same one cached in
				 * the relation's partition key, copy the cached FmgrInfo.
				 * Otherwise (i.e., when we have a cross-type comparison), an
				 * actual lookup is required.
				 */
				if (cmpfn == context->partsupfunc[keyno].fn_oid)
					fmgr_info_copy(&context->stepcmpfuncs[stateidx],
								   &context->partsupfunc[keyno],
								   context->ppccontext);
				else
					fmgr_info_cxt(cmpfn, &context->stepcmpfuncs[stateidx],
								  context->ppccontext);
			}

			values[keyno] = datum;
			nvalues++;

			lc1 = lnext(opstep->exprs, lc1);
			lc2 = lnext(opstep->cmpfns, lc2);
		}
	}

	/*
	 * Point partsupfunc to the entry for the 0th key of this step; the
	 * additional support functions, if any, follow consecutively.
	 */
	stateidx = PruneCxtStateIdx(context->partnatts, opstep->step.step_id, 0);
	partsupfunc = &context->stepcmpfuncs[stateidx];

	switch (context->strategy)
	{
		case PARTITION_STRATEGY_HASH:
			return get_matching_hash_bounds(context,
											opstep->opstrategy,
											values, nvalues,
											partsupfunc,
											opstep->nullkeys);

		case PARTITION_STRATEGY_LIST:
			return get_matching_list_bounds(context,
											opstep->opstrategy,
											values[0], nvalues,
											&partsupfunc[0],
											opstep->nullkeys);

		case PARTITION_STRATEGY_RANGE:
			return get_matching_range_bounds(context,
											 opstep->opstrategy,
											 values, nvalues,
											 partsupfunc,
											 opstep->nullkeys);

		default:
			elog(ERROR, "unexpected partition strategy: %d",
				 (int) context->strategy);
			break;
	}

	return NULL;
}

/*
 * perform_pruning_combine_step
 *		Determines the indexes of datums obtained by combining those given
 *		by the steps identified by cstep->source_stepids using the specified
 *		combination method
 *
 * Since cstep may refer to the result of earlier steps, we also receive
 * step_results here.
 */
static PruneStepResult *
perform_pruning_combine_step(PartitionPruneContext *context,
							 PartitionPruneStepCombine *cstep,
							 PruneStepResult **step_results)
{
	PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
	bool		firststep;
	ListCell   *lc1;

	/*
	 * A combine step without any source steps is an indication to not perform
	 * any partition pruning.  Return all datum indexes in that case.
	 */
	if (cstep->source_stepids == NIL)
	{
		PartitionBoundInfo boundinfo = context->boundinfo;

		result->bound_offsets =
			bms_add_range(NULL, 0, boundinfo->nindexes - 1);
		result->scan_default = partition_bound_has_default(boundinfo);
		result->scan_null = partition_bound_accepts_nulls(boundinfo);
		return result;
	}

	switch (cstep->combineOp)
	{
		case PARTPRUNE_COMBINE_UNION:
			foreach(lc1, cstep->source_stepids)
			{
				int			step_id = lfirst_int(lc1);
				PruneStepResult *step_result;

				/*
				 * step_results[step_id] must contain a valid result, which is
				 * confirmed by the fact that cstep's step_id is greater than
				 * step_id and the fact that results of the individual steps
				 * are evaluated in sequence of their step_ids.
				 */
				if (step_id >= cstep->step.step_id)
					elog(ERROR, "invalid pruning combine step argument");
				step_result = step_results[step_id];
				Assert(step_result != NULL);

				/* Record any additional datum indexes from this step */
				result->bound_offsets = bms_add_members(result->bound_offsets,
														step_result->bound_offsets);

				/* Update whether to scan null and default partitions. */
				if (!result->scan_null)
					result->scan_null = step_result->scan_null;
				if (!result->scan_default)
					result->scan_default = step_result->scan_default;
			}
			break;

		case PARTPRUNE_COMBINE_INTERSECT:
			firststep = true;
			foreach(lc1, cstep->source_stepids)
			{
				int			step_id = lfirst_int(lc1);
				PruneStepResult *step_result;

				if (step_id >= cstep->step.step_id)
					elog(ERROR, "invalid pruning combine step argument");
				step_result = step_results[step_id];
				Assert(step_result != NULL);

				if (firststep)
				{
					/* Copy step's result the first time. */
					result->bound_offsets =
						bms_copy(step_result->bound_offsets);
					result->scan_null = step_result->scan_null;
					result->scan_default = step_result->scan_default;
					firststep = false;
				}
				else
				{
					/* Record datum indexes common to both steps */
					result->bound_offsets =
						bms_int_members(result->bound_offsets,
										step_result->bound_offsets);

					/* Update whether to scan null and default partitions. */
					if (result->scan_null)
						result->scan_null = step_result->scan_null;
					if (result->scan_default)
						result->scan_default = step_result->scan_default;
				}
			}
			break;
	}

	return result;
}

/*
 * match_boolean_partition_clause
 *
 * If we're able to match the clause to the partition key as specially-shaped
 * boolean clause, set *outconst to a Const containing a true or false value,
 * set *noteq according to if the clause was in the "not" form, i.e. "is not
 * true" or "is not false", and return PARTCLAUSE_MATCH_CLAUSE.  Returns
 * PARTCLAUSE_UNSUPPORTED if the clause is not a boolean clause or if the
 * boolean clause is unsuitable for partition pruning.  Returns
 * PARTCLAUSE_NOMATCH if it's a bool quals but just does not match this
 * partition key.  *outconst is set to NULL in the latter two cases.
 */
static PartClauseMatchStatus
match_boolean_partition_clause(Oid partopfamily, Expr *clause, Expr *partkey,
							   Expr **outconst, bool *noteq)
{
	Expr	   *leftop;

	*outconst = NULL;
	*noteq = false;

	/*
	 * Partitioning currently can only use built-in AMs, so checking for
	 * built-in boolean opfamilies is good enough.
	 */
	if (!IsBuiltinBooleanOpfamily(partopfamily))
		return PARTCLAUSE_UNSUPPORTED;

	if (IsA(clause, BooleanTest))
	{
		BooleanTest *btest = (BooleanTest *) clause;

		/* Only IS [NOT] TRUE/FALSE are any good to us */
		if (btest->booltesttype == IS_UNKNOWN ||
			btest->booltesttype == IS_NOT_UNKNOWN)
			return PARTCLAUSE_UNSUPPORTED;

		leftop = btest->arg;
		if (IsA(leftop, RelabelType))
			leftop = ((RelabelType *) leftop)->arg;

		if (equal(leftop, partkey))
		{
			switch (btest->booltesttype)
			{
				case IS_NOT_TRUE:
					*noteq = true;
					/* fall through */
				case IS_TRUE:
					*outconst = (Expr *) makeBoolConst(true, false);
					break;
				case IS_NOT_FALSE:
					*noteq = true;
					/* fall through */
				case IS_FALSE:
					*outconst = (Expr *) makeBoolConst(false, false);
					break;
				default:
					return PARTCLAUSE_UNSUPPORTED;
			}
		}
		if (*outconst)
			return PARTCLAUSE_MATCH_CLAUSE;
	}
	else
	{
		bool		is_not_clause = is_notclause(clause);

		leftop = is_not_clause ? get_notclausearg(clause) : clause;

		if (IsA(leftop, RelabelType))
			leftop = ((RelabelType *) leftop)->arg;

		/* Compare to the partition key, and make up a clause ... */
		if (equal(leftop, partkey))
			*outconst = (Expr *) makeBoolConst(!is_not_clause, false);
		else if (equal(negate_clause((Node *) leftop), partkey))
			*outconst = (Expr *) makeBoolConst(is_not_clause, false);

		if (*outconst)
			return PARTCLAUSE_MATCH_CLAUSE;
	}

	return PARTCLAUSE_NOMATCH;
}

/*
 * partkey_datum_from_expr
 *		Evaluate expression for potential partition pruning
 *
 * Evaluate 'expr'; set *value and *isnull to the resulting Datum and nullflag.
 *
 * If expr isn't a Const, its ExprState is in stateidx of the context
 * exprstate array.
 *
 * Note that the evaluated result may be in the per-tuple memory context of
 * context->exprcontext, and we may have leaked other memory there too.
 * This memory must be recovered by resetting that ExprContext after
 * we're done with the pruning operation (see execPartition.c).
 */
static void
partkey_datum_from_expr(PartitionPruneContext *context,
						Expr *expr, int stateidx,
						Datum *value, bool *isnull)
{
	if (IsA(expr, Const))
	{
		/* We can always determine the value of a constant */
		Const	   *con = (Const *) expr;

		*value = con->constvalue;
		*isnull = con->constisnull;
	}
	else
	{
		ExprState  *exprstate;
		ExprContext *ectx;

		/*
		 * We should never see a non-Const in a step unless the caller has
		 * passed a valid ExprContext.
		 *
		 * When context->planstate is valid, context->exprcontext is same as
		 * context->planstate->ps_ExprContext.
		 */
		Assert(context->planstate != NULL || context->exprcontext != NULL);
		Assert(context->planstate == NULL ||
			   (context->exprcontext == context->planstate->ps_ExprContext));

		exprstate = context->exprstates[stateidx];
		ectx = context->exprcontext;
		*value = ExecEvalExprSwitchContext(exprstate, ectx, isnull);
	}
}