summaryrefslogtreecommitdiff
path: root/src/backend/optimizer/util/clauses.c
blob: 7f453b04f8bed73cb3415499e42c5d8ae43dd222 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
/*-------------------------------------------------------------------------
 *
 * clauses.c
 *	  routines to manipulate qualification clauses
 *
 * Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 *
 *
 * IDENTIFICATION
 *	  src/backend/optimizer/util/clauses.c
 *
 * HISTORY
 *	  AUTHOR			DATE			MAJOR EVENT
 *	  Andrew Yu			Nov 3, 1994		clause.c and clauses.c combined
 *
 *-------------------------------------------------------------------------
 */

#include "postgres.h"

#include "access/htup_details.h"
#include "catalog/pg_aggregate.h"
#include "catalog/pg_class.h"
#include "catalog/pg_language.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "executor/functions.h"
#include "funcapi.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/multibitmapset.h"
#include "nodes/nodeFuncs.h"
#include "nodes/subscripting.h"
#include "nodes/supportnodes.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/optimizer.h"
#include "optimizer/plancat.h"
#include "optimizer/planmain.h"
#include "parser/analyze.h"
#include "parser/parse_agg.h"
#include "parser/parse_coerce.h"
#include "parser/parse_func.h"
#include "rewrite/rewriteHandler.h"
#include "rewrite/rewriteManip.h"
#include "tcop/tcopprot.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/fmgroids.h"
#include "utils/json.h"
#include "utils/jsonb.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/syscache.h"
#include "utils/typcache.h"

typedef struct
{
	ParamListInfo boundParams;
	PlannerInfo *root;
	List	   *active_fns;
	Node	   *case_val;
	bool		estimate;
} eval_const_expressions_context;

typedef struct
{
	int			nargs;
	List	   *args;
	int		   *usecounts;
} substitute_actual_parameters_context;

typedef struct
{
	int			nargs;
	List	   *args;
	int			sublevels_up;
} substitute_actual_srf_parameters_context;

typedef struct
{
	char	   *proname;
	char	   *prosrc;
} inline_error_callback_arg;

typedef struct
{
	char		max_hazard;		/* worst proparallel hazard found so far */
	char		max_interesting;	/* worst proparallel hazard of interest */
	List	   *safe_param_ids; /* PARAM_EXEC Param IDs to treat as safe */
} max_parallel_hazard_context;

static bool contain_agg_clause_walker(Node *node, void *context);
static bool find_window_functions_walker(Node *node, WindowFuncLists *lists);
static bool contain_subplans_walker(Node *node, void *context);
static bool contain_mutable_functions_walker(Node *node, void *context);
static bool contain_volatile_functions_walker(Node *node, void *context);
static bool contain_volatile_functions_not_nextval_walker(Node *node, void *context);
static bool max_parallel_hazard_walker(Node *node,
									   max_parallel_hazard_context *context);
static bool contain_nonstrict_functions_walker(Node *node, void *context);
static bool contain_exec_param_walker(Node *node, List *param_ids);
static bool contain_context_dependent_node(Node *clause);
static bool contain_context_dependent_node_walker(Node *node, int *flags);
static bool contain_leaked_vars_walker(Node *node, void *context);
static Relids find_nonnullable_rels_walker(Node *node, bool top_level);
static List *find_nonnullable_vars_walker(Node *node, bool top_level);
static bool is_strict_saop(ScalarArrayOpExpr *expr, bool falseOK);
static bool convert_saop_to_hashed_saop_walker(Node *node, void *context);
static Node *eval_const_expressions_mutator(Node *node,
											eval_const_expressions_context *context);
static bool contain_non_const_walker(Node *node, void *context);
static bool ece_function_is_safe(Oid funcid,
								 eval_const_expressions_context *context);
static List *simplify_or_arguments(List *args,
								   eval_const_expressions_context *context,
								   bool *haveNull, bool *forceTrue);
static List *simplify_and_arguments(List *args,
									eval_const_expressions_context *context,
									bool *haveNull, bool *forceFalse);
static Node *simplify_boolean_equality(Oid opno, List *args);
static Expr *simplify_function(Oid funcid,
							   Oid result_type, int32 result_typmod,
							   Oid result_collid, Oid input_collid, List **args_p,
							   bool funcvariadic, bool process_args, bool allow_non_const,
							   eval_const_expressions_context *context);
static List *reorder_function_arguments(List *args, int pronargs,
										HeapTuple func_tuple);
static List *add_function_defaults(List *args, int pronargs,
								   HeapTuple func_tuple);
static List *fetch_function_defaults(HeapTuple func_tuple);
static void recheck_cast_function_args(List *args, Oid result_type,
									   Oid *proargtypes, int pronargs,
									   HeapTuple func_tuple);
static Expr *evaluate_function(Oid funcid, Oid result_type, int32 result_typmod,
							   Oid result_collid, Oid input_collid, List *args,
							   bool funcvariadic,
							   HeapTuple func_tuple,
							   eval_const_expressions_context *context);
static Expr *inline_function(Oid funcid, Oid result_type, Oid result_collid,
							 Oid input_collid, List *args,
							 bool funcvariadic,
							 HeapTuple func_tuple,
							 eval_const_expressions_context *context);
static Node *substitute_actual_parameters(Node *expr, int nargs, List *args,
										  int *usecounts);
static Node *substitute_actual_parameters_mutator(Node *node,
												  substitute_actual_parameters_context *context);
static void sql_inline_error_callback(void *arg);
static Query *substitute_actual_srf_parameters(Query *expr,
											   int nargs, List *args);
static Node *substitute_actual_srf_parameters_mutator(Node *node,
													  substitute_actual_srf_parameters_context *context);
static bool pull_paramids_walker(Node *node, Bitmapset **context);


/*****************************************************************************
 *		Aggregate-function clause manipulation
 *****************************************************************************/

/*
 * contain_agg_clause
 *	  Recursively search for Aggref/GroupingFunc nodes within a clause.
 *
 *	  Returns true if any aggregate found.
 *
 * This does not descend into subqueries, and so should be used only after
 * reduction of sublinks to subplans, or in contexts where it's known there
 * are no subqueries.  There mustn't be outer-aggregate references either.
 *
 * (If you want something like this but able to deal with subqueries,
 * see rewriteManip.c's contain_aggs_of_level().)
 */
bool
contain_agg_clause(Node *clause)
{
	return contain_agg_clause_walker(clause, NULL);
}

static bool
contain_agg_clause_walker(Node *node, void *context)
{
	if (node == NULL)
		return false;
	if (IsA(node, Aggref))
	{
		Assert(((Aggref *) node)->agglevelsup == 0);
		return true;			/* abort the tree traversal and return true */
	}
	if (IsA(node, GroupingFunc))
	{
		Assert(((GroupingFunc *) node)->agglevelsup == 0);
		return true;			/* abort the tree traversal and return true */
	}
	Assert(!IsA(node, SubLink));
	return expression_tree_walker(node, contain_agg_clause_walker, context);
}

/*****************************************************************************
 *		Window-function clause manipulation
 *****************************************************************************/

/*
 * contain_window_function
 *	  Recursively search for WindowFunc nodes within a clause.
 *
 * Since window functions don't have level fields, but are hard-wired to
 * be associated with the current query level, this is just the same as
 * rewriteManip.c's function.
 */
bool
contain_window_function(Node *clause)
{
	return contain_windowfuncs(clause);
}

/*
 * find_window_functions
 *	  Locate all the WindowFunc nodes in an expression tree, and organize
 *	  them by winref ID number.
 *
 * Caller must provide an upper bound on the winref IDs expected in the tree.
 */
WindowFuncLists *
find_window_functions(Node *clause, Index maxWinRef)
{
	WindowFuncLists *lists = palloc(sizeof(WindowFuncLists));

	lists->numWindowFuncs = 0;
	lists->maxWinRef = maxWinRef;
	lists->windowFuncs = (List **) palloc0((maxWinRef + 1) * sizeof(List *));
	(void) find_window_functions_walker(clause, lists);
	return lists;
}

static bool
find_window_functions_walker(Node *node, WindowFuncLists *lists)
{
	if (node == NULL)
		return false;
	if (IsA(node, WindowFunc))
	{
		WindowFunc *wfunc = (WindowFunc *) node;

		/* winref is unsigned, so one-sided test is OK */
		if (wfunc->winref > lists->maxWinRef)
			elog(ERROR, "WindowFunc contains out-of-range winref %u",
				 wfunc->winref);
		/* eliminate duplicates, so that we avoid repeated computation */
		if (!list_member(lists->windowFuncs[wfunc->winref], wfunc))
		{
			lists->windowFuncs[wfunc->winref] =
				lappend(lists->windowFuncs[wfunc->winref], wfunc);
			lists->numWindowFuncs++;
		}

		/*
		 * We assume that the parser checked that there are no window
		 * functions in the arguments or filter clause.  Hence, we need not
		 * recurse into them.  (If either the parser or the planner screws up
		 * on this point, the executor will still catch it; see ExecInitExpr.)
		 */
		return false;
	}
	Assert(!IsA(node, SubLink));
	return expression_tree_walker(node, find_window_functions_walker,
								  (void *) lists);
}


/*****************************************************************************
 *		Support for expressions returning sets
 *****************************************************************************/

/*
 * expression_returns_set_rows
 *	  Estimate the number of rows returned by a set-returning expression.
 *	  The result is 1 if it's not a set-returning expression.
 *
 * We should only examine the top-level function or operator; it used to be
 * appropriate to recurse, but not anymore.  (Even if there are more SRFs in
 * the function's inputs, their multipliers are accounted for separately.)
 *
 * Note: keep this in sync with expression_returns_set() in nodes/nodeFuncs.c.
 */
double
expression_returns_set_rows(PlannerInfo *root, Node *clause)
{
	if (clause == NULL)
		return 1.0;
	if (IsA(clause, FuncExpr))
	{
		FuncExpr   *expr = (FuncExpr *) clause;

		if (expr->funcretset)
			return clamp_row_est(get_function_rows(root, expr->funcid, clause));
	}
	if (IsA(clause, OpExpr))
	{
		OpExpr	   *expr = (OpExpr *) clause;

		if (expr->opretset)
		{
			set_opfuncid(expr);
			return clamp_row_est(get_function_rows(root, expr->opfuncid, clause));
		}
	}
	return 1.0;
}


/*****************************************************************************
 *		Subplan clause manipulation
 *****************************************************************************/

/*
 * contain_subplans
 *	  Recursively search for subplan nodes within a clause.
 *
 * If we see a SubLink node, we will return true.  This is only possible if
 * the expression tree hasn't yet been transformed by subselect.c.  We do not
 * know whether the node will produce a true subplan or just an initplan,
 * but we make the conservative assumption that it will be a subplan.
 *
 * Returns true if any subplan found.
 */
bool
contain_subplans(Node *clause)
{
	return contain_subplans_walker(clause, NULL);
}

static bool
contain_subplans_walker(Node *node, void *context)
{
	if (node == NULL)
		return false;
	if (IsA(node, SubPlan) ||
		IsA(node, AlternativeSubPlan) ||
		IsA(node, SubLink))
		return true;			/* abort the tree traversal and return true */
	return expression_tree_walker(node, contain_subplans_walker, context);
}


/*****************************************************************************
 *		Check clauses for mutable functions
 *****************************************************************************/

/*
 * contain_mutable_functions
 *	  Recursively search for mutable functions within a clause.
 *
 * Returns true if any mutable function (or operator implemented by a
 * mutable function) is found.  This test is needed so that we don't
 * mistakenly think that something like "WHERE random() < 0.5" can be treated
 * as a constant qualification.
 *
 * We will recursively look into Query nodes (i.e., SubLink sub-selects)
 * but not into SubPlans.  See comments for contain_volatile_functions().
 */
bool
contain_mutable_functions(Node *clause)
{
	return contain_mutable_functions_walker(clause, NULL);
}

static bool
contain_mutable_functions_checker(Oid func_id, void *context)
{
	return (func_volatile(func_id) != PROVOLATILE_IMMUTABLE);
}

static bool
contain_mutable_functions_walker(Node *node, void *context)
{
	if (node == NULL)
		return false;
	/* Check for mutable functions in node itself */
	if (check_functions_in_node(node, contain_mutable_functions_checker,
								context))
		return true;

	if (IsA(node, JsonConstructorExpr))
	{
		const JsonConstructorExpr *ctor = (JsonConstructorExpr *) node;
		ListCell   *lc;
		bool		is_jsonb;

		is_jsonb = ctor->returning->format->format_type == JS_FORMAT_JSONB;

		/*
		 * Check argument_type => json[b] conversions specifically.  We still
		 * recurse to check 'args' below, but here we want to specifically
		 * check whether or not the emitted clause would fail to be immutable
		 * because of TimeZone, for example.
		 */
		foreach(lc, ctor->args)
		{
			Oid			typid = exprType(lfirst(lc));

			if (is_jsonb ?
				!to_jsonb_is_immutable(typid) :
				!to_json_is_immutable(typid))
				return true;
		}

		/* Check all subnodes */
	}

	if (IsA(node, SQLValueFunction))
	{
		/* all variants of SQLValueFunction are stable */
		return true;
	}

	if (IsA(node, NextValueExpr))
	{
		/* NextValueExpr is volatile */
		return true;
	}

	/*
	 * It should be safe to treat MinMaxExpr as immutable, because it will
	 * depend on a non-cross-type btree comparison function, and those should
	 * always be immutable.  Treating XmlExpr as immutable is more dubious,
	 * and treating CoerceToDomain as immutable is outright dangerous.  But we
	 * have done so historically, and changing this would probably cause more
	 * problems than it would fix.  In practice, if you have a non-immutable
	 * domain constraint you are in for pain anyhow.
	 */

	/* Recurse to check arguments */
	if (IsA(node, Query))
	{
		/* Recurse into subselects */
		return query_tree_walker((Query *) node,
								 contain_mutable_functions_walker,
								 context, 0);
	}
	return expression_tree_walker(node, contain_mutable_functions_walker,
								  context);
}


/*****************************************************************************
 *		Check clauses for volatile functions
 *****************************************************************************/

/*
 * contain_volatile_functions
 *	  Recursively search for volatile functions within a clause.
 *
 * Returns true if any volatile function (or operator implemented by a
 * volatile function) is found. This test prevents, for example,
 * invalid conversions of volatile expressions into indexscan quals.
 *
 * We will recursively look into Query nodes (i.e., SubLink sub-selects)
 * but not into SubPlans.  This is a bit odd, but intentional.  If we are
 * looking at a SubLink, we are probably deciding whether a query tree
 * transformation is safe, and a contained sub-select should affect that;
 * for example, duplicating a sub-select containing a volatile function
 * would be bad.  However, once we've got to the stage of having SubPlans,
 * subsequent planning need not consider volatility within those, since
 * the executor won't change its evaluation rules for a SubPlan based on
 * volatility.
 *
 * For some node types, for example, RestrictInfo and PathTarget, we cache
 * whether we found any volatile functions or not and reuse that value in any
 * future checks for that node.  All of the logic for determining if the
 * cached value should be set to VOLATILITY_NOVOLATILE or VOLATILITY_VOLATILE
 * belongs in this function.  Any code which makes changes to these nodes
 * which could change the outcome this function must set the cached value back
 * to VOLATILITY_UNKNOWN.  That allows this function to redetermine the
 * correct value during the next call, should we need to redetermine if the
 * node contains any volatile functions again in the future.
 */
bool
contain_volatile_functions(Node *clause)
{
	return contain_volatile_functions_walker(clause, NULL);
}

static bool
contain_volatile_functions_checker(Oid func_id, void *context)
{
	return (func_volatile(func_id) == PROVOLATILE_VOLATILE);
}

static bool
contain_volatile_functions_walker(Node *node, void *context)
{
	if (node == NULL)
		return false;
	/* Check for volatile functions in node itself */
	if (check_functions_in_node(node, contain_volatile_functions_checker,
								context))
		return true;

	if (IsA(node, NextValueExpr))
	{
		/* NextValueExpr is volatile */
		return true;
	}

	if (IsA(node, RestrictInfo))
	{
		RestrictInfo *rinfo = (RestrictInfo *) node;

		/*
		 * For RestrictInfo, check if we've checked the volatility of it
		 * before.  If so, we can just use the cached value and not bother
		 * checking it again.  Otherwise, check it and cache if whether we
		 * found any volatile functions.
		 */
		if (rinfo->has_volatile == VOLATILITY_NOVOLATILE)
			return false;
		else if (rinfo->has_volatile == VOLATILITY_VOLATILE)
			return true;
		else
		{
			bool		hasvolatile;

			hasvolatile = contain_volatile_functions_walker((Node *) rinfo->clause,
															context);
			if (hasvolatile)
				rinfo->has_volatile = VOLATILITY_VOLATILE;
			else
				rinfo->has_volatile = VOLATILITY_NOVOLATILE;

			return hasvolatile;
		}
	}

	if (IsA(node, PathTarget))
	{
		PathTarget *target = (PathTarget *) node;

		/*
		 * We also do caching for PathTarget the same as we do above for
		 * RestrictInfos.
		 */
		if (target->has_volatile_expr == VOLATILITY_NOVOLATILE)
			return false;
		else if (target->has_volatile_expr == VOLATILITY_VOLATILE)
			return true;
		else
		{
			bool		hasvolatile;

			hasvolatile = contain_volatile_functions_walker((Node *) target->exprs,
															context);

			if (hasvolatile)
				target->has_volatile_expr = VOLATILITY_VOLATILE;
			else
				target->has_volatile_expr = VOLATILITY_NOVOLATILE;

			return hasvolatile;
		}
	}

	/*
	 * See notes in contain_mutable_functions_walker about why we treat
	 * MinMaxExpr, XmlExpr, and CoerceToDomain as immutable, while
	 * SQLValueFunction is stable.  Hence, none of them are of interest here.
	 */

	/* Recurse to check arguments */
	if (IsA(node, Query))
	{
		/* Recurse into subselects */
		return query_tree_walker((Query *) node,
								 contain_volatile_functions_walker,
								 context, 0);
	}
	return expression_tree_walker(node, contain_volatile_functions_walker,
								  context);
}

/*
 * Special purpose version of contain_volatile_functions() for use in COPY:
 * ignore nextval(), but treat all other functions normally.
 */
bool
contain_volatile_functions_not_nextval(Node *clause)
{
	return contain_volatile_functions_not_nextval_walker(clause, NULL);
}

static bool
contain_volatile_functions_not_nextval_checker(Oid func_id, void *context)
{
	return (func_id != F_NEXTVAL &&
			func_volatile(func_id) == PROVOLATILE_VOLATILE);
}

static bool
contain_volatile_functions_not_nextval_walker(Node *node, void *context)
{
	if (node == NULL)
		return false;
	/* Check for volatile functions in node itself */
	if (check_functions_in_node(node,
								contain_volatile_functions_not_nextval_checker,
								context))
		return true;

	/*
	 * See notes in contain_mutable_functions_walker about why we treat
	 * MinMaxExpr, XmlExpr, and CoerceToDomain as immutable, while
	 * SQLValueFunction is stable.  Hence, none of them are of interest here.
	 * Also, since we're intentionally ignoring nextval(), presumably we
	 * should ignore NextValueExpr.
	 */

	/* Recurse to check arguments */
	if (IsA(node, Query))
	{
		/* Recurse into subselects */
		return query_tree_walker((Query *) node,
								 contain_volatile_functions_not_nextval_walker,
								 context, 0);
	}
	return expression_tree_walker(node,
								  contain_volatile_functions_not_nextval_walker,
								  context);
}


/*****************************************************************************
 *		Check queries for parallel unsafe and/or restricted constructs
 *****************************************************************************/

/*
 * max_parallel_hazard
 *		Find the worst parallel-hazard level in the given query
 *
 * Returns the worst function hazard property (the earliest in this list:
 * PROPARALLEL_UNSAFE, PROPARALLEL_RESTRICTED, PROPARALLEL_SAFE) that can
 * be found in the given parsetree.  We use this to find out whether the query
 * can be parallelized at all.  The caller will also save the result in
 * PlannerGlobal so as to short-circuit checks of portions of the querytree
 * later, in the common case where everything is SAFE.
 */
char
max_parallel_hazard(Query *parse)
{
	max_parallel_hazard_context context;

	context.max_hazard = PROPARALLEL_SAFE;
	context.max_interesting = PROPARALLEL_UNSAFE;
	context.safe_param_ids = NIL;
	(void) max_parallel_hazard_walker((Node *) parse, &context);
	return context.max_hazard;
}

/*
 * is_parallel_safe
 *		Detect whether the given expr contains only parallel-safe functions
 *
 * root->glob->maxParallelHazard must previously have been set to the
 * result of max_parallel_hazard() on the whole query.
 */
bool
is_parallel_safe(PlannerInfo *root, Node *node)
{
	max_parallel_hazard_context context;
	PlannerInfo *proot;
	ListCell   *l;

	/*
	 * Even if the original querytree contained nothing unsafe, we need to
	 * search the expression if we have generated any PARAM_EXEC Params while
	 * planning, because those are parallel-restricted and there might be one
	 * in this expression.  But otherwise we don't need to look.
	 */
	if (root->glob->maxParallelHazard == PROPARALLEL_SAFE &&
		root->glob->paramExecTypes == NIL)
		return true;
	/* Else use max_parallel_hazard's search logic, but stop on RESTRICTED */
	context.max_hazard = PROPARALLEL_SAFE;
	context.max_interesting = PROPARALLEL_RESTRICTED;
	context.safe_param_ids = NIL;

	/*
	 * The params that refer to the same or parent query level are considered
	 * parallel-safe.  The idea is that we compute such params at Gather or
	 * Gather Merge node and pass their value to workers.
	 */
	for (proot = root; proot != NULL; proot = proot->parent_root)
	{
		foreach(l, proot->init_plans)
		{
			SubPlan    *initsubplan = (SubPlan *) lfirst(l);

			context.safe_param_ids = list_concat(context.safe_param_ids,
												 initsubplan->setParam);
		}
	}

	return !max_parallel_hazard_walker(node, &context);
}

/* core logic for all parallel-hazard checks */
static bool
max_parallel_hazard_test(char proparallel, max_parallel_hazard_context *context)
{
	switch (proparallel)
	{
		case PROPARALLEL_SAFE:
			/* nothing to see here, move along */
			break;
		case PROPARALLEL_RESTRICTED:
			/* increase max_hazard to RESTRICTED */
			Assert(context->max_hazard != PROPARALLEL_UNSAFE);
			context->max_hazard = proparallel;
			/* done if we are not expecting any unsafe functions */
			if (context->max_interesting == proparallel)
				return true;
			break;
		case PROPARALLEL_UNSAFE:
			context->max_hazard = proparallel;
			/* we're always done at the first unsafe construct */
			return true;
		default:
			elog(ERROR, "unrecognized proparallel value \"%c\"", proparallel);
			break;
	}
	return false;
}

/* check_functions_in_node callback */
static bool
max_parallel_hazard_checker(Oid func_id, void *context)
{
	return max_parallel_hazard_test(func_parallel(func_id),
									(max_parallel_hazard_context *) context);
}

static bool
max_parallel_hazard_walker(Node *node, max_parallel_hazard_context *context)
{
	if (node == NULL)
		return false;

	/* Check for hazardous functions in node itself */
	if (check_functions_in_node(node, max_parallel_hazard_checker,
								context))
		return true;

	/*
	 * It should be OK to treat MinMaxExpr as parallel-safe, since btree
	 * opclass support functions are generally parallel-safe.  XmlExpr is a
	 * bit more dubious but we can probably get away with it.  We err on the
	 * side of caution by treating CoerceToDomain as parallel-restricted.
	 * (Note: in principle that's wrong because a domain constraint could
	 * contain a parallel-unsafe function; but useful constraints probably
	 * never would have such, and assuming they do would cripple use of
	 * parallel query in the presence of domain types.)  SQLValueFunction
	 * should be safe in all cases.  NextValueExpr is parallel-unsafe.
	 */
	if (IsA(node, CoerceToDomain))
	{
		if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
			return true;
	}

	else if (IsA(node, NextValueExpr))
	{
		if (max_parallel_hazard_test(PROPARALLEL_UNSAFE, context))
			return true;
	}

	/*
	 * Treat window functions as parallel-restricted because we aren't sure
	 * whether the input row ordering is fully deterministic, and the output
	 * of window functions might vary across workers if not.  (In some cases,
	 * like where the window frame orders by a primary key, we could relax
	 * this restriction.  But it doesn't currently seem worth expending extra
	 * effort to do so.)
	 */
	else if (IsA(node, WindowFunc))
	{
		if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
			return true;
	}

	/*
	 * As a notational convenience for callers, look through RestrictInfo.
	 */
	else if (IsA(node, RestrictInfo))
	{
		RestrictInfo *rinfo = (RestrictInfo *) node;

		return max_parallel_hazard_walker((Node *) rinfo->clause, context);
	}

	/*
	 * Really we should not see SubLink during a max_interesting == restricted
	 * scan, but if we do, return true.
	 */
	else if (IsA(node, SubLink))
	{
		if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
			return true;
	}

	/*
	 * Only parallel-safe SubPlans can be sent to workers.  Within the
	 * testexpr of the SubPlan, Params representing the output columns of the
	 * subplan can be treated as parallel-safe, so temporarily add their IDs
	 * to the safe_param_ids list while examining the testexpr.
	 */
	else if (IsA(node, SubPlan))
	{
		SubPlan    *subplan = (SubPlan *) node;
		List	   *save_safe_param_ids;

		if (!subplan->parallel_safe &&
			max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
			return true;
		save_safe_param_ids = context->safe_param_ids;
		context->safe_param_ids = list_concat_copy(context->safe_param_ids,
												   subplan->paramIds);
		if (max_parallel_hazard_walker(subplan->testexpr, context))
			return true;		/* no need to restore safe_param_ids */
		list_free(context->safe_param_ids);
		context->safe_param_ids = save_safe_param_ids;
		/* we must also check args, but no special Param treatment there */
		if (max_parallel_hazard_walker((Node *) subplan->args, context))
			return true;
		/* don't want to recurse normally, so we're done */
		return false;
	}

	/*
	 * We can't pass Params to workers at the moment either, so they are also
	 * parallel-restricted, unless they are PARAM_EXTERN Params or are
	 * PARAM_EXEC Params listed in safe_param_ids, meaning they could be
	 * either generated within workers or can be computed by the leader and
	 * then their value can be passed to workers.
	 */
	else if (IsA(node, Param))
	{
		Param	   *param = (Param *) node;

		if (param->paramkind == PARAM_EXTERN)
			return false;

		if (param->paramkind != PARAM_EXEC ||
			!list_member_int(context->safe_param_ids, param->paramid))
		{
			if (max_parallel_hazard_test(PROPARALLEL_RESTRICTED, context))
				return true;
		}
		return false;			/* nothing to recurse to */
	}

	/*
	 * When we're first invoked on a completely unplanned tree, we must
	 * recurse into subqueries so to as to locate parallel-unsafe constructs
	 * anywhere in the tree.
	 */
	else if (IsA(node, Query))
	{
		Query	   *query = (Query *) node;

		/* SELECT FOR UPDATE/SHARE must be treated as unsafe */
		if (query->rowMarks != NULL)
		{
			context->max_hazard = PROPARALLEL_UNSAFE;
			return true;
		}

		/* Recurse into subselects */
		return query_tree_walker(query,
								 max_parallel_hazard_walker,
								 context, 0);
	}

	/* Recurse to check arguments */
	return expression_tree_walker(node,
								  max_parallel_hazard_walker,
								  context);
}


/*****************************************************************************
 *		Check clauses for nonstrict functions
 *****************************************************************************/

/*
 * contain_nonstrict_functions
 *	  Recursively search for nonstrict functions within a clause.
 *
 * Returns true if any nonstrict construct is found --- ie, anything that
 * could produce non-NULL output with a NULL input.
 *
 * The idea here is that the caller has verified that the expression contains
 * one or more Var or Param nodes (as appropriate for the caller's need), and
 * now wishes to prove that the expression result will be NULL if any of these
 * inputs is NULL.  If we return false, then the proof succeeded.
 */
bool
contain_nonstrict_functions(Node *clause)
{
	return contain_nonstrict_functions_walker(clause, NULL);
}

static bool
contain_nonstrict_functions_checker(Oid func_id, void *context)
{
	return !func_strict(func_id);
}

static bool
contain_nonstrict_functions_walker(Node *node, void *context)
{
	if (node == NULL)
		return false;
	if (IsA(node, Aggref))
	{
		/* an aggregate could return non-null with null input */
		return true;
	}
	if (IsA(node, GroupingFunc))
	{
		/*
		 * A GroupingFunc doesn't evaluate its arguments, and therefore must
		 * be treated as nonstrict.
		 */
		return true;
	}
	if (IsA(node, WindowFunc))
	{
		/* a window function could return non-null with null input */
		return true;
	}
	if (IsA(node, SubscriptingRef))
	{
		SubscriptingRef *sbsref = (SubscriptingRef *) node;
		const SubscriptRoutines *sbsroutines;

		/* Subscripting assignment is always presumed nonstrict */
		if (sbsref->refassgnexpr != NULL)
			return true;
		/* Otherwise we must look up the subscripting support methods */
		sbsroutines = getSubscriptingRoutines(sbsref->refcontainertype, NULL);
		if (!(sbsroutines && sbsroutines->fetch_strict))
			return true;
		/* else fall through to check args */
	}
	if (IsA(node, DistinctExpr))
	{
		/* IS DISTINCT FROM is inherently non-strict */
		return true;
	}
	if (IsA(node, NullIfExpr))
	{
		/* NULLIF is inherently non-strict */
		return true;
	}
	if (IsA(node, BoolExpr))
	{
		BoolExpr   *expr = (BoolExpr *) node;

		switch (expr->boolop)
		{
			case AND_EXPR:
			case OR_EXPR:
				/* AND, OR are inherently non-strict */
				return true;
			default:
				break;
		}
	}
	if (IsA(node, SubLink))
	{
		/* In some cases a sublink might be strict, but in general not */
		return true;
	}
	if (IsA(node, SubPlan))
		return true;
	if (IsA(node, AlternativeSubPlan))
		return true;
	if (IsA(node, FieldStore))
		return true;
	if (IsA(node, CoerceViaIO))
	{
		/*
		 * CoerceViaIO is strict regardless of whether the I/O functions are,
		 * so just go look at its argument; asking check_functions_in_node is
		 * useless expense and could deliver the wrong answer.
		 */
		return contain_nonstrict_functions_walker((Node *) ((CoerceViaIO *) node)->arg,
												  context);
	}
	if (IsA(node, ArrayCoerceExpr))
	{
		/*
		 * ArrayCoerceExpr is strict at the array level, regardless of what
		 * the per-element expression is; so we should ignore elemexpr and
		 * recurse only into the arg.
		 */
		return contain_nonstrict_functions_walker((Node *) ((ArrayCoerceExpr *) node)->arg,
												  context);
	}
	if (IsA(node, CaseExpr))
		return true;
	if (IsA(node, ArrayExpr))
		return true;
	if (IsA(node, RowExpr))
		return true;
	if (IsA(node, RowCompareExpr))
		return true;
	if (IsA(node, CoalesceExpr))
		return true;
	if (IsA(node, MinMaxExpr))
		return true;
	if (IsA(node, XmlExpr))
		return true;
	if (IsA(node, NullTest))
		return true;
	if (IsA(node, BooleanTest))
		return true;

	/* Check other function-containing nodes */
	if (check_functions_in_node(node, contain_nonstrict_functions_checker,
								context))
		return true;

	return expression_tree_walker(node, contain_nonstrict_functions_walker,
								  context);
}

/*****************************************************************************
 *		Check clauses for Params
 *****************************************************************************/

/*
 * contain_exec_param
 *	  Recursively search for PARAM_EXEC Params within a clause.
 *
 * Returns true if the clause contains any PARAM_EXEC Param with a paramid
 * appearing in the given list of Param IDs.  Does not descend into
 * subqueries!
 */
bool
contain_exec_param(Node *clause, List *param_ids)
{
	return contain_exec_param_walker(clause, param_ids);
}

static bool
contain_exec_param_walker(Node *node, List *param_ids)
{
	if (node == NULL)
		return false;
	if (IsA(node, Param))
	{
		Param	   *p = (Param *) node;

		if (p->paramkind == PARAM_EXEC &&
			list_member_int(param_ids, p->paramid))
			return true;
	}
	return expression_tree_walker(node, contain_exec_param_walker, param_ids);
}

/*****************************************************************************
 *		Check clauses for context-dependent nodes
 *****************************************************************************/

/*
 * contain_context_dependent_node
 *	  Recursively search for context-dependent nodes within a clause.
 *
 * CaseTestExpr nodes must appear directly within the corresponding CaseExpr,
 * not nested within another one, or they'll see the wrong test value.  If one
 * appears "bare" in the arguments of a SQL function, then we can't inline the
 * SQL function for fear of creating such a situation.  The same applies for
 * CaseTestExpr used within the elemexpr of an ArrayCoerceExpr.
 *
 * CoerceToDomainValue would have the same issue if domain CHECK expressions
 * could get inlined into larger expressions, but presently that's impossible.
 * Still, it might be allowed in future, or other node types with similar
 * issues might get invented.  So give this function a generic name, and set
 * up the recursion state to allow multiple flag bits.
 */
static bool
contain_context_dependent_node(Node *clause)
{
	int			flags = 0;

	return contain_context_dependent_node_walker(clause, &flags);
}

#define CCDN_CASETESTEXPR_OK	0x0001	/* CaseTestExpr okay here? */

static bool
contain_context_dependent_node_walker(Node *node, int *flags)
{
	if (node == NULL)
		return false;
	if (IsA(node, CaseTestExpr))
		return !(*flags & CCDN_CASETESTEXPR_OK);
	else if (IsA(node, CaseExpr))
	{
		CaseExpr   *caseexpr = (CaseExpr *) node;

		/*
		 * If this CASE doesn't have a test expression, then it doesn't create
		 * a context in which CaseTestExprs should appear, so just fall
		 * through and treat it as a generic expression node.
		 */
		if (caseexpr->arg)
		{
			int			save_flags = *flags;
			bool		res;

			/*
			 * Note: in principle, we could distinguish the various sub-parts
			 * of a CASE construct and set the flag bit only for some of them,
			 * since we are only expecting CaseTestExprs to appear in the
			 * "expr" subtree of the CaseWhen nodes.  But it doesn't really
			 * seem worth any extra code.  If there are any bare CaseTestExprs
			 * elsewhere in the CASE, something's wrong already.
			 */
			*flags |= CCDN_CASETESTEXPR_OK;
			res = expression_tree_walker(node,
										 contain_context_dependent_node_walker,
										 (void *) flags);
			*flags = save_flags;
			return res;
		}
	}
	else if (IsA(node, ArrayCoerceExpr))
	{
		ArrayCoerceExpr *ac = (ArrayCoerceExpr *) node;
		int			save_flags;
		bool		res;

		/* Check the array expression */
		if (contain_context_dependent_node_walker((Node *) ac->arg, flags))
			return true;

		/* Check the elemexpr, which is allowed to contain CaseTestExpr */
		save_flags = *flags;
		*flags |= CCDN_CASETESTEXPR_OK;
		res = contain_context_dependent_node_walker((Node *) ac->elemexpr,
													flags);
		*flags = save_flags;
		return res;
	}
	return expression_tree_walker(node, contain_context_dependent_node_walker,
								  (void *) flags);
}

/*****************************************************************************
 *		  Check clauses for Vars passed to non-leakproof functions
 *****************************************************************************/

/*
 * contain_leaked_vars
 *		Recursively scan a clause to discover whether it contains any Var
 *		nodes (of the current query level) that are passed as arguments to
 *		leaky functions.
 *
 * Returns true if the clause contains any non-leakproof functions that are
 * passed Var nodes of the current query level, and which might therefore leak
 * data.  Such clauses must be applied after any lower-level security barrier
 * clauses.
 */
bool
contain_leaked_vars(Node *clause)
{
	return contain_leaked_vars_walker(clause, NULL);
}

static bool
contain_leaked_vars_checker(Oid func_id, void *context)
{
	return !get_func_leakproof(func_id);
}

static bool
contain_leaked_vars_walker(Node *node, void *context)
{
	if (node == NULL)
		return false;

	switch (nodeTag(node))
	{
		case T_Var:
		case T_Const:
		case T_Param:
		case T_ArrayExpr:
		case T_FieldSelect:
		case T_FieldStore:
		case T_NamedArgExpr:
		case T_BoolExpr:
		case T_RelabelType:
		case T_CollateExpr:
		case T_CaseExpr:
		case T_CaseTestExpr:
		case T_RowExpr:
		case T_SQLValueFunction:
		case T_NullTest:
		case T_BooleanTest:
		case T_NextValueExpr:
		case T_List:

			/*
			 * We know these node types don't contain function calls; but
			 * something further down in the node tree might.
			 */
			break;

		case T_FuncExpr:
		case T_OpExpr:
		case T_DistinctExpr:
		case T_NullIfExpr:
		case T_ScalarArrayOpExpr:
		case T_CoerceViaIO:
		case T_ArrayCoerceExpr:

			/*
			 * If node contains a leaky function call, and there's any Var
			 * underneath it, reject.
			 */
			if (check_functions_in_node(node, contain_leaked_vars_checker,
										context) &&
				contain_var_clause(node))
				return true;
			break;

		case T_SubscriptingRef:
			{
				SubscriptingRef *sbsref = (SubscriptingRef *) node;
				const SubscriptRoutines *sbsroutines;

				/* Consult the subscripting support method info */
				sbsroutines = getSubscriptingRoutines(sbsref->refcontainertype,
													  NULL);
				if (!sbsroutines ||
					!(sbsref->refassgnexpr != NULL ?
					  sbsroutines->store_leakproof :
					  sbsroutines->fetch_leakproof))
				{
					/* Node is leaky, so reject if it contains Vars */
					if (contain_var_clause(node))
						return true;
				}
			}
			break;

		case T_RowCompareExpr:
			{
				/*
				 * It's worth special-casing this because a leaky comparison
				 * function only compromises one pair of row elements, which
				 * might not contain Vars while others do.
				 */
				RowCompareExpr *rcexpr = (RowCompareExpr *) node;
				ListCell   *opid;
				ListCell   *larg;
				ListCell   *rarg;

				forthree(opid, rcexpr->opnos,
						 larg, rcexpr->largs,
						 rarg, rcexpr->rargs)
				{
					Oid			funcid = get_opcode(lfirst_oid(opid));

					if (!get_func_leakproof(funcid) &&
						(contain_var_clause((Node *) lfirst(larg)) ||
						 contain_var_clause((Node *) lfirst(rarg))))
						return true;
				}
			}
			break;

		case T_MinMaxExpr:
			{
				/*
				 * MinMaxExpr is leakproof if the comparison function it calls
				 * is leakproof.
				 */
				MinMaxExpr *minmaxexpr = (MinMaxExpr *) node;
				TypeCacheEntry *typentry;
				bool		leakproof;

				/* Look up the btree comparison function for the datatype */
				typentry = lookup_type_cache(minmaxexpr->minmaxtype,
											 TYPECACHE_CMP_PROC);
				if (OidIsValid(typentry->cmp_proc))
					leakproof = get_func_leakproof(typentry->cmp_proc);
				else
				{
					/*
					 * The executor will throw an error, but here we just
					 * treat the missing function as leaky.
					 */
					leakproof = false;
				}

				if (!leakproof &&
					contain_var_clause((Node *) minmaxexpr->args))
					return true;
			}
			break;

		case T_CurrentOfExpr:

			/*
			 * WHERE CURRENT OF doesn't contain leaky function calls.
			 * Moreover, it is essential that this is considered non-leaky,
			 * since the planner must always generate a TID scan when CURRENT
			 * OF is present -- cf. cost_tidscan.
			 */
			return false;

		default:

			/*
			 * If we don't recognize the node tag, assume it might be leaky.
			 * This prevents an unexpected security hole if someone adds a new
			 * node type that can call a function.
			 */
			return true;
	}
	return expression_tree_walker(node, contain_leaked_vars_walker,
								  context);
}

/*
 * find_nonnullable_rels
 *		Determine which base rels are forced nonnullable by given clause.
 *
 * Returns the set of all Relids that are referenced in the clause in such
 * a way that the clause cannot possibly return TRUE if any of these Relids
 * is an all-NULL row.  (It is OK to err on the side of conservatism; hence
 * the analysis here is simplistic.)
 *
 * The semantics here are subtly different from contain_nonstrict_functions:
 * that function is concerned with NULL results from arbitrary expressions,
 * but here we assume that the input is a Boolean expression, and wish to
 * see if NULL inputs will provably cause a FALSE-or-NULL result.  We expect
 * the expression to have been AND/OR flattened and converted to implicit-AND
 * format.
 *
 * Note: this function is largely duplicative of find_nonnullable_vars().
 * The reason not to simplify this function into a thin wrapper around
 * find_nonnullable_vars() is that the tested conditions really are different:
 * a clause like "t1.v1 IS NOT NULL OR t1.v2 IS NOT NULL" does not prove
 * that either v1 or v2 can't be NULL, but it does prove that the t1 row
 * as a whole can't be all-NULL.  Also, the behavior for PHVs is different.
 *
 * top_level is true while scanning top-level AND/OR structure; here, showing
 * the result is either FALSE or NULL is good enough.  top_level is false when
 * we have descended below a NOT or a strict function: now we must be able to
 * prove that the subexpression goes to NULL.
 *
 * We don't use expression_tree_walker here because we don't want to descend
 * through very many kinds of nodes; only the ones we can be sure are strict.
 */
Relids
find_nonnullable_rels(Node *clause)
{
	return find_nonnullable_rels_walker(clause, true);
}

static Relids
find_nonnullable_rels_walker(Node *node, bool top_level)
{
	Relids		result = NULL;
	ListCell   *l;

	if (node == NULL)
		return NULL;
	if (IsA(node, Var))
	{
		Var		   *var = (Var *) node;

		if (var->varlevelsup == 0)
			result = bms_make_singleton(var->varno);
	}
	else if (IsA(node, List))
	{
		/*
		 * At top level, we are examining an implicit-AND list: if any of the
		 * arms produces FALSE-or-NULL then the result is FALSE-or-NULL. If
		 * not at top level, we are examining the arguments of a strict
		 * function: if any of them produce NULL then the result of the
		 * function must be NULL.  So in both cases, the set of nonnullable
		 * rels is the union of those found in the arms, and we pass down the
		 * top_level flag unmodified.
		 */
		foreach(l, (List *) node)
		{
			result = bms_join(result,
							  find_nonnullable_rels_walker(lfirst(l),
														   top_level));
		}
	}
	else if (IsA(node, FuncExpr))
	{
		FuncExpr   *expr = (FuncExpr *) node;

		if (func_strict(expr->funcid))
			result = find_nonnullable_rels_walker((Node *) expr->args, false);
	}
	else if (IsA(node, OpExpr))
	{
		OpExpr	   *expr = (OpExpr *) node;

		set_opfuncid(expr);
		if (func_strict(expr->opfuncid))
			result = find_nonnullable_rels_walker((Node *) expr->args, false);
	}
	else if (IsA(node, ScalarArrayOpExpr))
	{
		ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node;

		if (is_strict_saop(expr, true))
			result = find_nonnullable_rels_walker((Node *) expr->args, false);
	}
	else if (IsA(node, BoolExpr))
	{
		BoolExpr   *expr = (BoolExpr *) node;

		switch (expr->boolop)
		{
			case AND_EXPR:
				/* At top level we can just recurse (to the List case) */
				if (top_level)
				{
					result = find_nonnullable_rels_walker((Node *) expr->args,
														  top_level);
					break;
				}

				/*
				 * Below top level, even if one arm produces NULL, the result
				 * could be FALSE (hence not NULL).  However, if *all* the
				 * arms produce NULL then the result is NULL, so we can take
				 * the intersection of the sets of nonnullable rels, just as
				 * for OR.  Fall through to share code.
				 */
				/* FALL THRU */
			case OR_EXPR:

				/*
				 * OR is strict if all of its arms are, so we can take the
				 * intersection of the sets of nonnullable rels for each arm.
				 * This works for both values of top_level.
				 */
				foreach(l, expr->args)
				{
					Relids		subresult;

					subresult = find_nonnullable_rels_walker(lfirst(l),
															 top_level);
					if (result == NULL) /* first subresult? */
						result = subresult;
					else
						result = bms_int_members(result, subresult);

					/*
					 * If the intersection is empty, we can stop looking. This
					 * also justifies the test for first-subresult above.
					 */
					if (bms_is_empty(result))
						break;
				}
				break;
			case NOT_EXPR:
				/* NOT will return null if its arg is null */
				result = find_nonnullable_rels_walker((Node *) expr->args,
													  false);
				break;
			default:
				elog(ERROR, "unrecognized boolop: %d", (int) expr->boolop);
				break;
		}
	}
	else if (IsA(node, RelabelType))
	{
		RelabelType *expr = (RelabelType *) node;

		result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
	}
	else if (IsA(node, CoerceViaIO))
	{
		/* not clear this is useful, but it can't hurt */
		CoerceViaIO *expr = (CoerceViaIO *) node;

		result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
	}
	else if (IsA(node, ArrayCoerceExpr))
	{
		/* ArrayCoerceExpr is strict at the array level; ignore elemexpr */
		ArrayCoerceExpr *expr = (ArrayCoerceExpr *) node;

		result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
	}
	else if (IsA(node, ConvertRowtypeExpr))
	{
		/* not clear this is useful, but it can't hurt */
		ConvertRowtypeExpr *expr = (ConvertRowtypeExpr *) node;

		result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
	}
	else if (IsA(node, CollateExpr))
	{
		CollateExpr *expr = (CollateExpr *) node;

		result = find_nonnullable_rels_walker((Node *) expr->arg, top_level);
	}
	else if (IsA(node, NullTest))
	{
		/* IS NOT NULL can be considered strict, but only at top level */
		NullTest   *expr = (NullTest *) node;

		if (top_level && expr->nulltesttype == IS_NOT_NULL && !expr->argisrow)
			result = find_nonnullable_rels_walker((Node *) expr->arg, false);
	}
	else if (IsA(node, BooleanTest))
	{
		/* Boolean tests that reject NULL are strict at top level */
		BooleanTest *expr = (BooleanTest *) node;

		if (top_level &&
			(expr->booltesttype == IS_TRUE ||
			 expr->booltesttype == IS_FALSE ||
			 expr->booltesttype == IS_NOT_UNKNOWN))
			result = find_nonnullable_rels_walker((Node *) expr->arg, false);
	}
	else if (IsA(node, SubPlan))
	{
		SubPlan    *splan = (SubPlan *) node;

		/*
		 * For some types of SubPlan, we can infer strictness from Vars in the
		 * testexpr (the LHS of the original SubLink).
		 *
		 * For ANY_SUBLINK, if the subquery produces zero rows, the result is
		 * always FALSE.  If the subquery produces more than one row, the
		 * per-row results of the testexpr are combined using OR semantics.
		 * Hence ANY_SUBLINK can be strict only at top level, but there it's
		 * as strict as the testexpr is.
		 *
		 * For ROWCOMPARE_SUBLINK, if the subquery produces zero rows, the
		 * result is always NULL.  Otherwise, the result is as strict as the
		 * testexpr is.  So we can check regardless of top_level.
		 *
		 * We can't prove anything for other sublink types (in particular,
		 * note that ALL_SUBLINK will return TRUE if the subquery is empty).
		 */
		if ((top_level && splan->subLinkType == ANY_SUBLINK) ||
			splan->subLinkType == ROWCOMPARE_SUBLINK)
			result = find_nonnullable_rels_walker(splan->testexpr, top_level);
	}
	else if (IsA(node, PlaceHolderVar))
	{
		PlaceHolderVar *phv = (PlaceHolderVar *) node;

		/*
		 * If the contained expression forces any rels non-nullable, so does
		 * the PHV.
		 */
		result = find_nonnullable_rels_walker((Node *) phv->phexpr, top_level);

		/*
		 * If the PHV's syntactic scope is exactly one rel, it will be forced
		 * to be evaluated at that rel, and so it will behave like a Var of
		 * that rel: if the rel's entire output goes to null, so will the PHV.
		 * (If the syntactic scope is a join, we know that the PHV will go to
		 * null if the whole join does; but that is AND semantics while we
		 * need OR semantics for find_nonnullable_rels' result, so we can't do
		 * anything with the knowledge.)
		 */
		if (phv->phlevelsup == 0 &&
			bms_membership(phv->phrels) == BMS_SINGLETON)
			result = bms_add_members(result, phv->phrels);
	}
	return result;
}

/*
 * find_nonnullable_vars
 *		Determine which Vars are forced nonnullable by given clause.
 *
 * Returns the set of all level-zero Vars that are referenced in the clause in
 * such a way that the clause cannot possibly return TRUE if any of these Vars
 * is NULL.  (It is OK to err on the side of conservatism; hence the analysis
 * here is simplistic.)
 *
 * The semantics here are subtly different from contain_nonstrict_functions:
 * that function is concerned with NULL results from arbitrary expressions,
 * but here we assume that the input is a Boolean expression, and wish to
 * see if NULL inputs will provably cause a FALSE-or-NULL result.  We expect
 * the expression to have been AND/OR flattened and converted to implicit-AND
 * format.
 *
 * Attnos of the identified Vars are returned in a multibitmapset (a List of
 * Bitmapsets).  List indexes correspond to relids (varnos), while the per-rel
 * Bitmapsets hold varattnos offset by FirstLowInvalidHeapAttributeNumber.
 *
 * top_level is true while scanning top-level AND/OR structure; here, showing
 * the result is either FALSE or NULL is good enough.  top_level is false when
 * we have descended below a NOT or a strict function: now we must be able to
 * prove that the subexpression goes to NULL.
 *
 * We don't use expression_tree_walker here because we don't want to descend
 * through very many kinds of nodes; only the ones we can be sure are strict.
 */
List *
find_nonnullable_vars(Node *clause)
{
	return find_nonnullable_vars_walker(clause, true);
}

static List *
find_nonnullable_vars_walker(Node *node, bool top_level)
{
	List	   *result = NIL;
	ListCell   *l;

	if (node == NULL)
		return NIL;
	if (IsA(node, Var))
	{
		Var		   *var = (Var *) node;

		if (var->varlevelsup == 0)
			result = mbms_add_member(result,
									 var->varno,
									 var->varattno - FirstLowInvalidHeapAttributeNumber);
	}
	else if (IsA(node, List))
	{
		/*
		 * At top level, we are examining an implicit-AND list: if any of the
		 * arms produces FALSE-or-NULL then the result is FALSE-or-NULL. If
		 * not at top level, we are examining the arguments of a strict
		 * function: if any of them produce NULL then the result of the
		 * function must be NULL.  So in both cases, the set of nonnullable
		 * vars is the union of those found in the arms, and we pass down the
		 * top_level flag unmodified.
		 */
		foreach(l, (List *) node)
		{
			result = mbms_add_members(result,
									  find_nonnullable_vars_walker(lfirst(l),
																   top_level));
		}
	}
	else if (IsA(node, FuncExpr))
	{
		FuncExpr   *expr = (FuncExpr *) node;

		if (func_strict(expr->funcid))
			result = find_nonnullable_vars_walker((Node *) expr->args, false);
	}
	else if (IsA(node, OpExpr))
	{
		OpExpr	   *expr = (OpExpr *) node;

		set_opfuncid(expr);
		if (func_strict(expr->opfuncid))
			result = find_nonnullable_vars_walker((Node *) expr->args, false);
	}
	else if (IsA(node, ScalarArrayOpExpr))
	{
		ScalarArrayOpExpr *expr = (ScalarArrayOpExpr *) node;

		if (is_strict_saop(expr, true))
			result = find_nonnullable_vars_walker((Node *) expr->args, false);
	}
	else if (IsA(node, BoolExpr))
	{
		BoolExpr   *expr = (BoolExpr *) node;

		switch (expr->boolop)
		{
			case AND_EXPR:

				/*
				 * At top level we can just recurse (to the List case), since
				 * the result should be the union of what we can prove in each
				 * arm.
				 */
				if (top_level)
				{
					result = find_nonnullable_vars_walker((Node *) expr->args,
														  top_level);
					break;
				}

				/*
				 * Below top level, even if one arm produces NULL, the result
				 * could be FALSE (hence not NULL).  However, if *all* the
				 * arms produce NULL then the result is NULL, so we can take
				 * the intersection of the sets of nonnullable vars, just as
				 * for OR.  Fall through to share code.
				 */
				/* FALL THRU */
			case OR_EXPR:

				/*
				 * OR is strict if all of its arms are, so we can take the
				 * intersection of the sets of nonnullable vars for each arm.
				 * This works for both values of top_level.
				 */
				foreach(l, expr->args)
				{
					List	   *subresult;

					subresult = find_nonnullable_vars_walker(lfirst(l),
															 top_level);
					if (result == NIL)	/* first subresult? */
						result = subresult;
					else
						result = mbms_int_members(result, subresult);

					/*
					 * If the intersection is empty, we can stop looking. This
					 * also justifies the test for first-subresult above.
					 */
					if (result == NIL)
						break;
				}
				break;
			case NOT_EXPR:
				/* NOT will return null if its arg is null */
				result = find_nonnullable_vars_walker((Node *) expr->args,
													  false);
				break;
			default:
				elog(ERROR, "unrecognized boolop: %d", (int) expr->boolop);
				break;
		}
	}
	else if (IsA(node, RelabelType))
	{
		RelabelType *expr = (RelabelType *) node;

		result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
	}
	else if (IsA(node, CoerceViaIO))
	{
		/* not clear this is useful, but it can't hurt */
		CoerceViaIO *expr = (CoerceViaIO *) node;

		result = find_nonnullable_vars_walker((Node *) expr->arg, false);
	}
	else if (IsA(node, ArrayCoerceExpr))
	{
		/* ArrayCoerceExpr is strict at the array level; ignore elemexpr */
		ArrayCoerceExpr *expr = (ArrayCoerceExpr *) node;

		result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
	}
	else if (IsA(node, ConvertRowtypeExpr))
	{
		/* not clear this is useful, but it can't hurt */
		ConvertRowtypeExpr *expr = (ConvertRowtypeExpr *) node;

		result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
	}
	else if (IsA(node, CollateExpr))
	{
		CollateExpr *expr = (CollateExpr *) node;

		result = find_nonnullable_vars_walker((Node *) expr->arg, top_level);
	}
	else if (IsA(node, NullTest))
	{
		/* IS NOT NULL can be considered strict, but only at top level */
		NullTest   *expr = (NullTest *) node;

		if (top_level && expr->nulltesttype == IS_NOT_NULL && !expr->argisrow)
			result = find_nonnullable_vars_walker((Node *) expr->arg, false);
	}
	else if (IsA(node, BooleanTest))
	{
		/* Boolean tests that reject NULL are strict at top level */
		BooleanTest *expr = (BooleanTest *) node;

		if (top_level &&
			(expr->booltesttype == IS_TRUE ||
			 expr->booltesttype == IS_FALSE ||
			 expr->booltesttype == IS_NOT_UNKNOWN))
			result = find_nonnullable_vars_walker((Node *) expr->arg, false);
	}
	else if (IsA(node, SubPlan))
	{
		SubPlan    *splan = (SubPlan *) node;

		/* See analysis in find_nonnullable_rels_walker */
		if ((top_level && splan->subLinkType == ANY_SUBLINK) ||
			splan->subLinkType == ROWCOMPARE_SUBLINK)
			result = find_nonnullable_vars_walker(splan->testexpr, top_level);
	}
	else if (IsA(node, PlaceHolderVar))
	{
		PlaceHolderVar *phv = (PlaceHolderVar *) node;

		result = find_nonnullable_vars_walker((Node *) phv->phexpr, top_level);
	}
	return result;
}

/*
 * find_forced_null_vars
 *		Determine which Vars must be NULL for the given clause to return TRUE.
 *
 * This is the complement of find_nonnullable_vars: find the level-zero Vars
 * that must be NULL for the clause to return TRUE.  (It is OK to err on the
 * side of conservatism; hence the analysis here is simplistic.  In fact,
 * we only detect simple "var IS NULL" tests at the top level.)
 *
 * As with find_nonnullable_vars, we return the varattnos of the identified
 * Vars in a multibitmapset.
 */
List *
find_forced_null_vars(Node *node)
{
	List	   *result = NIL;
	Var		   *var;
	ListCell   *l;

	if (node == NULL)
		return NIL;
	/* Check single-clause cases using subroutine */
	var = find_forced_null_var(node);
	if (var)
	{
		result = mbms_add_member(result,
								 var->varno,
								 var->varattno - FirstLowInvalidHeapAttributeNumber);
	}
	/* Otherwise, handle AND-conditions */
	else if (IsA(node, List))
	{
		/*
		 * At top level, we are examining an implicit-AND list: if any of the
		 * arms produces FALSE-or-NULL then the result is FALSE-or-NULL.
		 */
		foreach(l, (List *) node)
		{
			result = mbms_add_members(result,
									  find_forced_null_vars((Node *) lfirst(l)));
		}
	}
	else if (IsA(node, BoolExpr))
	{
		BoolExpr   *expr = (BoolExpr *) node;

		/*
		 * We don't bother considering the OR case, because it's fairly
		 * unlikely anyone would write "v1 IS NULL OR v1 IS NULL". Likewise,
		 * the NOT case isn't worth expending code on.
		 */
		if (expr->boolop == AND_EXPR)
		{
			/* At top level we can just recurse (to the List case) */
			result = find_forced_null_vars((Node *) expr->args);
		}
	}
	return result;
}

/*
 * find_forced_null_var
 *		Return the Var forced null by the given clause, or NULL if it's
 *		not an IS NULL-type clause.  For success, the clause must enforce
 *		*only* nullness of the particular Var, not any other conditions.
 *
 * This is just the single-clause case of find_forced_null_vars(), without
 * any allowance for AND conditions.  It's used by initsplan.c on individual
 * qual clauses.  The reason for not just applying find_forced_null_vars()
 * is that if an AND of an IS NULL clause with something else were to somehow
 * survive AND/OR flattening, initsplan.c might get fooled into discarding
 * the whole clause when only the IS NULL part of it had been proved redundant.
 */
Var *
find_forced_null_var(Node *node)
{
	if (node == NULL)
		return NULL;
	if (IsA(node, NullTest))
	{
		/* check for var IS NULL */
		NullTest   *expr = (NullTest *) node;

		if (expr->nulltesttype == IS_NULL && !expr->argisrow)
		{
			Var		   *var = (Var *) expr->arg;

			if (var && IsA(var, Var) &&
				var->varlevelsup == 0)
				return var;
		}
	}
	else if (IsA(node, BooleanTest))
	{
		/* var IS UNKNOWN is equivalent to var IS NULL */
		BooleanTest *expr = (BooleanTest *) node;

		if (expr->booltesttype == IS_UNKNOWN)
		{
			Var		   *var = (Var *) expr->arg;

			if (var && IsA(var, Var) &&
				var->varlevelsup == 0)
				return var;
		}
	}
	return NULL;
}

/*
 * Can we treat a ScalarArrayOpExpr as strict?
 *
 * If "falseOK" is true, then a "false" result can be considered strict,
 * else we need to guarantee an actual NULL result for NULL input.
 *
 * "foo op ALL array" is strict if the op is strict *and* we can prove
 * that the array input isn't an empty array.  We can check that
 * for the cases of an array constant and an ARRAY[] construct.
 *
 * "foo op ANY array" is strict in the falseOK sense if the op is strict.
 * If not falseOK, the test is the same as for "foo op ALL array".
 */
static bool
is_strict_saop(ScalarArrayOpExpr *expr, bool falseOK)
{
	Node	   *rightop;

	/* The contained operator must be strict. */
	set_sa_opfuncid(expr);
	if (!func_strict(expr->opfuncid))
		return false;
	/* If ANY and falseOK, that's all we need to check. */
	if (expr->useOr && falseOK)
		return true;
	/* Else, we have to see if the array is provably non-empty. */
	Assert(list_length(expr->args) == 2);
	rightop = (Node *) lsecond(expr->args);
	if (rightop && IsA(rightop, Const))
	{
		Datum		arraydatum = ((Const *) rightop)->constvalue;
		bool		arrayisnull = ((Const *) rightop)->constisnull;
		ArrayType  *arrayval;
		int			nitems;

		if (arrayisnull)
			return false;
		arrayval = DatumGetArrayTypeP(arraydatum);
		nitems = ArrayGetNItems(ARR_NDIM(arrayval), ARR_DIMS(arrayval));
		if (nitems > 0)
			return true;
	}
	else if (rightop && IsA(rightop, ArrayExpr))
	{
		ArrayExpr  *arrayexpr = (ArrayExpr *) rightop;

		if (arrayexpr->elements != NIL && !arrayexpr->multidims)
			return true;
	}
	return false;
}


/*****************************************************************************
 *		Check for "pseudo-constant" clauses
 *****************************************************************************/

/*
 * is_pseudo_constant_clause
 *	  Detect whether an expression is "pseudo constant", ie, it contains no
 *	  variables of the current query level and no uses of volatile functions.
 *	  Such an expr is not necessarily a true constant: it can still contain
 *	  Params and outer-level Vars, not to mention functions whose results
 *	  may vary from one statement to the next.  However, the expr's value
 *	  will be constant over any one scan of the current query, so it can be
 *	  used as, eg, an indexscan key.  (Actually, the condition for indexscan
 *	  keys is weaker than this; see is_pseudo_constant_for_index().)
 *
 * CAUTION: this function omits to test for one very important class of
 * not-constant expressions, namely aggregates (Aggrefs).  In current usage
 * this is only applied to WHERE clauses and so a check for Aggrefs would be
 * a waste of cycles; but be sure to also check contain_agg_clause() if you
 * want to know about pseudo-constness in other contexts.  The same goes
 * for window functions (WindowFuncs).
 */
bool
is_pseudo_constant_clause(Node *clause)
{
	/*
	 * We could implement this check in one recursive scan.  But since the
	 * check for volatile functions is both moderately expensive and unlikely
	 * to fail, it seems better to look for Vars first and only check for
	 * volatile functions if we find no Vars.
	 */
	if (!contain_var_clause(clause) &&
		!contain_volatile_functions(clause))
		return true;
	return false;
}

/*
 * is_pseudo_constant_clause_relids
 *	  Same as above, except caller already has available the var membership
 *	  of the expression; this lets us avoid the contain_var_clause() scan.
 */
bool
is_pseudo_constant_clause_relids(Node *clause, Relids relids)
{
	if (bms_is_empty(relids) &&
		!contain_volatile_functions(clause))
		return true;
	return false;
}


/*****************************************************************************
 *																			 *
 *		General clause-manipulating routines								 *
 *																			 *
 *****************************************************************************/

/*
 * NumRelids
 *		(formerly clause_relids)
 *
 * Returns the number of different base relations referenced in 'clause'.
 */
int
NumRelids(PlannerInfo *root, Node *clause)
{
	int			result;
	Relids		varnos = pull_varnos(root, clause);

	varnos = bms_del_members(varnos, root->outer_join_rels);
	result = bms_num_members(varnos);
	bms_free(varnos);
	return result;
}

/*
 * CommuteOpExpr: commute a binary operator clause
 *
 * XXX the clause is destructively modified!
 */
void
CommuteOpExpr(OpExpr *clause)
{
	Oid			opoid;
	Node	   *temp;

	/* Sanity checks: caller is at fault if these fail */
	if (!is_opclause(clause) ||
		list_length(clause->args) != 2)
		elog(ERROR, "cannot commute non-binary-operator clause");

	opoid = get_commutator(clause->opno);

	if (!OidIsValid(opoid))
		elog(ERROR, "could not find commutator for operator %u",
			 clause->opno);

	/*
	 * modify the clause in-place!
	 */
	clause->opno = opoid;
	clause->opfuncid = InvalidOid;
	/* opresulttype, opretset, opcollid, inputcollid need not change */

	temp = linitial(clause->args);
	linitial(clause->args) = lsecond(clause->args);
	lsecond(clause->args) = temp;
}

/*
 * Helper for eval_const_expressions: check that datatype of an attribute
 * is still what it was when the expression was parsed.  This is needed to
 * guard against improper simplification after ALTER COLUMN TYPE.  (XXX we
 * may well need to make similar checks elsewhere?)
 *
 * rowtypeid may come from a whole-row Var, and therefore it can be a domain
 * over composite, but for this purpose we only care about checking the type
 * of a contained field.
 */
static bool
rowtype_field_matches(Oid rowtypeid, int fieldnum,
					  Oid expectedtype, int32 expectedtypmod,
					  Oid expectedcollation)
{
	TupleDesc	tupdesc;
	Form_pg_attribute attr;

	/* No issue for RECORD, since there is no way to ALTER such a type */
	if (rowtypeid == RECORDOID)
		return true;
	tupdesc = lookup_rowtype_tupdesc_domain(rowtypeid, -1, false);
	if (fieldnum <= 0 || fieldnum > tupdesc->natts)
	{
		ReleaseTupleDesc(tupdesc);
		return false;
	}
	attr = TupleDescAttr(tupdesc, fieldnum - 1);
	if (attr->attisdropped ||
		attr->atttypid != expectedtype ||
		attr->atttypmod != expectedtypmod ||
		attr->attcollation != expectedcollation)
	{
		ReleaseTupleDesc(tupdesc);
		return false;
	}
	ReleaseTupleDesc(tupdesc);
	return true;
}


/*--------------------
 * eval_const_expressions
 *
 * Reduce any recognizably constant subexpressions of the given
 * expression tree, for example "2 + 2" => "4".  More interestingly,
 * we can reduce certain boolean expressions even when they contain
 * non-constant subexpressions: "x OR true" => "true" no matter what
 * the subexpression x is.  (XXX We assume that no such subexpression
 * will have important side-effects, which is not necessarily a good
 * assumption in the presence of user-defined functions; do we need a
 * pg_proc flag that prevents discarding the execution of a function?)
 *
 * We do understand that certain functions may deliver non-constant
 * results even with constant inputs, "nextval()" being the classic
 * example.  Functions that are not marked "immutable" in pg_proc
 * will not be pre-evaluated here, although we will reduce their
 * arguments as far as possible.
 *
 * Whenever a function is eliminated from the expression by means of
 * constant-expression evaluation or inlining, we add the function to
 * root->glob->invalItems.  This ensures the plan is known to depend on
 * such functions, even though they aren't referenced anymore.
 *
 * We assume that the tree has already been type-checked and contains
 * only operators and functions that are reasonable to try to execute.
 *
 * NOTE: "root" can be passed as NULL if the caller never wants to do any
 * Param substitutions nor receive info about inlined functions.
 *
 * NOTE: the planner assumes that this will always flatten nested AND and
 * OR clauses into N-argument form.  See comments in prepqual.c.
 *
 * NOTE: another critical effect is that any function calls that require
 * default arguments will be expanded, and named-argument calls will be
 * converted to positional notation.  The executor won't handle either.
 *--------------------
 */
Node *
eval_const_expressions(PlannerInfo *root, Node *node)
{
	eval_const_expressions_context context;

	if (root)
		context.boundParams = root->glob->boundParams;	/* bound Params */
	else
		context.boundParams = NULL;
	context.root = root;		/* for inlined-function dependencies */
	context.active_fns = NIL;	/* nothing being recursively simplified */
	context.case_val = NULL;	/* no CASE being examined */
	context.estimate = false;	/* safe transformations only */
	return eval_const_expressions_mutator(node, &context);
}

#define MIN_ARRAY_SIZE_FOR_HASHED_SAOP 9
/*--------------------
 * convert_saop_to_hashed_saop
 *
 * Recursively search 'node' for ScalarArrayOpExprs and fill in the hash
 * function for any ScalarArrayOpExpr that looks like it would be useful to
 * evaluate using a hash table rather than a linear search.
 *
 * We'll use a hash table if all of the following conditions are met:
 * 1. The 2nd argument of the array contain only Consts.
 * 2. useOr is true or there is a valid negator operator for the
 *	  ScalarArrayOpExpr's opno.
 * 3. There's valid hash function for both left and righthand operands and
 *	  these hash functions are the same.
 * 4. If the array contains enough elements for us to consider it to be
 *	  worthwhile using a hash table rather than a linear search.
 */
void
convert_saop_to_hashed_saop(Node *node)
{
	(void) convert_saop_to_hashed_saop_walker(node, NULL);
}

static bool
convert_saop_to_hashed_saop_walker(Node *node, void *context)
{
	if (node == NULL)
		return false;

	if (IsA(node, ScalarArrayOpExpr))
	{
		ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) node;
		Expr	   *arrayarg = (Expr *) lsecond(saop->args);
		Oid			lefthashfunc;
		Oid			righthashfunc;

		if (arrayarg && IsA(arrayarg, Const) &&
			!((Const *) arrayarg)->constisnull)
		{
			if (saop->useOr)
			{
				if (get_op_hash_functions(saop->opno, &lefthashfunc, &righthashfunc) &&
					lefthashfunc == righthashfunc)
				{
					Datum		arrdatum = ((Const *) arrayarg)->constvalue;
					ArrayType  *arr = (ArrayType *) DatumGetPointer(arrdatum);
					int			nitems;

					/*
					 * Only fill in the hash functions if the array looks
					 * large enough for it to be worth hashing instead of
					 * doing a linear search.
					 */
					nitems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr));

					if (nitems >= MIN_ARRAY_SIZE_FOR_HASHED_SAOP)
					{
						/* Looks good. Fill in the hash functions */
						saop->hashfuncid = lefthashfunc;
					}
					return true;
				}
			}
			else				/* !saop->useOr */
			{
				Oid			negator = get_negator(saop->opno);

				/*
				 * Check if this is a NOT IN using an operator whose negator
				 * is hashable.  If so we can still build a hash table and
				 * just ensure the lookup items are not in the hash table.
				 */
				if (OidIsValid(negator) &&
					get_op_hash_functions(negator, &lefthashfunc, &righthashfunc) &&
					lefthashfunc == righthashfunc)
				{
					Datum		arrdatum = ((Const *) arrayarg)->constvalue;
					ArrayType  *arr = (ArrayType *) DatumGetPointer(arrdatum);
					int			nitems;

					/*
					 * Only fill in the hash functions if the array looks
					 * large enough for it to be worth hashing instead of
					 * doing a linear search.
					 */
					nitems = ArrayGetNItems(ARR_NDIM(arr), ARR_DIMS(arr));

					if (nitems >= MIN_ARRAY_SIZE_FOR_HASHED_SAOP)
					{
						/* Looks good. Fill in the hash functions */
						saop->hashfuncid = lefthashfunc;

						/*
						 * Also set the negfuncid.  The executor will need
						 * that to perform hashtable lookups.
						 */
						saop->negfuncid = get_opcode(negator);
					}
					return true;
				}
			}
		}
	}

	return expression_tree_walker(node, convert_saop_to_hashed_saop_walker, NULL);
}


/*--------------------
 * estimate_expression_value
 *
 * This function attempts to estimate the value of an expression for
 * planning purposes.  It is in essence a more aggressive version of
 * eval_const_expressions(): we will perform constant reductions that are
 * not necessarily 100% safe, but are reasonable for estimation purposes.
 *
 * Currently the extra steps that are taken in this mode are:
 * 1. Substitute values for Params, where a bound Param value has been made
 *	  available by the caller of planner(), even if the Param isn't marked
 *	  constant.  This effectively means that we plan using the first supplied
 *	  value of the Param.
 * 2. Fold stable, as well as immutable, functions to constants.
 * 3. Reduce PlaceHolderVar nodes to their contained expressions.
 *--------------------
 */
Node *
estimate_expression_value(PlannerInfo *root, Node *node)
{
	eval_const_expressions_context context;

	context.boundParams = root->glob->boundParams;	/* bound Params */
	/* we do not need to mark the plan as depending on inlined functions */
	context.root = NULL;
	context.active_fns = NIL;	/* nothing being recursively simplified */
	context.case_val = NULL;	/* no CASE being examined */
	context.estimate = true;	/* unsafe transformations OK */
	return eval_const_expressions_mutator(node, &context);
}

/*
 * The generic case in eval_const_expressions_mutator is to recurse using
 * expression_tree_mutator, which will copy the given node unchanged but
 * const-simplify its arguments (if any) as far as possible.  If the node
 * itself does immutable processing, and each of its arguments were reduced
 * to a Const, we can then reduce it to a Const using evaluate_expr.  (Some
 * node types need more complicated logic; for example, a CASE expression
 * might be reducible to a constant even if not all its subtrees are.)
 */
#define ece_generic_processing(node) \
	expression_tree_mutator((Node *) (node), eval_const_expressions_mutator, \
							(void *) context)

/*
 * Check whether all arguments of the given node were reduced to Consts.
 * By going directly to expression_tree_walker, contain_non_const_walker
 * is not applied to the node itself, only to its children.
 */
#define ece_all_arguments_const(node) \
	(!expression_tree_walker((Node *) (node), contain_non_const_walker, NULL))

/* Generic macro for applying evaluate_expr */
#define ece_evaluate_expr(node) \
	((Node *) evaluate_expr((Expr *) (node), \
							exprType((Node *) (node)), \
							exprTypmod((Node *) (node)), \
							exprCollation((Node *) (node))))

/*
 * Recursive guts of eval_const_expressions/estimate_expression_value
 */
static Node *
eval_const_expressions_mutator(Node *node,
							   eval_const_expressions_context *context)
{
	if (node == NULL)
		return NULL;
	switch (nodeTag(node))
	{
		case T_Param:
			{
				Param	   *param = (Param *) node;
				ParamListInfo paramLI = context->boundParams;

				/* Look to see if we've been given a value for this Param */
				if (param->paramkind == PARAM_EXTERN &&
					paramLI != NULL &&
					param->paramid > 0 &&
					param->paramid <= paramLI->numParams)
				{
					ParamExternData *prm;
					ParamExternData prmdata;

					/*
					 * Give hook a chance in case parameter is dynamic.  Tell
					 * it that this fetch is speculative, so it should avoid
					 * erroring out if parameter is unavailable.
					 */
					if (paramLI->paramFetch != NULL)
						prm = paramLI->paramFetch(paramLI, param->paramid,
												  true, &prmdata);
					else
						prm = &paramLI->params[param->paramid - 1];

					/*
					 * We don't just check OidIsValid, but insist that the
					 * fetched type match the Param, just in case the hook did
					 * something unexpected.  No need to throw an error here
					 * though; leave that for runtime.
					 */
					if (OidIsValid(prm->ptype) &&
						prm->ptype == param->paramtype)
					{
						/* OK to substitute parameter value? */
						if (context->estimate ||
							(prm->pflags & PARAM_FLAG_CONST))
						{
							/*
							 * Return a Const representing the param value.
							 * Must copy pass-by-ref datatypes, since the
							 * Param might be in a memory context
							 * shorter-lived than our output plan should be.
							 */
							int16		typLen;
							bool		typByVal;
							Datum		pval;
							Const	   *con;

							get_typlenbyval(param->paramtype,
											&typLen, &typByVal);
							if (prm->isnull || typByVal)
								pval = prm->value;
							else
								pval = datumCopy(prm->value, typByVal, typLen);
							con = makeConst(param->paramtype,
											param->paramtypmod,
											param->paramcollid,
											(int) typLen,
											pval,
											prm->isnull,
											typByVal);
							con->location = param->location;
							return (Node *) con;
						}
					}
				}

				/*
				 * Not replaceable, so just copy the Param (no need to
				 * recurse)
				 */
				return (Node *) copyObject(param);
			}
		case T_WindowFunc:
			{
				WindowFunc *expr = (WindowFunc *) node;
				Oid			funcid = expr->winfnoid;
				List	   *args;
				Expr	   *aggfilter;
				HeapTuple	func_tuple;
				WindowFunc *newexpr;

				/*
				 * We can't really simplify a WindowFunc node, but we mustn't
				 * just fall through to the default processing, because we
				 * have to apply expand_function_arguments to its argument
				 * list.  That takes care of inserting default arguments and
				 * expanding named-argument notation.
				 */
				func_tuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
				if (!HeapTupleIsValid(func_tuple))
					elog(ERROR, "cache lookup failed for function %u", funcid);

				args = expand_function_arguments(expr->args,
												 false, expr->wintype,
												 func_tuple);

				ReleaseSysCache(func_tuple);

				/* Now, recursively simplify the args (which are a List) */
				args = (List *)
					expression_tree_mutator((Node *) args,
											eval_const_expressions_mutator,
											(void *) context);
				/* ... and the filter expression, which isn't */
				aggfilter = (Expr *)
					eval_const_expressions_mutator((Node *) expr->aggfilter,
												   context);

				/* And build the replacement WindowFunc node */
				newexpr = makeNode(WindowFunc);
				newexpr->winfnoid = expr->winfnoid;
				newexpr->wintype = expr->wintype;
				newexpr->wincollid = expr->wincollid;
				newexpr->inputcollid = expr->inputcollid;
				newexpr->args = args;
				newexpr->aggfilter = aggfilter;
				newexpr->winref = expr->winref;
				newexpr->winstar = expr->winstar;
				newexpr->winagg = expr->winagg;
				newexpr->location = expr->location;

				return (Node *) newexpr;
			}
		case T_FuncExpr:
			{
				FuncExpr   *expr = (FuncExpr *) node;
				List	   *args = expr->args;
				Expr	   *simple;
				FuncExpr   *newexpr;

				/*
				 * Code for op/func reduction is pretty bulky, so split it out
				 * as a separate function.  Note: exprTypmod normally returns
				 * -1 for a FuncExpr, but not when the node is recognizably a
				 * length coercion; we want to preserve the typmod in the
				 * eventual Const if so.
				 */
				simple = simplify_function(expr->funcid,
										   expr->funcresulttype,
										   exprTypmod(node),
										   expr->funccollid,
										   expr->inputcollid,
										   &args,
										   expr->funcvariadic,
										   true,
										   true,
										   context);
				if (simple)		/* successfully simplified it */
					return (Node *) simple;

				/*
				 * The expression cannot be simplified any further, so build
				 * and return a replacement FuncExpr node using the
				 * possibly-simplified arguments.  Note that we have also
				 * converted the argument list to positional notation.
				 */
				newexpr = makeNode(FuncExpr);
				newexpr->funcid = expr->funcid;
				newexpr->funcresulttype = expr->funcresulttype;
				newexpr->funcretset = expr->funcretset;
				newexpr->funcvariadic = expr->funcvariadic;
				newexpr->funcformat = expr->funcformat;
				newexpr->funccollid = expr->funccollid;
				newexpr->inputcollid = expr->inputcollid;
				newexpr->args = args;
				newexpr->location = expr->location;
				return (Node *) newexpr;
			}
		case T_OpExpr:
			{
				OpExpr	   *expr = (OpExpr *) node;
				List	   *args = expr->args;
				Expr	   *simple;
				OpExpr	   *newexpr;

				/*
				 * Need to get OID of underlying function.  Okay to scribble
				 * on input to this extent.
				 */
				set_opfuncid(expr);

				/*
				 * Code for op/func reduction is pretty bulky, so split it out
				 * as a separate function.
				 */
				simple = simplify_function(expr->opfuncid,
										   expr->opresulttype, -1,
										   expr->opcollid,
										   expr->inputcollid,
										   &args,
										   false,
										   true,
										   true,
										   context);
				if (simple)		/* successfully simplified it */
					return (Node *) simple;

				/*
				 * If the operator is boolean equality or inequality, we know
				 * how to simplify cases involving one constant and one
				 * non-constant argument.
				 */
				if (expr->opno == BooleanEqualOperator ||
					expr->opno == BooleanNotEqualOperator)
				{
					simple = (Expr *) simplify_boolean_equality(expr->opno,
																args);
					if (simple) /* successfully simplified it */
						return (Node *) simple;
				}

				/*
				 * The expression cannot be simplified any further, so build
				 * and return a replacement OpExpr node using the
				 * possibly-simplified arguments.
				 */
				newexpr = makeNode(OpExpr);
				newexpr->opno = expr->opno;
				newexpr->opfuncid = expr->opfuncid;
				newexpr->opresulttype = expr->opresulttype;
				newexpr->opretset = expr->opretset;
				newexpr->opcollid = expr->opcollid;
				newexpr->inputcollid = expr->inputcollid;
				newexpr->args = args;
				newexpr->location = expr->location;
				return (Node *) newexpr;
			}
		case T_DistinctExpr:
			{
				DistinctExpr *expr = (DistinctExpr *) node;
				List	   *args;
				ListCell   *arg;
				bool		has_null_input = false;
				bool		all_null_input = true;
				bool		has_nonconst_input = false;
				Expr	   *simple;
				DistinctExpr *newexpr;

				/*
				 * Reduce constants in the DistinctExpr's arguments.  We know
				 * args is either NIL or a List node, so we can call
				 * expression_tree_mutator directly rather than recursing to
				 * self.
				 */
				args = (List *) expression_tree_mutator((Node *) expr->args,
														eval_const_expressions_mutator,
														(void *) context);

				/*
				 * We must do our own check for NULLs because DistinctExpr has
				 * different results for NULL input than the underlying
				 * operator does.
				 */
				foreach(arg, args)
				{
					if (IsA(lfirst(arg), Const))
					{
						has_null_input |= ((Const *) lfirst(arg))->constisnull;
						all_null_input &= ((Const *) lfirst(arg))->constisnull;
					}
					else
						has_nonconst_input = true;
				}

				/* all constants? then can optimize this out */
				if (!has_nonconst_input)
				{
					/* all nulls? then not distinct */
					if (all_null_input)
						return makeBoolConst(false, false);

					/* one null? then distinct */
					if (has_null_input)
						return makeBoolConst(true, false);

					/* otherwise try to evaluate the '=' operator */
					/* (NOT okay to try to inline it, though!) */

					/*
					 * Need to get OID of underlying function.  Okay to
					 * scribble on input to this extent.
					 */
					set_opfuncid((OpExpr *) expr);	/* rely on struct
													 * equivalence */

					/*
					 * Code for op/func reduction is pretty bulky, so split it
					 * out as a separate function.
					 */
					simple = simplify_function(expr->opfuncid,
											   expr->opresulttype, -1,
											   expr->opcollid,
											   expr->inputcollid,
											   &args,
											   false,
											   false,
											   false,
											   context);
					if (simple) /* successfully simplified it */
					{
						/*
						 * Since the underlying operator is "=", must negate
						 * its result
						 */
						Const	   *csimple = castNode(Const, simple);

						csimple->constvalue =
							BoolGetDatum(!DatumGetBool(csimple->constvalue));
						return (Node *) csimple;
					}
				}

				/*
				 * The expression cannot be simplified any further, so build
				 * and return a replacement DistinctExpr node using the
				 * possibly-simplified arguments.
				 */
				newexpr = makeNode(DistinctExpr);
				newexpr->opno = expr->opno;
				newexpr->opfuncid = expr->opfuncid;
				newexpr->opresulttype = expr->opresulttype;
				newexpr->opretset = expr->opretset;
				newexpr->opcollid = expr->opcollid;
				newexpr->inputcollid = expr->inputcollid;
				newexpr->args = args;
				newexpr->location = expr->location;
				return (Node *) newexpr;
			}
		case T_NullIfExpr:
			{
				NullIfExpr *expr;
				ListCell   *arg;
				bool		has_nonconst_input = false;

				/* Copy the node and const-simplify its arguments */
				expr = (NullIfExpr *) ece_generic_processing(node);

				/* If either argument is NULL they can't be equal */
				foreach(arg, expr->args)
				{
					if (!IsA(lfirst(arg), Const))
						has_nonconst_input = true;
					else if (((Const *) lfirst(arg))->constisnull)
						return (Node *) linitial(expr->args);
				}

				/*
				 * Need to get OID of underlying function before checking if
				 * the function is OK to evaluate.
				 */
				set_opfuncid((OpExpr *) expr);

				if (!has_nonconst_input &&
					ece_function_is_safe(expr->opfuncid, context))
					return ece_evaluate_expr(expr);

				return (Node *) expr;
			}
		case T_ScalarArrayOpExpr:
			{
				ScalarArrayOpExpr *saop;

				/* Copy the node and const-simplify its arguments */
				saop = (ScalarArrayOpExpr *) ece_generic_processing(node);

				/* Make sure we know underlying function */
				set_sa_opfuncid(saop);

				/*
				 * If all arguments are Consts, and it's a safe function, we
				 * can fold to a constant
				 */
				if (ece_all_arguments_const(saop) &&
					ece_function_is_safe(saop->opfuncid, context))
					return ece_evaluate_expr(saop);
				return (Node *) saop;
			}
		case T_BoolExpr:
			{
				BoolExpr   *expr = (BoolExpr *) node;

				switch (expr->boolop)
				{
					case OR_EXPR:
						{
							List	   *newargs;
							bool		haveNull = false;
							bool		forceTrue = false;

							newargs = simplify_or_arguments(expr->args,
															context,
															&haveNull,
															&forceTrue);
							if (forceTrue)
								return makeBoolConst(true, false);
							if (haveNull)
								newargs = lappend(newargs,
												  makeBoolConst(false, true));
							/* If all the inputs are FALSE, result is FALSE */
							if (newargs == NIL)
								return makeBoolConst(false, false);

							/*
							 * If only one nonconst-or-NULL input, it's the
							 * result
							 */
							if (list_length(newargs) == 1)
								return (Node *) linitial(newargs);
							/* Else we still need an OR node */
							return (Node *) make_orclause(newargs);
						}
					case AND_EXPR:
						{
							List	   *newargs;
							bool		haveNull = false;
							bool		forceFalse = false;

							newargs = simplify_and_arguments(expr->args,
															 context,
															 &haveNull,
															 &forceFalse);
							if (forceFalse)
								return makeBoolConst(false, false);
							if (haveNull)
								newargs = lappend(newargs,
												  makeBoolConst(false, true));
							/* If all the inputs are TRUE, result is TRUE */
							if (newargs == NIL)
								return makeBoolConst(true, false);

							/*
							 * If only one nonconst-or-NULL input, it's the
							 * result
							 */
							if (list_length(newargs) == 1)
								return (Node *) linitial(newargs);
							/* Else we still need an AND node */
							return (Node *) make_andclause(newargs);
						}
					case NOT_EXPR:
						{
							Node	   *arg;

							Assert(list_length(expr->args) == 1);
							arg = eval_const_expressions_mutator(linitial(expr->args),
																 context);

							/*
							 * Use negate_clause() to see if we can simplify
							 * away the NOT.
							 */
							return negate_clause(arg);
						}
					default:
						elog(ERROR, "unrecognized boolop: %d",
							 (int) expr->boolop);
						break;
				}
				break;
			}

		case T_JsonValueExpr:
			{
				JsonValueExpr *jve = (JsonValueExpr *) node;
				Node	   *raw;

				raw = eval_const_expressions_mutator((Node *) jve->raw_expr,
													 context);
				if (raw && IsA(raw, Const))
				{
					Node	   *formatted;
					Node	   *save_case_val = context->case_val;

					context->case_val = raw;

					formatted = eval_const_expressions_mutator((Node *) jve->formatted_expr,
															   context);

					context->case_val = save_case_val;

					if (formatted && IsA(formatted, Const))
						return formatted;
				}
				break;
			}

		case T_SubPlan:
		case T_AlternativeSubPlan:

			/*
			 * Return a SubPlan unchanged --- too late to do anything with it.
			 *
			 * XXX should we ereport() here instead?  Probably this routine
			 * should never be invoked after SubPlan creation.
			 */
			return node;
		case T_RelabelType:
			{
				RelabelType *relabel = (RelabelType *) node;
				Node	   *arg;

				/* Simplify the input ... */
				arg = eval_const_expressions_mutator((Node *) relabel->arg,
													 context);
				/* ... and attach a new RelabelType node, if needed */
				return applyRelabelType(arg,
										relabel->resulttype,
										relabel->resulttypmod,
										relabel->resultcollid,
										relabel->relabelformat,
										relabel->location,
										true);
			}
		case T_CoerceViaIO:
			{
				CoerceViaIO *expr = (CoerceViaIO *) node;
				List	   *args;
				Oid			outfunc;
				bool		outtypisvarlena;
				Oid			infunc;
				Oid			intypioparam;
				Expr	   *simple;
				CoerceViaIO *newexpr;

				/* Make a List so we can use simplify_function */
				args = list_make1(expr->arg);

				/*
				 * CoerceViaIO represents calling the source type's output
				 * function then the result type's input function.  So, try to
				 * simplify it as though it were a stack of two such function
				 * calls.  First we need to know what the functions are.
				 *
				 * Note that the coercion functions are assumed not to care
				 * about input collation, so we just pass InvalidOid for that.
				 */
				getTypeOutputInfo(exprType((Node *) expr->arg),
								  &outfunc, &outtypisvarlena);
				getTypeInputInfo(expr->resulttype,
								 &infunc, &intypioparam);

				simple = simplify_function(outfunc,
										   CSTRINGOID, -1,
										   InvalidOid,
										   InvalidOid,
										   &args,
										   false,
										   true,
										   true,
										   context);
				if (simple)		/* successfully simplified output fn */
				{
					/*
					 * Input functions may want 1 to 3 arguments.  We always
					 * supply all three, trusting that nothing downstream will
					 * complain.
					 */
					args = list_make3(simple,
									  makeConst(OIDOID,
												-1,
												InvalidOid,
												sizeof(Oid),
												ObjectIdGetDatum(intypioparam),
												false,
												true),
									  makeConst(INT4OID,
												-1,
												InvalidOid,
												sizeof(int32),
												Int32GetDatum(-1),
												false,
												true));

					simple = simplify_function(infunc,
											   expr->resulttype, -1,
											   expr->resultcollid,
											   InvalidOid,
											   &args,
											   false,
											   false,
											   true,
											   context);
					if (simple) /* successfully simplified input fn */
						return (Node *) simple;
				}

				/*
				 * The expression cannot be simplified any further, so build
				 * and return a replacement CoerceViaIO node using the
				 * possibly-simplified argument.
				 */
				newexpr = makeNode(CoerceViaIO);
				newexpr->arg = (Expr *) linitial(args);
				newexpr->resulttype = expr->resulttype;
				newexpr->resultcollid = expr->resultcollid;
				newexpr->coerceformat = expr->coerceformat;
				newexpr->location = expr->location;
				return (Node *) newexpr;
			}
		case T_ArrayCoerceExpr:
			{
				ArrayCoerceExpr *ac = makeNode(ArrayCoerceExpr);
				Node	   *save_case_val;

				/*
				 * Copy the node and const-simplify its arguments.  We can't
				 * use ece_generic_processing() here because we need to mess
				 * with case_val only while processing the elemexpr.
				 */
				memcpy(ac, node, sizeof(ArrayCoerceExpr));
				ac->arg = (Expr *)
					eval_const_expressions_mutator((Node *) ac->arg,
												   context);

				/*
				 * Set up for the CaseTestExpr node contained in the elemexpr.
				 * We must prevent it from absorbing any outer CASE value.
				 */
				save_case_val = context->case_val;
				context->case_val = NULL;

				ac->elemexpr = (Expr *)
					eval_const_expressions_mutator((Node *) ac->elemexpr,
												   context);

				context->case_val = save_case_val;

				/*
				 * If constant argument and the per-element expression is
				 * immutable, we can simplify the whole thing to a constant.
				 * Exception: although contain_mutable_functions considers
				 * CoerceToDomain immutable for historical reasons, let's not
				 * do so here; this ensures coercion to an array-over-domain
				 * does not apply the domain's constraints until runtime.
				 */
				if (ac->arg && IsA(ac->arg, Const) &&
					ac->elemexpr && !IsA(ac->elemexpr, CoerceToDomain) &&
					!contain_mutable_functions((Node *) ac->elemexpr))
					return ece_evaluate_expr(ac);

				return (Node *) ac;
			}
		case T_CollateExpr:
			{
				/*
				 * We replace CollateExpr with RelabelType, so as to improve
				 * uniformity of expression representation and thus simplify
				 * comparison of expressions.  Hence this looks very nearly
				 * the same as the RelabelType case, and we can apply the same
				 * optimizations to avoid unnecessary RelabelTypes.
				 */
				CollateExpr *collate = (CollateExpr *) node;
				Node	   *arg;

				/* Simplify the input ... */
				arg = eval_const_expressions_mutator((Node *) collate->arg,
													 context);
				/* ... and attach a new RelabelType node, if needed */
				return applyRelabelType(arg,
										exprType(arg),
										exprTypmod(arg),
										collate->collOid,
										COERCE_IMPLICIT_CAST,
										collate->location,
										true);
			}
		case T_CaseExpr:
			{
				/*----------
				 * CASE expressions can be simplified if there are constant
				 * condition clauses:
				 *		FALSE (or NULL): drop the alternative
				 *		TRUE: drop all remaining alternatives
				 * If the first non-FALSE alternative is a constant TRUE,
				 * we can simplify the entire CASE to that alternative's
				 * expression.  If there are no non-FALSE alternatives,
				 * we simplify the entire CASE to the default result (ELSE).
				 *
				 * If we have a simple-form CASE with constant test
				 * expression, we substitute the constant value for contained
				 * CaseTestExpr placeholder nodes, so that we have the
				 * opportunity to reduce constant test conditions.  For
				 * example this allows
				 *		CASE 0 WHEN 0 THEN 1 ELSE 1/0 END
				 * to reduce to 1 rather than drawing a divide-by-0 error.
				 * Note that when the test expression is constant, we don't
				 * have to include it in the resulting CASE; for example
				 *		CASE 0 WHEN x THEN y ELSE z END
				 * is transformed by the parser to
				 *		CASE 0 WHEN CaseTestExpr = x THEN y ELSE z END
				 * which we can simplify to
				 *		CASE WHEN 0 = x THEN y ELSE z END
				 * It is not necessary for the executor to evaluate the "arg"
				 * expression when executing the CASE, since any contained
				 * CaseTestExprs that might have referred to it will have been
				 * replaced by the constant.
				 *----------
				 */
				CaseExpr   *caseexpr = (CaseExpr *) node;
				CaseExpr   *newcase;
				Node	   *save_case_val;
				Node	   *newarg;
				List	   *newargs;
				bool		const_true_cond;
				Node	   *defresult = NULL;
				ListCell   *arg;

				/* Simplify the test expression, if any */
				newarg = eval_const_expressions_mutator((Node *) caseexpr->arg,
														context);

				/* Set up for contained CaseTestExpr nodes */
				save_case_val = context->case_val;
				if (newarg && IsA(newarg, Const))
				{
					context->case_val = newarg;
					newarg = NULL;	/* not needed anymore, see above */
				}
				else
					context->case_val = NULL;

				/* Simplify the WHEN clauses */
				newargs = NIL;
				const_true_cond = false;
				foreach(arg, caseexpr->args)
				{
					CaseWhen   *oldcasewhen = lfirst_node(CaseWhen, arg);
					Node	   *casecond;
					Node	   *caseresult;

					/* Simplify this alternative's test condition */
					casecond = eval_const_expressions_mutator((Node *) oldcasewhen->expr,
															  context);

					/*
					 * If the test condition is constant FALSE (or NULL), then
					 * drop this WHEN clause completely, without processing
					 * the result.
					 */
					if (casecond && IsA(casecond, Const))
					{
						Const	   *const_input = (Const *) casecond;

						if (const_input->constisnull ||
							!DatumGetBool(const_input->constvalue))
							continue;	/* drop alternative with FALSE cond */
						/* Else it's constant TRUE */
						const_true_cond = true;
					}

					/* Simplify this alternative's result value */
					caseresult = eval_const_expressions_mutator((Node *) oldcasewhen->result,
																context);

					/* If non-constant test condition, emit a new WHEN node */
					if (!const_true_cond)
					{
						CaseWhen   *newcasewhen = makeNode(CaseWhen);

						newcasewhen->expr = (Expr *) casecond;
						newcasewhen->result = (Expr *) caseresult;
						newcasewhen->location = oldcasewhen->location;
						newargs = lappend(newargs, newcasewhen);
						continue;
					}

					/*
					 * Found a TRUE condition, so none of the remaining
					 * alternatives can be reached.  We treat the result as
					 * the default result.
					 */
					defresult = caseresult;
					break;
				}

				/* Simplify the default result, unless we replaced it above */
				if (!const_true_cond)
					defresult = eval_const_expressions_mutator((Node *) caseexpr->defresult,
															   context);

				context->case_val = save_case_val;

				/*
				 * If no non-FALSE alternatives, CASE reduces to the default
				 * result
				 */
				if (newargs == NIL)
					return defresult;
				/* Otherwise we need a new CASE node */
				newcase = makeNode(CaseExpr);
				newcase->casetype = caseexpr->casetype;
				newcase->casecollid = caseexpr->casecollid;
				newcase->arg = (Expr *) newarg;
				newcase->args = newargs;
				newcase->defresult = (Expr *) defresult;
				newcase->location = caseexpr->location;
				return (Node *) newcase;
			}
		case T_CaseTestExpr:
			{
				/*
				 * If we know a constant test value for the current CASE
				 * construct, substitute it for the placeholder.  Else just
				 * return the placeholder as-is.
				 */
				if (context->case_val)
					return copyObject(context->case_val);
				else
					return copyObject(node);
			}
		case T_SubscriptingRef:
		case T_ArrayExpr:
		case T_RowExpr:
		case T_MinMaxExpr:
			{
				/*
				 * Generic handling for node types whose own processing is
				 * known to be immutable, and for which we need no smarts
				 * beyond "simplify if all inputs are constants".
				 *
				 * Treating SubscriptingRef this way assumes that subscripting
				 * fetch and assignment are both immutable.  This constrains
				 * type-specific subscripting implementations; maybe we should
				 * relax it someday.
				 *
				 * Treating MinMaxExpr this way amounts to assuming that the
				 * btree comparison function it calls is immutable; see the
				 * reasoning in contain_mutable_functions_walker.
				 */

				/* Copy the node and const-simplify its arguments */
				node = ece_generic_processing(node);
				/* If all arguments are Consts, we can fold to a constant */
				if (ece_all_arguments_const(node))
					return ece_evaluate_expr(node);
				return node;
			}
		case T_CoalesceExpr:
			{
				CoalesceExpr *coalesceexpr = (CoalesceExpr *) node;
				CoalesceExpr *newcoalesce;
				List	   *newargs;
				ListCell   *arg;

				newargs = NIL;
				foreach(arg, coalesceexpr->args)
				{
					Node	   *e;

					e = eval_const_expressions_mutator((Node *) lfirst(arg),
													   context);

					/*
					 * We can remove null constants from the list. For a
					 * non-null constant, if it has not been preceded by any
					 * other non-null-constant expressions then it is the
					 * result. Otherwise, it's the next argument, but we can
					 * drop following arguments since they will never be
					 * reached.
					 */
					if (IsA(e, Const))
					{
						if (((Const *) e)->constisnull)
							continue;	/* drop null constant */
						if (newargs == NIL)
							return e;	/* first expr */
						newargs = lappend(newargs, e);
						break;
					}
					newargs = lappend(newargs, e);
				}

				/*
				 * If all the arguments were constant null, the result is just
				 * null
				 */
				if (newargs == NIL)
					return (Node *) makeNullConst(coalesceexpr->coalescetype,
												  -1,
												  coalesceexpr->coalescecollid);

				newcoalesce = makeNode(CoalesceExpr);
				newcoalesce->coalescetype = coalesceexpr->coalescetype;
				newcoalesce->coalescecollid = coalesceexpr->coalescecollid;
				newcoalesce->args = newargs;
				newcoalesce->location = coalesceexpr->location;
				return (Node *) newcoalesce;
			}
		case T_SQLValueFunction:
			{
				/*
				 * All variants of SQLValueFunction are stable, so if we are
				 * estimating the expression's value, we should evaluate the
				 * current function value.  Otherwise just copy.
				 */
				SQLValueFunction *svf = (SQLValueFunction *) node;

				if (context->estimate)
					return (Node *) evaluate_expr((Expr *) svf,
												  svf->type,
												  svf->typmod,
												  InvalidOid);
				else
					return copyObject((Node *) svf);
			}
		case T_FieldSelect:
			{
				/*
				 * We can optimize field selection from a whole-row Var into a
				 * simple Var.  (This case won't be generated directly by the
				 * parser, because ParseComplexProjection short-circuits it.
				 * But it can arise while simplifying functions.)  Also, we
				 * can optimize field selection from a RowExpr construct, or
				 * of course from a constant.
				 *
				 * However, replacing a whole-row Var in this way has a
				 * pitfall: if we've already built the rel targetlist for the
				 * source relation, then the whole-row Var is scheduled to be
				 * produced by the relation scan, but the simple Var probably
				 * isn't, which will lead to a failure in setrefs.c.  This is
				 * not a problem when handling simple single-level queries, in
				 * which expression simplification always happens first.  It
				 * is a risk for lateral references from subqueries, though.
				 * To avoid such failures, don't optimize uplevel references.
				 *
				 * We must also check that the declared type of the field is
				 * still the same as when the FieldSelect was created --- this
				 * can change if someone did ALTER COLUMN TYPE on the rowtype.
				 * If it isn't, we skip the optimization; the case will
				 * probably fail at runtime, but that's not our problem here.
				 */
				FieldSelect *fselect = (FieldSelect *) node;
				FieldSelect *newfselect;
				Node	   *arg;

				arg = eval_const_expressions_mutator((Node *) fselect->arg,
													 context);
				if (arg && IsA(arg, Var) &&
					((Var *) arg)->varattno == InvalidAttrNumber &&
					((Var *) arg)->varlevelsup == 0)
				{
					if (rowtype_field_matches(((Var *) arg)->vartype,
											  fselect->fieldnum,
											  fselect->resulttype,
											  fselect->resulttypmod,
											  fselect->resultcollid))
						return (Node *) makeVar(((Var *) arg)->varno,
												fselect->fieldnum,
												fselect->resulttype,
												fselect->resulttypmod,
												fselect->resultcollid,
												((Var *) arg)->varlevelsup);
				}
				if (arg && IsA(arg, RowExpr))
				{
					RowExpr    *rowexpr = (RowExpr *) arg;

					if (fselect->fieldnum > 0 &&
						fselect->fieldnum <= list_length(rowexpr->args))
					{
						Node	   *fld = (Node *) list_nth(rowexpr->args,
															fselect->fieldnum - 1);

						if (rowtype_field_matches(rowexpr->row_typeid,
												  fselect->fieldnum,
												  fselect->resulttype,
												  fselect->resulttypmod,
												  fselect->resultcollid) &&
							fselect->resulttype == exprType(fld) &&
							fselect->resulttypmod == exprTypmod(fld) &&
							fselect->resultcollid == exprCollation(fld))
							return fld;
					}
				}
				newfselect = makeNode(FieldSelect);
				newfselect->arg = (Expr *) arg;
				newfselect->fieldnum = fselect->fieldnum;
				newfselect->resulttype = fselect->resulttype;
				newfselect->resulttypmod = fselect->resulttypmod;
				newfselect->resultcollid = fselect->resultcollid;
				if (arg && IsA(arg, Const))
				{
					Const	   *con = (Const *) arg;

					if (rowtype_field_matches(con->consttype,
											  newfselect->fieldnum,
											  newfselect->resulttype,
											  newfselect->resulttypmod,
											  newfselect->resultcollid))
						return ece_evaluate_expr(newfselect);
				}
				return (Node *) newfselect;
			}
		case T_NullTest:
			{
				NullTest   *ntest = (NullTest *) node;
				NullTest   *newntest;
				Node	   *arg;

				arg = eval_const_expressions_mutator((Node *) ntest->arg,
													 context);
				if (ntest->argisrow && arg && IsA(arg, RowExpr))
				{
					/*
					 * We break ROW(...) IS [NOT] NULL into separate tests on
					 * its component fields.  This form is usually more
					 * efficient to evaluate, as well as being more amenable
					 * to optimization.
					 */
					RowExpr    *rarg = (RowExpr *) arg;
					List	   *newargs = NIL;
					ListCell   *l;

					foreach(l, rarg->args)
					{
						Node	   *relem = (Node *) lfirst(l);

						/*
						 * A constant field refutes the whole NullTest if it's
						 * of the wrong nullness; else we can discard it.
						 */
						if (relem && IsA(relem, Const))
						{
							Const	   *carg = (Const *) relem;

							if (carg->constisnull ?
								(ntest->nulltesttype == IS_NOT_NULL) :
								(ntest->nulltesttype == IS_NULL))
								return makeBoolConst(false, false);
							continue;
						}

						/*
						 * Else, make a scalar (argisrow == false) NullTest
						 * for this field.  Scalar semantics are required
						 * because IS [NOT] NULL doesn't recurse; see comments
						 * in ExecEvalRowNullInt().
						 */
						newntest = makeNode(NullTest);
						newntest->arg = (Expr *) relem;
						newntest->nulltesttype = ntest->nulltesttype;
						newntest->argisrow = false;
						newntest->location = ntest->location;
						newargs = lappend(newargs, newntest);
					}
					/* If all the inputs were constants, result is TRUE */
					if (newargs == NIL)
						return makeBoolConst(true, false);
					/* If only one nonconst input, it's the result */
					if (list_length(newargs) == 1)
						return (Node *) linitial(newargs);
					/* Else we need an AND node */
					return (Node *) make_andclause(newargs);
				}
				if (!ntest->argisrow && arg && IsA(arg, Const))
				{
					Const	   *carg = (Const *) arg;
					bool		result;

					switch (ntest->nulltesttype)
					{
						case IS_NULL:
							result = carg->constisnull;
							break;
						case IS_NOT_NULL:
							result = !carg->constisnull;
							break;
						default:
							elog(ERROR, "unrecognized nulltesttype: %d",
								 (int) ntest->nulltesttype);
							result = false; /* keep compiler quiet */
							break;
					}

					return makeBoolConst(result, false);
				}

				newntest = makeNode(NullTest);
				newntest->arg = (Expr *) arg;
				newntest->nulltesttype = ntest->nulltesttype;
				newntest->argisrow = ntest->argisrow;
				newntest->location = ntest->location;
				return (Node *) newntest;
			}
		case T_BooleanTest:
			{
				/*
				 * This case could be folded into the generic handling used
				 * for ArrayExpr etc.  But because the simplification logic is
				 * so trivial, applying evaluate_expr() to perform it would be
				 * a heavy overhead.  BooleanTest is probably common enough to
				 * justify keeping this bespoke implementation.
				 */
				BooleanTest *btest = (BooleanTest *) node;
				BooleanTest *newbtest;
				Node	   *arg;

				arg = eval_const_expressions_mutator((Node *) btest->arg,
													 context);
				if (arg && IsA(arg, Const))
				{
					Const	   *carg = (Const *) arg;
					bool		result;

					switch (btest->booltesttype)
					{
						case IS_TRUE:
							result = (!carg->constisnull &&
									  DatumGetBool(carg->constvalue));
							break;
						case IS_NOT_TRUE:
							result = (carg->constisnull ||
									  !DatumGetBool(carg->constvalue));
							break;
						case IS_FALSE:
							result = (!carg->constisnull &&
									  !DatumGetBool(carg->constvalue));
							break;
						case IS_NOT_FALSE:
							result = (carg->constisnull ||
									  DatumGetBool(carg->constvalue));
							break;
						case IS_UNKNOWN:
							result = carg->constisnull;
							break;
						case IS_NOT_UNKNOWN:
							result = !carg->constisnull;
							break;
						default:
							elog(ERROR, "unrecognized booltesttype: %d",
								 (int) btest->booltesttype);
							result = false; /* keep compiler quiet */
							break;
					}

					return makeBoolConst(result, false);
				}

				newbtest = makeNode(BooleanTest);
				newbtest->arg = (Expr *) arg;
				newbtest->booltesttype = btest->booltesttype;
				newbtest->location = btest->location;
				return (Node *) newbtest;
			}
		case T_CoerceToDomain:
			{
				/*
				 * If the domain currently has no constraints, we replace the
				 * CoerceToDomain node with a simple RelabelType, which is
				 * both far faster to execute and more amenable to later
				 * optimization.  We must then mark the plan as needing to be
				 * rebuilt if the domain's constraints change.
				 *
				 * Also, in estimation mode, always replace CoerceToDomain
				 * nodes, effectively assuming that the coercion will succeed.
				 */
				CoerceToDomain *cdomain = (CoerceToDomain *) node;
				CoerceToDomain *newcdomain;
				Node	   *arg;

				arg = eval_const_expressions_mutator((Node *) cdomain->arg,
													 context);
				if (context->estimate ||
					!DomainHasConstraints(cdomain->resulttype))
				{
					/* Record dependency, if this isn't estimation mode */
					if (context->root && !context->estimate)
						record_plan_type_dependency(context->root,
													cdomain->resulttype);

					/* Generate RelabelType to substitute for CoerceToDomain */
					return applyRelabelType(arg,
											cdomain->resulttype,
											cdomain->resulttypmod,
											cdomain->resultcollid,
											cdomain->coercionformat,
											cdomain->location,
											true);
				}

				newcdomain = makeNode(CoerceToDomain);
				newcdomain->arg = (Expr *) arg;
				newcdomain->resulttype = cdomain->resulttype;
				newcdomain->resulttypmod = cdomain->resulttypmod;
				newcdomain->resultcollid = cdomain->resultcollid;
				newcdomain->coercionformat = cdomain->coercionformat;
				newcdomain->location = cdomain->location;
				return (Node *) newcdomain;
			}
		case T_PlaceHolderVar:

			/*
			 * In estimation mode, just strip the PlaceHolderVar node
			 * altogether; this amounts to estimating that the contained value
			 * won't be forced to null by an outer join.  In regular mode we
			 * just use the default behavior (ie, simplify the expression but
			 * leave the PlaceHolderVar node intact).
			 */
			if (context->estimate)
			{
				PlaceHolderVar *phv = (PlaceHolderVar *) node;

				return eval_const_expressions_mutator((Node *) phv->phexpr,
													  context);
			}
			break;
		case T_ConvertRowtypeExpr:
			{
				ConvertRowtypeExpr *cre = castNode(ConvertRowtypeExpr, node);
				Node	   *arg;
				ConvertRowtypeExpr *newcre;

				arg = eval_const_expressions_mutator((Node *) cre->arg,
													 context);

				newcre = makeNode(ConvertRowtypeExpr);
				newcre->resulttype = cre->resulttype;
				newcre->convertformat = cre->convertformat;
				newcre->location = cre->location;

				/*
				 * In case of a nested ConvertRowtypeExpr, we can convert the
				 * leaf row directly to the topmost row format without any
				 * intermediate conversions. (This works because
				 * ConvertRowtypeExpr is used only for child->parent
				 * conversion in inheritance trees, which works by exact match
				 * of column name, and a column absent in an intermediate
				 * result can't be present in the final result.)
				 *
				 * No need to check more than one level deep, because the
				 * above recursion will have flattened anything else.
				 */
				if (arg != NULL && IsA(arg, ConvertRowtypeExpr))
				{
					ConvertRowtypeExpr *argcre = (ConvertRowtypeExpr *) arg;

					arg = (Node *) argcre->arg;

					/*
					 * Make sure an outer implicit conversion can't hide an
					 * inner explicit one.
					 */
					if (newcre->convertformat == COERCE_IMPLICIT_CAST)
						newcre->convertformat = argcre->convertformat;
				}

				newcre->arg = (Expr *) arg;

				if (arg != NULL && IsA(arg, Const))
					return ece_evaluate_expr((Node *) newcre);
				return (Node *) newcre;
			}
		default:
			break;
	}

	/*
	 * For any node type not handled above, copy the node unchanged but
	 * const-simplify its subexpressions.  This is the correct thing for node
	 * types whose behavior might change between planning and execution, such
	 * as CurrentOfExpr.  It's also a safe default for new node types not
	 * known to this routine.
	 */
	return ece_generic_processing(node);
}

/*
 * Subroutine for eval_const_expressions: check for non-Const nodes.
 *
 * We can abort recursion immediately on finding a non-Const node.  This is
 * critical for performance, else eval_const_expressions_mutator would take
 * O(N^2) time on non-simplifiable trees.  However, we do need to descend
 * into List nodes since expression_tree_walker sometimes invokes the walker
 * function directly on List subtrees.
 */
static bool
contain_non_const_walker(Node *node, void *context)
{
	if (node == NULL)
		return false;
	if (IsA(node, Const))
		return false;
	if (IsA(node, List))
		return expression_tree_walker(node, contain_non_const_walker, context);
	/* Otherwise, abort the tree traversal and return true */
	return true;
}

/*
 * Subroutine for eval_const_expressions: check if a function is OK to evaluate
 */
static bool
ece_function_is_safe(Oid funcid, eval_const_expressions_context *context)
{
	char		provolatile = func_volatile(funcid);

	/*
	 * Ordinarily we are only allowed to simplify immutable functions. But for
	 * purposes of estimation, we consider it okay to simplify functions that
	 * are merely stable; the risk that the result might change from planning
	 * time to execution time is worth taking in preference to not being able
	 * to estimate the value at all.
	 */
	if (provolatile == PROVOLATILE_IMMUTABLE)
		return true;
	if (context->estimate && provolatile == PROVOLATILE_STABLE)
		return true;
	return false;
}

/*
 * Subroutine for eval_const_expressions: process arguments of an OR clause
 *
 * This includes flattening of nested ORs as well as recursion to
 * eval_const_expressions to simplify the OR arguments.
 *
 * After simplification, OR arguments are handled as follows:
 *		non constant: keep
 *		FALSE: drop (does not affect result)
 *		TRUE: force result to TRUE
 *		NULL: keep only one
 * We must keep one NULL input because OR expressions evaluate to NULL when no
 * input is TRUE and at least one is NULL.  We don't actually include the NULL
 * here, that's supposed to be done by the caller.
 *
 * The output arguments *haveNull and *forceTrue must be initialized false
 * by the caller.  They will be set true if a NULL constant or TRUE constant,
 * respectively, is detected anywhere in the argument list.
 */
static List *
simplify_or_arguments(List *args,
					  eval_const_expressions_context *context,
					  bool *haveNull, bool *forceTrue)
{
	List	   *newargs = NIL;
	List	   *unprocessed_args;

	/*
	 * We want to ensure that any OR immediately beneath another OR gets
	 * flattened into a single OR-list, so as to simplify later reasoning.
	 *
	 * To avoid stack overflow from recursion of eval_const_expressions, we
	 * resort to some tenseness here: we keep a list of not-yet-processed
	 * inputs, and handle flattening of nested ORs by prepending to the to-do
	 * list instead of recursing.  Now that the parser generates N-argument
	 * ORs from simple lists, this complexity is probably less necessary than
	 * it once was, but we might as well keep the logic.
	 */
	unprocessed_args = list_copy(args);
	while (unprocessed_args)
	{
		Node	   *arg = (Node *) linitial(unprocessed_args);

		unprocessed_args = list_delete_first(unprocessed_args);

		/* flatten nested ORs as per above comment */
		if (is_orclause(arg))
		{
			List	   *subargs = ((BoolExpr *) arg)->args;
			List	   *oldlist = unprocessed_args;

			unprocessed_args = list_concat_copy(subargs, unprocessed_args);
			/* perhaps-overly-tense code to avoid leaking old lists */
			list_free(oldlist);
			continue;
		}

		/* If it's not an OR, simplify it */
		arg = eval_const_expressions_mutator(arg, context);

		/*
		 * It is unlikely but not impossible for simplification of a non-OR
		 * clause to produce an OR.  Recheck, but don't be too tense about it
		 * since it's not a mainstream case.  In particular we don't worry
		 * about const-simplifying the input twice, nor about list leakage.
		 */
		if (is_orclause(arg))
		{
			List	   *subargs = ((BoolExpr *) arg)->args;

			unprocessed_args = list_concat_copy(subargs, unprocessed_args);
			continue;
		}

		/*
		 * OK, we have a const-simplified non-OR argument.  Process it per
		 * comments above.
		 */
		if (IsA(arg, Const))
		{
			Const	   *const_input = (Const *) arg;

			if (const_input->constisnull)
				*haveNull = true;
			else if (DatumGetBool(const_input->constvalue))
			{
				*forceTrue = true;

				/*
				 * Once we detect a TRUE result we can just exit the loop
				 * immediately.  However, if we ever add a notion of
				 * non-removable functions, we'd need to keep scanning.
				 */
				return NIL;
			}
			/* otherwise, we can drop the constant-false input */
			continue;
		}

		/* else emit the simplified arg into the result list */
		newargs = lappend(newargs, arg);
	}

	return newargs;
}

/*
 * Subroutine for eval_const_expressions: process arguments of an AND clause
 *
 * This includes flattening of nested ANDs as well as recursion to
 * eval_const_expressions to simplify the AND arguments.
 *
 * After simplification, AND arguments are handled as follows:
 *		non constant: keep
 *		TRUE: drop (does not affect result)
 *		FALSE: force result to FALSE
 *		NULL: keep only one
 * We must keep one NULL input because AND expressions evaluate to NULL when
 * no input is FALSE and at least one is NULL.  We don't actually include the
 * NULL here, that's supposed to be done by the caller.
 *
 * The output arguments *haveNull and *forceFalse must be initialized false
 * by the caller.  They will be set true if a null constant or false constant,
 * respectively, is detected anywhere in the argument list.
 */
static List *
simplify_and_arguments(List *args,
					   eval_const_expressions_context *context,
					   bool *haveNull, bool *forceFalse)
{
	List	   *newargs = NIL;
	List	   *unprocessed_args;

	/* See comments in simplify_or_arguments */
	unprocessed_args = list_copy(args);
	while (unprocessed_args)
	{
		Node	   *arg = (Node *) linitial(unprocessed_args);

		unprocessed_args = list_delete_first(unprocessed_args);

		/* flatten nested ANDs as per above comment */
		if (is_andclause(arg))
		{
			List	   *subargs = ((BoolExpr *) arg)->args;
			List	   *oldlist = unprocessed_args;

			unprocessed_args = list_concat_copy(subargs, unprocessed_args);
			/* perhaps-overly-tense code to avoid leaking old lists */
			list_free(oldlist);
			continue;
		}

		/* If it's not an AND, simplify it */
		arg = eval_const_expressions_mutator(arg, context);

		/*
		 * It is unlikely but not impossible for simplification of a non-AND
		 * clause to produce an AND.  Recheck, but don't be too tense about it
		 * since it's not a mainstream case.  In particular we don't worry
		 * about const-simplifying the input twice, nor about list leakage.
		 */
		if (is_andclause(arg))
		{
			List	   *subargs = ((BoolExpr *) arg)->args;

			unprocessed_args = list_concat_copy(subargs, unprocessed_args);
			continue;
		}

		/*
		 * OK, we have a const-simplified non-AND argument.  Process it per
		 * comments above.
		 */
		if (IsA(arg, Const))
		{
			Const	   *const_input = (Const *) arg;

			if (const_input->constisnull)
				*haveNull = true;
			else if (!DatumGetBool(const_input->constvalue))
			{
				*forceFalse = true;

				/*
				 * Once we detect a FALSE result we can just exit the loop
				 * immediately.  However, if we ever add a notion of
				 * non-removable functions, we'd need to keep scanning.
				 */
				return NIL;
			}
			/* otherwise, we can drop the constant-true input */
			continue;
		}

		/* else emit the simplified arg into the result list */
		newargs = lappend(newargs, arg);
	}

	return newargs;
}

/*
 * Subroutine for eval_const_expressions: try to simplify boolean equality
 * or inequality condition
 *
 * Inputs are the operator OID and the simplified arguments to the operator.
 * Returns a simplified expression if successful, or NULL if cannot
 * simplify the expression.
 *
 * The idea here is to reduce "x = true" to "x" and "x = false" to "NOT x",
 * or similarly "x <> true" to "NOT x" and "x <> false" to "x".
 * This is only marginally useful in itself, but doing it in constant folding
 * ensures that we will recognize these forms as being equivalent in, for
 * example, partial index matching.
 *
 * We come here only if simplify_function has failed; therefore we cannot
 * see two constant inputs, nor a constant-NULL input.
 */
static Node *
simplify_boolean_equality(Oid opno, List *args)
{
	Node	   *leftop;
	Node	   *rightop;

	Assert(list_length(args) == 2);
	leftop = linitial(args);
	rightop = lsecond(args);
	if (leftop && IsA(leftop, Const))
	{
		Assert(!((Const *) leftop)->constisnull);
		if (opno == BooleanEqualOperator)
		{
			if (DatumGetBool(((Const *) leftop)->constvalue))
				return rightop; /* true = foo */
			else
				return negate_clause(rightop);	/* false = foo */
		}
		else
		{
			if (DatumGetBool(((Const *) leftop)->constvalue))
				return negate_clause(rightop);	/* true <> foo */
			else
				return rightop; /* false <> foo */
		}
	}
	if (rightop && IsA(rightop, Const))
	{
		Assert(!((Const *) rightop)->constisnull);
		if (opno == BooleanEqualOperator)
		{
			if (DatumGetBool(((Const *) rightop)->constvalue))
				return leftop;	/* foo = true */
			else
				return negate_clause(leftop);	/* foo = false */
		}
		else
		{
			if (DatumGetBool(((Const *) rightop)->constvalue))
				return negate_clause(leftop);	/* foo <> true */
			else
				return leftop;	/* foo <> false */
		}
	}
	return NULL;
}

/*
 * Subroutine for eval_const_expressions: try to simplify a function call
 * (which might originally have been an operator; we don't care)
 *
 * Inputs are the function OID, actual result type OID (which is needed for
 * polymorphic functions), result typmod, result collation, the input
 * collation to use for the function, the original argument list (not
 * const-simplified yet, unless process_args is false), and some flags;
 * also the context data for eval_const_expressions.
 *
 * Returns a simplified expression if successful, or NULL if cannot
 * simplify the function call.
 *
 * This function is also responsible for converting named-notation argument
 * lists into positional notation and/or adding any needed default argument
 * expressions; which is a bit grotty, but it avoids extra fetches of the
 * function's pg_proc tuple.  For this reason, the args list is
 * pass-by-reference.  Conversion and const-simplification of the args list
 * will be done even if simplification of the function call itself is not
 * possible.
 */
static Expr *
simplify_function(Oid funcid, Oid result_type, int32 result_typmod,
				  Oid result_collid, Oid input_collid, List **args_p,
				  bool funcvariadic, bool process_args, bool allow_non_const,
				  eval_const_expressions_context *context)
{
	List	   *args = *args_p;
	HeapTuple	func_tuple;
	Form_pg_proc func_form;
	Expr	   *newexpr;

	/*
	 * We have three strategies for simplification: execute the function to
	 * deliver a constant result, use a transform function to generate a
	 * substitute node tree, or expand in-line the body of the function
	 * definition (which only works for simple SQL-language functions, but
	 * that is a common case).  Each case needs access to the function's
	 * pg_proc tuple, so fetch it just once.
	 *
	 * Note: the allow_non_const flag suppresses both the second and third
	 * strategies; so if !allow_non_const, simplify_function can only return a
	 * Const or NULL.  Argument-list rewriting happens anyway, though.
	 */
	func_tuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(funcid));
	if (!HeapTupleIsValid(func_tuple))
		elog(ERROR, "cache lookup failed for function %u", funcid);
	func_form = (Form_pg_proc) GETSTRUCT(func_tuple);

	/*
	 * Process the function arguments, unless the caller did it already.
	 *
	 * Here we must deal with named or defaulted arguments, and then
	 * recursively apply eval_const_expressions to the whole argument list.
	 */
	if (process_args)
	{
		args = expand_function_arguments(args, false, result_type, func_tuple);
		args = (List *) expression_tree_mutator((Node *) args,
												eval_const_expressions_mutator,
												(void *) context);
		/* Argument processing done, give it back to the caller */
		*args_p = args;
	}

	/* Now attempt simplification of the function call proper. */

	newexpr = evaluate_function(funcid, result_type, result_typmod,
								result_collid, input_collid,
								args, funcvariadic,
								func_tuple, context);

	if (!newexpr && allow_non_const && OidIsValid(func_form->prosupport))
	{
		/*
		 * Build a SupportRequestSimplify node to pass to the support
		 * function, pointing to a dummy FuncExpr node containing the
		 * simplified arg list.  We use this approach to present a uniform
		 * interface to the support function regardless of how the target
		 * function is actually being invoked.
		 */
		SupportRequestSimplify req;
		FuncExpr	fexpr;

		fexpr.xpr.type = T_FuncExpr;
		fexpr.funcid = funcid;
		fexpr.funcresulttype = result_type;
		fexpr.funcretset = func_form->proretset;
		fexpr.funcvariadic = funcvariadic;
		fexpr.funcformat = COERCE_EXPLICIT_CALL;
		fexpr.funccollid = result_collid;
		fexpr.inputcollid = input_collid;
		fexpr.args = args;
		fexpr.location = -1;

		req.type = T_SupportRequestSimplify;
		req.root = context->root;
		req.fcall = &fexpr;

		newexpr = (Expr *)
			DatumGetPointer(OidFunctionCall1(func_form->prosupport,
											 PointerGetDatum(&req)));

		/* catch a possible API misunderstanding */
		Assert(newexpr != (Expr *) &fexpr);
	}

	if (!newexpr && allow_non_const)
		newexpr = inline_function(funcid, result_type, result_collid,
								  input_collid, args, funcvariadic,
								  func_tuple, context);

	ReleaseSysCache(func_tuple);

	return newexpr;
}

/*
 * expand_function_arguments: convert named-notation args to positional args
 * and/or insert default args, as needed
 *
 * Returns a possibly-transformed version of the args list.
 *
 * If include_out_arguments is true, then the args list and the result
 * include OUT arguments.
 *
 * The expected result type of the call must be given, for sanity-checking
 * purposes.  Also, we ask the caller to provide the function's actual
 * pg_proc tuple, not just its OID.
 *
 * If we need to change anything, the input argument list is copied, not
 * modified.
 *
 * Note: this gets applied to operator argument lists too, even though the
 * cases it handles should never occur there.  This should be OK since it
 * will fall through very quickly if there's nothing to do.
 */
List *
expand_function_arguments(List *args, bool include_out_arguments,
						  Oid result_type, HeapTuple func_tuple)
{
	Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
	Oid		   *proargtypes = funcform->proargtypes.values;
	int			pronargs = funcform->pronargs;
	bool		has_named_args = false;
	ListCell   *lc;

	/*
	 * If we are asked to match to OUT arguments, then use the proallargtypes
	 * array (which includes those); otherwise use proargtypes (which
	 * doesn't).  Of course, if proallargtypes is null, we always use
	 * proargtypes.  (Fetching proallargtypes is annoyingly expensive
	 * considering that we may have nothing to do here, but fortunately the
	 * common case is include_out_arguments == false.)
	 */
	if (include_out_arguments)
	{
		Datum		proallargtypes;
		bool		isNull;

		proallargtypes = SysCacheGetAttr(PROCOID, func_tuple,
										 Anum_pg_proc_proallargtypes,
										 &isNull);
		if (!isNull)
		{
			ArrayType  *arr = DatumGetArrayTypeP(proallargtypes);

			pronargs = ARR_DIMS(arr)[0];
			if (ARR_NDIM(arr) != 1 ||
				pronargs < 0 ||
				ARR_HASNULL(arr) ||
				ARR_ELEMTYPE(arr) != OIDOID)
				elog(ERROR, "proallargtypes is not a 1-D Oid array or it contains nulls");
			Assert(pronargs >= funcform->pronargs);
			proargtypes = (Oid *) ARR_DATA_PTR(arr);
		}
	}

	/* Do we have any named arguments? */
	foreach(lc, args)
	{
		Node	   *arg = (Node *) lfirst(lc);

		if (IsA(arg, NamedArgExpr))
		{
			has_named_args = true;
			break;
		}
	}

	/* If so, we must apply reorder_function_arguments */
	if (has_named_args)
	{
		args = reorder_function_arguments(args, pronargs, func_tuple);
		/* Recheck argument types and add casts if needed */
		recheck_cast_function_args(args, result_type,
								   proargtypes, pronargs,
								   func_tuple);
	}
	else if (list_length(args) < pronargs)
	{
		/* No named args, but we seem to be short some defaults */
		args = add_function_defaults(args, pronargs, func_tuple);
		/* Recheck argument types and add casts if needed */
		recheck_cast_function_args(args, result_type,
								   proargtypes, pronargs,
								   func_tuple);
	}

	return args;
}

/*
 * reorder_function_arguments: convert named-notation args to positional args
 *
 * This function also inserts default argument values as needed, since it's
 * impossible to form a truly valid positional call without that.
 */
static List *
reorder_function_arguments(List *args, int pronargs, HeapTuple func_tuple)
{
	Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
	int			nargsprovided = list_length(args);
	Node	   *argarray[FUNC_MAX_ARGS];
	ListCell   *lc;
	int			i;

	Assert(nargsprovided <= pronargs);
	if (pronargs < 0 || pronargs > FUNC_MAX_ARGS)
		elog(ERROR, "too many function arguments");
	memset(argarray, 0, pronargs * sizeof(Node *));

	/* Deconstruct the argument list into an array indexed by argnumber */
	i = 0;
	foreach(lc, args)
	{
		Node	   *arg = (Node *) lfirst(lc);

		if (!IsA(arg, NamedArgExpr))
		{
			/* positional argument, assumed to precede all named args */
			Assert(argarray[i] == NULL);
			argarray[i++] = arg;
		}
		else
		{
			NamedArgExpr *na = (NamedArgExpr *) arg;

			Assert(na->argnumber >= 0 && na->argnumber < pronargs);
			Assert(argarray[na->argnumber] == NULL);
			argarray[na->argnumber] = (Node *) na->arg;
		}
	}

	/*
	 * Fetch default expressions, if needed, and insert into array at proper
	 * locations (they aren't necessarily consecutive or all used)
	 */
	if (nargsprovided < pronargs)
	{
		List	   *defaults = fetch_function_defaults(func_tuple);

		i = pronargs - funcform->pronargdefaults;
		foreach(lc, defaults)
		{
			if (argarray[i] == NULL)
				argarray[i] = (Node *) lfirst(lc);
			i++;
		}
	}

	/* Now reconstruct the args list in proper order */
	args = NIL;
	for (i = 0; i < pronargs; i++)
	{
		Assert(argarray[i] != NULL);
		args = lappend(args, argarray[i]);
	}

	return args;
}

/*
 * add_function_defaults: add missing function arguments from its defaults
 *
 * This is used only when the argument list was positional to begin with,
 * and so we know we just need to add defaults at the end.
 */
static List *
add_function_defaults(List *args, int pronargs, HeapTuple func_tuple)
{
	int			nargsprovided = list_length(args);
	List	   *defaults;
	int			ndelete;

	/* Get all the default expressions from the pg_proc tuple */
	defaults = fetch_function_defaults(func_tuple);

	/* Delete any unused defaults from the list */
	ndelete = nargsprovided + list_length(defaults) - pronargs;
	if (ndelete < 0)
		elog(ERROR, "not enough default arguments");
	if (ndelete > 0)
		defaults = list_delete_first_n(defaults, ndelete);

	/* And form the combined argument list, not modifying the input list */
	return list_concat_copy(args, defaults);
}

/*
 * fetch_function_defaults: get function's default arguments as expression list
 */
static List *
fetch_function_defaults(HeapTuple func_tuple)
{
	List	   *defaults;
	Datum		proargdefaults;
	char	   *str;

	proargdefaults = SysCacheGetAttrNotNull(PROCOID, func_tuple,
											Anum_pg_proc_proargdefaults);
	str = TextDatumGetCString(proargdefaults);
	defaults = castNode(List, stringToNode(str));
	pfree(str);
	return defaults;
}

/*
 * recheck_cast_function_args: recheck function args and typecast as needed
 * after adding defaults.
 *
 * It is possible for some of the defaulted arguments to be polymorphic;
 * therefore we can't assume that the default expressions have the correct
 * data types already.  We have to re-resolve polymorphics and do coercion
 * just like the parser did.
 *
 * This should be a no-op if there are no polymorphic arguments,
 * but we do it anyway to be sure.
 *
 * Note: if any casts are needed, the args list is modified in-place;
 * caller should have already copied the list structure.
 */
static void
recheck_cast_function_args(List *args, Oid result_type,
						   Oid *proargtypes, int pronargs,
						   HeapTuple func_tuple)
{
	Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
	int			nargs;
	Oid			actual_arg_types[FUNC_MAX_ARGS];
	Oid			declared_arg_types[FUNC_MAX_ARGS];
	Oid			rettype;
	ListCell   *lc;

	if (list_length(args) > FUNC_MAX_ARGS)
		elog(ERROR, "too many function arguments");
	nargs = 0;
	foreach(lc, args)
	{
		actual_arg_types[nargs++] = exprType((Node *) lfirst(lc));
	}
	Assert(nargs == pronargs);
	memcpy(declared_arg_types, proargtypes, pronargs * sizeof(Oid));
	rettype = enforce_generic_type_consistency(actual_arg_types,
											   declared_arg_types,
											   nargs,
											   funcform->prorettype,
											   false);
	/* let's just check we got the same answer as the parser did ... */
	if (rettype != result_type)
		elog(ERROR, "function's resolved result type changed during planning");

	/* perform any necessary typecasting of arguments */
	make_fn_arguments(NULL, args, actual_arg_types, declared_arg_types);
}

/*
 * evaluate_function: try to pre-evaluate a function call
 *
 * We can do this if the function is strict and has any constant-null inputs
 * (just return a null constant), or if the function is immutable and has all
 * constant inputs (call it and return the result as a Const node).  In
 * estimation mode we are willing to pre-evaluate stable functions too.
 *
 * Returns a simplified expression if successful, or NULL if cannot
 * simplify the function.
 */
static Expr *
evaluate_function(Oid funcid, Oid result_type, int32 result_typmod,
				  Oid result_collid, Oid input_collid, List *args,
				  bool funcvariadic,
				  HeapTuple func_tuple,
				  eval_const_expressions_context *context)
{
	Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
	bool		has_nonconst_input = false;
	bool		has_null_input = false;
	ListCell   *arg;
	FuncExpr   *newexpr;

	/*
	 * Can't simplify if it returns a set.
	 */
	if (funcform->proretset)
		return NULL;

	/*
	 * Can't simplify if it returns RECORD.  The immediate problem is that it
	 * will be needing an expected tupdesc which we can't supply here.
	 *
	 * In the case where it has OUT parameters, it could get by without an
	 * expected tupdesc, but we still have issues: get_expr_result_type()
	 * doesn't know how to extract type info from a RECORD constant, and in
	 * the case of a NULL function result there doesn't seem to be any clean
	 * way to fix that.  In view of the likelihood of there being still other
	 * gotchas, seems best to leave the function call unreduced.
	 */
	if (funcform->prorettype == RECORDOID)
		return NULL;

	/*
	 * Check for constant inputs and especially constant-NULL inputs.
	 */
	foreach(arg, args)
	{
		if (IsA(lfirst(arg), Const))
			has_null_input |= ((Const *) lfirst(arg))->constisnull;
		else
			has_nonconst_input = true;
	}

	/*
	 * If the function is strict and has a constant-NULL input, it will never
	 * be called at all, so we can replace the call by a NULL constant, even
	 * if there are other inputs that aren't constant, and even if the
	 * function is not otherwise immutable.
	 */
	if (funcform->proisstrict && has_null_input)
		return (Expr *) makeNullConst(result_type, result_typmod,
									  result_collid);

	/*
	 * Otherwise, can simplify only if all inputs are constants. (For a
	 * non-strict function, constant NULL inputs are treated the same as
	 * constant non-NULL inputs.)
	 */
	if (has_nonconst_input)
		return NULL;

	/*
	 * Ordinarily we are only allowed to simplify immutable functions. But for
	 * purposes of estimation, we consider it okay to simplify functions that
	 * are merely stable; the risk that the result might change from planning
	 * time to execution time is worth taking in preference to not being able
	 * to estimate the value at all.
	 */
	if (funcform->provolatile == PROVOLATILE_IMMUTABLE)
		 /* okay */ ;
	else if (context->estimate && funcform->provolatile == PROVOLATILE_STABLE)
		 /* okay */ ;
	else
		return NULL;

	/*
	 * OK, looks like we can simplify this operator/function.
	 *
	 * Build a new FuncExpr node containing the already-simplified arguments.
	 */
	newexpr = makeNode(FuncExpr);
	newexpr->funcid = funcid;
	newexpr->funcresulttype = result_type;
	newexpr->funcretset = false;
	newexpr->funcvariadic = funcvariadic;
	newexpr->funcformat = COERCE_EXPLICIT_CALL; /* doesn't matter */
	newexpr->funccollid = result_collid;	/* doesn't matter */
	newexpr->inputcollid = input_collid;
	newexpr->args = args;
	newexpr->location = -1;

	return evaluate_expr((Expr *) newexpr, result_type, result_typmod,
						 result_collid);
}

/*
 * inline_function: try to expand a function call inline
 *
 * If the function is a sufficiently simple SQL-language function
 * (just "SELECT expression"), then we can inline it and avoid the rather
 * high per-call overhead of SQL functions.  Furthermore, this can expose
 * opportunities for constant-folding within the function expression.
 *
 * We have to beware of some special cases however.  A directly or
 * indirectly recursive function would cause us to recurse forever,
 * so we keep track of which functions we are already expanding and
 * do not re-expand them.  Also, if a parameter is used more than once
 * in the SQL-function body, we require it not to contain any volatile
 * functions (volatiles might deliver inconsistent answers) nor to be
 * unreasonably expensive to evaluate.  The expensiveness check not only
 * prevents us from doing multiple evaluations of an expensive parameter
 * at runtime, but is a safety value to limit growth of an expression due
 * to repeated inlining.
 *
 * We must also beware of changing the volatility or strictness status of
 * functions by inlining them.
 *
 * Also, at the moment we can't inline functions returning RECORD.  This
 * doesn't work in the general case because it discards information such
 * as OUT-parameter declarations.
 *
 * Also, context-dependent expression nodes in the argument list are trouble.
 *
 * Returns a simplified expression if successful, or NULL if cannot
 * simplify the function.
 */
static Expr *
inline_function(Oid funcid, Oid result_type, Oid result_collid,
				Oid input_collid, List *args,
				bool funcvariadic,
				HeapTuple func_tuple,
				eval_const_expressions_context *context)
{
	Form_pg_proc funcform = (Form_pg_proc) GETSTRUCT(func_tuple);
	char	   *src;
	Datum		tmp;
	bool		isNull;
	MemoryContext oldcxt;
	MemoryContext mycxt;
	inline_error_callback_arg callback_arg;
	ErrorContextCallback sqlerrcontext;
	FuncExpr   *fexpr;
	SQLFunctionParseInfoPtr pinfo;
	TupleDesc	rettupdesc;
	ParseState *pstate;
	List	   *raw_parsetree_list;
	List	   *querytree_list;
	Query	   *querytree;
	Node	   *newexpr;
	int		   *usecounts;
	ListCell   *arg;
	int			i;

	/*
	 * Forget it if the function is not SQL-language or has other showstopper
	 * properties.  (The prokind and nargs checks are just paranoia.)
	 */
	if (funcform->prolang != SQLlanguageId ||
		funcform->prokind != PROKIND_FUNCTION ||
		funcform->prosecdef ||
		funcform->proretset ||
		funcform->prorettype == RECORDOID ||
		!heap_attisnull(func_tuple, Anum_pg_proc_proconfig, NULL) ||
		funcform->pronargs != list_length(args))
		return NULL;

	/* Check for recursive function, and give up trying to expand if so */
	if (list_member_oid(context->active_fns, funcid))
		return NULL;

	/* Check permission to call function (fail later, if not) */
	if (object_aclcheck(ProcedureRelationId, funcid, GetUserId(), ACL_EXECUTE) != ACLCHECK_OK)
		return NULL;

	/* Check whether a plugin wants to hook function entry/exit */
	if (FmgrHookIsNeeded(funcid))
		return NULL;

	/*
	 * Make a temporary memory context, so that we don't leak all the stuff
	 * that parsing might create.
	 */
	mycxt = AllocSetContextCreate(CurrentMemoryContext,
								  "inline_function",
								  ALLOCSET_DEFAULT_SIZES);
	oldcxt = MemoryContextSwitchTo(mycxt);

	/*
	 * We need a dummy FuncExpr node containing the already-simplified
	 * arguments.  (In some cases we don't really need it, but building it is
	 * cheap enough that it's not worth contortions to avoid.)
	 */
	fexpr = makeNode(FuncExpr);
	fexpr->funcid = funcid;
	fexpr->funcresulttype = result_type;
	fexpr->funcretset = false;
	fexpr->funcvariadic = funcvariadic;
	fexpr->funcformat = COERCE_EXPLICIT_CALL;	/* doesn't matter */
	fexpr->funccollid = result_collid;	/* doesn't matter */
	fexpr->inputcollid = input_collid;
	fexpr->args = args;
	fexpr->location = -1;

	/* Fetch the function body */
	tmp = SysCacheGetAttrNotNull(PROCOID, func_tuple, Anum_pg_proc_prosrc);
	src = TextDatumGetCString(tmp);

	/*
	 * Setup error traceback support for ereport().  This is so that we can
	 * finger the function that bad information came from.
	 */
	callback_arg.proname = NameStr(funcform->proname);
	callback_arg.prosrc = src;

	sqlerrcontext.callback = sql_inline_error_callback;
	sqlerrcontext.arg = (void *) &callback_arg;
	sqlerrcontext.previous = error_context_stack;
	error_context_stack = &sqlerrcontext;

	/* If we have prosqlbody, pay attention to that not prosrc */
	tmp = SysCacheGetAttr(PROCOID,
						  func_tuple,
						  Anum_pg_proc_prosqlbody,
						  &isNull);
	if (!isNull)
	{
		Node	   *n;
		List	   *query_list;

		n = stringToNode(TextDatumGetCString(tmp));
		if (IsA(n, List))
			query_list = linitial_node(List, castNode(List, n));
		else
			query_list = list_make1(n);
		if (list_length(query_list) != 1)
			goto fail;
		querytree = linitial(query_list);

		/*
		 * Because we'll insist below that the querytree have an empty rtable
		 * and no sublinks, it cannot have any relation references that need
		 * to be locked or rewritten.  So we can omit those steps.
		 */
	}
	else
	{
		/* Set up to handle parameters while parsing the function body. */
		pinfo = prepare_sql_fn_parse_info(func_tuple,
										  (Node *) fexpr,
										  input_collid);

		/*
		 * We just do parsing and parse analysis, not rewriting, because
		 * rewriting will not affect table-free-SELECT-only queries, which is
		 * all that we care about.  Also, we can punt as soon as we detect
		 * more than one command in the function body.
		 */
		raw_parsetree_list = pg_parse_query(src);
		if (list_length(raw_parsetree_list) != 1)
			goto fail;

		pstate = make_parsestate(NULL);
		pstate->p_sourcetext = src;
		sql_fn_parser_setup(pstate, pinfo);

		querytree = transformTopLevelStmt(pstate, linitial(raw_parsetree_list));

		free_parsestate(pstate);
	}

	/*
	 * The single command must be a simple "SELECT expression".
	 *
	 * Note: if you change the tests involved in this, see also plpgsql's
	 * exec_simple_check_plan().  That generally needs to have the same idea
	 * of what's a "simple expression", so that inlining a function that
	 * previously wasn't inlined won't change plpgsql's conclusion.
	 */
	if (!IsA(querytree, Query) ||
		querytree->commandType != CMD_SELECT ||
		querytree->hasAggs ||
		querytree->hasWindowFuncs ||
		querytree->hasTargetSRFs ||
		querytree->hasSubLinks ||
		querytree->cteList ||
		querytree->rtable ||
		querytree->jointree->fromlist ||
		querytree->jointree->quals ||
		querytree->groupClause ||
		querytree->groupingSets ||
		querytree->havingQual ||
		querytree->windowClause ||
		querytree->distinctClause ||
		querytree->sortClause ||
		querytree->limitOffset ||
		querytree->limitCount ||
		querytree->setOperations ||
		list_length(querytree->targetList) != 1)
		goto fail;

	/* If the function result is composite, resolve it */
	(void) get_expr_result_type((Node *) fexpr,
								NULL,
								&rettupdesc);

	/*
	 * Make sure the function (still) returns what it's declared to.  This
	 * will raise an error if wrong, but that's okay since the function would
	 * fail at runtime anyway.  Note that check_sql_fn_retval will also insert
	 * a coercion if needed to make the tlist expression match the declared
	 * type of the function.
	 *
	 * Note: we do not try this until we have verified that no rewriting was
	 * needed; that's probably not important, but let's be careful.
	 */
	querytree_list = list_make1(querytree);
	if (check_sql_fn_retval(list_make1(querytree_list),
							result_type, rettupdesc,
							false, NULL))
		goto fail;				/* reject whole-tuple-result cases */

	/*
	 * Given the tests above, check_sql_fn_retval shouldn't have decided to
	 * inject a projection step, but let's just make sure.
	 */
	if (querytree != linitial(querytree_list))
		goto fail;

	/* Now we can grab the tlist expression */
	newexpr = (Node *) ((TargetEntry *) linitial(querytree->targetList))->expr;

	/*
	 * If the SQL function returns VOID, we can only inline it if it is a
	 * SELECT of an expression returning VOID (ie, it's just a redirection to
	 * another VOID-returning function).  In all non-VOID-returning cases,
	 * check_sql_fn_retval should ensure that newexpr returns the function's
	 * declared result type, so this test shouldn't fail otherwise; but we may
	 * as well cope gracefully if it does.
	 */
	if (exprType(newexpr) != result_type)
		goto fail;

	/*
	 * Additional validity checks on the expression.  It mustn't be more
	 * volatile than the surrounding function (this is to avoid breaking hacks
	 * that involve pretending a function is immutable when it really ain't).
	 * If the surrounding function is declared strict, then the expression
	 * must contain only strict constructs and must use all of the function
	 * parameters (this is overkill, but an exact analysis is hard).
	 */
	if (funcform->provolatile == PROVOLATILE_IMMUTABLE &&
		contain_mutable_functions(newexpr))
		goto fail;
	else if (funcform->provolatile == PROVOLATILE_STABLE &&
			 contain_volatile_functions(newexpr))
		goto fail;

	if (funcform->proisstrict &&
		contain_nonstrict_functions(newexpr))
		goto fail;

	/*
	 * If any parameter expression contains a context-dependent node, we can't
	 * inline, for fear of putting such a node into the wrong context.
	 */
	if (contain_context_dependent_node((Node *) args))
		goto fail;

	/*
	 * We may be able to do it; there are still checks on parameter usage to
	 * make, but those are most easily done in combination with the actual
	 * substitution of the inputs.  So start building expression with inputs
	 * substituted.
	 */
	usecounts = (int *) palloc0(funcform->pronargs * sizeof(int));
	newexpr = substitute_actual_parameters(newexpr, funcform->pronargs,
										   args, usecounts);

	/* Now check for parameter usage */
	i = 0;
	foreach(arg, args)
	{
		Node	   *param = lfirst(arg);

		if (usecounts[i] == 0)
		{
			/* Param not used at all: uncool if func is strict */
			if (funcform->proisstrict)
				goto fail;
		}
		else if (usecounts[i] != 1)
		{
			/* Param used multiple times: uncool if expensive or volatile */
			QualCost	eval_cost;

			/*
			 * We define "expensive" as "contains any subplan or more than 10
			 * operators".  Note that the subplan search has to be done
			 * explicitly, since cost_qual_eval() will barf on unplanned
			 * subselects.
			 */
			if (contain_subplans(param))
				goto fail;
			cost_qual_eval(&eval_cost, list_make1(param), NULL);
			if (eval_cost.startup + eval_cost.per_tuple >
				10 * cpu_operator_cost)
				goto fail;

			/*
			 * Check volatility last since this is more expensive than the
			 * above tests
			 */
			if (contain_volatile_functions(param))
				goto fail;
		}
		i++;
	}

	/*
	 * Whew --- we can make the substitution.  Copy the modified expression
	 * out of the temporary memory context, and clean up.
	 */
	MemoryContextSwitchTo(oldcxt);

	newexpr = copyObject(newexpr);

	MemoryContextDelete(mycxt);

	/*
	 * If the result is of a collatable type, force the result to expose the
	 * correct collation.  In most cases this does not matter, but it's
	 * possible that the function result is used directly as a sort key or in
	 * other places where we expect exprCollation() to tell the truth.
	 */
	if (OidIsValid(result_collid))
	{
		Oid			exprcoll = exprCollation(newexpr);

		if (OidIsValid(exprcoll) && exprcoll != result_collid)
		{
			CollateExpr *newnode = makeNode(CollateExpr);

			newnode->arg = (Expr *) newexpr;
			newnode->collOid = result_collid;
			newnode->location = -1;

			newexpr = (Node *) newnode;
		}
	}

	/*
	 * Since there is now no trace of the function in the plan tree, we must
	 * explicitly record the plan's dependency on the function.
	 */
	if (context->root)
		record_plan_function_dependency(context->root, funcid);

	/*
	 * Recursively try to simplify the modified expression.  Here we must add
	 * the current function to the context list of active functions.
	 */
	context->active_fns = lappend_oid(context->active_fns, funcid);
	newexpr = eval_const_expressions_mutator(newexpr, context);
	context->active_fns = list_delete_last(context->active_fns);

	error_context_stack = sqlerrcontext.previous;

	return (Expr *) newexpr;

	/* Here if func is not inlinable: release temp memory and return NULL */
fail:
	MemoryContextSwitchTo(oldcxt);
	MemoryContextDelete(mycxt);
	error_context_stack = sqlerrcontext.previous;

	return NULL;
}

/*
 * Replace Param nodes by appropriate actual parameters
 */
static Node *
substitute_actual_parameters(Node *expr, int nargs, List *args,
							 int *usecounts)
{
	substitute_actual_parameters_context context;

	context.nargs = nargs;
	context.args = args;
	context.usecounts = usecounts;

	return substitute_actual_parameters_mutator(expr, &context);
}

static Node *
substitute_actual_parameters_mutator(Node *node,
									 substitute_actual_parameters_context *context)
{
	if (node == NULL)
		return NULL;
	if (IsA(node, Param))
	{
		Param	   *param = (Param *) node;

		if (param->paramkind != PARAM_EXTERN)
			elog(ERROR, "unexpected paramkind: %d", (int) param->paramkind);
		if (param->paramid <= 0 || param->paramid > context->nargs)
			elog(ERROR, "invalid paramid: %d", param->paramid);

		/* Count usage of parameter */
		context->usecounts[param->paramid - 1]++;

		/* Select the appropriate actual arg and replace the Param with it */
		/* We don't need to copy at this time (it'll get done later) */
		return list_nth(context->args, param->paramid - 1);
	}
	return expression_tree_mutator(node, substitute_actual_parameters_mutator,
								   (void *) context);
}

/*
 * error context callback to let us supply a call-stack traceback
 */
static void
sql_inline_error_callback(void *arg)
{
	inline_error_callback_arg *callback_arg = (inline_error_callback_arg *) arg;
	int			syntaxerrposition;

	/* If it's a syntax error, convert to internal syntax error report */
	syntaxerrposition = geterrposition();
	if (syntaxerrposition > 0)
	{
		errposition(0);
		internalerrposition(syntaxerrposition);
		internalerrquery(callback_arg->prosrc);
	}

	errcontext("SQL function \"%s\" during inlining", callback_arg->proname);
}

/*
 * evaluate_expr: pre-evaluate a constant expression
 *
 * We use the executor's routine ExecEvalExpr() to avoid duplication of
 * code and ensure we get the same result as the executor would get.
 */
Expr *
evaluate_expr(Expr *expr, Oid result_type, int32 result_typmod,
			  Oid result_collation)
{
	EState	   *estate;
	ExprState  *exprstate;
	MemoryContext oldcontext;
	Datum		const_val;
	bool		const_is_null;
	int16		resultTypLen;
	bool		resultTypByVal;

	/*
	 * To use the executor, we need an EState.
	 */
	estate = CreateExecutorState();

	/* We can use the estate's working context to avoid memory leaks. */
	oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);

	/* Make sure any opfuncids are filled in. */
	fix_opfuncids((Node *) expr);

	/*
	 * Prepare expr for execution.  (Note: we can't use ExecPrepareExpr
	 * because it'd result in recursively invoking eval_const_expressions.)
	 */
	exprstate = ExecInitExpr(expr, NULL);

	/*
	 * And evaluate it.
	 *
	 * It is OK to use a default econtext because none of the ExecEvalExpr()
	 * code used in this situation will use econtext.  That might seem
	 * fortuitous, but it's not so unreasonable --- a constant expression does
	 * not depend on context, by definition, n'est ce pas?
	 */
	const_val = ExecEvalExprSwitchContext(exprstate,
										  GetPerTupleExprContext(estate),
										  &const_is_null);

	/* Get info needed about result datatype */
	get_typlenbyval(result_type, &resultTypLen, &resultTypByVal);

	/* Get back to outer memory context */
	MemoryContextSwitchTo(oldcontext);

	/*
	 * Must copy result out of sub-context used by expression eval.
	 *
	 * Also, if it's varlena, forcibly detoast it.  This protects us against
	 * storing TOAST pointers into plans that might outlive the referenced
	 * data.  (makeConst would handle detoasting anyway, but it's worth a few
	 * extra lines here so that we can do the copy and detoast in one step.)
	 */
	if (!const_is_null)
	{
		if (resultTypLen == -1)
			const_val = PointerGetDatum(PG_DETOAST_DATUM_COPY(const_val));
		else
			const_val = datumCopy(const_val, resultTypByVal, resultTypLen);
	}

	/* Release all the junk we just created */
	FreeExecutorState(estate);

	/*
	 * Make the constant result node.
	 */
	return (Expr *) makeConst(result_type, result_typmod, result_collation,
							  resultTypLen,
							  const_val, const_is_null,
							  resultTypByVal);
}


/*
 * inline_set_returning_function
 *		Attempt to "inline" a set-returning function in the FROM clause.
 *
 * "rte" is an RTE_FUNCTION rangetable entry.  If it represents a call of a
 * set-returning SQL function that can safely be inlined, expand the function
 * and return the substitute Query structure.  Otherwise, return NULL.
 *
 * We assume that the RTE's expression has already been put through
 * eval_const_expressions(), which among other things will take care of
 * default arguments and named-argument notation.
 *
 * This has a good deal of similarity to inline_function(), but that's
 * for the non-set-returning case, and there are enough differences to
 * justify separate functions.
 */
Query *
inline_set_returning_function(PlannerInfo *root, RangeTblEntry *rte)
{
	RangeTblFunction *rtfunc;
	FuncExpr   *fexpr;
	Oid			func_oid;
	HeapTuple	func_tuple;
	Form_pg_proc funcform;
	char	   *src;
	Datum		tmp;
	bool		isNull;
	MemoryContext oldcxt;
	MemoryContext mycxt;
	inline_error_callback_arg callback_arg;
	ErrorContextCallback sqlerrcontext;
	SQLFunctionParseInfoPtr pinfo;
	TypeFuncClass functypclass;
	TupleDesc	rettupdesc;
	List	   *raw_parsetree_list;
	List	   *querytree_list;
	Query	   *querytree;

	Assert(rte->rtekind == RTE_FUNCTION);

	/*
	 * It doesn't make a lot of sense for a SQL SRF to refer to itself in its
	 * own FROM clause, since that must cause infinite recursion at runtime.
	 * It will cause this code to recurse too, so check for stack overflow.
	 * (There's no need to do more.)
	 */
	check_stack_depth();

	/* Fail if the RTE has ORDINALITY - we don't implement that here. */
	if (rte->funcordinality)
		return NULL;

	/* Fail if RTE isn't a single, simple FuncExpr */
	if (list_length(rte->functions) != 1)
		return NULL;
	rtfunc = (RangeTblFunction *) linitial(rte->functions);

	if (!IsA(rtfunc->funcexpr, FuncExpr))
		return NULL;
	fexpr = (FuncExpr *) rtfunc->funcexpr;

	func_oid = fexpr->funcid;

	/*
	 * The function must be declared to return a set, else inlining would
	 * change the results if the contained SELECT didn't return exactly one
	 * row.
	 */
	if (!fexpr->funcretset)
		return NULL;

	/*
	 * Refuse to inline if the arguments contain any volatile functions or
	 * sub-selects.  Volatile functions are rejected because inlining may
	 * result in the arguments being evaluated multiple times, risking a
	 * change in behavior.  Sub-selects are rejected partly for implementation
	 * reasons (pushing them down another level might change their behavior)
	 * and partly because they're likely to be expensive and so multiple
	 * evaluation would be bad.
	 */
	if (contain_volatile_functions((Node *) fexpr->args) ||
		contain_subplans((Node *) fexpr->args))
		return NULL;

	/* Check permission to call function (fail later, if not) */
	if (object_aclcheck(ProcedureRelationId, func_oid, GetUserId(), ACL_EXECUTE) != ACLCHECK_OK)
		return NULL;

	/* Check whether a plugin wants to hook function entry/exit */
	if (FmgrHookIsNeeded(func_oid))
		return NULL;

	/*
	 * OK, let's take a look at the function's pg_proc entry.
	 */
	func_tuple = SearchSysCache1(PROCOID, ObjectIdGetDatum(func_oid));
	if (!HeapTupleIsValid(func_tuple))
		elog(ERROR, "cache lookup failed for function %u", func_oid);
	funcform = (Form_pg_proc) GETSTRUCT(func_tuple);

	/*
	 * Forget it if the function is not SQL-language or has other showstopper
	 * properties.  In particular it mustn't be declared STRICT, since we
	 * couldn't enforce that.  It also mustn't be VOLATILE, because that is
	 * supposed to cause it to be executed with its own snapshot, rather than
	 * sharing the snapshot of the calling query.  We also disallow returning
	 * SETOF VOID, because inlining would result in exposing the actual result
	 * of the function's last SELECT, which should not happen in that case.
	 * (Rechecking prokind, proretset, and pronargs is just paranoia.)
	 */
	if (funcform->prolang != SQLlanguageId ||
		funcform->prokind != PROKIND_FUNCTION ||
		funcform->proisstrict ||
		funcform->provolatile == PROVOLATILE_VOLATILE ||
		funcform->prorettype == VOIDOID ||
		funcform->prosecdef ||
		!funcform->proretset ||
		list_length(fexpr->args) != funcform->pronargs ||
		!heap_attisnull(func_tuple, Anum_pg_proc_proconfig, NULL))
	{
		ReleaseSysCache(func_tuple);
		return NULL;
	}

	/*
	 * Make a temporary memory context, so that we don't leak all the stuff
	 * that parsing might create.
	 */
	mycxt = AllocSetContextCreate(CurrentMemoryContext,
								  "inline_set_returning_function",
								  ALLOCSET_DEFAULT_SIZES);
	oldcxt = MemoryContextSwitchTo(mycxt);

	/* Fetch the function body */
	tmp = SysCacheGetAttrNotNull(PROCOID, func_tuple, Anum_pg_proc_prosrc);
	src = TextDatumGetCString(tmp);

	/*
	 * Setup error traceback support for ereport().  This is so that we can
	 * finger the function that bad information came from.
	 */
	callback_arg.proname = NameStr(funcform->proname);
	callback_arg.prosrc = src;

	sqlerrcontext.callback = sql_inline_error_callback;
	sqlerrcontext.arg = (void *) &callback_arg;
	sqlerrcontext.previous = error_context_stack;
	error_context_stack = &sqlerrcontext;

	/* If we have prosqlbody, pay attention to that not prosrc */
	tmp = SysCacheGetAttr(PROCOID,
						  func_tuple,
						  Anum_pg_proc_prosqlbody,
						  &isNull);
	if (!isNull)
	{
		Node	   *n;

		n = stringToNode(TextDatumGetCString(tmp));
		if (IsA(n, List))
			querytree_list = linitial_node(List, castNode(List, n));
		else
			querytree_list = list_make1(n);
		if (list_length(querytree_list) != 1)
			goto fail;
		querytree = linitial(querytree_list);

		/* Acquire necessary locks, then apply rewriter. */
		AcquireRewriteLocks(querytree, true, false);
		querytree_list = pg_rewrite_query(querytree);
		if (list_length(querytree_list) != 1)
			goto fail;
		querytree = linitial(querytree_list);
	}
	else
	{
		/*
		 * Set up to handle parameters while parsing the function body.  We
		 * can use the FuncExpr just created as the input for
		 * prepare_sql_fn_parse_info.
		 */
		pinfo = prepare_sql_fn_parse_info(func_tuple,
										  (Node *) fexpr,
										  fexpr->inputcollid);

		/*
		 * Parse, analyze, and rewrite (unlike inline_function(), we can't
		 * skip rewriting here).  We can fail as soon as we find more than one
		 * query, though.
		 */
		raw_parsetree_list = pg_parse_query(src);
		if (list_length(raw_parsetree_list) != 1)
			goto fail;

		querytree_list = pg_analyze_and_rewrite_withcb(linitial(raw_parsetree_list),
													   src,
													   (ParserSetupHook) sql_fn_parser_setup,
													   pinfo, NULL);
		if (list_length(querytree_list) != 1)
			goto fail;
		querytree = linitial(querytree_list);
	}

	/*
	 * Also resolve the actual function result tupdesc, if composite.  If the
	 * function is just declared to return RECORD, dig the info out of the AS
	 * clause.
	 */
	functypclass = get_expr_result_type((Node *) fexpr, NULL, &rettupdesc);
	if (functypclass == TYPEFUNC_RECORD)
		rettupdesc = BuildDescFromLists(rtfunc->funccolnames,
										rtfunc->funccoltypes,
										rtfunc->funccoltypmods,
										rtfunc->funccolcollations);

	/*
	 * The single command must be a plain SELECT.
	 */
	if (!IsA(querytree, Query) ||
		querytree->commandType != CMD_SELECT)
		goto fail;

	/*
	 * Make sure the function (still) returns what it's declared to.  This
	 * will raise an error if wrong, but that's okay since the function would
	 * fail at runtime anyway.  Note that check_sql_fn_retval will also insert
	 * coercions if needed to make the tlist expression(s) match the declared
	 * type of the function.  We also ask it to insert dummy NULL columns for
	 * any dropped columns in rettupdesc, so that the elements of the modified
	 * tlist match up to the attribute numbers.
	 *
	 * If the function returns a composite type, don't inline unless the check
	 * shows it's returning a whole tuple result; otherwise what it's
	 * returning is a single composite column which is not what we need.
	 */
	if (!check_sql_fn_retval(list_make1(querytree_list),
							 fexpr->funcresulttype, rettupdesc,
							 true, NULL) &&
		(functypclass == TYPEFUNC_COMPOSITE ||
		 functypclass == TYPEFUNC_COMPOSITE_DOMAIN ||
		 functypclass == TYPEFUNC_RECORD))
		goto fail;				/* reject not-whole-tuple-result cases */

	/*
	 * check_sql_fn_retval might've inserted a projection step, but that's
	 * fine; just make sure we use the upper Query.
	 */
	querytree = linitial_node(Query, querytree_list);

	/*
	 * Looks good --- substitute parameters into the query.
	 */
	querytree = substitute_actual_srf_parameters(querytree,
												 funcform->pronargs,
												 fexpr->args);

	/*
	 * Copy the modified query out of the temporary memory context, and clean
	 * up.
	 */
	MemoryContextSwitchTo(oldcxt);

	querytree = copyObject(querytree);

	MemoryContextDelete(mycxt);
	error_context_stack = sqlerrcontext.previous;
	ReleaseSysCache(func_tuple);

	/*
	 * We don't have to fix collations here because the upper query is already
	 * parsed, ie, the collations in the RTE are what count.
	 */

	/*
	 * Since there is now no trace of the function in the plan tree, we must
	 * explicitly record the plan's dependency on the function.
	 */
	record_plan_function_dependency(root, func_oid);

	/*
	 * We must also notice if the inserted query adds a dependency on the
	 * calling role due to RLS quals.
	 */
	if (querytree->hasRowSecurity)
		root->glob->dependsOnRole = true;

	return querytree;

	/* Here if func is not inlinable: release temp memory and return NULL */
fail:
	MemoryContextSwitchTo(oldcxt);
	MemoryContextDelete(mycxt);
	error_context_stack = sqlerrcontext.previous;
	ReleaseSysCache(func_tuple);

	return NULL;
}

/*
 * Replace Param nodes by appropriate actual parameters
 *
 * This is just enough different from substitute_actual_parameters()
 * that it needs its own code.
 */
static Query *
substitute_actual_srf_parameters(Query *expr, int nargs, List *args)
{
	substitute_actual_srf_parameters_context context;

	context.nargs = nargs;
	context.args = args;
	context.sublevels_up = 1;

	return query_tree_mutator(expr,
							  substitute_actual_srf_parameters_mutator,
							  &context,
							  0);
}

static Node *
substitute_actual_srf_parameters_mutator(Node *node,
										 substitute_actual_srf_parameters_context *context)
{
	Node	   *result;

	if (node == NULL)
		return NULL;
	if (IsA(node, Query))
	{
		context->sublevels_up++;
		result = (Node *) query_tree_mutator((Query *) node,
											 substitute_actual_srf_parameters_mutator,
											 (void *) context,
											 0);
		context->sublevels_up--;
		return result;
	}
	if (IsA(node, Param))
	{
		Param	   *param = (Param *) node;

		if (param->paramkind == PARAM_EXTERN)
		{
			if (param->paramid <= 0 || param->paramid > context->nargs)
				elog(ERROR, "invalid paramid: %d", param->paramid);

			/*
			 * Since the parameter is being inserted into a subquery, we must
			 * adjust levels.
			 */
			result = copyObject(list_nth(context->args, param->paramid - 1));
			IncrementVarSublevelsUp(result, context->sublevels_up, 0);
			return result;
		}
	}
	return expression_tree_mutator(node,
								   substitute_actual_srf_parameters_mutator,
								   (void *) context);
}

/*
 * pull_paramids
 *		Returns a Bitmapset containing the paramids of all Params in 'expr'.
 */
Bitmapset *
pull_paramids(Expr *expr)
{
	Bitmapset  *result = NULL;

	(void) pull_paramids_walker((Node *) expr, &result);

	return result;
}

static bool
pull_paramids_walker(Node *node, Bitmapset **context)
{
	if (node == NULL)
		return false;
	if (IsA(node, Param))
	{
		Param	   *param = (Param *) node;

		*context = bms_add_member(*context, param->paramid);
		return false;
	}
	return expression_tree_walker(node, pull_paramids_walker,
								  (void *) context);
}