1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
|
/*-------------------------------------------------------------------------
*
* prepjointree.c
* Planner preprocessing for subqueries and join tree manipulation.
*
* NOTE: the intended sequence for invoking these operations is
* replace_empty_jointree
* pull_up_sublinks
* preprocess_function_rtes
* pull_up_subqueries
* flatten_simple_union_all
* do expression preprocessing (including flattening JOIN alias vars)
* reduce_outer_joins
* remove_useless_result_rtes
*
*
* Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/optimizer/prep/prepjointree.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "catalog/pg_type.h"
#include "funcapi.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/optimizer.h"
#include "optimizer/placeholder.h"
#include "optimizer/prep.h"
#include "optimizer/subselect.h"
#include "optimizer/tlist.h"
#include "parser/parse_relation.h"
#include "parser/parsetree.h"
#include "rewrite/rewriteManip.h"
typedef struct pullup_replace_vars_context
{
PlannerInfo *root;
List *targetlist; /* tlist of subquery being pulled up */
RangeTblEntry *target_rte; /* RTE of subquery */
Relids relids; /* relids within subquery, as numbered after
* pullup (set only if target_rte->lateral) */
bool *outer_hasSubLinks; /* -> outer query's hasSubLinks */
int varno; /* varno of subquery */
bool need_phvs; /* do we need PlaceHolderVars? */
bool wrap_non_vars; /* do we need 'em on *all* non-Vars? */
Node **rv_cache; /* cache for results with PHVs */
} pullup_replace_vars_context;
typedef struct reduce_outer_joins_state
{
Relids relids; /* base relids within this subtree */
bool contains_outer; /* does subtree contain outer join(s)? */
List *sub_states; /* List of states for subtree components */
} reduce_outer_joins_state;
static Node *pull_up_sublinks_jointree_recurse(PlannerInfo *root, Node *jtnode,
Relids *relids);
static Node *pull_up_sublinks_qual_recurse(PlannerInfo *root, Node *node,
Node **jtlink1, Relids available_rels1,
Node **jtlink2, Relids available_rels2);
static Node *pull_up_subqueries_recurse(PlannerInfo *root, Node *jtnode,
JoinExpr *lowest_outer_join,
JoinExpr *lowest_nulling_outer_join,
AppendRelInfo *containing_appendrel);
static Node *pull_up_simple_subquery(PlannerInfo *root, Node *jtnode,
RangeTblEntry *rte,
JoinExpr *lowest_outer_join,
JoinExpr *lowest_nulling_outer_join,
AppendRelInfo *containing_appendrel);
static Node *pull_up_simple_union_all(PlannerInfo *root, Node *jtnode,
RangeTblEntry *rte);
static void pull_up_union_leaf_queries(Node *setOp, PlannerInfo *root,
int parentRTindex, Query *setOpQuery,
int childRToffset);
static void make_setop_translation_list(Query *query, int newvarno,
AppendRelInfo *appinfo);
static bool is_simple_subquery(PlannerInfo *root, Query *subquery,
RangeTblEntry *rte,
JoinExpr *lowest_outer_join);
static Node *pull_up_simple_values(PlannerInfo *root, Node *jtnode,
RangeTblEntry *rte);
static bool is_simple_values(PlannerInfo *root, RangeTblEntry *rte);
static Node *pull_up_constant_function(PlannerInfo *root, Node *jtnode,
RangeTblEntry *rte,
JoinExpr *lowest_nulling_outer_join,
AppendRelInfo *containing_appendrel);
static bool is_simple_union_all(Query *subquery);
static bool is_simple_union_all_recurse(Node *setOp, Query *setOpQuery,
List *colTypes);
static bool is_safe_append_member(Query *subquery);
static bool jointree_contains_lateral_outer_refs(PlannerInfo *root,
Node *jtnode, bool restricted,
Relids safe_upper_varnos);
static void perform_pullup_replace_vars(PlannerInfo *root,
pullup_replace_vars_context *rvcontext,
JoinExpr *lowest_nulling_outer_join,
AppendRelInfo *containing_appendrel);
static void replace_vars_in_jointree(Node *jtnode,
pullup_replace_vars_context *context,
JoinExpr *lowest_nulling_outer_join);
static Node *pullup_replace_vars(Node *expr,
pullup_replace_vars_context *context);
static Node *pullup_replace_vars_callback(Var *var,
replace_rte_variables_context *context);
static Query *pullup_replace_vars_subquery(Query *query,
pullup_replace_vars_context *context);
static reduce_outer_joins_state *reduce_outer_joins_pass1(Node *jtnode);
static void reduce_outer_joins_pass2(Node *jtnode,
reduce_outer_joins_state *state,
PlannerInfo *root,
Relids nonnullable_rels,
List *nonnullable_vars,
List *forced_null_vars);
static Node *remove_useless_results_recurse(PlannerInfo *root, Node *jtnode);
static int get_result_relid(PlannerInfo *root, Node *jtnode);
static void remove_result_refs(PlannerInfo *root, int varno, Node *newjtloc);
static bool find_dependent_phvs(PlannerInfo *root, int varno);
static bool find_dependent_phvs_in_jointree(PlannerInfo *root,
Node *node, int varno);
static void substitute_phv_relids(Node *node,
int varno, Relids subrelids);
static void fix_append_rel_relids(List *append_rel_list, int varno,
Relids subrelids);
static Node *find_jointree_node_for_rel(Node *jtnode, int relid);
/*
* replace_empty_jointree
* If the Query's jointree is empty, replace it with a dummy RTE_RESULT
* relation.
*
* By doing this, we can avoid a bunch of corner cases that formerly existed
* for SELECTs with omitted FROM clauses. An example is that a subquery
* with empty jointree previously could not be pulled up, because that would
* have resulted in an empty relid set, making the subquery not uniquely
* identifiable for join or PlaceHolderVar processing.
*
* Unlike most other functions in this file, this function doesn't recurse;
* we rely on other processing to invoke it on sub-queries at suitable times.
*/
void
replace_empty_jointree(Query *parse)
{
RangeTblEntry *rte;
Index rti;
RangeTblRef *rtr;
/* Nothing to do if jointree is already nonempty */
if (parse->jointree->fromlist != NIL)
return;
/* We mustn't change it in the top level of a setop tree, either */
if (parse->setOperations)
return;
/* Create suitable RTE */
rte = makeNode(RangeTblEntry);
rte->rtekind = RTE_RESULT;
rte->eref = makeAlias("*RESULT*", NIL);
/* Add it to rangetable */
parse->rtable = lappend(parse->rtable, rte);
rti = list_length(parse->rtable);
/* And jam a reference into the jointree */
rtr = makeNode(RangeTblRef);
rtr->rtindex = rti;
parse->jointree->fromlist = list_make1(rtr);
}
/*
* pull_up_sublinks
* Attempt to pull up ANY and EXISTS SubLinks to be treated as
* semijoins or anti-semijoins.
*
* A clause "foo op ANY (sub-SELECT)" can be processed by pulling the
* sub-SELECT up to become a rangetable entry and treating the implied
* comparisons as quals of a semijoin. However, this optimization *only*
* works at the top level of WHERE or a JOIN/ON clause, because we cannot
* distinguish whether the ANY ought to return FALSE or NULL in cases
* involving NULL inputs. Also, in an outer join's ON clause we can only
* do this if the sublink is degenerate (ie, references only the nullable
* side of the join). In that case it is legal to push the semijoin
* down into the nullable side of the join. If the sublink references any
* nonnullable-side variables then it would have to be evaluated as part
* of the outer join, which makes things way too complicated.
*
* Under similar conditions, EXISTS and NOT EXISTS clauses can be handled
* by pulling up the sub-SELECT and creating a semijoin or anti-semijoin.
*
* This routine searches for such clauses and does the necessary parsetree
* transformations if any are found.
*
* This routine has to run before preprocess_expression(), so the quals
* clauses are not yet reduced to implicit-AND format, and are not guaranteed
* to be AND/OR-flat either. That means we need to recursively search through
* explicit AND clauses. We stop as soon as we hit a non-AND item.
*/
void
pull_up_sublinks(PlannerInfo *root)
{
Node *jtnode;
Relids relids;
/* Begin recursion through the jointree */
jtnode = pull_up_sublinks_jointree_recurse(root,
(Node *) root->parse->jointree,
&relids);
/*
* root->parse->jointree must always be a FromExpr, so insert a dummy one
* if we got a bare RangeTblRef or JoinExpr out of the recursion.
*/
if (IsA(jtnode, FromExpr))
root->parse->jointree = (FromExpr *) jtnode;
else
root->parse->jointree = makeFromExpr(list_make1(jtnode), NULL);
}
/*
* Recurse through jointree nodes for pull_up_sublinks()
*
* In addition to returning the possibly-modified jointree node, we return
* a relids set of the contained rels into *relids.
*/
static Node *
pull_up_sublinks_jointree_recurse(PlannerInfo *root, Node *jtnode,
Relids *relids)
{
if (jtnode == NULL)
{
*relids = NULL;
}
else if (IsA(jtnode, RangeTblRef))
{
int varno = ((RangeTblRef *) jtnode)->rtindex;
*relids = bms_make_singleton(varno);
/* jtnode is returned unmodified */
}
else if (IsA(jtnode, FromExpr))
{
FromExpr *f = (FromExpr *) jtnode;
List *newfromlist = NIL;
Relids frelids = NULL;
FromExpr *newf;
Node *jtlink;
ListCell *l;
/* First, recurse to process children and collect their relids */
foreach(l, f->fromlist)
{
Node *newchild;
Relids childrelids;
newchild = pull_up_sublinks_jointree_recurse(root,
lfirst(l),
&childrelids);
newfromlist = lappend(newfromlist, newchild);
frelids = bms_join(frelids, childrelids);
}
/* Build the replacement FromExpr; no quals yet */
newf = makeFromExpr(newfromlist, NULL);
/* Set up a link representing the rebuilt jointree */
jtlink = (Node *) newf;
/* Now process qual --- all children are available for use */
newf->quals = pull_up_sublinks_qual_recurse(root, f->quals,
&jtlink, frelids,
NULL, NULL);
/*
* Note that the result will be either newf, or a stack of JoinExprs
* with newf at the base. We rely on subsequent optimization steps to
* flatten this and rearrange the joins as needed.
*
* Although we could include the pulled-up subqueries in the returned
* relids, there's no need since upper quals couldn't refer to their
* outputs anyway.
*/
*relids = frelids;
jtnode = jtlink;
}
else if (IsA(jtnode, JoinExpr))
{
JoinExpr *j;
Relids leftrelids;
Relids rightrelids;
Node *jtlink;
/*
* Make a modifiable copy of join node, but don't bother copying its
* subnodes (yet).
*/
j = (JoinExpr *) palloc(sizeof(JoinExpr));
memcpy(j, jtnode, sizeof(JoinExpr));
jtlink = (Node *) j;
/* Recurse to process children and collect their relids */
j->larg = pull_up_sublinks_jointree_recurse(root, j->larg,
&leftrelids);
j->rarg = pull_up_sublinks_jointree_recurse(root, j->rarg,
&rightrelids);
/*
* Now process qual, showing appropriate child relids as available,
* and attach any pulled-up jointree items at the right place. In the
* inner-join case we put new JoinExprs above the existing one (much
* as for a FromExpr-style join). In outer-join cases the new
* JoinExprs must go into the nullable side of the outer join. The
* point of the available_rels machinations is to ensure that we only
* pull up quals for which that's okay.
*
* We don't expect to see any pre-existing JOIN_SEMI or JOIN_ANTI
* nodes here.
*/
switch (j->jointype)
{
case JOIN_INNER:
j->quals = pull_up_sublinks_qual_recurse(root, j->quals,
&jtlink,
bms_union(leftrelids,
rightrelids),
NULL, NULL);
break;
case JOIN_LEFT:
j->quals = pull_up_sublinks_qual_recurse(root, j->quals,
&j->rarg,
rightrelids,
NULL, NULL);
break;
case JOIN_FULL:
/* can't do anything with full-join quals */
break;
case JOIN_RIGHT:
j->quals = pull_up_sublinks_qual_recurse(root, j->quals,
&j->larg,
leftrelids,
NULL, NULL);
break;
default:
elog(ERROR, "unrecognized join type: %d",
(int) j->jointype);
break;
}
/*
* Although we could include the pulled-up subqueries in the returned
* relids, there's no need since upper quals couldn't refer to their
* outputs anyway. But we *do* need to include the join's own rtindex
* because we haven't yet collapsed join alias variables, so upper
* levels would mistakenly think they couldn't use references to this
* join.
*/
*relids = bms_join(leftrelids, rightrelids);
if (j->rtindex)
*relids = bms_add_member(*relids, j->rtindex);
jtnode = jtlink;
}
else
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(jtnode));
return jtnode;
}
/*
* Recurse through top-level qual nodes for pull_up_sublinks()
*
* jtlink1 points to the link in the jointree where any new JoinExprs should
* be inserted if they reference available_rels1 (i.e., available_rels1
* denotes the relations present underneath jtlink1). Optionally, jtlink2 can
* point to a second link where new JoinExprs should be inserted if they
* reference available_rels2 (pass NULL for both those arguments if not used).
* Note that SubLinks referencing both sets of variables cannot be optimized.
* If we find multiple pull-up-able SubLinks, they'll get stacked onto jtlink1
* and/or jtlink2 in the order we encounter them. We rely on subsequent
* optimization to rearrange the stack if appropriate.
*
* Returns the replacement qual node, or NULL if the qual should be removed.
*/
static Node *
pull_up_sublinks_qual_recurse(PlannerInfo *root, Node *node,
Node **jtlink1, Relids available_rels1,
Node **jtlink2, Relids available_rels2)
{
if (node == NULL)
return NULL;
if (IsA(node, SubLink))
{
SubLink *sublink = (SubLink *) node;
JoinExpr *j;
Relids child_rels;
/* Is it a convertible ANY or EXISTS clause? */
if (sublink->subLinkType == ANY_SUBLINK)
{
if ((j = convert_ANY_sublink_to_join(root, sublink,
available_rels1)) != NULL)
{
/* Yes; insert the new join node into the join tree */
j->larg = *jtlink1;
*jtlink1 = (Node *) j;
/* Recursively process pulled-up jointree nodes */
j->rarg = pull_up_sublinks_jointree_recurse(root,
j->rarg,
&child_rels);
/*
* Now recursively process the pulled-up quals. Any inserted
* joins can get stacked onto either j->larg or j->rarg,
* depending on which rels they reference.
*/
j->quals = pull_up_sublinks_qual_recurse(root,
j->quals,
&j->larg,
available_rels1,
&j->rarg,
child_rels);
/* Return NULL representing constant TRUE */
return NULL;
}
if (available_rels2 != NULL &&
(j = convert_ANY_sublink_to_join(root, sublink,
available_rels2)) != NULL)
{
/* Yes; insert the new join node into the join tree */
j->larg = *jtlink2;
*jtlink2 = (Node *) j;
/* Recursively process pulled-up jointree nodes */
j->rarg = pull_up_sublinks_jointree_recurse(root,
j->rarg,
&child_rels);
/*
* Now recursively process the pulled-up quals. Any inserted
* joins can get stacked onto either j->larg or j->rarg,
* depending on which rels they reference.
*/
j->quals = pull_up_sublinks_qual_recurse(root,
j->quals,
&j->larg,
available_rels2,
&j->rarg,
child_rels);
/* Return NULL representing constant TRUE */
return NULL;
}
}
else if (sublink->subLinkType == EXISTS_SUBLINK)
{
if ((j = convert_EXISTS_sublink_to_join(root, sublink, false,
available_rels1)) != NULL)
{
/* Yes; insert the new join node into the join tree */
j->larg = *jtlink1;
*jtlink1 = (Node *) j;
/* Recursively process pulled-up jointree nodes */
j->rarg = pull_up_sublinks_jointree_recurse(root,
j->rarg,
&child_rels);
/*
* Now recursively process the pulled-up quals. Any inserted
* joins can get stacked onto either j->larg or j->rarg,
* depending on which rels they reference.
*/
j->quals = pull_up_sublinks_qual_recurse(root,
j->quals,
&j->larg,
available_rels1,
&j->rarg,
child_rels);
/* Return NULL representing constant TRUE */
return NULL;
}
if (available_rels2 != NULL &&
(j = convert_EXISTS_sublink_to_join(root, sublink, false,
available_rels2)) != NULL)
{
/* Yes; insert the new join node into the join tree */
j->larg = *jtlink2;
*jtlink2 = (Node *) j;
/* Recursively process pulled-up jointree nodes */
j->rarg = pull_up_sublinks_jointree_recurse(root,
j->rarg,
&child_rels);
/*
* Now recursively process the pulled-up quals. Any inserted
* joins can get stacked onto either j->larg or j->rarg,
* depending on which rels they reference.
*/
j->quals = pull_up_sublinks_qual_recurse(root,
j->quals,
&j->larg,
available_rels2,
&j->rarg,
child_rels);
/* Return NULL representing constant TRUE */
return NULL;
}
}
/* Else return it unmodified */
return node;
}
if (is_notclause(node))
{
/* If the immediate argument of NOT is EXISTS, try to convert */
SubLink *sublink = (SubLink *) get_notclausearg((Expr *) node);
JoinExpr *j;
Relids child_rels;
if (sublink && IsA(sublink, SubLink))
{
if (sublink->subLinkType == EXISTS_SUBLINK)
{
if ((j = convert_EXISTS_sublink_to_join(root, sublink, true,
available_rels1)) != NULL)
{
/* Yes; insert the new join node into the join tree */
j->larg = *jtlink1;
*jtlink1 = (Node *) j;
/* Recursively process pulled-up jointree nodes */
j->rarg = pull_up_sublinks_jointree_recurse(root,
j->rarg,
&child_rels);
/*
* Now recursively process the pulled-up quals. Because
* we are underneath a NOT, we can't pull up sublinks that
* reference the left-hand stuff, but it's still okay to
* pull up sublinks referencing j->rarg.
*/
j->quals = pull_up_sublinks_qual_recurse(root,
j->quals,
&j->rarg,
child_rels,
NULL, NULL);
/* Return NULL representing constant TRUE */
return NULL;
}
if (available_rels2 != NULL &&
(j = convert_EXISTS_sublink_to_join(root, sublink, true,
available_rels2)) != NULL)
{
/* Yes; insert the new join node into the join tree */
j->larg = *jtlink2;
*jtlink2 = (Node *) j;
/* Recursively process pulled-up jointree nodes */
j->rarg = pull_up_sublinks_jointree_recurse(root,
j->rarg,
&child_rels);
/*
* Now recursively process the pulled-up quals. Because
* we are underneath a NOT, we can't pull up sublinks that
* reference the left-hand stuff, but it's still okay to
* pull up sublinks referencing j->rarg.
*/
j->quals = pull_up_sublinks_qual_recurse(root,
j->quals,
&j->rarg,
child_rels,
NULL, NULL);
/* Return NULL representing constant TRUE */
return NULL;
}
}
}
/* Else return it unmodified */
return node;
}
if (is_andclause(node))
{
/* Recurse into AND clause */
List *newclauses = NIL;
ListCell *l;
foreach(l, ((BoolExpr *) node)->args)
{
Node *oldclause = (Node *) lfirst(l);
Node *newclause;
newclause = pull_up_sublinks_qual_recurse(root,
oldclause,
jtlink1,
available_rels1,
jtlink2,
available_rels2);
if (newclause)
newclauses = lappend(newclauses, newclause);
}
/* We might have got back fewer clauses than we started with */
if (newclauses == NIL)
return NULL;
else if (list_length(newclauses) == 1)
return (Node *) linitial(newclauses);
else
return (Node *) make_andclause(newclauses);
}
/* Stop if not an AND */
return node;
}
/*
* preprocess_function_rtes
* Constant-simplify any FUNCTION RTEs in the FROM clause, and then
* attempt to "inline" any that are set-returning functions.
*
* If an RTE_FUNCTION rtable entry invokes a set-returning function that
* contains just a simple SELECT, we can convert the rtable entry to an
* RTE_SUBQUERY entry exposing the SELECT directly. This is especially
* useful if the subquery can then be "pulled up" for further optimization,
* but we do it even if not, to reduce executor overhead.
*
* This has to be done before we have started to do any optimization of
* subqueries, else any such steps wouldn't get applied to subqueries
* obtained via inlining. However, we do it after pull_up_sublinks
* so that we can inline any functions used in SubLink subselects.
*
* The reason for applying const-simplification at this stage is that
* (a) we'd need to do it anyway to inline a SRF, and (b) by doing it now,
* we can be sure that pull_up_constant_function() will see constants
* if there are constants to be seen. This approach also guarantees
* that every FUNCTION RTE has been const-simplified, allowing planner.c's
* preprocess_expression() to skip doing it again.
*
* Like most of the planner, this feels free to scribble on its input data
* structure.
*/
void
preprocess_function_rtes(PlannerInfo *root)
{
ListCell *rt;
foreach(rt, root->parse->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(rt);
if (rte->rtekind == RTE_FUNCTION)
{
Query *funcquery;
/* Apply const-simplification */
rte->functions = (List *)
eval_const_expressions(root, (Node *) rte->functions);
/* Check safety of expansion, and expand if possible */
funcquery = inline_set_returning_function(root, rte);
if (funcquery)
{
/* Successful expansion, convert the RTE to a subquery */
rte->rtekind = RTE_SUBQUERY;
rte->subquery = funcquery;
rte->security_barrier = false;
/* Clear fields that should not be set in a subquery RTE */
rte->functions = NIL;
rte->funcordinality = false;
}
}
}
}
/*
* pull_up_subqueries
* Look for subqueries in the rangetable that can be pulled up into
* the parent query. If the subquery has no special features like
* grouping/aggregation then we can merge it into the parent's jointree.
* Also, subqueries that are simple UNION ALL structures can be
* converted into "append relations".
*/
void
pull_up_subqueries(PlannerInfo *root)
{
/* Top level of jointree must always be a FromExpr */
Assert(IsA(root->parse->jointree, FromExpr));
/* Recursion starts with no containing join nor appendrel */
root->parse->jointree = (FromExpr *)
pull_up_subqueries_recurse(root, (Node *) root->parse->jointree,
NULL, NULL, NULL);
/* We should still have a FromExpr */
Assert(IsA(root->parse->jointree, FromExpr));
}
/*
* pull_up_subqueries_recurse
* Recursive guts of pull_up_subqueries.
*
* This recursively processes the jointree and returns a modified jointree.
*
* If this jointree node is within either side of an outer join, then
* lowest_outer_join references the lowest such JoinExpr node; otherwise
* it is NULL. We use this to constrain the effects of LATERAL subqueries.
*
* If this jointree node is within the nullable side of an outer join, then
* lowest_nulling_outer_join references the lowest such JoinExpr node;
* otherwise it is NULL. This forces use of the PlaceHolderVar mechanism for
* references to non-nullable targetlist items, but only for references above
* that join.
*
* If we are looking at a member subquery of an append relation,
* containing_appendrel describes that relation; else it is NULL.
* This forces use of the PlaceHolderVar mechanism for all non-Var targetlist
* items, and puts some additional restrictions on what can be pulled up.
*
* A tricky aspect of this code is that if we pull up a subquery we have
* to replace Vars that reference the subquery's outputs throughout the
* parent query, including quals attached to jointree nodes above the one
* we are currently processing! We handle this by being careful to maintain
* validity of the jointree structure while recursing, in the following sense:
* whenever we recurse, all qual expressions in the tree must be reachable
* from the top level, in case the recursive call needs to modify them.
*
* Notice also that we can't turn pullup_replace_vars loose on the whole
* jointree, because it'd return a mutated copy of the tree; we have to
* invoke it just on the quals, instead. This behavior is what makes it
* reasonable to pass lowest_outer_join and lowest_nulling_outer_join as
* pointers rather than some more-indirect way of identifying the lowest
* OJs. Likewise, we don't replace append_rel_list members but only their
* substructure, so the containing_appendrel reference is safe to use.
*/
static Node *
pull_up_subqueries_recurse(PlannerInfo *root, Node *jtnode,
JoinExpr *lowest_outer_join,
JoinExpr *lowest_nulling_outer_join,
AppendRelInfo *containing_appendrel)
{
Assert(jtnode != NULL);
if (IsA(jtnode, RangeTblRef))
{
int varno = ((RangeTblRef *) jtnode)->rtindex;
RangeTblEntry *rte = rt_fetch(varno, root->parse->rtable);
/*
* Is this a subquery RTE, and if so, is the subquery simple enough to
* pull up?
*
* If we are looking at an append-relation member, we can't pull it up
* unless is_safe_append_member says so.
*/
if (rte->rtekind == RTE_SUBQUERY &&
is_simple_subquery(root, rte->subquery, rte, lowest_outer_join) &&
(containing_appendrel == NULL ||
is_safe_append_member(rte->subquery)))
return pull_up_simple_subquery(root, jtnode, rte,
lowest_outer_join,
lowest_nulling_outer_join,
containing_appendrel);
/*
* Alternatively, is it a simple UNION ALL subquery? If so, flatten
* into an "append relation".
*
* It's safe to do this regardless of whether this query is itself an
* appendrel member. (If you're thinking we should try to flatten the
* two levels of appendrel together, you're right; but we handle that
* in set_append_rel_pathlist, not here.)
*/
if (rte->rtekind == RTE_SUBQUERY &&
is_simple_union_all(rte->subquery))
return pull_up_simple_union_all(root, jtnode, rte);
/*
* Or perhaps it's a simple VALUES RTE?
*
* We don't allow VALUES pullup below an outer join nor into an
* appendrel (such cases are impossible anyway at the moment).
*/
if (rte->rtekind == RTE_VALUES &&
lowest_outer_join == NULL &&
containing_appendrel == NULL &&
is_simple_values(root, rte))
return pull_up_simple_values(root, jtnode, rte);
/*
* Or perhaps it's a FUNCTION RTE that we could inline?
*/
if (rte->rtekind == RTE_FUNCTION)
return pull_up_constant_function(root, jtnode, rte,
lowest_nulling_outer_join,
containing_appendrel);
/* Otherwise, do nothing at this node. */
}
else if (IsA(jtnode, FromExpr))
{
FromExpr *f = (FromExpr *) jtnode;
ListCell *l;
Assert(containing_appendrel == NULL);
/* Recursively transform all the child nodes */
foreach(l, f->fromlist)
{
lfirst(l) = pull_up_subqueries_recurse(root, lfirst(l),
lowest_outer_join,
lowest_nulling_outer_join,
NULL);
}
}
else if (IsA(jtnode, JoinExpr))
{
JoinExpr *j = (JoinExpr *) jtnode;
Assert(containing_appendrel == NULL);
/* Recurse, being careful to tell myself when inside outer join */
switch (j->jointype)
{
case JOIN_INNER:
j->larg = pull_up_subqueries_recurse(root, j->larg,
lowest_outer_join,
lowest_nulling_outer_join,
NULL);
j->rarg = pull_up_subqueries_recurse(root, j->rarg,
lowest_outer_join,
lowest_nulling_outer_join,
NULL);
break;
case JOIN_LEFT:
case JOIN_SEMI:
case JOIN_ANTI:
j->larg = pull_up_subqueries_recurse(root, j->larg,
j,
lowest_nulling_outer_join,
NULL);
j->rarg = pull_up_subqueries_recurse(root, j->rarg,
j,
j,
NULL);
break;
case JOIN_FULL:
j->larg = pull_up_subqueries_recurse(root, j->larg,
j,
j,
NULL);
j->rarg = pull_up_subqueries_recurse(root, j->rarg,
j,
j,
NULL);
break;
case JOIN_RIGHT:
j->larg = pull_up_subqueries_recurse(root, j->larg,
j,
j,
NULL);
j->rarg = pull_up_subqueries_recurse(root, j->rarg,
j,
lowest_nulling_outer_join,
NULL);
break;
default:
elog(ERROR, "unrecognized join type: %d",
(int) j->jointype);
break;
}
}
else
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(jtnode));
return jtnode;
}
/*
* pull_up_simple_subquery
* Attempt to pull up a single simple subquery.
*
* jtnode is a RangeTblRef that has been tentatively identified as a simple
* subquery by pull_up_subqueries. We return the replacement jointree node,
* or jtnode itself if we determine that the subquery can't be pulled up
* after all.
*
* rte is the RangeTblEntry referenced by jtnode. Remaining parameters are
* as for pull_up_subqueries_recurse.
*/
static Node *
pull_up_simple_subquery(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte,
JoinExpr *lowest_outer_join,
JoinExpr *lowest_nulling_outer_join,
AppendRelInfo *containing_appendrel)
{
Query *parse = root->parse;
int varno = ((RangeTblRef *) jtnode)->rtindex;
Query *subquery;
PlannerInfo *subroot;
int rtoffset;
pullup_replace_vars_context rvcontext;
ListCell *lc;
/*
* Make a modifiable copy of the subquery to hack on, so that the RTE will
* be left unchanged in case we decide below that we can't pull it up
* after all.
*/
subquery = copyObject(rte->subquery);
/*
* Create a PlannerInfo data structure for this subquery.
*
* NOTE: the next few steps should match the first processing in
* subquery_planner(). Can we refactor to avoid code duplication, or
* would that just make things uglier?
*/
subroot = makeNode(PlannerInfo);
subroot->parse = subquery;
subroot->glob = root->glob;
subroot->query_level = root->query_level;
subroot->parent_root = root->parent_root;
subroot->plan_params = NIL;
subroot->outer_params = NULL;
subroot->planner_cxt = CurrentMemoryContext;
subroot->init_plans = NIL;
subroot->cte_plan_ids = NIL;
subroot->multiexpr_params = NIL;
subroot->eq_classes = NIL;
subroot->ec_merging_done = false;
subroot->all_result_relids = NULL;
subroot->leaf_result_relids = NULL;
subroot->append_rel_list = NIL;
subroot->row_identity_vars = NIL;
subroot->rowMarks = NIL;
memset(subroot->upper_rels, 0, sizeof(subroot->upper_rels));
memset(subroot->upper_targets, 0, sizeof(subroot->upper_targets));
subroot->processed_tlist = NIL;
subroot->update_colnos = NIL;
subroot->grouping_map = NULL;
subroot->minmax_aggs = NIL;
subroot->qual_security_level = 0;
subroot->hasRecursion = false;
subroot->wt_param_id = -1;
subroot->non_recursive_path = NULL;
/* No CTEs to worry about */
Assert(subquery->cteList == NIL);
/*
* If the FROM clause is empty, replace it with a dummy RTE_RESULT RTE, so
* that we don't need so many special cases to deal with that situation.
*/
replace_empty_jointree(subquery);
/*
* Pull up any SubLinks within the subquery's quals, so that we don't
* leave unoptimized SubLinks behind.
*/
if (subquery->hasSubLinks)
pull_up_sublinks(subroot);
/*
* Similarly, preprocess its function RTEs to inline any set-returning
* functions in its rangetable.
*/
preprocess_function_rtes(subroot);
/*
* Recursively pull up the subquery's subqueries, so that
* pull_up_subqueries' processing is complete for its jointree and
* rangetable.
*
* Note: it's okay that the subquery's recursion starts with NULL for
* containing-join info, even if we are within an outer join in the upper
* query; the lower query starts with a clean slate for outer-join
* semantics. Likewise, we needn't pass down appendrel state.
*/
pull_up_subqueries(subroot);
/*
* Now we must recheck whether the subquery is still simple enough to pull
* up. If not, abandon processing it.
*
* We don't really need to recheck all the conditions involved, but it's
* easier just to keep this "if" looking the same as the one in
* pull_up_subqueries_recurse.
*/
if (is_simple_subquery(root, subquery, rte, lowest_outer_join) &&
(containing_appendrel == NULL || is_safe_append_member(subquery)))
{
/* good to go */
}
else
{
/*
* Give up, return unmodified RangeTblRef.
*
* Note: The work we just did will be redone when the subquery gets
* planned on its own. Perhaps we could avoid that by storing the
* modified subquery back into the rangetable, but I'm not gonna risk
* it now.
*/
return jtnode;
}
/*
* We must flatten any join alias Vars in the subquery's targetlist,
* because pulling up the subquery's subqueries might have changed their
* expansions into arbitrary expressions, which could affect
* pullup_replace_vars' decisions about whether PlaceHolderVar wrappers
* are needed for tlist entries. (Likely it'd be better to do
* flatten_join_alias_vars on the whole query tree at some earlier stage,
* maybe even in the rewriter; but for now let's just fix this case here.)
*/
subquery->targetList = (List *)
flatten_join_alias_vars(subroot->parse, (Node *) subquery->targetList);
/*
* Adjust level-0 varnos in subquery so that we can append its rangetable
* to upper query's. We have to fix the subquery's append_rel_list as
* well.
*/
rtoffset = list_length(parse->rtable);
OffsetVarNodes((Node *) subquery, rtoffset, 0);
OffsetVarNodes((Node *) subroot->append_rel_list, rtoffset, 0);
/*
* Upper-level vars in subquery are now one level closer to their parent
* than before.
*/
IncrementVarSublevelsUp((Node *) subquery, -1, 1);
IncrementVarSublevelsUp((Node *) subroot->append_rel_list, -1, 1);
/*
* The subquery's targetlist items are now in the appropriate form to
* insert into the top query, except that we may need to wrap them in
* PlaceHolderVars. Set up required context data for pullup_replace_vars.
*/
rvcontext.root = root;
rvcontext.targetlist = subquery->targetList;
rvcontext.target_rte = rte;
if (rte->lateral)
rvcontext.relids = get_relids_in_jointree((Node *) subquery->jointree,
true);
else /* won't need relids */
rvcontext.relids = NULL;
rvcontext.outer_hasSubLinks = &parse->hasSubLinks;
rvcontext.varno = varno;
/* these flags will be set below, if needed */
rvcontext.need_phvs = false;
rvcontext.wrap_non_vars = false;
/* initialize cache array with indexes 0 .. length(tlist) */
rvcontext.rv_cache = palloc0((list_length(subquery->targetList) + 1) *
sizeof(Node *));
/*
* If we are under an outer join then non-nullable items and lateral
* references may have to be turned into PlaceHolderVars.
*/
if (lowest_nulling_outer_join != NULL)
rvcontext.need_phvs = true;
/*
* If we are dealing with an appendrel member then anything that's not a
* simple Var has to be turned into a PlaceHolderVar. We force this to
* ensure that what we pull up doesn't get merged into a surrounding
* expression during later processing and then fail to match the
* expression actually available from the appendrel.
*/
if (containing_appendrel != NULL)
{
rvcontext.need_phvs = true;
rvcontext.wrap_non_vars = true;
}
/*
* If the parent query uses grouping sets, we need a PlaceHolderVar for
* anything that's not a simple Var. Again, this ensures that expressions
* retain their separate identity so that they will match grouping set
* columns when appropriate. (It'd be sufficient to wrap values used in
* grouping set columns, and do so only in non-aggregated portions of the
* tlist and havingQual, but that would require a lot of infrastructure
* that pullup_replace_vars hasn't currently got.)
*/
if (parse->groupingSets)
{
rvcontext.need_phvs = true;
rvcontext.wrap_non_vars = true;
}
/*
* Replace all of the top query's references to the subquery's outputs
* with copies of the adjusted subtlist items, being careful not to
* replace any of the jointree structure.
*/
perform_pullup_replace_vars(root, &rvcontext,
lowest_nulling_outer_join,
containing_appendrel);
/*
* If the subquery had a LATERAL marker, propagate that to any of its
* child RTEs that could possibly now contain lateral cross-references.
* The children might or might not contain any actual lateral
* cross-references, but we have to mark the pulled-up child RTEs so that
* later planner stages will check for such.
*/
if (rte->lateral)
{
foreach(lc, subquery->rtable)
{
RangeTblEntry *child_rte = (RangeTblEntry *) lfirst(lc);
switch (child_rte->rtekind)
{
case RTE_RELATION:
if (child_rte->tablesample)
child_rte->lateral = true;
break;
case RTE_SUBQUERY:
case RTE_FUNCTION:
case RTE_VALUES:
case RTE_TABLEFUNC:
child_rte->lateral = true;
break;
case RTE_JOIN:
case RTE_CTE:
case RTE_NAMEDTUPLESTORE:
case RTE_RESULT:
/* these can't contain any lateral references */
break;
}
}
}
/*
* Now append the adjusted rtable entries to upper query. (We hold off
* until after fixing the upper rtable entries; no point in running that
* code on the subquery ones too.)
*/
parse->rtable = list_concat(parse->rtable, subquery->rtable);
/*
* Pull up any FOR UPDATE/SHARE markers, too. (OffsetVarNodes already
* adjusted the marker rtindexes, so just concat the lists.)
*/
parse->rowMarks = list_concat(parse->rowMarks, subquery->rowMarks);
/*
* We also have to fix the relid sets of any PlaceHolderVar nodes in the
* parent query. (This could perhaps be done by pullup_replace_vars(),
* but it seems cleaner to use two passes.) Note in particular that any
* PlaceHolderVar nodes just created by pullup_replace_vars() will be
* adjusted, so having created them with the subquery's varno is correct.
*
* Likewise, relids appearing in AppendRelInfo nodes have to be fixed. We
* already checked that this won't require introducing multiple subrelids
* into the single-slot AppendRelInfo structs.
*/
if (parse->hasSubLinks || root->glob->lastPHId != 0 ||
root->append_rel_list)
{
Relids subrelids;
subrelids = get_relids_in_jointree((Node *) subquery->jointree, false);
substitute_phv_relids((Node *) parse, varno, subrelids);
fix_append_rel_relids(root->append_rel_list, varno, subrelids);
}
/*
* And now add subquery's AppendRelInfos to our list.
*/
root->append_rel_list = list_concat(root->append_rel_list,
subroot->append_rel_list);
/*
* We don't have to do the equivalent bookkeeping for outer-join info,
* because that hasn't been set up yet. placeholder_list likewise.
*/
Assert(root->join_info_list == NIL);
Assert(subroot->join_info_list == NIL);
Assert(root->placeholder_list == NIL);
Assert(subroot->placeholder_list == NIL);
/*
* We no longer need the RTE's copy of the subquery's query tree. Getting
* rid of it saves nothing in particular so far as this level of query is
* concerned; but if this query level is in turn pulled up into a parent,
* we'd waste cycles copying the now-unused query tree.
*/
rte->subquery = NULL;
/*
* Miscellaneous housekeeping.
*
* Although replace_rte_variables() faithfully updated parse->hasSubLinks
* if it copied any SubLinks out of the subquery's targetlist, we still
* could have SubLinks added to the query in the expressions of FUNCTION
* and VALUES RTEs copied up from the subquery. So it's necessary to copy
* subquery->hasSubLinks anyway. Perhaps this can be improved someday.
*/
parse->hasSubLinks |= subquery->hasSubLinks;
/* If subquery had any RLS conditions, now main query does too */
parse->hasRowSecurity |= subquery->hasRowSecurity;
/*
* subquery won't be pulled up if it hasAggs, hasWindowFuncs, or
* hasTargetSRFs, so no work needed on those flags
*/
/*
* Return the adjusted subquery jointree to replace the RangeTblRef entry
* in parent's jointree; or, if the FromExpr is degenerate, just return
* its single member.
*/
Assert(IsA(subquery->jointree, FromExpr));
Assert(subquery->jointree->fromlist != NIL);
if (subquery->jointree->quals == NULL &&
list_length(subquery->jointree->fromlist) == 1)
return (Node *) linitial(subquery->jointree->fromlist);
return (Node *) subquery->jointree;
}
/*
* pull_up_simple_union_all
* Pull up a single simple UNION ALL subquery.
*
* jtnode is a RangeTblRef that has been identified as a simple UNION ALL
* subquery by pull_up_subqueries. We pull up the leaf subqueries and
* build an "append relation" for the union set. The result value is just
* jtnode, since we don't actually need to change the query jointree.
*/
static Node *
pull_up_simple_union_all(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte)
{
int varno = ((RangeTblRef *) jtnode)->rtindex;
Query *subquery = rte->subquery;
int rtoffset = list_length(root->parse->rtable);
List *rtable;
/*
* Make a modifiable copy of the subquery's rtable, so we can adjust
* upper-level Vars in it. There are no such Vars in the setOperations
* tree proper, so fixing the rtable should be sufficient.
*/
rtable = copyObject(subquery->rtable);
/*
* Upper-level vars in subquery are now one level closer to their parent
* than before. We don't have to worry about offsetting varnos, though,
* because the UNION leaf queries can't cross-reference each other.
*/
IncrementVarSublevelsUp_rtable(rtable, -1, 1);
/*
* If the UNION ALL subquery had a LATERAL marker, propagate that to all
* its children. The individual children might or might not contain any
* actual lateral cross-references, but we have to mark the pulled-up
* child RTEs so that later planner stages will check for such.
*/
if (rte->lateral)
{
ListCell *rt;
foreach(rt, rtable)
{
RangeTblEntry *child_rte = (RangeTblEntry *) lfirst(rt);
Assert(child_rte->rtekind == RTE_SUBQUERY);
child_rte->lateral = true;
}
}
/*
* Append child RTEs to parent rtable.
*/
root->parse->rtable = list_concat(root->parse->rtable, rtable);
/*
* Recursively scan the subquery's setOperations tree and add
* AppendRelInfo nodes for leaf subqueries to the parent's
* append_rel_list. Also apply pull_up_subqueries to the leaf subqueries.
*/
Assert(subquery->setOperations);
pull_up_union_leaf_queries(subquery->setOperations, root, varno, subquery,
rtoffset);
/*
* Mark the parent as an append relation.
*/
rte->inh = true;
return jtnode;
}
/*
* pull_up_union_leaf_queries -- recursive guts of pull_up_simple_union_all
*
* Build an AppendRelInfo for each leaf query in the setop tree, and then
* apply pull_up_subqueries to the leaf query.
*
* Note that setOpQuery is the Query containing the setOp node, whose tlist
* contains references to all the setop output columns. When called from
* pull_up_simple_union_all, this is *not* the same as root->parse, which is
* the parent Query we are pulling up into.
*
* parentRTindex is the appendrel parent's index in root->parse->rtable.
*
* The child RTEs have already been copied to the parent. childRToffset
* tells us where in the parent's range table they were copied. When called
* from flatten_simple_union_all, childRToffset is 0 since the child RTEs
* were already in root->parse->rtable and no RT index adjustment is needed.
*/
static void
pull_up_union_leaf_queries(Node *setOp, PlannerInfo *root, int parentRTindex,
Query *setOpQuery, int childRToffset)
{
if (IsA(setOp, RangeTblRef))
{
RangeTblRef *rtr = (RangeTblRef *) setOp;
int childRTindex;
AppendRelInfo *appinfo;
/*
* Calculate the index in the parent's range table
*/
childRTindex = childRToffset + rtr->rtindex;
/*
* Build a suitable AppendRelInfo, and attach to parent's list.
*/
appinfo = makeNode(AppendRelInfo);
appinfo->parent_relid = parentRTindex;
appinfo->child_relid = childRTindex;
appinfo->parent_reltype = InvalidOid;
appinfo->child_reltype = InvalidOid;
make_setop_translation_list(setOpQuery, childRTindex, appinfo);
appinfo->parent_reloid = InvalidOid;
root->append_rel_list = lappend(root->append_rel_list, appinfo);
/*
* Recursively apply pull_up_subqueries to the new child RTE. (We
* must build the AppendRelInfo first, because this will modify it.)
* Note that we can pass NULL for containing-join info even if we're
* actually under an outer join, because the child's expressions
* aren't going to propagate up to the join. Also, we ignore the
* possibility that pull_up_subqueries_recurse() returns a different
* jointree node than what we pass it; if it does, the important thing
* is that it replaced the child relid in the AppendRelInfo node.
*/
rtr = makeNode(RangeTblRef);
rtr->rtindex = childRTindex;
(void) pull_up_subqueries_recurse(root, (Node *) rtr,
NULL, NULL, appinfo);
}
else if (IsA(setOp, SetOperationStmt))
{
SetOperationStmt *op = (SetOperationStmt *) setOp;
/* Recurse to reach leaf queries */
pull_up_union_leaf_queries(op->larg, root, parentRTindex, setOpQuery,
childRToffset);
pull_up_union_leaf_queries(op->rarg, root, parentRTindex, setOpQuery,
childRToffset);
}
else
{
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(setOp));
}
}
/*
* make_setop_translation_list
* Build the list of translations from parent Vars to child Vars for
* a UNION ALL member. (At this point it's just a simple list of
* referencing Vars, but if we succeed in pulling up the member
* subquery, the Vars will get replaced by pulled-up expressions.)
* Also create the rather trivial reverse-translation array.
*/
static void
make_setop_translation_list(Query *query, int newvarno,
AppendRelInfo *appinfo)
{
List *vars = NIL;
AttrNumber *pcolnos;
ListCell *l;
/* Initialize reverse-translation array with all entries zero */
/* (entries for resjunk columns will stay that way) */
appinfo->num_child_cols = list_length(query->targetList);
appinfo->parent_colnos = pcolnos =
(AttrNumber *) palloc0(appinfo->num_child_cols * sizeof(AttrNumber));
foreach(l, query->targetList)
{
TargetEntry *tle = (TargetEntry *) lfirst(l);
if (tle->resjunk)
continue;
vars = lappend(vars, makeVarFromTargetEntry(newvarno, tle));
pcolnos[tle->resno - 1] = tle->resno;
}
appinfo->translated_vars = vars;
}
/*
* is_simple_subquery
* Check a subquery in the range table to see if it's simple enough
* to pull up into the parent query.
*
* rte is the RTE_SUBQUERY RangeTblEntry that contained the subquery.
* (Note subquery is not necessarily equal to rte->subquery; it could be a
* processed copy of that.)
* lowest_outer_join is the lowest outer join above the subquery, or NULL.
*/
static bool
is_simple_subquery(PlannerInfo *root, Query *subquery, RangeTblEntry *rte,
JoinExpr *lowest_outer_join)
{
/*
* Let's just make sure it's a valid subselect ...
*/
if (!IsA(subquery, Query) ||
subquery->commandType != CMD_SELECT)
elog(ERROR, "subquery is bogus");
/*
* Can't currently pull up a query with setops (unless it's simple UNION
* ALL, which is handled by a different code path). Maybe after querytree
* redesign...
*/
if (subquery->setOperations)
return false;
/*
* Can't pull up a subquery involving grouping, aggregation, SRFs,
* sorting, limiting, or WITH. (XXX WITH could possibly be allowed later)
*
* We also don't pull up a subquery that has explicit FOR UPDATE/SHARE
* clauses, because pullup would cause the locking to occur semantically
* higher than it should. Implicit FOR UPDATE/SHARE is okay because in
* that case the locking was originally declared in the upper query
* anyway.
*/
if (subquery->hasAggs ||
subquery->hasWindowFuncs ||
subquery->hasTargetSRFs ||
subquery->groupClause ||
subquery->groupingSets ||
subquery->havingQual ||
subquery->sortClause ||
subquery->distinctClause ||
subquery->limitOffset ||
subquery->limitCount ||
subquery->hasForUpdate ||
subquery->cteList)
return false;
/*
* Don't pull up if the RTE represents a security-barrier view; we
* couldn't prevent information leakage once the RTE's Vars are scattered
* about in the upper query.
*/
if (rte->security_barrier)
return false;
/*
* If the subquery is LATERAL, check for pullup restrictions from that.
*/
if (rte->lateral)
{
bool restricted;
Relids safe_upper_varnos;
/*
* The subquery's WHERE and JOIN/ON quals mustn't contain any lateral
* references to rels outside a higher outer join (including the case
* where the outer join is within the subquery itself). In such a
* case, pulling up would result in a situation where we need to
* postpone quals from below an outer join to above it, which is
* probably completely wrong and in any case is a complication that
* doesn't seem worth addressing at the moment.
*/
if (lowest_outer_join != NULL)
{
restricted = true;
safe_upper_varnos = get_relids_in_jointree((Node *) lowest_outer_join,
true);
}
else
{
restricted = false;
safe_upper_varnos = NULL; /* doesn't matter */
}
if (jointree_contains_lateral_outer_refs(root,
(Node *) subquery->jointree,
restricted, safe_upper_varnos))
return false;
/*
* If there's an outer join above the LATERAL subquery, also disallow
* pullup if the subquery's targetlist has any references to rels
* outside the outer join, since these might get pulled into quals
* above the subquery (but in or below the outer join) and then lead
* to qual-postponement issues similar to the case checked for above.
* (We wouldn't need to prevent pullup if no such references appear in
* outer-query quals, but we don't have enough info here to check
* that. Also, maybe this restriction could be removed if we forced
* such refs to be wrapped in PlaceHolderVars, even when they're below
* the nearest outer join? But it's a pretty hokey usage, so not
* clear this is worth sweating over.)
*/
if (lowest_outer_join != NULL)
{
Relids lvarnos = pull_varnos_of_level(root,
(Node *) subquery->targetList,
1);
if (!bms_is_subset(lvarnos, safe_upper_varnos))
return false;
}
}
/*
* Don't pull up a subquery that has any volatile functions in its
* targetlist. Otherwise we might introduce multiple evaluations of these
* functions, if they get copied to multiple places in the upper query,
* leading to surprising results. (Note: the PlaceHolderVar mechanism
* doesn't quite guarantee single evaluation; else we could pull up anyway
* and just wrap such items in PlaceHolderVars ...)
*/
if (contain_volatile_functions((Node *) subquery->targetList))
return false;
return true;
}
/*
* pull_up_simple_values
* Pull up a single simple VALUES RTE.
*
* jtnode is a RangeTblRef that has been identified as a simple VALUES RTE
* by pull_up_subqueries. We always return a RangeTblRef representing a
* RESULT RTE to replace it (all failure cases should have been detected by
* is_simple_values()). Actually, what we return is just jtnode, because
* we replace the VALUES RTE in the rangetable with the RESULT RTE.
*
* rte is the RangeTblEntry referenced by jtnode. Because of the limited
* possible usage of VALUES RTEs, we do not need the remaining parameters
* of pull_up_subqueries_recurse.
*/
static Node *
pull_up_simple_values(PlannerInfo *root, Node *jtnode, RangeTblEntry *rte)
{
Query *parse = root->parse;
int varno = ((RangeTblRef *) jtnode)->rtindex;
List *values_list;
List *tlist;
AttrNumber attrno;
pullup_replace_vars_context rvcontext;
ListCell *lc;
Assert(rte->rtekind == RTE_VALUES);
Assert(list_length(rte->values_lists) == 1);
/*
* Need a modifiable copy of the VALUES list to hack on, just in case it's
* multiply referenced.
*/
values_list = copyObject(linitial(rte->values_lists));
/*
* The VALUES RTE can't contain any Vars of level zero, let alone any that
* are join aliases, so no need to flatten join alias Vars.
*/
Assert(!contain_vars_of_level((Node *) values_list, 0));
/*
* Set up required context data for pullup_replace_vars. In particular,
* we have to make the VALUES list look like a subquery targetlist.
*/
tlist = NIL;
attrno = 1;
foreach(lc, values_list)
{
tlist = lappend(tlist,
makeTargetEntry((Expr *) lfirst(lc),
attrno,
NULL,
false));
attrno++;
}
rvcontext.root = root;
rvcontext.targetlist = tlist;
rvcontext.target_rte = rte;
rvcontext.relids = NULL;
rvcontext.outer_hasSubLinks = &parse->hasSubLinks;
rvcontext.varno = varno;
rvcontext.need_phvs = false;
rvcontext.wrap_non_vars = false;
/* initialize cache array with indexes 0 .. length(tlist) */
rvcontext.rv_cache = palloc0((list_length(tlist) + 1) *
sizeof(Node *));
/*
* Replace all of the top query's references to the RTE's outputs with
* copies of the adjusted VALUES expressions, being careful not to replace
* any of the jointree structure. We can assume there's no outer joins or
* appendrels in the dummy Query that surrounds a VALUES RTE.
*/
perform_pullup_replace_vars(root, &rvcontext, NULL, NULL);
/*
* There should be no appendrels to fix, nor any outer joins and hence no
* PlaceHolderVars.
*/
Assert(root->append_rel_list == NIL);
Assert(root->join_info_list == NIL);
Assert(root->placeholder_list == NIL);
/*
* Replace the VALUES RTE with a RESULT RTE. The VALUES RTE is the only
* rtable entry in the current query level, so this is easy.
*/
Assert(list_length(parse->rtable) == 1);
/* Create suitable RTE */
rte = makeNode(RangeTblEntry);
rte->rtekind = RTE_RESULT;
rte->eref = makeAlias("*RESULT*", NIL);
/* Replace rangetable */
parse->rtable = list_make1(rte);
/* We could manufacture a new RangeTblRef, but the one we have is fine */
Assert(varno == 1);
return jtnode;
}
/*
* is_simple_values
* Check a VALUES RTE in the range table to see if it's simple enough
* to pull up into the parent query.
*
* rte is the RTE_VALUES RangeTblEntry to check.
*/
static bool
is_simple_values(PlannerInfo *root, RangeTblEntry *rte)
{
Assert(rte->rtekind == RTE_VALUES);
/*
* There must be exactly one VALUES list, else it's not semantically
* correct to replace the VALUES RTE with a RESULT RTE, nor would we have
* a unique set of expressions to substitute into the parent query.
*/
if (list_length(rte->values_lists) != 1)
return false;
/*
* Because VALUES can't appear under an outer join (or at least, we won't
* try to pull it up if it does), we need not worry about LATERAL, nor
* about validity of PHVs for the VALUES' outputs.
*/
/*
* Don't pull up a VALUES that contains any set-returning or volatile
* functions. The considerations here are basically identical to the
* restrictions on a pull-able subquery's targetlist.
*/
if (expression_returns_set((Node *) rte->values_lists) ||
contain_volatile_functions((Node *) rte->values_lists))
return false;
/*
* Do not pull up a VALUES that's not the only RTE in its parent query.
* This is actually the only case that the parser will generate at the
* moment, and assuming this is true greatly simplifies
* pull_up_simple_values().
*/
if (list_length(root->parse->rtable) != 1 ||
rte != (RangeTblEntry *) linitial(root->parse->rtable))
return false;
return true;
}
/*
* pull_up_constant_function
* Pull up an RTE_FUNCTION expression that was simplified to a constant.
*
* jtnode is a RangeTblRef that has been identified as a FUNCTION RTE by
* pull_up_subqueries. If its expression is just a Const, hoist that value
* up into the parent query, and replace the RTE_FUNCTION with RTE_RESULT.
*
* In principle we could pull up any immutable expression, but we don't.
* That might result in multiple evaluations of the expression, which could
* be costly if it's not just a Const. Also, the main value of this is
* to let the constant participate in further const-folding, and of course
* that won't happen for a non-Const.
*
* The pulled-up value might need to be wrapped in a PlaceHolderVar if the
* RTE is below an outer join or is part of an appendrel; the extra
* parameters show whether that's needed.
*/
static Node *
pull_up_constant_function(PlannerInfo *root, Node *jtnode,
RangeTblEntry *rte,
JoinExpr *lowest_nulling_outer_join,
AppendRelInfo *containing_appendrel)
{
Query *parse = root->parse;
RangeTblFunction *rtf;
TypeFuncClass functypclass;
Oid funcrettype;
TupleDesc tupdesc;
pullup_replace_vars_context rvcontext;
/* Fail if the RTE has ORDINALITY - we don't implement that here. */
if (rte->funcordinality)
return jtnode;
/* Fail if RTE isn't a single, simple Const expr */
if (list_length(rte->functions) != 1)
return jtnode;
rtf = linitial_node(RangeTblFunction, rte->functions);
if (!IsA(rtf->funcexpr, Const))
return jtnode;
/*
* If the function's result is not a scalar, we punt. In principle we
* could break the composite constant value apart into per-column
* constants, but for now it seems not worth the work.
*/
if (rtf->funccolcount != 1)
return jtnode; /* definitely composite */
functypclass = get_expr_result_type(rtf->funcexpr,
&funcrettype,
&tupdesc);
if (functypclass != TYPEFUNC_SCALAR)
return jtnode; /* must be a one-column composite type */
/* Create context for applying pullup_replace_vars */
rvcontext.root = root;
rvcontext.targetlist = list_make1(makeTargetEntry((Expr *) rtf->funcexpr,
1, /* resno */
NULL, /* resname */
false)); /* resjunk */
rvcontext.target_rte = rte;
/*
* Since this function was reduced to a Const, it doesn't contain any
* lateral references, even if it's marked as LATERAL. This means we
* don't need to fill relids.
*/
rvcontext.relids = NULL;
rvcontext.outer_hasSubLinks = &parse->hasSubLinks;
rvcontext.varno = ((RangeTblRef *) jtnode)->rtindex;
/* these flags will be set below, if needed */
rvcontext.need_phvs = false;
rvcontext.wrap_non_vars = false;
/* initialize cache array with indexes 0 .. length(tlist) */
rvcontext.rv_cache = palloc0((list_length(rvcontext.targetlist) + 1) *
sizeof(Node *));
/*
* If we are under an outer join then non-nullable items and lateral
* references may have to be turned into PlaceHolderVars.
*/
if (lowest_nulling_outer_join != NULL)
rvcontext.need_phvs = true;
/*
* If we are dealing with an appendrel member then anything that's not a
* simple Var has to be turned into a PlaceHolderVar. (See comments in
* pull_up_simple_subquery().)
*/
if (containing_appendrel != NULL)
{
rvcontext.need_phvs = true;
rvcontext.wrap_non_vars = true;
}
/*
* If the parent query uses grouping sets, we need a PlaceHolderVar for
* anything that's not a simple Var.
*/
if (parse->groupingSets)
{
rvcontext.need_phvs = true;
rvcontext.wrap_non_vars = true;
}
/*
* Replace all of the top query's references to the RTE's output with
* copies of the funcexpr, being careful not to replace any of the
* jointree structure.
*/
perform_pullup_replace_vars(root, &rvcontext,
lowest_nulling_outer_join,
containing_appendrel);
/*
* We don't need to bother with changing PlaceHolderVars in the parent
* query. Their references to the RT index are still good for now, and
* will get removed later if we're able to drop the RTE_RESULT.
*/
/*
* Convert the RTE to be RTE_RESULT type, signifying that we don't need to
* scan it anymore, and zero out RTE_FUNCTION-specific fields. Also make
* sure the RTE is not marked LATERAL, since elsewhere we don't expect
* RTE_RESULTs to be LATERAL.
*/
rte->rtekind = RTE_RESULT;
rte->functions = NIL;
rte->lateral = false;
/*
* We can reuse the RangeTblRef node.
*/
return jtnode;
}
/*
* is_simple_union_all
* Check a subquery to see if it's a simple UNION ALL.
*
* We require all the setops to be UNION ALL (no mixing) and there can't be
* any datatype coercions involved, ie, all the leaf queries must emit the
* same datatypes.
*/
static bool
is_simple_union_all(Query *subquery)
{
SetOperationStmt *topop;
/* Let's just make sure it's a valid subselect ... */
if (!IsA(subquery, Query) ||
subquery->commandType != CMD_SELECT)
elog(ERROR, "subquery is bogus");
/* Is it a set-operation query at all? */
topop = castNode(SetOperationStmt, subquery->setOperations);
if (!topop)
return false;
/* Can't handle ORDER BY, LIMIT/OFFSET, locking, or WITH */
if (subquery->sortClause ||
subquery->limitOffset ||
subquery->limitCount ||
subquery->rowMarks ||
subquery->cteList)
return false;
/* Recursively check the tree of set operations */
return is_simple_union_all_recurse((Node *) topop, subquery,
topop->colTypes);
}
static bool
is_simple_union_all_recurse(Node *setOp, Query *setOpQuery, List *colTypes)
{
if (IsA(setOp, RangeTblRef))
{
RangeTblRef *rtr = (RangeTblRef *) setOp;
RangeTblEntry *rte = rt_fetch(rtr->rtindex, setOpQuery->rtable);
Query *subquery = rte->subquery;
Assert(subquery != NULL);
/* Leaf nodes are OK if they match the toplevel column types */
/* We don't have to compare typmods or collations here */
return tlist_same_datatypes(subquery->targetList, colTypes, true);
}
else if (IsA(setOp, SetOperationStmt))
{
SetOperationStmt *op = (SetOperationStmt *) setOp;
/* Must be UNION ALL */
if (op->op != SETOP_UNION || !op->all)
return false;
/* Recurse to check inputs */
return is_simple_union_all_recurse(op->larg, setOpQuery, colTypes) &&
is_simple_union_all_recurse(op->rarg, setOpQuery, colTypes);
}
else
{
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(setOp));
return false; /* keep compiler quiet */
}
}
/*
* is_safe_append_member
* Check a subquery that is a leaf of a UNION ALL appendrel to see if it's
* safe to pull up.
*/
static bool
is_safe_append_member(Query *subquery)
{
FromExpr *jtnode;
/*
* It's only safe to pull up the child if its jointree contains exactly
* one RTE, else the AppendRelInfo data structure breaks. The one base RTE
* could be buried in several levels of FromExpr, however. Also, if the
* child's jointree is completely empty, we can pull up because
* pull_up_simple_subquery will insert a single RTE_RESULT RTE instead.
*
* Also, the child can't have any WHERE quals because there's no place to
* put them in an appendrel. (This is a bit annoying...) If we didn't
* need to check this, we'd just test whether get_relids_in_jointree()
* yields a singleton set, to be more consistent with the coding of
* fix_append_rel_relids().
*/
jtnode = subquery->jointree;
Assert(IsA(jtnode, FromExpr));
/* Check the completely-empty case */
if (jtnode->fromlist == NIL && jtnode->quals == NULL)
return true;
/* Check the more general case */
while (IsA(jtnode, FromExpr))
{
if (jtnode->quals != NULL)
return false;
if (list_length(jtnode->fromlist) != 1)
return false;
jtnode = linitial(jtnode->fromlist);
}
if (!IsA(jtnode, RangeTblRef))
return false;
return true;
}
/*
* jointree_contains_lateral_outer_refs
* Check for disallowed lateral references in a jointree's quals
*
* If restricted is false, all level-1 Vars are allowed (but we still must
* search the jointree, since it might contain outer joins below which there
* will be restrictions). If restricted is true, return true when any qual
* in the jointree contains level-1 Vars coming from outside the rels listed
* in safe_upper_varnos.
*/
static bool
jointree_contains_lateral_outer_refs(PlannerInfo *root, Node *jtnode,
bool restricted,
Relids safe_upper_varnos)
{
if (jtnode == NULL)
return false;
if (IsA(jtnode, RangeTblRef))
return false;
else if (IsA(jtnode, FromExpr))
{
FromExpr *f = (FromExpr *) jtnode;
ListCell *l;
/* First, recurse to check child joins */
foreach(l, f->fromlist)
{
if (jointree_contains_lateral_outer_refs(root,
lfirst(l),
restricted,
safe_upper_varnos))
return true;
}
/* Then check the top-level quals */
if (restricted &&
!bms_is_subset(pull_varnos_of_level(root, f->quals, 1),
safe_upper_varnos))
return true;
}
else if (IsA(jtnode, JoinExpr))
{
JoinExpr *j = (JoinExpr *) jtnode;
/*
* If this is an outer join, we mustn't allow any upper lateral
* references in or below it.
*/
if (j->jointype != JOIN_INNER)
{
restricted = true;
safe_upper_varnos = NULL;
}
/* Check the child joins */
if (jointree_contains_lateral_outer_refs(root,
j->larg,
restricted,
safe_upper_varnos))
return true;
if (jointree_contains_lateral_outer_refs(root,
j->rarg,
restricted,
safe_upper_varnos))
return true;
/* Check the JOIN's qual clauses */
if (restricted &&
!bms_is_subset(pull_varnos_of_level(root, j->quals, 1),
safe_upper_varnos))
return true;
}
else
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(jtnode));
return false;
}
/*
* Perform pullup_replace_vars everyplace it's needed in the query tree.
*
* Caller has already filled *rvcontext with data describing what to
* substitute for Vars referencing the target subquery. In addition
* we need the identity of the lowest outer join that can null the
* target subquery, and its containing appendrel if any.
*/
static void
perform_pullup_replace_vars(PlannerInfo *root,
pullup_replace_vars_context *rvcontext,
JoinExpr *lowest_nulling_outer_join,
AppendRelInfo *containing_appendrel)
{
Query *parse = root->parse;
ListCell *lc;
/*
* Replace all of the top query's references to the subquery's outputs
* with copies of the adjusted subtlist items, being careful not to
* replace any of the jointree structure. (This'd be a lot cleaner if we
* could use query_tree_mutator.) We have to use PHVs in the targetList,
* returningList, and havingQual, since those are certainly above any
* outer join. replace_vars_in_jointree tracks its location in the
* jointree and uses PHVs or not appropriately.
*/
parse->targetList = (List *)
pullup_replace_vars((Node *) parse->targetList, rvcontext);
parse->returningList = (List *)
pullup_replace_vars((Node *) parse->returningList, rvcontext);
if (parse->onConflict)
{
parse->onConflict->onConflictSet = (List *)
pullup_replace_vars((Node *) parse->onConflict->onConflictSet,
rvcontext);
parse->onConflict->onConflictWhere =
pullup_replace_vars(parse->onConflict->onConflictWhere,
rvcontext);
/*
* We assume ON CONFLICT's arbiterElems, arbiterWhere, exclRelTlist
* can't contain any references to a subquery.
*/
}
replace_vars_in_jointree((Node *) parse->jointree, rvcontext,
lowest_nulling_outer_join);
Assert(parse->setOperations == NULL);
parse->havingQual = pullup_replace_vars(parse->havingQual, rvcontext);
/*
* Replace references in the translated_vars lists of appendrels. When
* pulling up an appendrel member, we do not need PHVs in the list of the
* parent appendrel --- there isn't any outer join between. Elsewhere,
* use PHVs for safety. (This analysis could be made tighter but it seems
* unlikely to be worth much trouble.)
*/
foreach(lc, root->append_rel_list)
{
AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
bool save_need_phvs = rvcontext->need_phvs;
if (appinfo == containing_appendrel)
rvcontext->need_phvs = false;
appinfo->translated_vars = (List *)
pullup_replace_vars((Node *) appinfo->translated_vars, rvcontext);
rvcontext->need_phvs = save_need_phvs;
}
/*
* Replace references in the joinaliasvars lists of join RTEs.
*
* You might think that we could avoid using PHVs for alias vars of joins
* below lowest_nulling_outer_join, but that doesn't work because the
* alias vars could be referenced above that join; we need the PHVs to be
* present in such references after the alias vars get flattened. (It
* might be worth trying to be smarter here, someday.)
*/
foreach(lc, parse->rtable)
{
RangeTblEntry *otherrte = (RangeTblEntry *) lfirst(lc);
if (otherrte->rtekind == RTE_JOIN)
otherrte->joinaliasvars = (List *)
pullup_replace_vars((Node *) otherrte->joinaliasvars,
rvcontext);
}
}
/*
* Helper routine for perform_pullup_replace_vars: do pullup_replace_vars on
* every expression in the jointree, without changing the jointree structure
* itself. Ugly, but there's no other way...
*
* If we are at or below lowest_nulling_outer_join, we can suppress use of
* PlaceHolderVars wrapped around the replacement expressions.
*/
static void
replace_vars_in_jointree(Node *jtnode,
pullup_replace_vars_context *context,
JoinExpr *lowest_nulling_outer_join)
{
if (jtnode == NULL)
return;
if (IsA(jtnode, RangeTblRef))
{
/*
* If the RangeTblRef refers to a LATERAL subquery (that isn't the
* same subquery we're pulling up), it might contain references to the
* target subquery, which we must replace. We drive this from the
* jointree scan, rather than a scan of the rtable, for a couple of
* reasons: we can avoid processing no-longer-referenced RTEs, and we
* can use the appropriate setting of need_phvs depending on whether
* the RTE is above possibly-nulling outer joins or not.
*/
int varno = ((RangeTblRef *) jtnode)->rtindex;
if (varno != context->varno) /* ignore target subquery itself */
{
RangeTblEntry *rte = rt_fetch(varno, context->root->parse->rtable);
Assert(rte != context->target_rte);
if (rte->lateral)
{
switch (rte->rtekind)
{
case RTE_RELATION:
/* shouldn't be marked LATERAL unless tablesample */
Assert(rte->tablesample);
rte->tablesample = (TableSampleClause *)
pullup_replace_vars((Node *) rte->tablesample,
context);
break;
case RTE_SUBQUERY:
rte->subquery =
pullup_replace_vars_subquery(rte->subquery,
context);
break;
case RTE_FUNCTION:
rte->functions = (List *)
pullup_replace_vars((Node *) rte->functions,
context);
break;
case RTE_TABLEFUNC:
rte->tablefunc = (TableFunc *)
pullup_replace_vars((Node *) rte->tablefunc,
context);
break;
case RTE_VALUES:
rte->values_lists = (List *)
pullup_replace_vars((Node *) rte->values_lists,
context);
break;
case RTE_JOIN:
case RTE_CTE:
case RTE_NAMEDTUPLESTORE:
case RTE_RESULT:
/* these shouldn't be marked LATERAL */
Assert(false);
break;
}
}
}
}
else if (IsA(jtnode, FromExpr))
{
FromExpr *f = (FromExpr *) jtnode;
ListCell *l;
foreach(l, f->fromlist)
replace_vars_in_jointree(lfirst(l), context,
lowest_nulling_outer_join);
f->quals = pullup_replace_vars(f->quals, context);
}
else if (IsA(jtnode, JoinExpr))
{
JoinExpr *j = (JoinExpr *) jtnode;
bool save_need_phvs = context->need_phvs;
if (j == lowest_nulling_outer_join)
{
/* no more PHVs in or below this join */
context->need_phvs = false;
lowest_nulling_outer_join = NULL;
}
replace_vars_in_jointree(j->larg, context, lowest_nulling_outer_join);
replace_vars_in_jointree(j->rarg, context, lowest_nulling_outer_join);
/*
* Use PHVs within the join quals of a full join, even when it's the
* lowest nulling outer join. Otherwise, we cannot identify which
* side of the join a pulled-up var-free expression came from, which
* can lead to failure to make a plan at all because none of the quals
* appear to be mergeable or hashable conditions. For this purpose we
* don't care about the state of wrap_non_vars, so leave it alone.
*/
if (j->jointype == JOIN_FULL)
context->need_phvs = true;
j->quals = pullup_replace_vars(j->quals, context);
/*
* We don't bother to update the colvars list, since it won't be used
* again ...
*/
context->need_phvs = save_need_phvs;
}
else
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(jtnode));
}
/*
* Apply pullup variable replacement throughout an expression tree
*
* Returns a modified copy of the tree, so this can't be used where we
* need to do in-place replacement.
*/
static Node *
pullup_replace_vars(Node *expr, pullup_replace_vars_context *context)
{
return replace_rte_variables(expr,
context->varno, 0,
pullup_replace_vars_callback,
(void *) context,
context->outer_hasSubLinks);
}
static Node *
pullup_replace_vars_callback(Var *var,
replace_rte_variables_context *context)
{
pullup_replace_vars_context *rcon = (pullup_replace_vars_context *) context->callback_arg;
int varattno = var->varattno;
Node *newnode;
/*
* If PlaceHolderVars are needed, we cache the modified expressions in
* rcon->rv_cache[]. This is not in hopes of any material speed gain
* within this function, but to avoid generating identical PHVs with
* different IDs. That would result in duplicate evaluations at runtime,
* and possibly prevent optimizations that rely on recognizing different
* references to the same subquery output as being equal(). So it's worth
* a bit of extra effort to avoid it.
*/
if (rcon->need_phvs &&
varattno >= InvalidAttrNumber &&
varattno <= list_length(rcon->targetlist) &&
rcon->rv_cache[varattno] != NULL)
{
/* Just copy the entry and fall through to adjust its varlevelsup */
newnode = copyObject(rcon->rv_cache[varattno]);
}
else if (varattno == InvalidAttrNumber)
{
/* Must expand whole-tuple reference into RowExpr */
RowExpr *rowexpr;
List *colnames;
List *fields;
bool save_need_phvs = rcon->need_phvs;
int save_sublevelsup = context->sublevels_up;
/*
* If generating an expansion for a var of a named rowtype (ie, this
* is a plain relation RTE), then we must include dummy items for
* dropped columns. If the var is RECORD (ie, this is a JOIN), then
* omit dropped columns. Either way, attach column names to the
* RowExpr for use of ruleutils.c.
*
* In order to be able to cache the results, we always generate the
* expansion with varlevelsup = 0, and then adjust if needed.
*/
expandRTE(rcon->target_rte,
var->varno, 0 /* not varlevelsup */ , var->location,
(var->vartype != RECORDOID),
&colnames, &fields);
/* Adjust the generated per-field Vars, but don't insert PHVs */
rcon->need_phvs = false;
context->sublevels_up = 0; /* to match the expandRTE output */
fields = (List *) replace_rte_variables_mutator((Node *) fields,
context);
rcon->need_phvs = save_need_phvs;
context->sublevels_up = save_sublevelsup;
rowexpr = makeNode(RowExpr);
rowexpr->args = fields;
rowexpr->row_typeid = var->vartype;
rowexpr->row_format = COERCE_IMPLICIT_CAST;
rowexpr->colnames = colnames;
rowexpr->location = var->location;
newnode = (Node *) rowexpr;
/*
* Insert PlaceHolderVar if needed. Notice that we are wrapping one
* PlaceHolderVar around the whole RowExpr, rather than putting one
* around each element of the row. This is because we need the
* expression to yield NULL, not ROW(NULL,NULL,...) when it is forced
* to null by an outer join.
*/
if (rcon->need_phvs)
{
/* RowExpr is certainly not strict, so always need PHV */
newnode = (Node *)
make_placeholder_expr(rcon->root,
(Expr *) newnode,
bms_make_singleton(rcon->varno));
/* cache it with the PHV, and with varlevelsup still zero */
rcon->rv_cache[InvalidAttrNumber] = copyObject(newnode);
}
}
else
{
/* Normal case referencing one targetlist element */
TargetEntry *tle = get_tle_by_resno(rcon->targetlist, varattno);
if (tle == NULL) /* shouldn't happen */
elog(ERROR, "could not find attribute %d in subquery targetlist",
varattno);
/* Make a copy of the tlist item to return */
newnode = (Node *) copyObject(tle->expr);
/* Insert PlaceHolderVar if needed */
if (rcon->need_phvs)
{
bool wrap;
if (newnode && IsA(newnode, Var) &&
((Var *) newnode)->varlevelsup == 0)
{
/*
* Simple Vars always escape being wrapped, unless they are
* lateral references to something outside the subquery being
* pulled up. (Even then, we could omit the PlaceHolderVar if
* the referenced rel is under the same lowest outer join, but
* it doesn't seem worth the trouble to check that.)
*/
if (rcon->target_rte->lateral &&
!bms_is_member(((Var *) newnode)->varno, rcon->relids))
wrap = true;
else
wrap = false;
}
else if (newnode && IsA(newnode, PlaceHolderVar) &&
((PlaceHolderVar *) newnode)->phlevelsup == 0)
{
/* No need to wrap a PlaceHolderVar with another one, either */
wrap = false;
}
else if (rcon->wrap_non_vars)
{
/* Wrap all non-Vars in a PlaceHolderVar */
wrap = true;
}
else
{
/*
* If it contains a Var of the subquery being pulled up, and
* does not contain any non-strict constructs, then it's
* certainly nullable so we don't need to insert a
* PlaceHolderVar.
*
* This analysis could be tighter: in particular, a non-strict
* construct hidden within a lower-level PlaceHolderVar is not
* reason to add another PHV. But for now it doesn't seem
* worth the code to be more exact.
*
* Note: in future maybe we should insert a PlaceHolderVar
* anyway, if the tlist item is expensive to evaluate?
*
* For a LATERAL subquery, we have to check the actual var
* membership of the node, but if it's non-lateral then any
* level-zero var must belong to the subquery.
*/
if ((rcon->target_rte->lateral ?
bms_overlap(pull_varnos(rcon->root, (Node *) newnode),
rcon->relids) :
contain_vars_of_level((Node *) newnode, 0)) &&
!contain_nonstrict_functions((Node *) newnode))
{
/* No wrap needed */
wrap = false;
}
else
{
/* Else wrap it in a PlaceHolderVar */
wrap = true;
}
}
if (wrap)
newnode = (Node *)
make_placeholder_expr(rcon->root,
(Expr *) newnode,
bms_make_singleton(rcon->varno));
/*
* Cache it if possible (ie, if the attno is in range, which it
* probably always should be). We can cache the value even if we
* decided we didn't need a PHV, since this result will be
* suitable for any request that has need_phvs.
*/
if (varattno > InvalidAttrNumber &&
varattno <= list_length(rcon->targetlist))
rcon->rv_cache[varattno] = copyObject(newnode);
}
}
/* Must adjust varlevelsup if tlist item is from higher query */
if (var->varlevelsup > 0)
IncrementVarSublevelsUp(newnode, var->varlevelsup, 0);
return newnode;
}
/*
* Apply pullup variable replacement to a subquery
*
* This needs to be different from pullup_replace_vars() because
* replace_rte_variables will think that it shouldn't increment sublevels_up
* before entering the Query; so we need to call it with sublevels_up == 1.
*/
static Query *
pullup_replace_vars_subquery(Query *query,
pullup_replace_vars_context *context)
{
Assert(IsA(query, Query));
return (Query *) replace_rte_variables((Node *) query,
context->varno, 1,
pullup_replace_vars_callback,
(void *) context,
NULL);
}
/*
* flatten_simple_union_all
* Try to optimize top-level UNION ALL structure into an appendrel
*
* If a query's setOperations tree consists entirely of simple UNION ALL
* operations, flatten it into an append relation, which we can process more
* intelligently than the general setops case. Otherwise, do nothing.
*
* In most cases, this can succeed only for a top-level query, because for a
* subquery in FROM, the parent query's invocation of pull_up_subqueries would
* already have flattened the UNION via pull_up_simple_union_all. But there
* are a few cases we can support here but not in that code path, for example
* when the subquery also contains ORDER BY.
*/
void
flatten_simple_union_all(PlannerInfo *root)
{
Query *parse = root->parse;
SetOperationStmt *topop;
Node *leftmostjtnode;
int leftmostRTI;
RangeTblEntry *leftmostRTE;
int childRTI;
RangeTblEntry *childRTE;
RangeTblRef *rtr;
/* Shouldn't be called unless query has setops */
topop = castNode(SetOperationStmt, parse->setOperations);
Assert(topop);
/* Can't optimize away a recursive UNION */
if (root->hasRecursion)
return;
/*
* Recursively check the tree of set operations. If not all UNION ALL
* with identical column types, punt.
*/
if (!is_simple_union_all_recurse((Node *) topop, parse, topop->colTypes))
return;
/*
* Locate the leftmost leaf query in the setops tree. The upper query's
* Vars all refer to this RTE (see transformSetOperationStmt).
*/
leftmostjtnode = topop->larg;
while (leftmostjtnode && IsA(leftmostjtnode, SetOperationStmt))
leftmostjtnode = ((SetOperationStmt *) leftmostjtnode)->larg;
Assert(leftmostjtnode && IsA(leftmostjtnode, RangeTblRef));
leftmostRTI = ((RangeTblRef *) leftmostjtnode)->rtindex;
leftmostRTE = rt_fetch(leftmostRTI, parse->rtable);
Assert(leftmostRTE->rtekind == RTE_SUBQUERY);
/*
* Make a copy of the leftmost RTE and add it to the rtable. This copy
* will represent the leftmost leaf query in its capacity as a member of
* the appendrel. The original will represent the appendrel as a whole.
* (We must do things this way because the upper query's Vars have to be
* seen as referring to the whole appendrel.)
*/
childRTE = copyObject(leftmostRTE);
parse->rtable = lappend(parse->rtable, childRTE);
childRTI = list_length(parse->rtable);
/* Modify the setops tree to reference the child copy */
((RangeTblRef *) leftmostjtnode)->rtindex = childRTI;
/* Modify the formerly-leftmost RTE to mark it as an appendrel parent */
leftmostRTE->inh = true;
/*
* Form a RangeTblRef for the appendrel, and insert it into FROM. The top
* Query of a setops tree should have had an empty FromClause initially.
*/
rtr = makeNode(RangeTblRef);
rtr->rtindex = leftmostRTI;
Assert(parse->jointree->fromlist == NIL);
parse->jointree->fromlist = list_make1(rtr);
/*
* Now pretend the query has no setops. We must do this before trying to
* do subquery pullup, because of Assert in pull_up_simple_subquery.
*/
parse->setOperations = NULL;
/*
* Build AppendRelInfo information, and apply pull_up_subqueries to the
* leaf queries of the UNION ALL. (We must do that now because they
* weren't previously referenced by the jointree, and so were missed by
* the main invocation of pull_up_subqueries.)
*/
pull_up_union_leaf_queries((Node *) topop, root, leftmostRTI, parse, 0);
}
/*
* reduce_outer_joins
* Attempt to reduce outer joins to plain inner joins.
*
* The idea here is that given a query like
* SELECT ... FROM a LEFT JOIN b ON (...) WHERE b.y = 42;
* we can reduce the LEFT JOIN to a plain JOIN if the "=" operator in WHERE
* is strict. The strict operator will always return NULL, causing the outer
* WHERE to fail, on any row where the LEFT JOIN filled in NULLs for b's
* columns. Therefore, there's no need for the join to produce null-extended
* rows in the first place --- which makes it a plain join not an outer join.
* (This scenario may not be very likely in a query written out by hand, but
* it's reasonably likely when pushing quals down into complex views.)
*
* More generally, an outer join can be reduced in strength if there is a
* strict qual above it in the qual tree that constrains a Var from the
* nullable side of the join to be non-null. (For FULL joins this applies
* to each side separately.)
*
* Another transformation we apply here is to recognize cases like
* SELECT ... FROM a LEFT JOIN b ON (a.x = b.y) WHERE b.y IS NULL;
* If the join clause is strict for b.y, then only null-extended rows could
* pass the upper WHERE, and we can conclude that what the query is really
* specifying is an anti-semijoin. We change the join type from JOIN_LEFT
* to JOIN_ANTI. The IS NULL clause then becomes redundant, and must be
* removed to prevent bogus selectivity calculations, but we leave it to
* distribute_qual_to_rels to get rid of such clauses.
*
* Also, we get rid of JOIN_RIGHT cases by flipping them around to become
* JOIN_LEFT. This saves some code here and in some later planner routines,
* but the main reason to do it is to not need to invent a JOIN_REVERSE_ANTI
* join type.
*
* To ease recognition of strict qual clauses, we require this routine to be
* run after expression preprocessing (i.e., qual canonicalization and JOIN
* alias-var expansion).
*/
void
reduce_outer_joins(PlannerInfo *root)
{
reduce_outer_joins_state *state;
/*
* To avoid doing strictness checks on more quals than necessary, we want
* to stop descending the jointree as soon as there are no outer joins
* below our current point. This consideration forces a two-pass process.
* The first pass gathers information about which base rels appear below
* each side of each join clause, and about whether there are outer
* join(s) below each side of each join clause. The second pass examines
* qual clauses and changes join types as it descends the tree.
*/
state = reduce_outer_joins_pass1((Node *) root->parse->jointree);
/* planner.c shouldn't have called me if no outer joins */
if (state == NULL || !state->contains_outer)
elog(ERROR, "so where are the outer joins?");
reduce_outer_joins_pass2((Node *) root->parse->jointree,
state, root, NULL, NIL, NIL);
}
/*
* reduce_outer_joins_pass1 - phase 1 data collection
*
* Returns a state node describing the given jointree node.
*/
static reduce_outer_joins_state *
reduce_outer_joins_pass1(Node *jtnode)
{
reduce_outer_joins_state *result;
result = (reduce_outer_joins_state *)
palloc(sizeof(reduce_outer_joins_state));
result->relids = NULL;
result->contains_outer = false;
result->sub_states = NIL;
if (jtnode == NULL)
return result;
if (IsA(jtnode, RangeTblRef))
{
int varno = ((RangeTblRef *) jtnode)->rtindex;
result->relids = bms_make_singleton(varno);
}
else if (IsA(jtnode, FromExpr))
{
FromExpr *f = (FromExpr *) jtnode;
ListCell *l;
foreach(l, f->fromlist)
{
reduce_outer_joins_state *sub_state;
sub_state = reduce_outer_joins_pass1(lfirst(l));
result->relids = bms_add_members(result->relids,
sub_state->relids);
result->contains_outer |= sub_state->contains_outer;
result->sub_states = lappend(result->sub_states, sub_state);
}
}
else if (IsA(jtnode, JoinExpr))
{
JoinExpr *j = (JoinExpr *) jtnode;
reduce_outer_joins_state *sub_state;
/* join's own RT index is not wanted in result->relids */
if (IS_OUTER_JOIN(j->jointype))
result->contains_outer = true;
sub_state = reduce_outer_joins_pass1(j->larg);
result->relids = bms_add_members(result->relids,
sub_state->relids);
result->contains_outer |= sub_state->contains_outer;
result->sub_states = lappend(result->sub_states, sub_state);
sub_state = reduce_outer_joins_pass1(j->rarg);
result->relids = bms_add_members(result->relids,
sub_state->relids);
result->contains_outer |= sub_state->contains_outer;
result->sub_states = lappend(result->sub_states, sub_state);
}
else
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(jtnode));
return result;
}
/*
* reduce_outer_joins_pass2 - phase 2 processing
*
* jtnode: current jointree node
* state: state data collected by phase 1 for this node
* root: toplevel planner state
* nonnullable_rels: set of base relids forced non-null by upper quals
* nonnullable_vars: list of Vars forced non-null by upper quals
* forced_null_vars: list of Vars forced null by upper quals
*/
static void
reduce_outer_joins_pass2(Node *jtnode,
reduce_outer_joins_state *state,
PlannerInfo *root,
Relids nonnullable_rels,
List *nonnullable_vars,
List *forced_null_vars)
{
/*
* pass 2 should never descend as far as an empty subnode or base rel,
* because it's only called on subtrees marked as contains_outer.
*/
if (jtnode == NULL)
elog(ERROR, "reached empty jointree");
if (IsA(jtnode, RangeTblRef))
elog(ERROR, "reached base rel");
else if (IsA(jtnode, FromExpr))
{
FromExpr *f = (FromExpr *) jtnode;
ListCell *l;
ListCell *s;
Relids pass_nonnullable_rels;
List *pass_nonnullable_vars;
List *pass_forced_null_vars;
/* Scan quals to see if we can add any constraints */
pass_nonnullable_rels = find_nonnullable_rels(f->quals);
pass_nonnullable_rels = bms_add_members(pass_nonnullable_rels,
nonnullable_rels);
pass_nonnullable_vars = find_nonnullable_vars(f->quals);
pass_nonnullable_vars = list_concat(pass_nonnullable_vars,
nonnullable_vars);
pass_forced_null_vars = find_forced_null_vars(f->quals);
pass_forced_null_vars = list_concat(pass_forced_null_vars,
forced_null_vars);
/* And recurse --- but only into interesting subtrees */
Assert(list_length(f->fromlist) == list_length(state->sub_states));
forboth(l, f->fromlist, s, state->sub_states)
{
reduce_outer_joins_state *sub_state = lfirst(s);
if (sub_state->contains_outer)
reduce_outer_joins_pass2(lfirst(l), sub_state, root,
pass_nonnullable_rels,
pass_nonnullable_vars,
pass_forced_null_vars);
}
bms_free(pass_nonnullable_rels);
/* can't so easily clean up var lists, unfortunately */
}
else if (IsA(jtnode, JoinExpr))
{
JoinExpr *j = (JoinExpr *) jtnode;
int rtindex = j->rtindex;
JoinType jointype = j->jointype;
reduce_outer_joins_state *left_state = linitial(state->sub_states);
reduce_outer_joins_state *right_state = lsecond(state->sub_states);
List *local_nonnullable_vars = NIL;
bool computed_local_nonnullable_vars = false;
/* Can we simplify this join? */
switch (jointype)
{
case JOIN_INNER:
break;
case JOIN_LEFT:
if (bms_overlap(nonnullable_rels, right_state->relids))
jointype = JOIN_INNER;
break;
case JOIN_RIGHT:
if (bms_overlap(nonnullable_rels, left_state->relids))
jointype = JOIN_INNER;
break;
case JOIN_FULL:
if (bms_overlap(nonnullable_rels, left_state->relids))
{
if (bms_overlap(nonnullable_rels, right_state->relids))
jointype = JOIN_INNER;
else
jointype = JOIN_LEFT;
}
else
{
if (bms_overlap(nonnullable_rels, right_state->relids))
jointype = JOIN_RIGHT;
}
break;
case JOIN_SEMI:
case JOIN_ANTI:
/*
* These could only have been introduced by pull_up_sublinks,
* so there's no way that upper quals could refer to their
* righthand sides, and no point in checking.
*/
break;
default:
elog(ERROR, "unrecognized join type: %d",
(int) jointype);
break;
}
/*
* Convert JOIN_RIGHT to JOIN_LEFT. Note that in the case where we
* reduced JOIN_FULL to JOIN_RIGHT, this will mean the JoinExpr no
* longer matches the internal ordering of any CoalesceExpr's built to
* represent merged join variables. We don't care about that at
* present, but be wary of it ...
*/
if (jointype == JOIN_RIGHT)
{
Node *tmparg;
tmparg = j->larg;
j->larg = j->rarg;
j->rarg = tmparg;
jointype = JOIN_LEFT;
right_state = linitial(state->sub_states);
left_state = lsecond(state->sub_states);
}
/*
* See if we can reduce JOIN_LEFT to JOIN_ANTI. This is the case if
* the join's own quals are strict for any var that was forced null by
* higher qual levels. NOTE: there are other ways that we could
* detect an anti-join, in particular if we were to check whether Vars
* coming from the RHS must be non-null because of table constraints.
* That seems complicated and expensive though (in particular, one
* would have to be wary of lower outer joins). For the moment this
* seems sufficient.
*/
if (jointype == JOIN_LEFT)
{
List *overlap;
local_nonnullable_vars = find_nonnullable_vars(j->quals);
computed_local_nonnullable_vars = true;
/*
* It's not sufficient to check whether local_nonnullable_vars and
* forced_null_vars overlap: we need to know if the overlap
* includes any RHS variables.
*/
overlap = list_intersection(local_nonnullable_vars,
forced_null_vars);
if (overlap != NIL &&
bms_overlap(pull_varnos(root, (Node *) overlap),
right_state->relids))
jointype = JOIN_ANTI;
}
/* Apply the jointype change, if any, to both jointree node and RTE */
if (rtindex && jointype != j->jointype)
{
RangeTblEntry *rte = rt_fetch(rtindex, root->parse->rtable);
Assert(rte->rtekind == RTE_JOIN);
Assert(rte->jointype == j->jointype);
rte->jointype = jointype;
}
j->jointype = jointype;
/* Only recurse if there's more to do below here */
if (left_state->contains_outer || right_state->contains_outer)
{
Relids local_nonnullable_rels;
List *local_forced_null_vars;
Relids pass_nonnullable_rels;
List *pass_nonnullable_vars;
List *pass_forced_null_vars;
/*
* If this join is (now) inner, we can add any constraints its
* quals provide to those we got from above. But if it is outer,
* we can pass down the local constraints only into the nullable
* side, because an outer join never eliminates any rows from its
* non-nullable side. Also, there is no point in passing upper
* constraints into the nullable side, since if there were any
* we'd have been able to reduce the join. (In the case of upper
* forced-null constraints, we *must not* pass them into the
* nullable side --- they either applied here, or not.) The upshot
* is that we pass either the local or the upper constraints,
* never both, to the children of an outer join.
*
* Note that a SEMI join works like an inner join here: it's okay
* to pass down both local and upper constraints. (There can't be
* any upper constraints affecting its inner side, but it's not
* worth having a separate code path to avoid passing them.)
*
* At a FULL join we just punt and pass nothing down --- is it
* possible to be smarter?
*/
if (jointype != JOIN_FULL)
{
local_nonnullable_rels = find_nonnullable_rels(j->quals);
if (!computed_local_nonnullable_vars)
local_nonnullable_vars = find_nonnullable_vars(j->quals);
local_forced_null_vars = find_forced_null_vars(j->quals);
if (jointype == JOIN_INNER || jointype == JOIN_SEMI)
{
/* OK to merge upper and local constraints */
local_nonnullable_rels = bms_add_members(local_nonnullable_rels,
nonnullable_rels);
local_nonnullable_vars = list_concat(local_nonnullable_vars,
nonnullable_vars);
local_forced_null_vars = list_concat(local_forced_null_vars,
forced_null_vars);
}
}
else
{
/* no use in calculating these */
local_nonnullable_rels = NULL;
local_forced_null_vars = NIL;
}
if (left_state->contains_outer)
{
if (jointype == JOIN_INNER || jointype == JOIN_SEMI)
{
/* pass union of local and upper constraints */
pass_nonnullable_rels = local_nonnullable_rels;
pass_nonnullable_vars = local_nonnullable_vars;
pass_forced_null_vars = local_forced_null_vars;
}
else if (jointype != JOIN_FULL) /* ie, LEFT or ANTI */
{
/* can't pass local constraints to non-nullable side */
pass_nonnullable_rels = nonnullable_rels;
pass_nonnullable_vars = nonnullable_vars;
pass_forced_null_vars = forced_null_vars;
}
else
{
/* no constraints pass through JOIN_FULL */
pass_nonnullable_rels = NULL;
pass_nonnullable_vars = NIL;
pass_forced_null_vars = NIL;
}
reduce_outer_joins_pass2(j->larg, left_state, root,
pass_nonnullable_rels,
pass_nonnullable_vars,
pass_forced_null_vars);
}
if (right_state->contains_outer)
{
if (jointype != JOIN_FULL) /* ie, INNER/LEFT/SEMI/ANTI */
{
/* pass appropriate constraints, per comment above */
pass_nonnullable_rels = local_nonnullable_rels;
pass_nonnullable_vars = local_nonnullable_vars;
pass_forced_null_vars = local_forced_null_vars;
}
else
{
/* no constraints pass through JOIN_FULL */
pass_nonnullable_rels = NULL;
pass_nonnullable_vars = NIL;
pass_forced_null_vars = NIL;
}
reduce_outer_joins_pass2(j->rarg, right_state, root,
pass_nonnullable_rels,
pass_nonnullable_vars,
pass_forced_null_vars);
}
bms_free(local_nonnullable_rels);
}
}
else
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(jtnode));
}
/*
* remove_useless_result_rtes
* Attempt to remove RTE_RESULT RTEs from the join tree.
*
* We can remove RTE_RESULT entries from the join tree using the knowledge
* that RTE_RESULT returns exactly one row and has no output columns. Hence,
* if one is inner-joined to anything else, we can delete it. Optimizations
* are also possible for some outer-join cases, as detailed below.
*
* Some of these optimizations depend on recognizing empty (constant-true)
* quals for FromExprs and JoinExprs. That makes it useful to apply this
* optimization pass after expression preprocessing, since that will have
* eliminated constant-true quals, allowing more cases to be recognized as
* optimizable. What's more, the usual reason for an RTE_RESULT to be present
* is that we pulled up a subquery or VALUES clause, thus very possibly
* replacing Vars with constants, making it more likely that a qual can be
* reduced to constant true. Also, because some optimizations depend on
* the outer-join type, it's best to have done reduce_outer_joins() first.
*
* A PlaceHolderVar referencing an RTE_RESULT RTE poses an obstacle to this
* process: we must remove the RTE_RESULT's relid from the PHV's phrels, but
* we must not reduce the phrels set to empty. If that would happen, and
* the RTE_RESULT is an immediate child of an outer join, we have to give up
* and not remove the RTE_RESULT: there is noplace else to evaluate the
* PlaceHolderVar. (That is, in such cases the RTE_RESULT *does* have output
* columns.) But if the RTE_RESULT is an immediate child of an inner join,
* we can usually change the PlaceHolderVar's phrels so as to evaluate it at
* the inner join instead. This is OK because we really only care that PHVs
* are evaluated above or below the correct outer joins. We can't, however,
* postpone the evaluation of a PHV to above where it is used; so there are
* some checks below on whether output PHVs are laterally referenced in the
* other join input rel(s).
*
* We used to try to do this work as part of pull_up_subqueries() where the
* potentially-optimizable cases get introduced; but it's way simpler, and
* more effective, to do it separately.
*/
void
remove_useless_result_rtes(PlannerInfo *root)
{
ListCell *cell;
/* Top level of jointree must always be a FromExpr */
Assert(IsA(root->parse->jointree, FromExpr));
/* Recurse ... */
root->parse->jointree = (FromExpr *)
remove_useless_results_recurse(root, (Node *) root->parse->jointree);
/* We should still have a FromExpr */
Assert(IsA(root->parse->jointree, FromExpr));
/*
* Remove any PlanRowMark referencing an RTE_RESULT RTE. We obviously
* must do that for any RTE_RESULT that we just removed. But one for a
* RTE that we did not remove can be dropped anyway: since the RTE has
* only one possible output row, there is no need for EPQ to mark and
* restore that row.
*
* It's necessary, not optional, to remove the PlanRowMark for a surviving
* RTE_RESULT RTE; otherwise we'll generate a whole-row Var for the
* RTE_RESULT, which the executor has no support for.
*/
foreach(cell, root->rowMarks)
{
PlanRowMark *rc = (PlanRowMark *) lfirst(cell);
if (rt_fetch(rc->rti, root->parse->rtable)->rtekind == RTE_RESULT)
root->rowMarks = foreach_delete_current(root->rowMarks, cell);
}
}
/*
* remove_useless_results_recurse
* Recursive guts of remove_useless_result_rtes.
*
* This recursively processes the jointree and returns a modified jointree.
*/
static Node *
remove_useless_results_recurse(PlannerInfo *root, Node *jtnode)
{
Assert(jtnode != NULL);
if (IsA(jtnode, RangeTblRef))
{
/* Can't immediately do anything with a RangeTblRef */
}
else if (IsA(jtnode, FromExpr))
{
FromExpr *f = (FromExpr *) jtnode;
Relids result_relids = NULL;
ListCell *cell;
/*
* We can drop RTE_RESULT rels from the fromlist so long as at least
* one child remains, since joining to a one-row table changes
* nothing. (But we can't drop a RTE_RESULT that computes PHV(s) that
* are needed by some sibling. The cleanup transformation below would
* reassign the PHVs to be computed at the join, which is too late for
* the sibling's use.) The easiest way to mechanize this rule is to
* modify the list in-place.
*/
foreach(cell, f->fromlist)
{
Node *child = (Node *) lfirst(cell);
int varno;
/* Recursively transform child ... */
child = remove_useless_results_recurse(root, child);
/* ... and stick it back into the tree */
lfirst(cell) = child;
/*
* If it's an RTE_RESULT with at least one sibling, and no sibling
* references dependent PHVs, we can drop it. We don't yet know
* what the inner join's final relid set will be, so postpone
* cleanup of PHVs etc till after this loop.
*/
if (list_length(f->fromlist) > 1 &&
(varno = get_result_relid(root, child)) != 0 &&
!find_dependent_phvs_in_jointree(root, (Node *) f, varno))
{
f->fromlist = foreach_delete_current(f->fromlist, cell);
result_relids = bms_add_member(result_relids, varno);
}
}
/*
* Clean up if we dropped any RTE_RESULT RTEs. This is a bit
* inefficient if there's more than one, but it seems better to
* optimize the support code for the single-relid case.
*/
if (result_relids)
{
int varno = -1;
while ((varno = bms_next_member(result_relids, varno)) >= 0)
remove_result_refs(root, varno, (Node *) f);
}
/*
* If we're not at the top of the jointree, it's valid to simplify a
* degenerate FromExpr into its single child. (At the top, we must
* keep the FromExpr since Query.jointree is required to point to a
* FromExpr.)
*/
if (f != root->parse->jointree &&
f->quals == NULL &&
list_length(f->fromlist) == 1)
return (Node *) linitial(f->fromlist);
}
else if (IsA(jtnode, JoinExpr))
{
JoinExpr *j = (JoinExpr *) jtnode;
int varno;
/* First, recurse */
j->larg = remove_useless_results_recurse(root, j->larg);
j->rarg = remove_useless_results_recurse(root, j->rarg);
/* Apply join-type-specific optimization rules */
switch (j->jointype)
{
case JOIN_INNER:
/*
* An inner join is equivalent to a FromExpr, so if either
* side was simplified to an RTE_RESULT rel, we can replace
* the join with a FromExpr with just the other side; and if
* the qual is empty (JOIN ON TRUE) then we can omit the
* FromExpr as well.
*
* Just as in the FromExpr case, we can't simplify if the
* other input rel references any PHVs that are marked as to
* be evaluated at the RTE_RESULT rel, because we can't
* postpone their evaluation in that case. But we only have
* to check this in cases where it's syntactically legal for
* the other input to have a LATERAL reference to the
* RTE_RESULT rel. Only RHSes of inner and left joins are
* allowed to have such refs.
*/
if ((varno = get_result_relid(root, j->larg)) != 0 &&
!find_dependent_phvs_in_jointree(root, j->rarg, varno))
{
remove_result_refs(root, varno, j->rarg);
if (j->quals)
jtnode = (Node *)
makeFromExpr(list_make1(j->rarg), j->quals);
else
jtnode = j->rarg;
}
else if ((varno = get_result_relid(root, j->rarg)) != 0)
{
remove_result_refs(root, varno, j->larg);
if (j->quals)
jtnode = (Node *)
makeFromExpr(list_make1(j->larg), j->quals);
else
jtnode = j->larg;
}
break;
case JOIN_LEFT:
/*
* We can simplify this case if the RHS is an RTE_RESULT, with
* two different possibilities:
*
* If the qual is empty (JOIN ON TRUE), then the join can be
* strength-reduced to a plain inner join, since each LHS row
* necessarily has exactly one join partner. So we can always
* discard the RHS, much as in the JOIN_INNER case above.
* (Again, the LHS could not contain a lateral reference to
* the RHS.)
*
* Otherwise, it's still true that each LHS row should be
* returned exactly once, and since the RHS returns no columns
* (unless there are PHVs that have to be evaluated there), we
* don't much care if it's null-extended or not. So in this
* case also, we can just ignore the qual and discard the left
* join.
*/
if ((varno = get_result_relid(root, j->rarg)) != 0 &&
(j->quals == NULL ||
!find_dependent_phvs(root, varno)))
{
remove_result_refs(root, varno, j->larg);
jtnode = j->larg;
}
break;
case JOIN_RIGHT:
/* Mirror-image of the JOIN_LEFT case */
if ((varno = get_result_relid(root, j->larg)) != 0 &&
(j->quals == NULL ||
!find_dependent_phvs(root, varno)))
{
remove_result_refs(root, varno, j->rarg);
jtnode = j->rarg;
}
break;
case JOIN_SEMI:
/*
* We may simplify this case if the RHS is an RTE_RESULT; the
* join qual becomes effectively just a filter qual for the
* LHS, since we should either return the LHS row or not. For
* simplicity we inject the filter qual into a new FromExpr.
*
* Unlike the LEFT/RIGHT cases, we just Assert that there are
* no PHVs that need to be evaluated at the semijoin's RHS,
* since the rest of the query couldn't reference any outputs
* of the semijoin's RHS.
*/
if ((varno = get_result_relid(root, j->rarg)) != 0)
{
Assert(!find_dependent_phvs(root, varno));
remove_result_refs(root, varno, j->larg);
if (j->quals)
jtnode = (Node *)
makeFromExpr(list_make1(j->larg), j->quals);
else
jtnode = j->larg;
}
break;
case JOIN_FULL:
case JOIN_ANTI:
/* We have no special smarts for these cases */
break;
default:
elog(ERROR, "unrecognized join type: %d",
(int) j->jointype);
break;
}
}
else
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(jtnode));
return jtnode;
}
/*
* get_result_relid
* If jtnode is a RangeTblRef for an RTE_RESULT RTE, return its relid;
* otherwise return 0.
*/
static int
get_result_relid(PlannerInfo *root, Node *jtnode)
{
int varno;
if (!IsA(jtnode, RangeTblRef))
return 0;
varno = ((RangeTblRef *) jtnode)->rtindex;
if (rt_fetch(varno, root->parse->rtable)->rtekind != RTE_RESULT)
return 0;
return varno;
}
/*
* remove_result_refs
* Helper routine for dropping an unneeded RTE_RESULT RTE.
*
* This doesn't physically remove the RTE from the jointree, because that's
* more easily handled in remove_useless_results_recurse. What it does do
* is the necessary cleanup in the rest of the tree: we must adjust any PHVs
* that may reference the RTE. Be sure to call this at a point where the
* jointree is valid (no disconnected nodes).
*
* Note that we don't need to process the append_rel_list, since RTEs
* referenced directly in the jointree won't be appendrel members.
*
* varno is the RTE_RESULT's relid.
* newjtloc is the jointree location at which any PHVs referencing the
* RTE_RESULT should be evaluated instead.
*/
static void
remove_result_refs(PlannerInfo *root, int varno, Node *newjtloc)
{
/* Fix up PlaceHolderVars as needed */
/* If there are no PHVs anywhere, we can skip this bit */
if (root->glob->lastPHId != 0)
{
Relids subrelids;
subrelids = get_relids_in_jointree(newjtloc, false);
Assert(!bms_is_empty(subrelids));
substitute_phv_relids((Node *) root->parse, varno, subrelids);
fix_append_rel_relids(root->append_rel_list, varno, subrelids);
}
/*
* We also need to remove any PlanRowMark referencing the RTE, but we
* postpone that work until we return to remove_useless_result_rtes.
*/
}
/*
* find_dependent_phvs - are there any PlaceHolderVars whose relids are
* exactly the given varno?
*
* find_dependent_phvs should be used when we want to see if there are
* any such PHVs anywhere in the Query. Another use-case is to see if
* a subtree of the join tree contains such PHVs; but for that, we have
* to look not only at the join tree nodes themselves but at the
* referenced RTEs. For that, use find_dependent_phvs_in_jointree.
*/
typedef struct
{
Relids relids;
int sublevels_up;
} find_dependent_phvs_context;
static bool
find_dependent_phvs_walker(Node *node,
find_dependent_phvs_context *context)
{
if (node == NULL)
return false;
if (IsA(node, PlaceHolderVar))
{
PlaceHolderVar *phv = (PlaceHolderVar *) node;
if (phv->phlevelsup == context->sublevels_up &&
bms_equal(context->relids, phv->phrels))
return true;
/* fall through to examine children */
}
if (IsA(node, Query))
{
/* Recurse into subselects */
bool result;
context->sublevels_up++;
result = query_tree_walker((Query *) node,
find_dependent_phvs_walker,
(void *) context, 0);
context->sublevels_up--;
return result;
}
/* Shouldn't need to handle planner auxiliary nodes here */
Assert(!IsA(node, SpecialJoinInfo));
Assert(!IsA(node, AppendRelInfo));
Assert(!IsA(node, PlaceHolderInfo));
Assert(!IsA(node, MinMaxAggInfo));
return expression_tree_walker(node, find_dependent_phvs_walker,
(void *) context);
}
static bool
find_dependent_phvs(PlannerInfo *root, int varno)
{
find_dependent_phvs_context context;
/* If there are no PHVs anywhere, we needn't work hard */
if (root->glob->lastPHId == 0)
return false;
context.relids = bms_make_singleton(varno);
context.sublevels_up = 0;
return query_tree_walker(root->parse,
find_dependent_phvs_walker,
(void *) &context,
0);
}
static bool
find_dependent_phvs_in_jointree(PlannerInfo *root, Node *node, int varno)
{
find_dependent_phvs_context context;
Relids subrelids;
int relid;
/* If there are no PHVs anywhere, we needn't work hard */
if (root->glob->lastPHId == 0)
return false;
context.relids = bms_make_singleton(varno);
context.sublevels_up = 0;
/*
* See if the jointree fragment itself contains references (in join quals)
*/
if (find_dependent_phvs_walker(node, &context))
return true;
/*
* Otherwise, identify the set of referenced RTEs (we can ignore joins,
* since they should be flattened already, so their join alias lists no
* longer matter), and tediously check each RTE. We can ignore RTEs that
* are not marked LATERAL, though, since they couldn't possibly contain
* any cross-references to other RTEs.
*/
subrelids = get_relids_in_jointree(node, false);
relid = -1;
while ((relid = bms_next_member(subrelids, relid)) >= 0)
{
RangeTblEntry *rte = rt_fetch(relid, root->parse->rtable);
if (rte->lateral &&
range_table_entry_walker(rte,
find_dependent_phvs_walker,
(void *) &context,
0))
return true;
}
return false;
}
/*
* substitute_phv_relids - adjust PlaceHolderVar relid sets after pulling up
* a subquery or removing an RTE_RESULT jointree item
*
* Find any PlaceHolderVar nodes in the given tree that reference the
* pulled-up relid, and change them to reference the replacement relid(s).
*
* NOTE: although this has the form of a walker, we cheat and modify the
* nodes in-place. This should be OK since the tree was copied by
* pullup_replace_vars earlier. Avoid scribbling on the original values of
* the bitmapsets, though, because expression_tree_mutator doesn't copy those.
*/
typedef struct
{
int varno;
int sublevels_up;
Relids subrelids;
} substitute_phv_relids_context;
static bool
substitute_phv_relids_walker(Node *node,
substitute_phv_relids_context *context)
{
if (node == NULL)
return false;
if (IsA(node, PlaceHolderVar))
{
PlaceHolderVar *phv = (PlaceHolderVar *) node;
if (phv->phlevelsup == context->sublevels_up &&
bms_is_member(context->varno, phv->phrels))
{
phv->phrels = bms_union(phv->phrels,
context->subrelids);
phv->phrels = bms_del_member(phv->phrels,
context->varno);
/* Assert we haven't broken the PHV */
Assert(!bms_is_empty(phv->phrels));
}
/* fall through to examine children */
}
if (IsA(node, Query))
{
/* Recurse into subselects */
bool result;
context->sublevels_up++;
result = query_tree_walker((Query *) node,
substitute_phv_relids_walker,
(void *) context, 0);
context->sublevels_up--;
return result;
}
/* Shouldn't need to handle planner auxiliary nodes here */
Assert(!IsA(node, SpecialJoinInfo));
Assert(!IsA(node, AppendRelInfo));
Assert(!IsA(node, PlaceHolderInfo));
Assert(!IsA(node, MinMaxAggInfo));
return expression_tree_walker(node, substitute_phv_relids_walker,
(void *) context);
}
static void
substitute_phv_relids(Node *node, int varno, Relids subrelids)
{
substitute_phv_relids_context context;
context.varno = varno;
context.sublevels_up = 0;
context.subrelids = subrelids;
/*
* Must be prepared to start with a Query or a bare expression tree.
*/
query_or_expression_tree_walker(node,
substitute_phv_relids_walker,
(void *) &context,
0);
}
/*
* fix_append_rel_relids: update RT-index fields of AppendRelInfo nodes
*
* When we pull up a subquery, any AppendRelInfo references to the subquery's
* RT index have to be replaced by the substituted relid (and there had better
* be only one). We also need to apply substitute_phv_relids to their
* translated_vars lists, since those might contain PlaceHolderVars.
*
* We assume we may modify the AppendRelInfo nodes in-place.
*/
static void
fix_append_rel_relids(List *append_rel_list, int varno, Relids subrelids)
{
ListCell *l;
int subvarno = -1;
/*
* We only want to extract the member relid once, but we mustn't fail
* immediately if there are multiple members; it could be that none of the
* AppendRelInfo nodes refer to it. So compute it on first use. Note that
* bms_singleton_member will complain if set is not singleton.
*/
foreach(l, append_rel_list)
{
AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
/* The parent_relid shouldn't ever be a pullup target */
Assert(appinfo->parent_relid != varno);
if (appinfo->child_relid == varno)
{
if (subvarno < 0)
subvarno = bms_singleton_member(subrelids);
appinfo->child_relid = subvarno;
}
/* Also fix up any PHVs in its translated vars */
substitute_phv_relids((Node *) appinfo->translated_vars,
varno, subrelids);
}
}
/*
* get_relids_in_jointree: get set of RT indexes present in a jointree
*
* If include_joins is true, join RT indexes are included; if false,
* only base rels are included.
*/
Relids
get_relids_in_jointree(Node *jtnode, bool include_joins)
{
Relids result = NULL;
if (jtnode == NULL)
return result;
if (IsA(jtnode, RangeTblRef))
{
int varno = ((RangeTblRef *) jtnode)->rtindex;
result = bms_make_singleton(varno);
}
else if (IsA(jtnode, FromExpr))
{
FromExpr *f = (FromExpr *) jtnode;
ListCell *l;
foreach(l, f->fromlist)
{
result = bms_join(result,
get_relids_in_jointree(lfirst(l),
include_joins));
}
}
else if (IsA(jtnode, JoinExpr))
{
JoinExpr *j = (JoinExpr *) jtnode;
result = get_relids_in_jointree(j->larg, include_joins);
result = bms_join(result,
get_relids_in_jointree(j->rarg, include_joins));
if (include_joins && j->rtindex)
result = bms_add_member(result, j->rtindex);
}
else
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(jtnode));
return result;
}
/*
* get_relids_for_join: get set of base RT indexes making up a join
*/
Relids
get_relids_for_join(Query *query, int joinrelid)
{
Node *jtnode;
jtnode = find_jointree_node_for_rel((Node *) query->jointree,
joinrelid);
if (!jtnode)
elog(ERROR, "could not find join node %d", joinrelid);
return get_relids_in_jointree(jtnode, false);
}
/*
* find_jointree_node_for_rel: locate jointree node for a base or join RT index
*
* Returns NULL if not found
*/
static Node *
find_jointree_node_for_rel(Node *jtnode, int relid)
{
if (jtnode == NULL)
return NULL;
if (IsA(jtnode, RangeTblRef))
{
int varno = ((RangeTblRef *) jtnode)->rtindex;
if (relid == varno)
return jtnode;
}
else if (IsA(jtnode, FromExpr))
{
FromExpr *f = (FromExpr *) jtnode;
ListCell *l;
foreach(l, f->fromlist)
{
jtnode = find_jointree_node_for_rel(lfirst(l), relid);
if (jtnode)
return jtnode;
}
}
else if (IsA(jtnode, JoinExpr))
{
JoinExpr *j = (JoinExpr *) jtnode;
if (relid == j->rtindex)
return jtnode;
jtnode = find_jointree_node_for_rel(j->larg, relid);
if (jtnode)
return jtnode;
jtnode = find_jointree_node_for_rel(j->rarg, relid);
if (jtnode)
return jtnode;
}
else
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(jtnode));
return NULL;
}
|