1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
|
/*-------------------------------------------------------------------------
*
* indxpath.c
* Routines to determine which indexes are usable for scanning a
* given relation, and create Paths accordingly.
*
* Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/optimizer/path/indxpath.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <math.h>
#include "access/stratnum.h"
#include "access/sysattr.h"
#include "catalog/pg_am.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_opfamily.h"
#include "catalog/pg_type.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "nodes/supportnodes.h"
#include "optimizer/cost.h"
#include "optimizer/optimizer.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/prep.h"
#include "optimizer/restrictinfo.h"
#include "utils/lsyscache.h"
#include "utils/selfuncs.h"
/* XXX see PartCollMatchesExprColl */
#define IndexCollMatchesExprColl(idxcollation, exprcollation) \
((idxcollation) == InvalidOid || (idxcollation) == (exprcollation))
/* Whether we are looking for plain indexscan, bitmap scan, or either */
typedef enum
{
ST_INDEXSCAN, /* must support amgettuple */
ST_BITMAPSCAN, /* must support amgetbitmap */
ST_ANYSCAN /* either is okay */
} ScanTypeControl;
/* Data structure for collecting qual clauses that match an index */
typedef struct
{
bool nonempty; /* True if lists are not all empty */
/* Lists of IndexClause nodes, one list per index column */
List *indexclauses[INDEX_MAX_KEYS];
} IndexClauseSet;
/* Per-path data used within choose_bitmap_and() */
typedef struct
{
Path *path; /* IndexPath, BitmapAndPath, or BitmapOrPath */
List *quals; /* the WHERE clauses it uses */
List *preds; /* predicates of its partial index(es) */
Bitmapset *clauseids; /* quals+preds represented as a bitmapset */
bool unclassifiable; /* has too many quals+preds to process? */
} PathClauseUsage;
/* Callback argument for ec_member_matches_indexcol */
typedef struct
{
IndexOptInfo *index; /* index we're considering */
int indexcol; /* index column we want to match to */
} ec_member_matches_arg;
static void consider_index_join_clauses(PlannerInfo *root, RelOptInfo *rel,
IndexOptInfo *index,
IndexClauseSet *rclauseset,
IndexClauseSet *jclauseset,
IndexClauseSet *eclauseset,
List **bitindexpaths);
static void consider_index_join_outer_rels(PlannerInfo *root, RelOptInfo *rel,
IndexOptInfo *index,
IndexClauseSet *rclauseset,
IndexClauseSet *jclauseset,
IndexClauseSet *eclauseset,
List **bitindexpaths,
List *indexjoinclauses,
int considered_clauses,
List **considered_relids);
static void get_join_index_paths(PlannerInfo *root, RelOptInfo *rel,
IndexOptInfo *index,
IndexClauseSet *rclauseset,
IndexClauseSet *jclauseset,
IndexClauseSet *eclauseset,
List **bitindexpaths,
Relids relids,
List **considered_relids);
static bool eclass_already_used(EquivalenceClass *parent_ec, Relids oldrelids,
List *indexjoinclauses);
static bool bms_equal_any(Relids relids, List *relids_list);
static void get_index_paths(PlannerInfo *root, RelOptInfo *rel,
IndexOptInfo *index, IndexClauseSet *clauses,
List **bitindexpaths);
static List *build_index_paths(PlannerInfo *root, RelOptInfo *rel,
IndexOptInfo *index, IndexClauseSet *clauses,
bool useful_predicate,
ScanTypeControl scantype,
bool *skip_nonnative_saop,
bool *skip_lower_saop);
static List *build_paths_for_OR(PlannerInfo *root, RelOptInfo *rel,
List *clauses, List *other_clauses);
static List *generate_bitmap_or_paths(PlannerInfo *root, RelOptInfo *rel,
List *clauses, List *other_clauses);
static Path *choose_bitmap_and(PlannerInfo *root, RelOptInfo *rel,
List *paths);
static int path_usage_comparator(const void *a, const void *b);
static Cost bitmap_scan_cost_est(PlannerInfo *root, RelOptInfo *rel,
Path *ipath);
static Cost bitmap_and_cost_est(PlannerInfo *root, RelOptInfo *rel,
List *paths);
static PathClauseUsage *classify_index_clause_usage(Path *path,
List **clauselist);
static void find_indexpath_quals(Path *bitmapqual, List **quals, List **preds);
static int find_list_position(Node *node, List **nodelist);
static bool check_index_only(RelOptInfo *rel, IndexOptInfo *index);
static double get_loop_count(PlannerInfo *root, Index cur_relid, Relids outer_relids);
static double adjust_rowcount_for_semijoins(PlannerInfo *root,
Index cur_relid,
Index outer_relid,
double rowcount);
static double approximate_joinrel_size(PlannerInfo *root, Relids relids);
static void match_restriction_clauses_to_index(PlannerInfo *root,
IndexOptInfo *index,
IndexClauseSet *clauseset);
static void match_join_clauses_to_index(PlannerInfo *root,
RelOptInfo *rel, IndexOptInfo *index,
IndexClauseSet *clauseset,
List **joinorclauses);
static void match_eclass_clauses_to_index(PlannerInfo *root,
IndexOptInfo *index,
IndexClauseSet *clauseset);
static void match_clauses_to_index(PlannerInfo *root,
List *clauses,
IndexOptInfo *index,
IndexClauseSet *clauseset);
static void match_clause_to_index(PlannerInfo *root,
RestrictInfo *rinfo,
IndexOptInfo *index,
IndexClauseSet *clauseset);
static IndexClause *match_clause_to_indexcol(PlannerInfo *root,
RestrictInfo *rinfo,
int indexcol,
IndexOptInfo *index);
static IndexClause *match_boolean_index_clause(PlannerInfo *root,
RestrictInfo *rinfo,
int indexcol, IndexOptInfo *index);
static IndexClause *match_opclause_to_indexcol(PlannerInfo *root,
RestrictInfo *rinfo,
int indexcol,
IndexOptInfo *index);
static IndexClause *match_funcclause_to_indexcol(PlannerInfo *root,
RestrictInfo *rinfo,
int indexcol,
IndexOptInfo *index);
static IndexClause *get_index_clause_from_support(PlannerInfo *root,
RestrictInfo *rinfo,
Oid funcid,
int indexarg,
int indexcol,
IndexOptInfo *index);
static IndexClause *match_saopclause_to_indexcol(PlannerInfo *root,
RestrictInfo *rinfo,
int indexcol,
IndexOptInfo *index);
static IndexClause *match_rowcompare_to_indexcol(PlannerInfo *root,
RestrictInfo *rinfo,
int indexcol,
IndexOptInfo *index);
static IndexClause *expand_indexqual_rowcompare(PlannerInfo *root,
RestrictInfo *rinfo,
int indexcol,
IndexOptInfo *index,
Oid expr_op,
bool var_on_left);
static void match_pathkeys_to_index(IndexOptInfo *index, List *pathkeys,
List **orderby_clauses_p,
List **clause_columns_p);
static Expr *match_clause_to_ordering_op(IndexOptInfo *index,
int indexcol, Expr *clause, Oid pk_opfamily);
static bool ec_member_matches_indexcol(PlannerInfo *root, RelOptInfo *rel,
EquivalenceClass *ec, EquivalenceMember *em,
void *arg);
/*
* create_index_paths()
* Generate all interesting index paths for the given relation.
* Candidate paths are added to the rel's pathlist (using add_path).
*
* To be considered for an index scan, an index must match one or more
* restriction clauses or join clauses from the query's qual condition,
* or match the query's ORDER BY condition, or have a predicate that
* matches the query's qual condition.
*
* There are two basic kinds of index scans. A "plain" index scan uses
* only restriction clauses (possibly none at all) in its indexqual,
* so it can be applied in any context. A "parameterized" index scan uses
* join clauses (plus restriction clauses, if available) in its indexqual.
* When joining such a scan to one of the relations supplying the other
* variables used in its indexqual, the parameterized scan must appear as
* the inner relation of a nestloop join; it can't be used on the outer side,
* nor in a merge or hash join. In that context, values for the other rels'
* attributes are available and fixed during any one scan of the indexpath.
*
* An IndexPath is generated and submitted to add_path() for each plain or
* parameterized index scan this routine deems potentially interesting for
* the current query.
*
* 'rel' is the relation for which we want to generate index paths
*
* Note: check_index_predicates() must have been run previously for this rel.
*
* Note: in cases involving LATERAL references in the relation's tlist, it's
* possible that rel->lateral_relids is nonempty. Currently, we include
* lateral_relids into the parameterization reported for each path, but don't
* take it into account otherwise. The fact that any such rels *must* be
* available as parameter sources perhaps should influence our choices of
* index quals ... but for now, it doesn't seem worth troubling over.
* In particular, comments below about "unparameterized" paths should be read
* as meaning "unparameterized so far as the indexquals are concerned".
*/
void
create_index_paths(PlannerInfo *root, RelOptInfo *rel)
{
List *indexpaths;
List *bitindexpaths;
List *bitjoinpaths;
List *joinorclauses;
IndexClauseSet rclauseset;
IndexClauseSet jclauseset;
IndexClauseSet eclauseset;
ListCell *lc;
/* Skip the whole mess if no indexes */
if (rel->indexlist == NIL)
return;
/* Bitmap paths are collected and then dealt with at the end */
bitindexpaths = bitjoinpaths = joinorclauses = NIL;
/* Examine each index in turn */
foreach(lc, rel->indexlist)
{
IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
/* Protect limited-size array in IndexClauseSets */
Assert(index->nkeycolumns <= INDEX_MAX_KEYS);
/*
* Ignore partial indexes that do not match the query.
* (generate_bitmap_or_paths() might be able to do something with
* them, but that's of no concern here.)
*/
if (index->indpred != NIL && !index->predOK)
continue;
/*
* Identify the restriction clauses that can match the index.
*/
MemSet(&rclauseset, 0, sizeof(rclauseset));
match_restriction_clauses_to_index(root, index, &rclauseset);
/*
* Build index paths from the restriction clauses. These will be
* non-parameterized paths. Plain paths go directly to add_path(),
* bitmap paths are added to bitindexpaths to be handled below.
*/
get_index_paths(root, rel, index, &rclauseset,
&bitindexpaths);
/*
* Identify the join clauses that can match the index. For the moment
* we keep them separate from the restriction clauses. Note that this
* step finds only "loose" join clauses that have not been merged into
* EquivalenceClasses. Also, collect join OR clauses for later.
*/
MemSet(&jclauseset, 0, sizeof(jclauseset));
match_join_clauses_to_index(root, rel, index,
&jclauseset, &joinorclauses);
/*
* Look for EquivalenceClasses that can generate joinclauses matching
* the index.
*/
MemSet(&eclauseset, 0, sizeof(eclauseset));
match_eclass_clauses_to_index(root, index,
&eclauseset);
/*
* If we found any plain or eclass join clauses, build parameterized
* index paths using them.
*/
if (jclauseset.nonempty || eclauseset.nonempty)
consider_index_join_clauses(root, rel, index,
&rclauseset,
&jclauseset,
&eclauseset,
&bitjoinpaths);
}
/*
* Generate BitmapOrPaths for any suitable OR-clauses present in the
* restriction list. Add these to bitindexpaths.
*/
indexpaths = generate_bitmap_or_paths(root, rel,
rel->baserestrictinfo, NIL);
bitindexpaths = list_concat(bitindexpaths, indexpaths);
/*
* Likewise, generate BitmapOrPaths for any suitable OR-clauses present in
* the joinclause list. Add these to bitjoinpaths.
*/
indexpaths = generate_bitmap_or_paths(root, rel,
joinorclauses, rel->baserestrictinfo);
bitjoinpaths = list_concat(bitjoinpaths, indexpaths);
/*
* If we found anything usable, generate a BitmapHeapPath for the most
* promising combination of restriction bitmap index paths. Note there
* will be only one such path no matter how many indexes exist. This
* should be sufficient since there's basically only one figure of merit
* (total cost) for such a path.
*/
if (bitindexpaths != NIL)
{
Path *bitmapqual;
BitmapHeapPath *bpath;
bitmapqual = choose_bitmap_and(root, rel, bitindexpaths);
bpath = create_bitmap_heap_path(root, rel, bitmapqual,
rel->lateral_relids, 1.0, 0);
add_path(rel, (Path *) bpath);
/* create a partial bitmap heap path */
if (rel->consider_parallel && rel->lateral_relids == NULL)
create_partial_bitmap_paths(root, rel, bitmapqual);
}
/*
* Likewise, if we found anything usable, generate BitmapHeapPaths for the
* most promising combinations of join bitmap index paths. Our strategy
* is to generate one such path for each distinct parameterization seen
* among the available bitmap index paths. This may look pretty
* expensive, but usually there won't be very many distinct
* parameterizations. (This logic is quite similar to that in
* consider_index_join_clauses, but we're working with whole paths not
* individual clauses.)
*/
if (bitjoinpaths != NIL)
{
List *all_path_outers;
ListCell *lc;
/* Identify each distinct parameterization seen in bitjoinpaths */
all_path_outers = NIL;
foreach(lc, bitjoinpaths)
{
Path *path = (Path *) lfirst(lc);
Relids required_outer = PATH_REQ_OUTER(path);
if (!bms_equal_any(required_outer, all_path_outers))
all_path_outers = lappend(all_path_outers, required_outer);
}
/* Now, for each distinct parameterization set ... */
foreach(lc, all_path_outers)
{
Relids max_outers = (Relids) lfirst(lc);
List *this_path_set;
Path *bitmapqual;
Relids required_outer;
double loop_count;
BitmapHeapPath *bpath;
ListCell *lcp;
/* Identify all the bitmap join paths needing no more than that */
this_path_set = NIL;
foreach(lcp, bitjoinpaths)
{
Path *path = (Path *) lfirst(lcp);
if (bms_is_subset(PATH_REQ_OUTER(path), max_outers))
this_path_set = lappend(this_path_set, path);
}
/*
* Add in restriction bitmap paths, since they can be used
* together with any join paths.
*/
this_path_set = list_concat(this_path_set, bitindexpaths);
/* Select best AND combination for this parameterization */
bitmapqual = choose_bitmap_and(root, rel, this_path_set);
/* And push that path into the mix */
required_outer = PATH_REQ_OUTER(bitmapqual);
loop_count = get_loop_count(root, rel->relid, required_outer);
bpath = create_bitmap_heap_path(root, rel, bitmapqual,
required_outer, loop_count, 0);
add_path(rel, (Path *) bpath);
}
}
}
/*
* consider_index_join_clauses
* Given sets of join clauses for an index, decide which parameterized
* index paths to build.
*
* Plain indexpaths are sent directly to add_path, while potential
* bitmap indexpaths are added to *bitindexpaths for later processing.
*
* 'rel' is the index's heap relation
* 'index' is the index for which we want to generate paths
* 'rclauseset' is the collection of indexable restriction clauses
* 'jclauseset' is the collection of indexable simple join clauses
* 'eclauseset' is the collection of indexable clauses from EquivalenceClasses
* '*bitindexpaths' is the list to add bitmap paths to
*/
static void
consider_index_join_clauses(PlannerInfo *root, RelOptInfo *rel,
IndexOptInfo *index,
IndexClauseSet *rclauseset,
IndexClauseSet *jclauseset,
IndexClauseSet *eclauseset,
List **bitindexpaths)
{
int considered_clauses = 0;
List *considered_relids = NIL;
int indexcol;
/*
* The strategy here is to identify every potentially useful set of outer
* rels that can provide indexable join clauses. For each such set,
* select all the join clauses available from those outer rels, add on all
* the indexable restriction clauses, and generate plain and/or bitmap
* index paths for that set of clauses. This is based on the assumption
* that it's always better to apply a clause as an indexqual than as a
* filter (qpqual); which is where an available clause would end up being
* applied if we omit it from the indexquals.
*
* This looks expensive, but in most practical cases there won't be very
* many distinct sets of outer rels to consider. As a safety valve when
* that's not true, we use a heuristic: limit the number of outer rel sets
* considered to a multiple of the number of clauses considered. (We'll
* always consider using each individual join clause, though.)
*
* For simplicity in selecting relevant clauses, we represent each set of
* outer rels as a maximum set of clause_relids --- that is, the indexed
* relation itself is also included in the relids set. considered_relids
* lists all relids sets we've already tried.
*/
for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++)
{
/* Consider each applicable simple join clause */
considered_clauses += list_length(jclauseset->indexclauses[indexcol]);
consider_index_join_outer_rels(root, rel, index,
rclauseset, jclauseset, eclauseset,
bitindexpaths,
jclauseset->indexclauses[indexcol],
considered_clauses,
&considered_relids);
/* Consider each applicable eclass join clause */
considered_clauses += list_length(eclauseset->indexclauses[indexcol]);
consider_index_join_outer_rels(root, rel, index,
rclauseset, jclauseset, eclauseset,
bitindexpaths,
eclauseset->indexclauses[indexcol],
considered_clauses,
&considered_relids);
}
}
/*
* consider_index_join_outer_rels
* Generate parameterized paths based on clause relids in the clause list.
*
* Workhorse for consider_index_join_clauses; see notes therein for rationale.
*
* 'rel', 'index', 'rclauseset', 'jclauseset', 'eclauseset', and
* 'bitindexpaths' as above
* 'indexjoinclauses' is a list of IndexClauses for join clauses
* 'considered_clauses' is the total number of clauses considered (so far)
* '*considered_relids' is a list of all relids sets already considered
*/
static void
consider_index_join_outer_rels(PlannerInfo *root, RelOptInfo *rel,
IndexOptInfo *index,
IndexClauseSet *rclauseset,
IndexClauseSet *jclauseset,
IndexClauseSet *eclauseset,
List **bitindexpaths,
List *indexjoinclauses,
int considered_clauses,
List **considered_relids)
{
ListCell *lc;
/* Examine relids of each joinclause in the given list */
foreach(lc, indexjoinclauses)
{
IndexClause *iclause = (IndexClause *) lfirst(lc);
Relids clause_relids = iclause->rinfo->clause_relids;
EquivalenceClass *parent_ec = iclause->rinfo->parent_ec;
int num_considered_relids;
/* If we already tried its relids set, no need to do so again */
if (bms_equal_any(clause_relids, *considered_relids))
continue;
/*
* Generate the union of this clause's relids set with each
* previously-tried set. This ensures we try this clause along with
* every interesting subset of previous clauses. However, to avoid
* exponential growth of planning time when there are many clauses,
* limit the number of relid sets accepted to 10 * considered_clauses.
*
* Note: get_join_index_paths appends entries to *considered_relids,
* but we do not need to visit such newly-added entries within this
* loop, so we don't use foreach() here. No real harm would be done
* if we did visit them, since the subset check would reject them; but
* it would waste some cycles.
*/
num_considered_relids = list_length(*considered_relids);
for (int pos = 0; pos < num_considered_relids; pos++)
{
Relids oldrelids = (Relids) list_nth(*considered_relids, pos);
/*
* If either is a subset of the other, no new set is possible.
* This isn't a complete test for redundancy, but it's easy and
* cheap. get_join_index_paths will check more carefully if we
* already generated the same relids set.
*/
if (bms_subset_compare(clause_relids, oldrelids) != BMS_DIFFERENT)
continue;
/*
* If this clause was derived from an equivalence class, the
* clause list may contain other clauses derived from the same
* eclass. We should not consider that combining this clause with
* one of those clauses generates a usefully different
* parameterization; so skip if any clause derived from the same
* eclass would already have been included when using oldrelids.
*/
if (parent_ec &&
eclass_already_used(parent_ec, oldrelids,
indexjoinclauses))
continue;
/*
* If the number of relid sets considered exceeds our heuristic
* limit, stop considering combinations of clauses. We'll still
* consider the current clause alone, though (below this loop).
*/
if (list_length(*considered_relids) >= 10 * considered_clauses)
break;
/* OK, try the union set */
get_join_index_paths(root, rel, index,
rclauseset, jclauseset, eclauseset,
bitindexpaths,
bms_union(clause_relids, oldrelids),
considered_relids);
}
/* Also try this set of relids by itself */
get_join_index_paths(root, rel, index,
rclauseset, jclauseset, eclauseset,
bitindexpaths,
clause_relids,
considered_relids);
}
}
/*
* get_join_index_paths
* Generate index paths using clauses from the specified outer relations.
* In addition to generating paths, relids is added to *considered_relids
* if not already present.
*
* Workhorse for consider_index_join_clauses; see notes therein for rationale.
*
* 'rel', 'index', 'rclauseset', 'jclauseset', 'eclauseset',
* 'bitindexpaths', 'considered_relids' as above
* 'relids' is the current set of relids to consider (the target rel plus
* one or more outer rels)
*/
static void
get_join_index_paths(PlannerInfo *root, RelOptInfo *rel,
IndexOptInfo *index,
IndexClauseSet *rclauseset,
IndexClauseSet *jclauseset,
IndexClauseSet *eclauseset,
List **bitindexpaths,
Relids relids,
List **considered_relids)
{
IndexClauseSet clauseset;
int indexcol;
/* If we already considered this relids set, don't repeat the work */
if (bms_equal_any(relids, *considered_relids))
return;
/* Identify indexclauses usable with this relids set */
MemSet(&clauseset, 0, sizeof(clauseset));
for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++)
{
ListCell *lc;
/* First find applicable simple join clauses */
foreach(lc, jclauseset->indexclauses[indexcol])
{
IndexClause *iclause = (IndexClause *) lfirst(lc);
if (bms_is_subset(iclause->rinfo->clause_relids, relids))
clauseset.indexclauses[indexcol] =
lappend(clauseset.indexclauses[indexcol], iclause);
}
/*
* Add applicable eclass join clauses. The clauses generated for each
* column are redundant (cf generate_implied_equalities_for_column),
* so we need at most one. This is the only exception to the general
* rule of using all available index clauses.
*/
foreach(lc, eclauseset->indexclauses[indexcol])
{
IndexClause *iclause = (IndexClause *) lfirst(lc);
if (bms_is_subset(iclause->rinfo->clause_relids, relids))
{
clauseset.indexclauses[indexcol] =
lappend(clauseset.indexclauses[indexcol], iclause);
break;
}
}
/* Add restriction clauses */
clauseset.indexclauses[indexcol] =
list_concat(clauseset.indexclauses[indexcol],
rclauseset->indexclauses[indexcol]);
if (clauseset.indexclauses[indexcol] != NIL)
clauseset.nonempty = true;
}
/* We should have found something, else caller passed silly relids */
Assert(clauseset.nonempty);
/* Build index path(s) using the collected set of clauses */
get_index_paths(root, rel, index, &clauseset, bitindexpaths);
/*
* Remember we considered paths for this set of relids.
*/
*considered_relids = lappend(*considered_relids, relids);
}
/*
* eclass_already_used
* True if any join clause usable with oldrelids was generated from
* the specified equivalence class.
*/
static bool
eclass_already_used(EquivalenceClass *parent_ec, Relids oldrelids,
List *indexjoinclauses)
{
ListCell *lc;
foreach(lc, indexjoinclauses)
{
IndexClause *iclause = (IndexClause *) lfirst(lc);
RestrictInfo *rinfo = iclause->rinfo;
if (rinfo->parent_ec == parent_ec &&
bms_is_subset(rinfo->clause_relids, oldrelids))
return true;
}
return false;
}
/*
* bms_equal_any
* True if relids is bms_equal to any member of relids_list
*
* Perhaps this should be in bitmapset.c someday.
*/
static bool
bms_equal_any(Relids relids, List *relids_list)
{
ListCell *lc;
foreach(lc, relids_list)
{
if (bms_equal(relids, (Relids) lfirst(lc)))
return true;
}
return false;
}
/*
* get_index_paths
* Given an index and a set of index clauses for it, construct IndexPaths.
*
* Plain indexpaths are sent directly to add_path, while potential
* bitmap indexpaths are added to *bitindexpaths for later processing.
*
* This is a fairly simple frontend to build_index_paths(). Its reason for
* existence is mainly to handle ScalarArrayOpExpr quals properly. If the
* index AM supports them natively, we should just include them in simple
* index paths. If not, we should exclude them while building simple index
* paths, and then make a separate attempt to include them in bitmap paths.
* Furthermore, we should consider excluding lower-order ScalarArrayOpExpr
* quals so as to create ordered paths.
*/
static void
get_index_paths(PlannerInfo *root, RelOptInfo *rel,
IndexOptInfo *index, IndexClauseSet *clauses,
List **bitindexpaths)
{
List *indexpaths;
bool skip_nonnative_saop = false;
bool skip_lower_saop = false;
ListCell *lc;
/*
* Build simple index paths using the clauses. Allow ScalarArrayOpExpr
* clauses only if the index AM supports them natively, and skip any such
* clauses for index columns after the first (so that we produce ordered
* paths if possible).
*/
indexpaths = build_index_paths(root, rel,
index, clauses,
index->predOK,
ST_ANYSCAN,
&skip_nonnative_saop,
&skip_lower_saop);
/*
* If we skipped any lower-order ScalarArrayOpExprs on an index with an AM
* that supports them, then try again including those clauses. This will
* produce paths with more selectivity but no ordering.
*/
if (skip_lower_saop)
{
indexpaths = list_concat(indexpaths,
build_index_paths(root, rel,
index, clauses,
index->predOK,
ST_ANYSCAN,
&skip_nonnative_saop,
NULL));
}
/*
* Submit all the ones that can form plain IndexScan plans to add_path. (A
* plain IndexPath can represent either a plain IndexScan or an
* IndexOnlyScan, but for our purposes here that distinction does not
* matter. However, some of the indexes might support only bitmap scans,
* and those we mustn't submit to add_path here.)
*
* Also, pick out the ones that are usable as bitmap scans. For that, we
* must discard indexes that don't support bitmap scans, and we also are
* only interested in paths that have some selectivity; we should discard
* anything that was generated solely for ordering purposes.
*/
foreach(lc, indexpaths)
{
IndexPath *ipath = (IndexPath *) lfirst(lc);
if (index->amhasgettuple)
add_path(rel, (Path *) ipath);
if (index->amhasgetbitmap &&
(ipath->path.pathkeys == NIL ||
ipath->indexselectivity < 1.0))
*bitindexpaths = lappend(*bitindexpaths, ipath);
}
/*
* If there were ScalarArrayOpExpr clauses that the index can't handle
* natively, generate bitmap scan paths relying on executor-managed
* ScalarArrayOpExpr.
*/
if (skip_nonnative_saop)
{
indexpaths = build_index_paths(root, rel,
index, clauses,
false,
ST_BITMAPSCAN,
NULL,
NULL);
*bitindexpaths = list_concat(*bitindexpaths, indexpaths);
}
}
/*
* build_index_paths
* Given an index and a set of index clauses for it, construct zero
* or more IndexPaths. It also constructs zero or more partial IndexPaths.
*
* We return a list of paths because (1) this routine checks some cases
* that should cause us to not generate any IndexPath, and (2) in some
* cases we want to consider both a forward and a backward scan, so as
* to obtain both sort orders. Note that the paths are just returned
* to the caller and not immediately fed to add_path().
*
* At top level, useful_predicate should be exactly the index's predOK flag
* (ie, true if it has a predicate that was proven from the restriction
* clauses). When working on an arm of an OR clause, useful_predicate
* should be true if the predicate required the current OR list to be proven.
* Note that this routine should never be called at all if the index has an
* unprovable predicate.
*
* scantype indicates whether we want to create plain indexscans, bitmap
* indexscans, or both. When it's ST_BITMAPSCAN, we will not consider
* index ordering while deciding if a Path is worth generating.
*
* If skip_nonnative_saop is non-NULL, we ignore ScalarArrayOpExpr clauses
* unless the index AM supports them directly, and we set *skip_nonnative_saop
* to true if we found any such clauses (caller must initialize the variable
* to false). If it's NULL, we do not ignore ScalarArrayOpExpr clauses.
*
* If skip_lower_saop is non-NULL, we ignore ScalarArrayOpExpr clauses for
* non-first index columns, and we set *skip_lower_saop to true if we found
* any such clauses (caller must initialize the variable to false). If it's
* NULL, we do not ignore non-first ScalarArrayOpExpr clauses, but they will
* result in considering the scan's output to be unordered.
*
* 'rel' is the index's heap relation
* 'index' is the index for which we want to generate paths
* 'clauses' is the collection of indexable clauses (IndexClause nodes)
* 'useful_predicate' indicates whether the index has a useful predicate
* 'scantype' indicates whether we need plain or bitmap scan support
* 'skip_nonnative_saop' indicates whether to accept SAOP if index AM doesn't
* 'skip_lower_saop' indicates whether to accept non-first-column SAOP
*/
static List *
build_index_paths(PlannerInfo *root, RelOptInfo *rel,
IndexOptInfo *index, IndexClauseSet *clauses,
bool useful_predicate,
ScanTypeControl scantype,
bool *skip_nonnative_saop,
bool *skip_lower_saop)
{
List *result = NIL;
IndexPath *ipath;
List *index_clauses;
Relids outer_relids;
double loop_count;
List *orderbyclauses;
List *orderbyclausecols;
List *index_pathkeys;
List *useful_pathkeys;
bool found_lower_saop_clause;
bool pathkeys_possibly_useful;
bool index_is_ordered;
bool index_only_scan;
int indexcol;
/*
* Check that index supports the desired scan type(s)
*/
switch (scantype)
{
case ST_INDEXSCAN:
if (!index->amhasgettuple)
return NIL;
break;
case ST_BITMAPSCAN:
if (!index->amhasgetbitmap)
return NIL;
break;
case ST_ANYSCAN:
/* either or both are OK */
break;
}
/*
* 1. Combine the per-column IndexClause lists into an overall list.
*
* In the resulting list, clauses are ordered by index key, so that the
* column numbers form a nondecreasing sequence. (This order is depended
* on by btree and possibly other places.) The list can be empty, if the
* index AM allows that.
*
* found_lower_saop_clause is set true if we accept a ScalarArrayOpExpr
* index clause for a non-first index column. This prevents us from
* assuming that the scan result is ordered. (Actually, the result is
* still ordered if there are equality constraints for all earlier
* columns, but it seems too expensive and non-modular for this code to be
* aware of that refinement.)
*
* We also build a Relids set showing which outer rels are required by the
* selected clauses. Any lateral_relids are included in that, but not
* otherwise accounted for.
*/
index_clauses = NIL;
found_lower_saop_clause = false;
outer_relids = bms_copy(rel->lateral_relids);
for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++)
{
ListCell *lc;
foreach(lc, clauses->indexclauses[indexcol])
{
IndexClause *iclause = (IndexClause *) lfirst(lc);
RestrictInfo *rinfo = iclause->rinfo;
/* We might need to omit ScalarArrayOpExpr clauses */
if (IsA(rinfo->clause, ScalarArrayOpExpr))
{
if (!index->amsearcharray)
{
if (skip_nonnative_saop)
{
/* Ignore because not supported by index */
*skip_nonnative_saop = true;
continue;
}
/* Caller had better intend this only for bitmap scan */
Assert(scantype == ST_BITMAPSCAN);
}
if (indexcol > 0)
{
if (skip_lower_saop)
{
/* Caller doesn't want to lose index ordering */
*skip_lower_saop = true;
continue;
}
found_lower_saop_clause = true;
}
}
/* OK to include this clause */
index_clauses = lappend(index_clauses, iclause);
outer_relids = bms_add_members(outer_relids,
rinfo->clause_relids);
}
/*
* If no clauses match the first index column, check for amoptionalkey
* restriction. We can't generate a scan over an index with
* amoptionalkey = false unless there's at least one index clause.
* (When working on columns after the first, this test cannot fail. It
* is always okay for columns after the first to not have any
* clauses.)
*/
if (index_clauses == NIL && !index->amoptionalkey)
return NIL;
}
/* We do not want the index's rel itself listed in outer_relids */
outer_relids = bms_del_member(outer_relids, rel->relid);
/* Enforce convention that outer_relids is exactly NULL if empty */
if (bms_is_empty(outer_relids))
outer_relids = NULL;
/* Compute loop_count for cost estimation purposes */
loop_count = get_loop_count(root, rel->relid, outer_relids);
/*
* 2. Compute pathkeys describing index's ordering, if any, then see how
* many of them are actually useful for this query. This is not relevant
* if we are only trying to build bitmap indexscans, nor if we have to
* assume the scan is unordered.
*/
pathkeys_possibly_useful = (scantype != ST_BITMAPSCAN &&
!found_lower_saop_clause &&
has_useful_pathkeys(root, rel));
index_is_ordered = (index->sortopfamily != NULL);
if (index_is_ordered && pathkeys_possibly_useful)
{
index_pathkeys = build_index_pathkeys(root, index,
ForwardScanDirection);
useful_pathkeys = truncate_useless_pathkeys(root, rel,
index_pathkeys);
orderbyclauses = NIL;
orderbyclausecols = NIL;
}
else if (index->amcanorderbyop && pathkeys_possibly_useful)
{
/* see if we can generate ordering operators for query_pathkeys */
match_pathkeys_to_index(index, root->query_pathkeys,
&orderbyclauses,
&orderbyclausecols);
if (orderbyclauses)
useful_pathkeys = root->query_pathkeys;
else
useful_pathkeys = NIL;
}
else
{
useful_pathkeys = NIL;
orderbyclauses = NIL;
orderbyclausecols = NIL;
}
/*
* 3. Check if an index-only scan is possible. If we're not building
* plain indexscans, this isn't relevant since bitmap scans don't support
* index data retrieval anyway.
*/
index_only_scan = (scantype != ST_BITMAPSCAN &&
check_index_only(rel, index));
/*
* 4. Generate an indexscan path if there are relevant restriction clauses
* in the current clauses, OR the index ordering is potentially useful for
* later merging or final output ordering, OR the index has a useful
* predicate, OR an index-only scan is possible.
*/
if (index_clauses != NIL || useful_pathkeys != NIL || useful_predicate ||
index_only_scan)
{
ipath = create_index_path(root, index,
index_clauses,
orderbyclauses,
orderbyclausecols,
useful_pathkeys,
index_is_ordered ?
ForwardScanDirection :
NoMovementScanDirection,
index_only_scan,
outer_relids,
loop_count,
false);
result = lappend(result, ipath);
/*
* If appropriate, consider parallel index scan. We don't allow
* parallel index scan for bitmap index scans.
*/
if (index->amcanparallel &&
rel->consider_parallel && outer_relids == NULL &&
scantype != ST_BITMAPSCAN)
{
ipath = create_index_path(root, index,
index_clauses,
orderbyclauses,
orderbyclausecols,
useful_pathkeys,
index_is_ordered ?
ForwardScanDirection :
NoMovementScanDirection,
index_only_scan,
outer_relids,
loop_count,
true);
/*
* if, after costing the path, we find that it's not worth using
* parallel workers, just free it.
*/
if (ipath->path.parallel_workers > 0)
add_partial_path(rel, (Path *) ipath);
else
pfree(ipath);
}
}
/*
* 5. If the index is ordered, a backwards scan might be interesting.
*/
if (index_is_ordered && pathkeys_possibly_useful)
{
index_pathkeys = build_index_pathkeys(root, index,
BackwardScanDirection);
useful_pathkeys = truncate_useless_pathkeys(root, rel,
index_pathkeys);
if (useful_pathkeys != NIL)
{
ipath = create_index_path(root, index,
index_clauses,
NIL,
NIL,
useful_pathkeys,
BackwardScanDirection,
index_only_scan,
outer_relids,
loop_count,
false);
result = lappend(result, ipath);
/* If appropriate, consider parallel index scan */
if (index->amcanparallel &&
rel->consider_parallel && outer_relids == NULL &&
scantype != ST_BITMAPSCAN)
{
ipath = create_index_path(root, index,
index_clauses,
NIL,
NIL,
useful_pathkeys,
BackwardScanDirection,
index_only_scan,
outer_relids,
loop_count,
true);
/*
* if, after costing the path, we find that it's not worth
* using parallel workers, just free it.
*/
if (ipath->path.parallel_workers > 0)
add_partial_path(rel, (Path *) ipath);
else
pfree(ipath);
}
}
}
return result;
}
/*
* build_paths_for_OR
* Given a list of restriction clauses from one arm of an OR clause,
* construct all matching IndexPaths for the relation.
*
* Here we must scan all indexes of the relation, since a bitmap OR tree
* can use multiple indexes.
*
* The caller actually supplies two lists of restriction clauses: some
* "current" ones and some "other" ones. Both lists can be used freely
* to match keys of the index, but an index must use at least one of the
* "current" clauses to be considered usable. The motivation for this is
* examples like
* WHERE (x = 42) AND (... OR (y = 52 AND z = 77) OR ....)
* While we are considering the y/z subclause of the OR, we can use "x = 42"
* as one of the available index conditions; but we shouldn't match the
* subclause to any index on x alone, because such a Path would already have
* been generated at the upper level. So we could use an index on x,y,z
* or an index on x,y for the OR subclause, but not an index on just x.
* When dealing with a partial index, a match of the index predicate to
* one of the "current" clauses also makes the index usable.
*
* 'rel' is the relation for which we want to generate index paths
* 'clauses' is the current list of clauses (RestrictInfo nodes)
* 'other_clauses' is the list of additional upper-level clauses
*/
static List *
build_paths_for_OR(PlannerInfo *root, RelOptInfo *rel,
List *clauses, List *other_clauses)
{
List *result = NIL;
List *all_clauses = NIL; /* not computed till needed */
ListCell *lc;
foreach(lc, rel->indexlist)
{
IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
IndexClauseSet clauseset;
List *indexpaths;
bool useful_predicate;
/* Ignore index if it doesn't support bitmap scans */
if (!index->amhasgetbitmap)
continue;
/*
* Ignore partial indexes that do not match the query. If a partial
* index is marked predOK then we know it's OK. Otherwise, we have to
* test whether the added clauses are sufficient to imply the
* predicate. If so, we can use the index in the current context.
*
* We set useful_predicate to true iff the predicate was proven using
* the current set of clauses. This is needed to prevent matching a
* predOK index to an arm of an OR, which would be a legal but
* pointlessly inefficient plan. (A better plan will be generated by
* just scanning the predOK index alone, no OR.)
*/
useful_predicate = false;
if (index->indpred != NIL)
{
if (index->predOK)
{
/* Usable, but don't set useful_predicate */
}
else
{
/* Form all_clauses if not done already */
if (all_clauses == NIL)
all_clauses = list_concat_copy(clauses, other_clauses);
if (!predicate_implied_by(index->indpred, all_clauses, false))
continue; /* can't use it at all */
if (!predicate_implied_by(index->indpred, other_clauses, false))
useful_predicate = true;
}
}
/*
* Identify the restriction clauses that can match the index.
*/
MemSet(&clauseset, 0, sizeof(clauseset));
match_clauses_to_index(root, clauses, index, &clauseset);
/*
* If no matches so far, and the index predicate isn't useful, we
* don't want it.
*/
if (!clauseset.nonempty && !useful_predicate)
continue;
/*
* Add "other" restriction clauses to the clauseset.
*/
match_clauses_to_index(root, other_clauses, index, &clauseset);
/*
* Construct paths if possible.
*/
indexpaths = build_index_paths(root, rel,
index, &clauseset,
useful_predicate,
ST_BITMAPSCAN,
NULL,
NULL);
result = list_concat(result, indexpaths);
}
return result;
}
/*
* generate_bitmap_or_paths
* Look through the list of clauses to find OR clauses, and generate
* a BitmapOrPath for each one we can handle that way. Return a list
* of the generated BitmapOrPaths.
*
* other_clauses is a list of additional clauses that can be assumed true
* for the purpose of generating indexquals, but are not to be searched for
* ORs. (See build_paths_for_OR() for motivation.)
*/
static List *
generate_bitmap_or_paths(PlannerInfo *root, RelOptInfo *rel,
List *clauses, List *other_clauses)
{
List *result = NIL;
List *all_clauses;
ListCell *lc;
/*
* We can use both the current and other clauses as context for
* build_paths_for_OR; no need to remove ORs from the lists.
*/
all_clauses = list_concat_copy(clauses, other_clauses);
foreach(lc, clauses)
{
RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
List *pathlist;
Path *bitmapqual;
ListCell *j;
/* Ignore RestrictInfos that aren't ORs */
if (!restriction_is_or_clause(rinfo))
continue;
/*
* We must be able to match at least one index to each of the arms of
* the OR, else we can't use it.
*/
pathlist = NIL;
foreach(j, ((BoolExpr *) rinfo->orclause)->args)
{
Node *orarg = (Node *) lfirst(j);
List *indlist;
/* OR arguments should be ANDs or sub-RestrictInfos */
if (is_andclause(orarg))
{
List *andargs = ((BoolExpr *) orarg)->args;
indlist = build_paths_for_OR(root, rel,
andargs,
all_clauses);
/* Recurse in case there are sub-ORs */
indlist = list_concat(indlist,
generate_bitmap_or_paths(root, rel,
andargs,
all_clauses));
}
else
{
RestrictInfo *rinfo = castNode(RestrictInfo, orarg);
List *orargs;
Assert(!restriction_is_or_clause(rinfo));
orargs = list_make1(rinfo);
indlist = build_paths_for_OR(root, rel,
orargs,
all_clauses);
}
/*
* If nothing matched this arm, we can't do anything with this OR
* clause.
*/
if (indlist == NIL)
{
pathlist = NIL;
break;
}
/*
* OK, pick the most promising AND combination, and add it to
* pathlist.
*/
bitmapqual = choose_bitmap_and(root, rel, indlist);
pathlist = lappend(pathlist, bitmapqual);
}
/*
* If we have a match for every arm, then turn them into a
* BitmapOrPath, and add to result list.
*/
if (pathlist != NIL)
{
bitmapqual = (Path *) create_bitmap_or_path(root, rel, pathlist);
result = lappend(result, bitmapqual);
}
}
return result;
}
/*
* choose_bitmap_and
* Given a nonempty list of bitmap paths, AND them into one path.
*
* This is a nontrivial decision since we can legally use any subset of the
* given path set. We want to choose a good tradeoff between selectivity
* and cost of computing the bitmap.
*
* The result is either a single one of the inputs, or a BitmapAndPath
* combining multiple inputs.
*/
static Path *
choose_bitmap_and(PlannerInfo *root, RelOptInfo *rel, List *paths)
{
int npaths = list_length(paths);
PathClauseUsage **pathinfoarray;
PathClauseUsage *pathinfo;
List *clauselist;
List *bestpaths = NIL;
Cost bestcost = 0;
int i,
j;
ListCell *l;
Assert(npaths > 0); /* else caller error */
if (npaths == 1)
return (Path *) linitial(paths); /* easy case */
/*
* In theory we should consider every nonempty subset of the given paths.
* In practice that seems like overkill, given the crude nature of the
* estimates, not to mention the possible effects of higher-level AND and
* OR clauses. Moreover, it's completely impractical if there are a large
* number of paths, since the work would grow as O(2^N).
*
* As a heuristic, we first check for paths using exactly the same sets of
* WHERE clauses + index predicate conditions, and reject all but the
* cheapest-to-scan in any such group. This primarily gets rid of indexes
* that include the interesting columns but also irrelevant columns. (In
* situations where the DBA has gone overboard on creating variant
* indexes, this can make for a very large reduction in the number of
* paths considered further.)
*
* We then sort the surviving paths with the cheapest-to-scan first, and
* for each path, consider using that path alone as the basis for a bitmap
* scan. Then we consider bitmap AND scans formed from that path plus
* each subsequent (higher-cost) path, adding on a subsequent path if it
* results in a reduction in the estimated total scan cost. This means we
* consider about O(N^2) rather than O(2^N) path combinations, which is
* quite tolerable, especially given than N is usually reasonably small
* because of the prefiltering step. The cheapest of these is returned.
*
* We will only consider AND combinations in which no two indexes use the
* same WHERE clause. This is a bit of a kluge: it's needed because
* costsize.c and clausesel.c aren't very smart about redundant clauses.
* They will usually double-count the redundant clauses, producing a
* too-small selectivity that makes a redundant AND step look like it
* reduces the total cost. Perhaps someday that code will be smarter and
* we can remove this limitation. (But note that this also defends
* against flat-out duplicate input paths, which can happen because
* match_join_clauses_to_index will find the same OR join clauses that
* extract_restriction_or_clauses has pulled OR restriction clauses out
* of.)
*
* For the same reason, we reject AND combinations in which an index
* predicate clause duplicates another clause. Here we find it necessary
* to be even stricter: we'll reject a partial index if any of its
* predicate clauses are implied by the set of WHERE clauses and predicate
* clauses used so far. This covers cases such as a condition "x = 42"
* used with a plain index, followed by a clauseless scan of a partial
* index "WHERE x >= 40 AND x < 50". The partial index has been accepted
* only because "x = 42" was present, and so allowing it would partially
* double-count selectivity. (We could use predicate_implied_by on
* regular qual clauses too, to have a more intelligent, but much more
* expensive, check for redundancy --- but in most cases simple equality
* seems to suffice.)
*/
/*
* Extract clause usage info and detect any paths that use exactly the
* same set of clauses; keep only the cheapest-to-scan of any such groups.
* The surviving paths are put into an array for qsort'ing.
*/
pathinfoarray = (PathClauseUsage **)
palloc(npaths * sizeof(PathClauseUsage *));
clauselist = NIL;
npaths = 0;
foreach(l, paths)
{
Path *ipath = (Path *) lfirst(l);
pathinfo = classify_index_clause_usage(ipath, &clauselist);
/* If it's unclassifiable, treat it as distinct from all others */
if (pathinfo->unclassifiable)
{
pathinfoarray[npaths++] = pathinfo;
continue;
}
for (i = 0; i < npaths; i++)
{
if (!pathinfoarray[i]->unclassifiable &&
bms_equal(pathinfo->clauseids, pathinfoarray[i]->clauseids))
break;
}
if (i < npaths)
{
/* duplicate clauseids, keep the cheaper one */
Cost ncost;
Cost ocost;
Selectivity nselec;
Selectivity oselec;
cost_bitmap_tree_node(pathinfo->path, &ncost, &nselec);
cost_bitmap_tree_node(pathinfoarray[i]->path, &ocost, &oselec);
if (ncost < ocost)
pathinfoarray[i] = pathinfo;
}
else
{
/* not duplicate clauseids, add to array */
pathinfoarray[npaths++] = pathinfo;
}
}
/* If only one surviving path, we're done */
if (npaths == 1)
return pathinfoarray[0]->path;
/* Sort the surviving paths by index access cost */
qsort(pathinfoarray, npaths, sizeof(PathClauseUsage *),
path_usage_comparator);
/*
* For each surviving index, consider it as an "AND group leader", and see
* whether adding on any of the later indexes results in an AND path with
* cheaper total cost than before. Then take the cheapest AND group.
*
* Note: paths that are either clauseless or unclassifiable will have
* empty clauseids, so that they will not be rejected by the clauseids
* filter here, nor will they cause later paths to be rejected by it.
*/
for (i = 0; i < npaths; i++)
{
Cost costsofar;
List *qualsofar;
Bitmapset *clauseidsofar;
pathinfo = pathinfoarray[i];
paths = list_make1(pathinfo->path);
costsofar = bitmap_scan_cost_est(root, rel, pathinfo->path);
qualsofar = list_concat_copy(pathinfo->quals, pathinfo->preds);
clauseidsofar = bms_copy(pathinfo->clauseids);
for (j = i + 1; j < npaths; j++)
{
Cost newcost;
pathinfo = pathinfoarray[j];
/* Check for redundancy */
if (bms_overlap(pathinfo->clauseids, clauseidsofar))
continue; /* consider it redundant */
if (pathinfo->preds)
{
bool redundant = false;
/* we check each predicate clause separately */
foreach(l, pathinfo->preds)
{
Node *np = (Node *) lfirst(l);
if (predicate_implied_by(list_make1(np), qualsofar, false))
{
redundant = true;
break; /* out of inner foreach loop */
}
}
if (redundant)
continue;
}
/* tentatively add new path to paths, so we can estimate cost */
paths = lappend(paths, pathinfo->path);
newcost = bitmap_and_cost_est(root, rel, paths);
if (newcost < costsofar)
{
/* keep new path in paths, update subsidiary variables */
costsofar = newcost;
qualsofar = list_concat(qualsofar, pathinfo->quals);
qualsofar = list_concat(qualsofar, pathinfo->preds);
clauseidsofar = bms_add_members(clauseidsofar,
pathinfo->clauseids);
}
else
{
/* reject new path, remove it from paths list */
paths = list_truncate(paths, list_length(paths) - 1);
}
}
/* Keep the cheapest AND-group (or singleton) */
if (i == 0 || costsofar < bestcost)
{
bestpaths = paths;
bestcost = costsofar;
}
/* some easy cleanup (we don't try real hard though) */
list_free(qualsofar);
}
if (list_length(bestpaths) == 1)
return (Path *) linitial(bestpaths); /* no need for AND */
return (Path *) create_bitmap_and_path(root, rel, bestpaths);
}
/* qsort comparator to sort in increasing index access cost order */
static int
path_usage_comparator(const void *a, const void *b)
{
PathClauseUsage *pa = *(PathClauseUsage *const *) a;
PathClauseUsage *pb = *(PathClauseUsage *const *) b;
Cost acost;
Cost bcost;
Selectivity aselec;
Selectivity bselec;
cost_bitmap_tree_node(pa->path, &acost, &aselec);
cost_bitmap_tree_node(pb->path, &bcost, &bselec);
/*
* If costs are the same, sort by selectivity.
*/
if (acost < bcost)
return -1;
if (acost > bcost)
return 1;
if (aselec < bselec)
return -1;
if (aselec > bselec)
return 1;
return 0;
}
/*
* Estimate the cost of actually executing a bitmap scan with a single
* index path (which could be a BitmapAnd or BitmapOr node).
*/
static Cost
bitmap_scan_cost_est(PlannerInfo *root, RelOptInfo *rel, Path *ipath)
{
BitmapHeapPath bpath;
/* Set up a dummy BitmapHeapPath */
bpath.path.type = T_BitmapHeapPath;
bpath.path.pathtype = T_BitmapHeapScan;
bpath.path.parent = rel;
bpath.path.pathtarget = rel->reltarget;
bpath.path.param_info = ipath->param_info;
bpath.path.pathkeys = NIL;
bpath.bitmapqual = ipath;
/*
* Check the cost of temporary path without considering parallelism.
* Parallel bitmap heap path will be considered at later stage.
*/
bpath.path.parallel_workers = 0;
/* Now we can do cost_bitmap_heap_scan */
cost_bitmap_heap_scan(&bpath.path, root, rel,
bpath.path.param_info,
ipath,
get_loop_count(root, rel->relid,
PATH_REQ_OUTER(ipath)));
return bpath.path.total_cost;
}
/*
* Estimate the cost of actually executing a BitmapAnd scan with the given
* inputs.
*/
static Cost
bitmap_and_cost_est(PlannerInfo *root, RelOptInfo *rel, List *paths)
{
BitmapAndPath *apath;
/*
* Might as well build a real BitmapAndPath here, as the work is slightly
* too complicated to be worth repeating just to save one palloc.
*/
apath = create_bitmap_and_path(root, rel, paths);
return bitmap_scan_cost_est(root, rel, (Path *) apath);
}
/*
* classify_index_clause_usage
* Construct a PathClauseUsage struct describing the WHERE clauses and
* index predicate clauses used by the given indexscan path.
* We consider two clauses the same if they are equal().
*
* At some point we might want to migrate this info into the Path data
* structure proper, but for the moment it's only needed within
* choose_bitmap_and().
*
* *clauselist is used and expanded as needed to identify all the distinct
* clauses seen across successive calls. Caller must initialize it to NIL
* before first call of a set.
*/
static PathClauseUsage *
classify_index_clause_usage(Path *path, List **clauselist)
{
PathClauseUsage *result;
Bitmapset *clauseids;
ListCell *lc;
result = (PathClauseUsage *) palloc(sizeof(PathClauseUsage));
result->path = path;
/* Recursively find the quals and preds used by the path */
result->quals = NIL;
result->preds = NIL;
find_indexpath_quals(path, &result->quals, &result->preds);
/*
* Some machine-generated queries have outlandish numbers of qual clauses.
* To avoid getting into O(N^2) behavior even in this preliminary
* classification step, we want to limit the number of entries we can
* accumulate in *clauselist. Treat any path with more than 100 quals +
* preds as unclassifiable, which will cause calling code to consider it
* distinct from all other paths.
*/
if (list_length(result->quals) + list_length(result->preds) > 100)
{
result->clauseids = NULL;
result->unclassifiable = true;
return result;
}
/* Build up a bitmapset representing the quals and preds */
clauseids = NULL;
foreach(lc, result->quals)
{
Node *node = (Node *) lfirst(lc);
clauseids = bms_add_member(clauseids,
find_list_position(node, clauselist));
}
foreach(lc, result->preds)
{
Node *node = (Node *) lfirst(lc);
clauseids = bms_add_member(clauseids,
find_list_position(node, clauselist));
}
result->clauseids = clauseids;
result->unclassifiable = false;
return result;
}
/*
* find_indexpath_quals
*
* Given the Path structure for a plain or bitmap indexscan, extract lists
* of all the index clauses and index predicate conditions used in the Path.
* These are appended to the initial contents of *quals and *preds (hence
* caller should initialize those to NIL).
*
* Note we are not trying to produce an accurate representation of the AND/OR
* semantics of the Path, but just find out all the base conditions used.
*
* The result lists contain pointers to the expressions used in the Path,
* but all the list cells are freshly built, so it's safe to destructively
* modify the lists (eg, by concat'ing with other lists).
*/
static void
find_indexpath_quals(Path *bitmapqual, List **quals, List **preds)
{
if (IsA(bitmapqual, BitmapAndPath))
{
BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
ListCell *l;
foreach(l, apath->bitmapquals)
{
find_indexpath_quals((Path *) lfirst(l), quals, preds);
}
}
else if (IsA(bitmapqual, BitmapOrPath))
{
BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
ListCell *l;
foreach(l, opath->bitmapquals)
{
find_indexpath_quals((Path *) lfirst(l), quals, preds);
}
}
else if (IsA(bitmapqual, IndexPath))
{
IndexPath *ipath = (IndexPath *) bitmapqual;
ListCell *l;
foreach(l, ipath->indexclauses)
{
IndexClause *iclause = (IndexClause *) lfirst(l);
*quals = lappend(*quals, iclause->rinfo->clause);
}
*preds = list_concat(*preds, ipath->indexinfo->indpred);
}
else
elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
}
/*
* find_list_position
* Return the given node's position (counting from 0) in the given
* list of nodes. If it's not equal() to any existing list member,
* add it at the end, and return that position.
*/
static int
find_list_position(Node *node, List **nodelist)
{
int i;
ListCell *lc;
i = 0;
foreach(lc, *nodelist)
{
Node *oldnode = (Node *) lfirst(lc);
if (equal(node, oldnode))
return i;
i++;
}
*nodelist = lappend(*nodelist, node);
return i;
}
/*
* check_index_only
* Determine whether an index-only scan is possible for this index.
*/
static bool
check_index_only(RelOptInfo *rel, IndexOptInfo *index)
{
bool result;
Bitmapset *attrs_used = NULL;
Bitmapset *index_canreturn_attrs = NULL;
ListCell *lc;
int i;
/* Index-only scans must be enabled */
if (!enable_indexonlyscan)
return false;
/*
* Check that all needed attributes of the relation are available from the
* index.
*/
/*
* First, identify all the attributes needed for joins or final output.
* Note: we must look at rel's targetlist, not the attr_needed data,
* because attr_needed isn't computed for inheritance child rels.
*/
pull_varattnos((Node *) rel->reltarget->exprs, rel->relid, &attrs_used);
/*
* Add all the attributes used by restriction clauses; but consider only
* those clauses not implied by the index predicate, since ones that are
* so implied don't need to be checked explicitly in the plan.
*
* Note: attributes used only in index quals would not be needed at
* runtime either, if we are certain that the index is not lossy. However
* it'd be complicated to account for that accurately, and it doesn't
* matter in most cases, since we'd conclude that such attributes are
* available from the index anyway.
*/
foreach(lc, index->indrestrictinfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
pull_varattnos((Node *) rinfo->clause, rel->relid, &attrs_used);
}
/*
* Construct a bitmapset of columns that the index can return back in an
* index-only scan.
*/
for (i = 0; i < index->ncolumns; i++)
{
int attno = index->indexkeys[i];
/*
* For the moment, we just ignore index expressions. It might be nice
* to do something with them, later.
*/
if (attno == 0)
continue;
if (index->canreturn[i])
index_canreturn_attrs =
bms_add_member(index_canreturn_attrs,
attno - FirstLowInvalidHeapAttributeNumber);
}
/* Do we have all the necessary attributes? */
result = bms_is_subset(attrs_used, index_canreturn_attrs);
bms_free(attrs_used);
bms_free(index_canreturn_attrs);
return result;
}
/*
* get_loop_count
* Choose the loop count estimate to use for costing a parameterized path
* with the given set of outer relids.
*
* Since we produce parameterized paths before we've begun to generate join
* relations, it's impossible to predict exactly how many times a parameterized
* path will be iterated; we don't know the size of the relation that will be
* on the outside of the nestloop. However, we should try to account for
* multiple iterations somehow in costing the path. The heuristic embodied
* here is to use the rowcount of the smallest other base relation needed in
* the join clauses used by the path. (We could alternatively consider the
* largest one, but that seems too optimistic.) This is of course the right
* answer for single-other-relation cases, and it seems like a reasonable
* zero-order approximation for multiway-join cases.
*
* In addition, we check to see if the other side of each join clause is on
* the inside of some semijoin that the current relation is on the outside of.
* If so, the only way that a parameterized path could be used is if the
* semijoin RHS has been unique-ified, so we should use the number of unique
* RHS rows rather than using the relation's raw rowcount.
*
* Note: for this to work, allpaths.c must establish all baserel size
* estimates before it begins to compute paths, or at least before it
* calls create_index_paths().
*/
static double
get_loop_count(PlannerInfo *root, Index cur_relid, Relids outer_relids)
{
double result;
int outer_relid;
/* For a non-parameterized path, just return 1.0 quickly */
if (outer_relids == NULL)
return 1.0;
result = 0.0;
outer_relid = -1;
while ((outer_relid = bms_next_member(outer_relids, outer_relid)) >= 0)
{
RelOptInfo *outer_rel;
double rowcount;
/* Paranoia: ignore bogus relid indexes */
if (outer_relid >= root->simple_rel_array_size)
continue;
outer_rel = root->simple_rel_array[outer_relid];
if (outer_rel == NULL)
continue;
Assert(outer_rel->relid == outer_relid); /* sanity check on array */
/* Other relation could be proven empty, if so ignore */
if (IS_DUMMY_REL(outer_rel))
continue;
/* Otherwise, rel's rows estimate should be valid by now */
Assert(outer_rel->rows > 0);
/* Check to see if rel is on the inside of any semijoins */
rowcount = adjust_rowcount_for_semijoins(root,
cur_relid,
outer_relid,
outer_rel->rows);
/* Remember smallest row count estimate among the outer rels */
if (result == 0.0 || result > rowcount)
result = rowcount;
}
/* Return 1.0 if we found no valid relations (shouldn't happen) */
return (result > 0.0) ? result : 1.0;
}
/*
* Check to see if outer_relid is on the inside of any semijoin that cur_relid
* is on the outside of. If so, replace rowcount with the estimated number of
* unique rows from the semijoin RHS (assuming that's smaller, which it might
* not be). The estimate is crude but it's the best we can do at this stage
* of the proceedings.
*/
static double
adjust_rowcount_for_semijoins(PlannerInfo *root,
Index cur_relid,
Index outer_relid,
double rowcount)
{
ListCell *lc;
foreach(lc, root->join_info_list)
{
SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
if (sjinfo->jointype == JOIN_SEMI &&
bms_is_member(cur_relid, sjinfo->syn_lefthand) &&
bms_is_member(outer_relid, sjinfo->syn_righthand))
{
/* Estimate number of unique-ified rows */
double nraw;
double nunique;
nraw = approximate_joinrel_size(root, sjinfo->syn_righthand);
nunique = estimate_num_groups(root,
sjinfo->semi_rhs_exprs,
nraw,
NULL,
NULL);
if (rowcount > nunique)
rowcount = nunique;
}
}
return rowcount;
}
/*
* Make an approximate estimate of the size of a joinrel.
*
* We don't have enough info at this point to get a good estimate, so we
* just multiply the base relation sizes together. Fortunately, this is
* the right answer anyway for the most common case with a single relation
* on the RHS of a semijoin. Also, estimate_num_groups() has only a weak
* dependency on its input_rows argument (it basically uses it as a clamp).
* So we might be able to get a fairly decent end result even with a severe
* overestimate of the RHS's raw size.
*/
static double
approximate_joinrel_size(PlannerInfo *root, Relids relids)
{
double rowcount = 1.0;
int relid;
relid = -1;
while ((relid = bms_next_member(relids, relid)) >= 0)
{
RelOptInfo *rel;
/* Paranoia: ignore bogus relid indexes */
if (relid >= root->simple_rel_array_size)
continue;
rel = root->simple_rel_array[relid];
if (rel == NULL)
continue;
Assert(rel->relid == relid); /* sanity check on array */
/* Relation could be proven empty, if so ignore */
if (IS_DUMMY_REL(rel))
continue;
/* Otherwise, rel's rows estimate should be valid by now */
Assert(rel->rows > 0);
/* Accumulate product */
rowcount *= rel->rows;
}
return rowcount;
}
/****************************************************************************
* ---- ROUTINES TO CHECK QUERY CLAUSES ----
****************************************************************************/
/*
* match_restriction_clauses_to_index
* Identify restriction clauses for the rel that match the index.
* Matching clauses are added to *clauseset.
*/
static void
match_restriction_clauses_to_index(PlannerInfo *root,
IndexOptInfo *index,
IndexClauseSet *clauseset)
{
/* We can ignore clauses that are implied by the index predicate */
match_clauses_to_index(root, index->indrestrictinfo, index, clauseset);
}
/*
* match_join_clauses_to_index
* Identify join clauses for the rel that match the index.
* Matching clauses are added to *clauseset.
* Also, add any potentially usable join OR clauses to *joinorclauses.
*/
static void
match_join_clauses_to_index(PlannerInfo *root,
RelOptInfo *rel, IndexOptInfo *index,
IndexClauseSet *clauseset,
List **joinorclauses)
{
ListCell *lc;
/* Scan the rel's join clauses */
foreach(lc, rel->joininfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
/* Check if clause can be moved to this rel */
if (!join_clause_is_movable_to(rinfo, rel))
continue;
/* Potentially usable, so see if it matches the index or is an OR */
if (restriction_is_or_clause(rinfo))
*joinorclauses = lappend(*joinorclauses, rinfo);
else
match_clause_to_index(root, rinfo, index, clauseset);
}
}
/*
* match_eclass_clauses_to_index
* Identify EquivalenceClass join clauses for the rel that match the index.
* Matching clauses are added to *clauseset.
*/
static void
match_eclass_clauses_to_index(PlannerInfo *root, IndexOptInfo *index,
IndexClauseSet *clauseset)
{
int indexcol;
/* No work if rel is not in any such ECs */
if (!index->rel->has_eclass_joins)
return;
for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++)
{
ec_member_matches_arg arg;
List *clauses;
/* Generate clauses, skipping any that join to lateral_referencers */
arg.index = index;
arg.indexcol = indexcol;
clauses = generate_implied_equalities_for_column(root,
index->rel,
ec_member_matches_indexcol,
(void *) &arg,
index->rel->lateral_referencers);
/*
* We have to check whether the results actually do match the index,
* since for non-btree indexes the EC's equality operators might not
* be in the index opclass (cf ec_member_matches_indexcol).
*/
match_clauses_to_index(root, clauses, index, clauseset);
}
}
/*
* match_clauses_to_index
* Perform match_clause_to_index() for each clause in a list.
* Matching clauses are added to *clauseset.
*/
static void
match_clauses_to_index(PlannerInfo *root,
List *clauses,
IndexOptInfo *index,
IndexClauseSet *clauseset)
{
ListCell *lc;
foreach(lc, clauses)
{
RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
match_clause_to_index(root, rinfo, index, clauseset);
}
}
/*
* match_clause_to_index
* Test whether a qual clause can be used with an index.
*
* If the clause is usable, add an IndexClause entry for it to the appropriate
* list in *clauseset. (*clauseset must be initialized to zeroes before first
* call.)
*
* Note: in some circumstances we may find the same RestrictInfos coming from
* multiple places. Defend against redundant outputs by refusing to add a
* clause twice (pointer equality should be a good enough check for this).
*
* Note: it's possible that a badly-defined index could have multiple matching
* columns. We always select the first match if so; this avoids scenarios
* wherein we get an inflated idea of the index's selectivity by using the
* same clause multiple times with different index columns.
*/
static void
match_clause_to_index(PlannerInfo *root,
RestrictInfo *rinfo,
IndexOptInfo *index,
IndexClauseSet *clauseset)
{
int indexcol;
/*
* Never match pseudoconstants to indexes. (Normally a match could not
* happen anyway, since a pseudoconstant clause couldn't contain a Var,
* but what if someone builds an expression index on a constant? It's not
* totally unreasonable to do so with a partial index, either.)
*/
if (rinfo->pseudoconstant)
return;
/*
* If clause can't be used as an indexqual because it must wait till after
* some lower-security-level restriction clause, reject it.
*/
if (!restriction_is_securely_promotable(rinfo, index->rel))
return;
/* OK, check each index key column for a match */
for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++)
{
IndexClause *iclause;
ListCell *lc;
/* Ignore duplicates */
foreach(lc, clauseset->indexclauses[indexcol])
{
IndexClause *iclause = (IndexClause *) lfirst(lc);
if (iclause->rinfo == rinfo)
return;
}
/* OK, try to match the clause to the index column */
iclause = match_clause_to_indexcol(root,
rinfo,
indexcol,
index);
if (iclause)
{
/* Success, so record it */
clauseset->indexclauses[indexcol] =
lappend(clauseset->indexclauses[indexcol], iclause);
clauseset->nonempty = true;
return;
}
}
}
/*
* match_clause_to_indexcol()
* Determine whether a restriction clause matches a column of an index,
* and if so, build an IndexClause node describing the details.
*
* To match an index normally, an operator clause:
*
* (1) must be in the form (indexkey op const) or (const op indexkey);
* and
* (2) must contain an operator which is in the index's operator family
* for this column; and
* (3) must match the collation of the index, if collation is relevant.
*
* Our definition of "const" is exceedingly liberal: we allow anything that
* doesn't involve a volatile function or a Var of the index's relation.
* In particular, Vars belonging to other relations of the query are
* accepted here, since a clause of that form can be used in a
* parameterized indexscan. It's the responsibility of higher code levels
* to manage restriction and join clauses appropriately.
*
* Note: we do need to check for Vars of the index's relation on the
* "const" side of the clause, since clauses like (a.f1 OP (b.f2 OP a.f3))
* are not processable by a parameterized indexscan on a.f1, whereas
* something like (a.f1 OP (b.f2 OP c.f3)) is.
*
* Presently, the executor can only deal with indexquals that have the
* indexkey on the left, so we can only use clauses that have the indexkey
* on the right if we can commute the clause to put the key on the left.
* We handle that by generating an IndexClause with the correctly-commuted
* opclause as a derived indexqual.
*
* If the index has a collation, the clause must have the same collation.
* For collation-less indexes, we assume it doesn't matter; this is
* necessary for cases like "hstore ? text", wherein hstore's operators
* don't care about collation but the clause will get marked with a
* collation anyway because of the text argument. (This logic is
* embodied in the macro IndexCollMatchesExprColl.)
*
* It is also possible to match RowCompareExpr clauses to indexes (but
* currently, only btree indexes handle this).
*
* It is also possible to match ScalarArrayOpExpr clauses to indexes, when
* the clause is of the form "indexkey op ANY (arrayconst)".
*
* For boolean indexes, it is also possible to match the clause directly
* to the indexkey; or perhaps the clause is (NOT indexkey).
*
* And, last but not least, some operators and functions can be processed
* to derive (typically lossy) indexquals from a clause that isn't in
* itself indexable. If we see that any operand of an OpExpr or FuncExpr
* matches the index key, and the function has a planner support function
* attached to it, we'll invoke the support function to see if such an
* indexqual can be built.
*
* 'rinfo' is the clause to be tested (as a RestrictInfo node).
* 'indexcol' is a column number of 'index' (counting from 0).
* 'index' is the index of interest.
*
* Returns an IndexClause if the clause can be used with this index key,
* or NULL if not.
*
* NOTE: returns NULL if clause is an OR or AND clause; it is the
* responsibility of higher-level routines to cope with those.
*/
static IndexClause *
match_clause_to_indexcol(PlannerInfo *root,
RestrictInfo *rinfo,
int indexcol,
IndexOptInfo *index)
{
IndexClause *iclause;
Expr *clause = rinfo->clause;
Oid opfamily;
Assert(indexcol < index->nkeycolumns);
/*
* Historically this code has coped with NULL clauses. That's probably
* not possible anymore, but we might as well continue to cope.
*/
if (clause == NULL)
return NULL;
/* First check for boolean-index cases. */
opfamily = index->opfamily[indexcol];
if (IsBooleanOpfamily(opfamily))
{
iclause = match_boolean_index_clause(root, rinfo, indexcol, index);
if (iclause)
return iclause;
}
/*
* Clause must be an opclause, funcclause, ScalarArrayOpExpr, or
* RowCompareExpr. Or, if the index supports it, we can handle IS
* NULL/NOT NULL clauses.
*/
if (IsA(clause, OpExpr))
{
return match_opclause_to_indexcol(root, rinfo, indexcol, index);
}
else if (IsA(clause, FuncExpr))
{
return match_funcclause_to_indexcol(root, rinfo, indexcol, index);
}
else if (IsA(clause, ScalarArrayOpExpr))
{
return match_saopclause_to_indexcol(root, rinfo, indexcol, index);
}
else if (IsA(clause, RowCompareExpr))
{
return match_rowcompare_to_indexcol(root, rinfo, indexcol, index);
}
else if (index->amsearchnulls && IsA(clause, NullTest))
{
NullTest *nt = (NullTest *) clause;
if (!nt->argisrow &&
match_index_to_operand((Node *) nt->arg, indexcol, index))
{
iclause = makeNode(IndexClause);
iclause->rinfo = rinfo;
iclause->indexquals = list_make1(rinfo);
iclause->lossy = false;
iclause->indexcol = indexcol;
iclause->indexcols = NIL;
return iclause;
}
}
return NULL;
}
/*
* match_boolean_index_clause
* Recognize restriction clauses that can be matched to a boolean index.
*
* The idea here is that, for an index on a boolean column that supports the
* BooleanEqualOperator, we can transform a plain reference to the indexkey
* into "indexkey = true", or "NOT indexkey" into "indexkey = false", etc,
* so as to make the expression indexable using the index's "=" operator.
* Since Postgres 8.1, we must do this because constant simplification does
* the reverse transformation; without this code there'd be no way to use
* such an index at all.
*
* This should be called only when IsBooleanOpfamily() recognizes the
* index's operator family. We check to see if the clause matches the
* index's key, and if so, build a suitable IndexClause.
*/
static IndexClause *
match_boolean_index_clause(PlannerInfo *root,
RestrictInfo *rinfo,
int indexcol,
IndexOptInfo *index)
{
Node *clause = (Node *) rinfo->clause;
Expr *op = NULL;
/* Direct match? */
if (match_index_to_operand(clause, indexcol, index))
{
/* convert to indexkey = TRUE */
op = make_opclause(BooleanEqualOperator, BOOLOID, false,
(Expr *) clause,
(Expr *) makeBoolConst(true, false),
InvalidOid, InvalidOid);
}
/* NOT clause? */
else if (is_notclause(clause))
{
Node *arg = (Node *) get_notclausearg((Expr *) clause);
if (match_index_to_operand(arg, indexcol, index))
{
/* convert to indexkey = FALSE */
op = make_opclause(BooleanEqualOperator, BOOLOID, false,
(Expr *) arg,
(Expr *) makeBoolConst(false, false),
InvalidOid, InvalidOid);
}
}
/*
* Since we only consider clauses at top level of WHERE, we can convert
* indexkey IS TRUE and indexkey IS FALSE to index searches as well. The
* different meaning for NULL isn't important.
*/
else if (clause && IsA(clause, BooleanTest))
{
BooleanTest *btest = (BooleanTest *) clause;
Node *arg = (Node *) btest->arg;
if (btest->booltesttype == IS_TRUE &&
match_index_to_operand(arg, indexcol, index))
{
/* convert to indexkey = TRUE */
op = make_opclause(BooleanEqualOperator, BOOLOID, false,
(Expr *) arg,
(Expr *) makeBoolConst(true, false),
InvalidOid, InvalidOid);
}
else if (btest->booltesttype == IS_FALSE &&
match_index_to_operand(arg, indexcol, index))
{
/* convert to indexkey = FALSE */
op = make_opclause(BooleanEqualOperator, BOOLOID, false,
(Expr *) arg,
(Expr *) makeBoolConst(false, false),
InvalidOid, InvalidOid);
}
}
/*
* If we successfully made an operator clause from the given qual, we must
* wrap it in an IndexClause. It's not lossy.
*/
if (op)
{
IndexClause *iclause = makeNode(IndexClause);
iclause->rinfo = rinfo;
iclause->indexquals = list_make1(make_simple_restrictinfo(root, op));
iclause->lossy = false;
iclause->indexcol = indexcol;
iclause->indexcols = NIL;
return iclause;
}
return NULL;
}
/*
* match_opclause_to_indexcol()
* Handles the OpExpr case for match_clause_to_indexcol(),
* which see for comments.
*/
static IndexClause *
match_opclause_to_indexcol(PlannerInfo *root,
RestrictInfo *rinfo,
int indexcol,
IndexOptInfo *index)
{
IndexClause *iclause;
OpExpr *clause = (OpExpr *) rinfo->clause;
Node *leftop,
*rightop;
Oid expr_op;
Oid expr_coll;
Index index_relid;
Oid opfamily;
Oid idxcollation;
/*
* Only binary operators need apply. (In theory, a planner support
* function could do something with a unary operator, but it seems
* unlikely to be worth the cycles to check.)
*/
if (list_length(clause->args) != 2)
return NULL;
leftop = (Node *) linitial(clause->args);
rightop = (Node *) lsecond(clause->args);
expr_op = clause->opno;
expr_coll = clause->inputcollid;
index_relid = index->rel->relid;
opfamily = index->opfamily[indexcol];
idxcollation = index->indexcollations[indexcol];
/*
* Check for clauses of the form: (indexkey operator constant) or
* (constant operator indexkey). See match_clause_to_indexcol's notes
* about const-ness.
*
* Note that we don't ask the support function about clauses that don't
* have one of these forms. Again, in principle it might be possible to
* do something, but it seems unlikely to be worth the cycles to check.
*/
if (match_index_to_operand(leftop, indexcol, index) &&
!bms_is_member(index_relid, rinfo->right_relids) &&
!contain_volatile_functions(rightop))
{
if (IndexCollMatchesExprColl(idxcollation, expr_coll) &&
op_in_opfamily(expr_op, opfamily))
{
iclause = makeNode(IndexClause);
iclause->rinfo = rinfo;
iclause->indexquals = list_make1(rinfo);
iclause->lossy = false;
iclause->indexcol = indexcol;
iclause->indexcols = NIL;
return iclause;
}
/*
* If we didn't find a member of the index's opfamily, try the support
* function for the operator's underlying function.
*/
set_opfuncid(clause); /* make sure we have opfuncid */
return get_index_clause_from_support(root,
rinfo,
clause->opfuncid,
0, /* indexarg on left */
indexcol,
index);
}
if (match_index_to_operand(rightop, indexcol, index) &&
!bms_is_member(index_relid, rinfo->left_relids) &&
!contain_volatile_functions(leftop))
{
if (IndexCollMatchesExprColl(idxcollation, expr_coll))
{
Oid comm_op = get_commutator(expr_op);
if (OidIsValid(comm_op) &&
op_in_opfamily(comm_op, opfamily))
{
RestrictInfo *commrinfo;
/* Build a commuted OpExpr and RestrictInfo */
commrinfo = commute_restrictinfo(rinfo, comm_op);
/* Make an IndexClause showing that as a derived qual */
iclause = makeNode(IndexClause);
iclause->rinfo = rinfo;
iclause->indexquals = list_make1(commrinfo);
iclause->lossy = false;
iclause->indexcol = indexcol;
iclause->indexcols = NIL;
return iclause;
}
}
/*
* If we didn't find a member of the index's opfamily, try the support
* function for the operator's underlying function.
*/
set_opfuncid(clause); /* make sure we have opfuncid */
return get_index_clause_from_support(root,
rinfo,
clause->opfuncid,
1, /* indexarg on right */
indexcol,
index);
}
return NULL;
}
/*
* match_funcclause_to_indexcol()
* Handles the FuncExpr case for match_clause_to_indexcol(),
* which see for comments.
*/
static IndexClause *
match_funcclause_to_indexcol(PlannerInfo *root,
RestrictInfo *rinfo,
int indexcol,
IndexOptInfo *index)
{
FuncExpr *clause = (FuncExpr *) rinfo->clause;
int indexarg;
ListCell *lc;
/*
* We have no built-in intelligence about function clauses, but if there's
* a planner support function, it might be able to do something. But, to
* cut down on wasted planning cycles, only call the support function if
* at least one argument matches the target index column.
*
* Note that we don't insist on the other arguments being pseudoconstants;
* the support function has to check that. This is to allow cases where
* only some of the other arguments need to be included in the indexqual.
*/
indexarg = 0;
foreach(lc, clause->args)
{
Node *op = (Node *) lfirst(lc);
if (match_index_to_operand(op, indexcol, index))
{
return get_index_clause_from_support(root,
rinfo,
clause->funcid,
indexarg,
indexcol,
index);
}
indexarg++;
}
return NULL;
}
/*
* get_index_clause_from_support()
* If the function has a planner support function, try to construct
* an IndexClause using indexquals created by the support function.
*/
static IndexClause *
get_index_clause_from_support(PlannerInfo *root,
RestrictInfo *rinfo,
Oid funcid,
int indexarg,
int indexcol,
IndexOptInfo *index)
{
Oid prosupport = get_func_support(funcid);
SupportRequestIndexCondition req;
List *sresult;
if (!OidIsValid(prosupport))
return NULL;
req.type = T_SupportRequestIndexCondition;
req.root = root;
req.funcid = funcid;
req.node = (Node *) rinfo->clause;
req.indexarg = indexarg;
req.index = index;
req.indexcol = indexcol;
req.opfamily = index->opfamily[indexcol];
req.indexcollation = index->indexcollations[indexcol];
req.lossy = true; /* default assumption */
sresult = (List *)
DatumGetPointer(OidFunctionCall1(prosupport,
PointerGetDatum(&req)));
if (sresult != NIL)
{
IndexClause *iclause = makeNode(IndexClause);
List *indexquals = NIL;
ListCell *lc;
/*
* The support function API says it should just give back bare
* clauses, so here we must wrap each one in a RestrictInfo.
*/
foreach(lc, sresult)
{
Expr *clause = (Expr *) lfirst(lc);
indexquals = lappend(indexquals,
make_simple_restrictinfo(root, clause));
}
iclause->rinfo = rinfo;
iclause->indexquals = indexquals;
iclause->lossy = req.lossy;
iclause->indexcol = indexcol;
iclause->indexcols = NIL;
return iclause;
}
return NULL;
}
/*
* match_saopclause_to_indexcol()
* Handles the ScalarArrayOpExpr case for match_clause_to_indexcol(),
* which see for comments.
*/
static IndexClause *
match_saopclause_to_indexcol(PlannerInfo *root,
RestrictInfo *rinfo,
int indexcol,
IndexOptInfo *index)
{
ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) rinfo->clause;
Node *leftop,
*rightop;
Relids right_relids;
Oid expr_op;
Oid expr_coll;
Index index_relid;
Oid opfamily;
Oid idxcollation;
/* We only accept ANY clauses, not ALL */
if (!saop->useOr)
return NULL;
leftop = (Node *) linitial(saop->args);
rightop = (Node *) lsecond(saop->args);
right_relids = pull_varnos(root, rightop);
expr_op = saop->opno;
expr_coll = saop->inputcollid;
index_relid = index->rel->relid;
opfamily = index->opfamily[indexcol];
idxcollation = index->indexcollations[indexcol];
/*
* We must have indexkey on the left and a pseudo-constant array argument.
*/
if (match_index_to_operand(leftop, indexcol, index) &&
!bms_is_member(index_relid, right_relids) &&
!contain_volatile_functions(rightop))
{
if (IndexCollMatchesExprColl(idxcollation, expr_coll) &&
op_in_opfamily(expr_op, opfamily))
{
IndexClause *iclause = makeNode(IndexClause);
iclause->rinfo = rinfo;
iclause->indexquals = list_make1(rinfo);
iclause->lossy = false;
iclause->indexcol = indexcol;
iclause->indexcols = NIL;
return iclause;
}
/*
* We do not currently ask support functions about ScalarArrayOpExprs,
* though in principle we could.
*/
}
return NULL;
}
/*
* match_rowcompare_to_indexcol()
* Handles the RowCompareExpr case for match_clause_to_indexcol(),
* which see for comments.
*
* In this routine we check whether the first column of the row comparison
* matches the target index column. This is sufficient to guarantee that some
* index condition can be constructed from the RowCompareExpr --- the rest
* is handled by expand_indexqual_rowcompare().
*/
static IndexClause *
match_rowcompare_to_indexcol(PlannerInfo *root,
RestrictInfo *rinfo,
int indexcol,
IndexOptInfo *index)
{
RowCompareExpr *clause = (RowCompareExpr *) rinfo->clause;
Index index_relid;
Oid opfamily;
Oid idxcollation;
Node *leftop,
*rightop;
bool var_on_left;
Oid expr_op;
Oid expr_coll;
/* Forget it if we're not dealing with a btree index */
if (index->relam != BTREE_AM_OID)
return NULL;
index_relid = index->rel->relid;
opfamily = index->opfamily[indexcol];
idxcollation = index->indexcollations[indexcol];
/*
* We could do the matching on the basis of insisting that the opfamily
* shown in the RowCompareExpr be the same as the index column's opfamily,
* but that could fail in the presence of reverse-sort opfamilies: it'd be
* a matter of chance whether RowCompareExpr had picked the forward or
* reverse-sort family. So look only at the operator, and match if it is
* a member of the index's opfamily (after commutation, if the indexkey is
* on the right). We'll worry later about whether any additional
* operators are matchable to the index.
*/
leftop = (Node *) linitial(clause->largs);
rightop = (Node *) linitial(clause->rargs);
expr_op = linitial_oid(clause->opnos);
expr_coll = linitial_oid(clause->inputcollids);
/* Collations must match, if relevant */
if (!IndexCollMatchesExprColl(idxcollation, expr_coll))
return NULL;
/*
* These syntactic tests are the same as in match_opclause_to_indexcol()
*/
if (match_index_to_operand(leftop, indexcol, index) &&
!bms_is_member(index_relid, pull_varnos(root, rightop)) &&
!contain_volatile_functions(rightop))
{
/* OK, indexkey is on left */
var_on_left = true;
}
else if (match_index_to_operand(rightop, indexcol, index) &&
!bms_is_member(index_relid, pull_varnos(root, leftop)) &&
!contain_volatile_functions(leftop))
{
/* indexkey is on right, so commute the operator */
expr_op = get_commutator(expr_op);
if (expr_op == InvalidOid)
return NULL;
var_on_left = false;
}
else
return NULL;
/* We're good if the operator is the right type of opfamily member */
switch (get_op_opfamily_strategy(expr_op, opfamily))
{
case BTLessStrategyNumber:
case BTLessEqualStrategyNumber:
case BTGreaterEqualStrategyNumber:
case BTGreaterStrategyNumber:
return expand_indexqual_rowcompare(root,
rinfo,
indexcol,
index,
expr_op,
var_on_left);
}
return NULL;
}
/*
* expand_indexqual_rowcompare --- expand a single indexqual condition
* that is a RowCompareExpr
*
* It's already known that the first column of the row comparison matches
* the specified column of the index. We can use additional columns of the
* row comparison as index qualifications, so long as they match the index
* in the "same direction", ie, the indexkeys are all on the same side of the
* clause and the operators are all the same-type members of the opfamilies.
*
* If all the columns of the RowCompareExpr match in this way, we just use it
* as-is, except for possibly commuting it to put the indexkeys on the left.
*
* Otherwise, we build a shortened RowCompareExpr (if more than one
* column matches) or a simple OpExpr (if the first-column match is all
* there is). In these cases the modified clause is always "<=" or ">="
* even when the original was "<" or ">" --- this is necessary to match all
* the rows that could match the original. (We are building a lossy version
* of the row comparison when we do this, so we set lossy = true.)
*
* Note: this is really just the last half of match_rowcompare_to_indexcol,
* but we split it out for comprehensibility.
*/
static IndexClause *
expand_indexqual_rowcompare(PlannerInfo *root,
RestrictInfo *rinfo,
int indexcol,
IndexOptInfo *index,
Oid expr_op,
bool var_on_left)
{
IndexClause *iclause = makeNode(IndexClause);
RowCompareExpr *clause = (RowCompareExpr *) rinfo->clause;
int op_strategy;
Oid op_lefttype;
Oid op_righttype;
int matching_cols;
List *expr_ops;
List *opfamilies;
List *lefttypes;
List *righttypes;
List *new_ops;
List *var_args;
List *non_var_args;
iclause->rinfo = rinfo;
iclause->indexcol = indexcol;
if (var_on_left)
{
var_args = clause->largs;
non_var_args = clause->rargs;
}
else
{
var_args = clause->rargs;
non_var_args = clause->largs;
}
get_op_opfamily_properties(expr_op, index->opfamily[indexcol], false,
&op_strategy,
&op_lefttype,
&op_righttype);
/* Initialize returned list of which index columns are used */
iclause->indexcols = list_make1_int(indexcol);
/* Build lists of ops, opfamilies and operator datatypes in case needed */
expr_ops = list_make1_oid(expr_op);
opfamilies = list_make1_oid(index->opfamily[indexcol]);
lefttypes = list_make1_oid(op_lefttype);
righttypes = list_make1_oid(op_righttype);
/*
* See how many of the remaining columns match some index column in the
* same way. As in match_clause_to_indexcol(), the "other" side of any
* potential index condition is OK as long as it doesn't use Vars from the
* indexed relation.
*/
matching_cols = 1;
while (matching_cols < list_length(var_args))
{
Node *varop = (Node *) list_nth(var_args, matching_cols);
Node *constop = (Node *) list_nth(non_var_args, matching_cols);
int i;
expr_op = list_nth_oid(clause->opnos, matching_cols);
if (!var_on_left)
{
/* indexkey is on right, so commute the operator */
expr_op = get_commutator(expr_op);
if (expr_op == InvalidOid)
break; /* operator is not usable */
}
if (bms_is_member(index->rel->relid, pull_varnos(root, constop)))
break; /* no good, Var on wrong side */
if (contain_volatile_functions(constop))
break; /* no good, volatile comparison value */
/*
* The Var side can match any key column of the index.
*/
for (i = 0; i < index->nkeycolumns; i++)
{
if (match_index_to_operand(varop, i, index) &&
get_op_opfamily_strategy(expr_op,
index->opfamily[i]) == op_strategy &&
IndexCollMatchesExprColl(index->indexcollations[i],
list_nth_oid(clause->inputcollids,
matching_cols)))
break;
}
if (i >= index->nkeycolumns)
break; /* no match found */
/* Add column number to returned list */
iclause->indexcols = lappend_int(iclause->indexcols, i);
/* Add operator info to lists */
get_op_opfamily_properties(expr_op, index->opfamily[i], false,
&op_strategy,
&op_lefttype,
&op_righttype);
expr_ops = lappend_oid(expr_ops, expr_op);
opfamilies = lappend_oid(opfamilies, index->opfamily[i]);
lefttypes = lappend_oid(lefttypes, op_lefttype);
righttypes = lappend_oid(righttypes, op_righttype);
/* This column matches, keep scanning */
matching_cols++;
}
/* Result is non-lossy if all columns are usable as index quals */
iclause->lossy = (matching_cols != list_length(clause->opnos));
/*
* We can use rinfo->clause as-is if we have var on left and it's all
* usable as index quals.
*/
if (var_on_left && !iclause->lossy)
iclause->indexquals = list_make1(rinfo);
else
{
/*
* We have to generate a modified rowcompare (possibly just one
* OpExpr). The painful part of this is changing < to <= or > to >=,
* so deal with that first.
*/
if (!iclause->lossy)
{
/* very easy, just use the commuted operators */
new_ops = expr_ops;
}
else if (op_strategy == BTLessEqualStrategyNumber ||
op_strategy == BTGreaterEqualStrategyNumber)
{
/* easy, just use the same (possibly commuted) operators */
new_ops = list_truncate(expr_ops, matching_cols);
}
else
{
ListCell *opfamilies_cell;
ListCell *lefttypes_cell;
ListCell *righttypes_cell;
if (op_strategy == BTLessStrategyNumber)
op_strategy = BTLessEqualStrategyNumber;
else if (op_strategy == BTGreaterStrategyNumber)
op_strategy = BTGreaterEqualStrategyNumber;
else
elog(ERROR, "unexpected strategy number %d", op_strategy);
new_ops = NIL;
forthree(opfamilies_cell, opfamilies,
lefttypes_cell, lefttypes,
righttypes_cell, righttypes)
{
Oid opfam = lfirst_oid(opfamilies_cell);
Oid lefttype = lfirst_oid(lefttypes_cell);
Oid righttype = lfirst_oid(righttypes_cell);
expr_op = get_opfamily_member(opfam, lefttype, righttype,
op_strategy);
if (!OidIsValid(expr_op)) /* should not happen */
elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
op_strategy, lefttype, righttype, opfam);
new_ops = lappend_oid(new_ops, expr_op);
}
}
/* If we have more than one matching col, create a subset rowcompare */
if (matching_cols > 1)
{
RowCompareExpr *rc = makeNode(RowCompareExpr);
rc->rctype = (RowCompareType) op_strategy;
rc->opnos = new_ops;
rc->opfamilies = list_truncate(list_copy(clause->opfamilies),
matching_cols);
rc->inputcollids = list_truncate(list_copy(clause->inputcollids),
matching_cols);
rc->largs = list_truncate(copyObject(var_args),
matching_cols);
rc->rargs = list_truncate(copyObject(non_var_args),
matching_cols);
iclause->indexquals = list_make1(make_simple_restrictinfo(root,
(Expr *) rc));
}
else
{
Expr *op;
/* We don't report an index column list in this case */
iclause->indexcols = NIL;
op = make_opclause(linitial_oid(new_ops), BOOLOID, false,
copyObject(linitial(var_args)),
copyObject(linitial(non_var_args)),
InvalidOid,
linitial_oid(clause->inputcollids));
iclause->indexquals = list_make1(make_simple_restrictinfo(root, op));
}
}
return iclause;
}
/****************************************************************************
* ---- ROUTINES TO CHECK ORDERING OPERATORS ----
****************************************************************************/
/*
* match_pathkeys_to_index
* Test whether an index can produce output ordered according to the
* given pathkeys using "ordering operators".
*
* If it can, return a list of suitable ORDER BY expressions, each of the form
* "indexedcol operator pseudoconstant", along with an integer list of the
* index column numbers (zero based) that each clause would be used with.
* NIL lists are returned if the ordering is not achievable this way.
*
* On success, the result list is ordered by pathkeys, and in fact is
* one-to-one with the requested pathkeys.
*/
static void
match_pathkeys_to_index(IndexOptInfo *index, List *pathkeys,
List **orderby_clauses_p,
List **clause_columns_p)
{
List *orderby_clauses = NIL;
List *clause_columns = NIL;
ListCell *lc1;
*orderby_clauses_p = NIL; /* set default results */
*clause_columns_p = NIL;
/* Only indexes with the amcanorderbyop property are interesting here */
if (!index->amcanorderbyop)
return;
foreach(lc1, pathkeys)
{
PathKey *pathkey = (PathKey *) lfirst(lc1);
bool found = false;
ListCell *lc2;
/*
* Note: for any failure to match, we just return NIL immediately.
* There is no value in matching just some of the pathkeys.
*/
/* Pathkey must request default sort order for the target opfamily */
if (pathkey->pk_strategy != BTLessStrategyNumber ||
pathkey->pk_nulls_first)
return;
/* If eclass is volatile, no hope of using an indexscan */
if (pathkey->pk_eclass->ec_has_volatile)
return;
/*
* Try to match eclass member expression(s) to index. Note that child
* EC members are considered, but only when they belong to the target
* relation. (Unlike regular members, the same expression could be a
* child member of more than one EC. Therefore, the same index could
* be considered to match more than one pathkey list, which is OK
* here. See also get_eclass_for_sort_expr.)
*/
foreach(lc2, pathkey->pk_eclass->ec_members)
{
EquivalenceMember *member = (EquivalenceMember *) lfirst(lc2);
int indexcol;
/* No possibility of match if it references other relations */
if (!bms_equal(member->em_relids, index->rel->relids))
continue;
/*
* We allow any column of the index to match each pathkey; they
* don't have to match left-to-right as you might expect. This is
* correct for GiST, and it doesn't matter for SP-GiST because
* that doesn't handle multiple columns anyway, and no other
* existing AMs support amcanorderbyop. We might need different
* logic in future for other implementations.
*/
for (indexcol = 0; indexcol < index->nkeycolumns; indexcol++)
{
Expr *expr;
expr = match_clause_to_ordering_op(index,
indexcol,
member->em_expr,
pathkey->pk_opfamily);
if (expr)
{
orderby_clauses = lappend(orderby_clauses, expr);
clause_columns = lappend_int(clause_columns, indexcol);
found = true;
break;
}
}
if (found) /* don't want to look at remaining members */
break;
}
if (!found) /* fail if no match for this pathkey */
return;
}
*orderby_clauses_p = orderby_clauses; /* success! */
*clause_columns_p = clause_columns;
}
/*
* match_clause_to_ordering_op
* Determines whether an ordering operator expression matches an
* index column.
*
* This is similar to, but simpler than, match_clause_to_indexcol.
* We only care about simple OpExpr cases. The input is a bare
* expression that is being ordered by, which must be of the form
* (indexkey op const) or (const op indexkey) where op is an ordering
* operator for the column's opfamily.
*
* 'index' is the index of interest.
* 'indexcol' is a column number of 'index' (counting from 0).
* 'clause' is the ordering expression to be tested.
* 'pk_opfamily' is the btree opfamily describing the required sort order.
*
* Note that we currently do not consider the collation of the ordering
* operator's result. In practical cases the result type will be numeric
* and thus have no collation, and it's not very clear what to match to
* if it did have a collation. The index's collation should match the
* ordering operator's input collation, not its result.
*
* If successful, return 'clause' as-is if the indexkey is on the left,
* otherwise a commuted copy of 'clause'. If no match, return NULL.
*/
static Expr *
match_clause_to_ordering_op(IndexOptInfo *index,
int indexcol,
Expr *clause,
Oid pk_opfamily)
{
Oid opfamily;
Oid idxcollation;
Node *leftop,
*rightop;
Oid expr_op;
Oid expr_coll;
Oid sortfamily;
bool commuted;
Assert(indexcol < index->nkeycolumns);
opfamily = index->opfamily[indexcol];
idxcollation = index->indexcollations[indexcol];
/*
* Clause must be a binary opclause.
*/
if (!is_opclause(clause))
return NULL;
leftop = get_leftop(clause);
rightop = get_rightop(clause);
if (!leftop || !rightop)
return NULL;
expr_op = ((OpExpr *) clause)->opno;
expr_coll = ((OpExpr *) clause)->inputcollid;
/*
* We can forget the whole thing right away if wrong collation.
*/
if (!IndexCollMatchesExprColl(idxcollation, expr_coll))
return NULL;
/*
* Check for clauses of the form: (indexkey operator constant) or
* (constant operator indexkey).
*/
if (match_index_to_operand(leftop, indexcol, index) &&
!contain_var_clause(rightop) &&
!contain_volatile_functions(rightop))
{
commuted = false;
}
else if (match_index_to_operand(rightop, indexcol, index) &&
!contain_var_clause(leftop) &&
!contain_volatile_functions(leftop))
{
/* Might match, but we need a commuted operator */
expr_op = get_commutator(expr_op);
if (expr_op == InvalidOid)
return NULL;
commuted = true;
}
else
return NULL;
/*
* Is the (commuted) operator an ordering operator for the opfamily? And
* if so, does it yield the right sorting semantics?
*/
sortfamily = get_op_opfamily_sortfamily(expr_op, opfamily);
if (sortfamily != pk_opfamily)
return NULL;
/* We have a match. Return clause or a commuted version thereof. */
if (commuted)
{
OpExpr *newclause = makeNode(OpExpr);
/* flat-copy all the fields of clause */
memcpy(newclause, clause, sizeof(OpExpr));
/* commute it */
newclause->opno = expr_op;
newclause->opfuncid = InvalidOid;
newclause->args = list_make2(rightop, leftop);
clause = (Expr *) newclause;
}
return clause;
}
/****************************************************************************
* ---- ROUTINES TO DO PARTIAL INDEX PREDICATE TESTS ----
****************************************************************************/
/*
* check_index_predicates
* Set the predicate-derived IndexOptInfo fields for each index
* of the specified relation.
*
* predOK is set true if the index is partial and its predicate is satisfied
* for this query, ie the query's WHERE clauses imply the predicate.
*
* indrestrictinfo is set to the relation's baserestrictinfo list less any
* conditions that are implied by the index's predicate. (Obviously, for a
* non-partial index, this is the same as baserestrictinfo.) Such conditions
* can be dropped from the plan when using the index, in certain cases.
*
* At one time it was possible for this to get re-run after adding more
* restrictions to the rel, thus possibly letting us prove more indexes OK.
* That doesn't happen any more (at least not in the core code's usage),
* but this code still supports it in case extensions want to mess with the
* baserestrictinfo list. We assume that adding more restrictions can't make
* an index not predOK. We must recompute indrestrictinfo each time, though,
* to make sure any newly-added restrictions get into it if needed.
*/
void
check_index_predicates(PlannerInfo *root, RelOptInfo *rel)
{
List *clauselist;
bool have_partial;
bool is_target_rel;
Relids otherrels;
ListCell *lc;
/* Indexes are available only on base or "other" member relations. */
Assert(IS_SIMPLE_REL(rel));
/*
* Initialize the indrestrictinfo lists to be identical to
* baserestrictinfo, and check whether there are any partial indexes. If
* not, this is all we need to do.
*/
have_partial = false;
foreach(lc, rel->indexlist)
{
IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
index->indrestrictinfo = rel->baserestrictinfo;
if (index->indpred)
have_partial = true;
}
if (!have_partial)
return;
/*
* Construct a list of clauses that we can assume true for the purpose of
* proving the index(es) usable. Restriction clauses for the rel are
* always usable, and so are any join clauses that are "movable to" this
* rel. Also, we can consider any EC-derivable join clauses (which must
* be "movable to" this rel, by definition).
*/
clauselist = list_copy(rel->baserestrictinfo);
/* Scan the rel's join clauses */
foreach(lc, rel->joininfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
/* Check if clause can be moved to this rel */
if (!join_clause_is_movable_to(rinfo, rel))
continue;
clauselist = lappend(clauselist, rinfo);
}
/*
* Add on any equivalence-derivable join clauses. Computing the correct
* relid sets for generate_join_implied_equalities is slightly tricky
* because the rel could be a child rel rather than a true baserel, and in
* that case we must remove its parents' relid(s) from all_baserels.
*/
if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
otherrels = bms_difference(root->all_baserels,
find_childrel_parents(root, rel));
else
otherrels = bms_difference(root->all_baserels, rel->relids);
if (!bms_is_empty(otherrels))
clauselist =
list_concat(clauselist,
generate_join_implied_equalities(root,
bms_union(rel->relids,
otherrels),
otherrels,
rel));
/*
* Normally we remove quals that are implied by a partial index's
* predicate from indrestrictinfo, indicating that they need not be
* checked explicitly by an indexscan plan using this index. However, if
* the rel is a target relation of UPDATE/DELETE/SELECT FOR UPDATE, we
* cannot remove such quals from the plan, because they need to be in the
* plan so that they will be properly rechecked by EvalPlanQual testing.
* Some day we might want to remove such quals from the main plan anyway
* and pass them through to EvalPlanQual via a side channel; but for now,
* we just don't remove implied quals at all for target relations.
*/
is_target_rel = (bms_is_member(rel->relid, root->all_result_relids) ||
get_plan_rowmark(root->rowMarks, rel->relid) != NULL);
/*
* Now try to prove each index predicate true, and compute the
* indrestrictinfo lists for partial indexes. Note that we compute the
* indrestrictinfo list even for non-predOK indexes; this might seem
* wasteful, but we may be able to use such indexes in OR clauses, cf
* generate_bitmap_or_paths().
*/
foreach(lc, rel->indexlist)
{
IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
ListCell *lcr;
if (index->indpred == NIL)
continue; /* ignore non-partial indexes here */
if (!index->predOK) /* don't repeat work if already proven OK */
index->predOK = predicate_implied_by(index->indpred, clauselist,
false);
/* If rel is an update target, leave indrestrictinfo as set above */
if (is_target_rel)
continue;
/* Else compute indrestrictinfo as the non-implied quals */
index->indrestrictinfo = NIL;
foreach(lcr, rel->baserestrictinfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lcr);
/* predicate_implied_by() assumes first arg is immutable */
if (contain_mutable_functions((Node *) rinfo->clause) ||
!predicate_implied_by(list_make1(rinfo->clause),
index->indpred, false))
index->indrestrictinfo = lappend(index->indrestrictinfo, rinfo);
}
}
}
/****************************************************************************
* ---- ROUTINES TO CHECK EXTERNALLY-VISIBLE CONDITIONS ----
****************************************************************************/
/*
* ec_member_matches_indexcol
* Test whether an EquivalenceClass member matches an index column.
*
* This is a callback for use by generate_implied_equalities_for_column.
*/
static bool
ec_member_matches_indexcol(PlannerInfo *root, RelOptInfo *rel,
EquivalenceClass *ec, EquivalenceMember *em,
void *arg)
{
IndexOptInfo *index = ((ec_member_matches_arg *) arg)->index;
int indexcol = ((ec_member_matches_arg *) arg)->indexcol;
Oid curFamily;
Oid curCollation;
Assert(indexcol < index->nkeycolumns);
curFamily = index->opfamily[indexcol];
curCollation = index->indexcollations[indexcol];
/*
* If it's a btree index, we can reject it if its opfamily isn't
* compatible with the EC, since no clause generated from the EC could be
* used with the index. For non-btree indexes, we can't easily tell
* whether clauses generated from the EC could be used with the index, so
* don't check the opfamily. This might mean we return "true" for a
* useless EC, so we have to recheck the results of
* generate_implied_equalities_for_column; see
* match_eclass_clauses_to_index.
*/
if (index->relam == BTREE_AM_OID &&
!list_member_oid(ec->ec_opfamilies, curFamily))
return false;
/* We insist on collation match for all index types, though */
if (!IndexCollMatchesExprColl(curCollation, ec->ec_collation))
return false;
return match_index_to_operand((Node *) em->em_expr, indexcol, index);
}
/*
* relation_has_unique_index_for
* Determine whether the relation provably has at most one row satisfying
* a set of equality conditions, because the conditions constrain all
* columns of some unique index.
*
* The conditions can be represented in either or both of two ways:
* 1. A list of RestrictInfo nodes, where the caller has already determined
* that each condition is a mergejoinable equality with an expression in
* this relation on one side, and an expression not involving this relation
* on the other. The transient outer_is_left flag is used to identify which
* side we should look at: left side if outer_is_left is false, right side
* if it is true.
* 2. A list of expressions in this relation, and a corresponding list of
* equality operators. The caller must have already checked that the operators
* represent equality. (Note: the operators could be cross-type; the
* expressions should correspond to their RHS inputs.)
*
* The caller need only supply equality conditions arising from joins;
* this routine automatically adds in any usable baserestrictinfo clauses.
* (Note that the passed-in restrictlist will be destructively modified!)
*/
bool
relation_has_unique_index_for(PlannerInfo *root, RelOptInfo *rel,
List *restrictlist,
List *exprlist, List *oprlist)
{
ListCell *ic;
Assert(list_length(exprlist) == list_length(oprlist));
/* Short-circuit if no indexes... */
if (rel->indexlist == NIL)
return false;
/*
* Examine the rel's restriction clauses for usable var = const clauses
* that we can add to the restrictlist.
*/
foreach(ic, rel->baserestrictinfo)
{
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(ic);
/*
* Note: can_join won't be set for a restriction clause, but
* mergeopfamilies will be if it has a mergejoinable operator and
* doesn't contain volatile functions.
*/
if (restrictinfo->mergeopfamilies == NIL)
continue; /* not mergejoinable */
/*
* The clause certainly doesn't refer to anything but the given rel.
* If either side is pseudoconstant then we can use it.
*/
if (bms_is_empty(restrictinfo->left_relids))
{
/* righthand side is inner */
restrictinfo->outer_is_left = true;
}
else if (bms_is_empty(restrictinfo->right_relids))
{
/* lefthand side is inner */
restrictinfo->outer_is_left = false;
}
else
continue;
/* OK, add to list */
restrictlist = lappend(restrictlist, restrictinfo);
}
/* Short-circuit the easy case */
if (restrictlist == NIL && exprlist == NIL)
return false;
/* Examine each index of the relation ... */
foreach(ic, rel->indexlist)
{
IndexOptInfo *ind = (IndexOptInfo *) lfirst(ic);
int c;
/*
* If the index is not unique, or not immediately enforced, or if it's
* a partial index that doesn't match the query, it's useless here.
*/
if (!ind->unique || !ind->immediate ||
(ind->indpred != NIL && !ind->predOK))
continue;
/*
* Try to find each index column in the lists of conditions. This is
* O(N^2) or worse, but we expect all the lists to be short.
*/
for (c = 0; c < ind->nkeycolumns; c++)
{
bool matched = false;
ListCell *lc;
ListCell *lc2;
foreach(lc, restrictlist)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
Node *rexpr;
/*
* The condition's equality operator must be a member of the
* index opfamily, else it is not asserting the right kind of
* equality behavior for this index. We check this first
* since it's probably cheaper than match_index_to_operand().
*/
if (!list_member_oid(rinfo->mergeopfamilies, ind->opfamily[c]))
continue;
/*
* XXX at some point we may need to check collations here too.
* For the moment we assume all collations reduce to the same
* notion of equality.
*/
/* OK, see if the condition operand matches the index key */
if (rinfo->outer_is_left)
rexpr = get_rightop(rinfo->clause);
else
rexpr = get_leftop(rinfo->clause);
if (match_index_to_operand(rexpr, c, ind))
{
matched = true; /* column is unique */
break;
}
}
if (matched)
continue;
forboth(lc, exprlist, lc2, oprlist)
{
Node *expr = (Node *) lfirst(lc);
Oid opr = lfirst_oid(lc2);
/* See if the expression matches the index key */
if (!match_index_to_operand(expr, c, ind))
continue;
/*
* The equality operator must be a member of the index
* opfamily, else it is not asserting the right kind of
* equality behavior for this index. We assume the caller
* determined it is an equality operator, so we don't need to
* check any more tightly than this.
*/
if (!op_in_opfamily(opr, ind->opfamily[c]))
continue;
/*
* XXX at some point we may need to check collations here too.
* For the moment we assume all collations reduce to the same
* notion of equality.
*/
matched = true; /* column is unique */
break;
}
if (!matched)
break; /* no match; this index doesn't help us */
}
/* Matched all key columns of this index? */
if (c == ind->nkeycolumns)
return true;
}
return false;
}
/*
* indexcol_is_bool_constant_for_query
*
* If an index column is constrained to have a constant value by the query's
* WHERE conditions, then it's irrelevant for sort-order considerations.
* Usually that means we have a restriction clause WHERE indexcol = constant,
* which gets turned into an EquivalenceClass containing a constant, which
* is recognized as redundant by build_index_pathkeys(). But if the index
* column is a boolean variable (or expression), then we are not going to
* see WHERE indexcol = constant, because expression preprocessing will have
* simplified that to "WHERE indexcol" or "WHERE NOT indexcol". So we are not
* going to have a matching EquivalenceClass (unless the query also contains
* "ORDER BY indexcol"). To allow such cases to work the same as they would
* for non-boolean values, this function is provided to detect whether the
* specified index column matches a boolean restriction clause.
*/
bool
indexcol_is_bool_constant_for_query(PlannerInfo *root,
IndexOptInfo *index,
int indexcol)
{
ListCell *lc;
/* If the index isn't boolean, we can't possibly get a match */
if (!IsBooleanOpfamily(index->opfamily[indexcol]))
return false;
/* Check each restriction clause for the index's rel */
foreach(lc, index->rel->baserestrictinfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
/*
* As in match_clause_to_indexcol, never match pseudoconstants to
* indexes. (It might be semantically okay to do so here, but the
* odds of getting a match are negligible, so don't waste the cycles.)
*/
if (rinfo->pseudoconstant)
continue;
/* See if we can match the clause's expression to the index column */
if (match_boolean_index_clause(root, rinfo, indexcol, index))
return true;
}
return false;
}
/****************************************************************************
* ---- ROUTINES TO CHECK OPERANDS ----
****************************************************************************/
/*
* match_index_to_operand()
* Generalized test for a match between an index's key
* and the operand on one side of a restriction or join clause.
*
* operand: the nodetree to be compared to the index
* indexcol: the column number of the index (counting from 0)
* index: the index of interest
*
* Note that we aren't interested in collations here; the caller must check
* for a collation match, if it's dealing with an operator where that matters.
*
* This is exported for use in selfuncs.c.
*/
bool
match_index_to_operand(Node *operand,
int indexcol,
IndexOptInfo *index)
{
int indkey;
/*
* Ignore any RelabelType node above the operand. This is needed to be
* able to apply indexscanning in binary-compatible-operator cases. Note:
* we can assume there is at most one RelabelType node;
* eval_const_expressions() will have simplified if more than one.
*/
if (operand && IsA(operand, RelabelType))
operand = (Node *) ((RelabelType *) operand)->arg;
indkey = index->indexkeys[indexcol];
if (indkey != 0)
{
/*
* Simple index column; operand must be a matching Var.
*/
if (operand && IsA(operand, Var) &&
index->rel->relid == ((Var *) operand)->varno &&
indkey == ((Var *) operand)->varattno)
return true;
}
else
{
/*
* Index expression; find the correct expression. (This search could
* be avoided, at the cost of complicating all the callers of this
* routine; doesn't seem worth it.)
*/
ListCell *indexpr_item;
int i;
Node *indexkey;
indexpr_item = list_head(index->indexprs);
for (i = 0; i < indexcol; i++)
{
if (index->indexkeys[i] == 0)
{
if (indexpr_item == NULL)
elog(ERROR, "wrong number of index expressions");
indexpr_item = lnext(index->indexprs, indexpr_item);
}
}
if (indexpr_item == NULL)
elog(ERROR, "wrong number of index expressions");
indexkey = (Node *) lfirst(indexpr_item);
/*
* Does it match the operand? Again, strip any relabeling.
*/
if (indexkey && IsA(indexkey, RelabelType))
indexkey = (Node *) ((RelabelType *) indexkey)->arg;
if (equal(indexkey, operand))
return true;
}
return false;
}
/*
* is_pseudo_constant_for_index()
* Test whether the given expression can be used as an indexscan
* comparison value.
*
* An indexscan comparison value must not contain any volatile functions,
* and it can't contain any Vars of the index's own table. Vars of
* other tables are okay, though; in that case we'd be producing an
* indexqual usable in a parameterized indexscan. This is, therefore,
* a weaker condition than is_pseudo_constant_clause().
*
* This function is exported for use by planner support functions,
* which will have available the IndexOptInfo, but not any RestrictInfo
* infrastructure. It is making the same test made by functions above
* such as match_opclause_to_indexcol(), but those rely where possible
* on RestrictInfo information about variable membership.
*
* expr: the nodetree to be checked
* index: the index of interest
*/
bool
is_pseudo_constant_for_index(PlannerInfo *root, Node *expr, IndexOptInfo *index)
{
/* pull_varnos is cheaper than volatility check, so do that first */
if (bms_is_member(index->rel->relid, pull_varnos(root, expr)))
return false; /* no good, contains Var of table */
if (contain_volatile_functions(expr))
return false; /* no good, volatile comparison value */
return true;
}
|